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Unveiling the power of high-dimensional
cytometry data with cyCONDOR

A list of authors and their affiliations appears at the end of the paper

High-dimensional cytometry (HDC) is a powerful technology for studying

single-cell phenotypes in complex biological systems. Although technological

developments and affordability have made HDC broadly available in recent

years, technological advances were not coupled with an adequate develop-

ment of analytical methods that can take full advantage of the complex data

generated. While several analytical platforms and bioinformatics tools have

become available for the analysis of HDC data, these are either web-hosted

with limited scalability or designed for expert computational biologists,

making their use unapproachable for wet lab scientists. Additionally, end-to-

end HDC data analysis is further hampered due to missing unified analytical

ecosystems, requiring researchers to navigatemultiple platforms and software

packages to complete the analysis. To bridge this data analysis gap in HDC we

develop cyCONDOR, an easy-to-use computational framework covering not

only all essential steps of cytometry data analysis but also including an array of

downstream functions and tools to expand the biological interpretation of the

data. The comprehensive suite of features of cyCONDOR, including guidedpre-

processing, clustering, dimensionality reduction, and machine learning algo-

rithms, facilitates the seamless integration of cyCONDOR into clinically rele-

vant settings, where scalability anddisease classification are paramount for the

widespread adoption of HDC in clinical practice. Additionally, the advanced

analytical features of cyCONDOR, such as pseudotime analysis and batch

integration, provide researchers with the tools to extract deeper insights from

their data. We use cyCONDOR on a variety of data from different tissues and

technologies demonstrating its versatility to assist the analysis of high-

dimensional data from preprocessing to biological interpretation.

The rapid development of high-dimensional cytometry (HDC)

methods has revolutionized how we can analyze millions of cells

from thousands of complex tissues. Mainly driven by immunological

research, where the heterogeneity of cell types and the growing

number of cell states particularly benefits from these high-

dimensionality techniques1, HDC is now extremely robust and rou-

tinely employed to measure simultaneously up to 50 markers at

single-cell resolution, making it instrumental not only in immunolo-

gical research, but increasingly in other disciplines such as

microbiology, virology, or neurobiology2. The main technologies

employed in this field are high-dimensional flow cytometry (HDFC)3,

total spectrum flow cytometry (SpectralFlow)4, cytometry by time of

flight or mass cytometry (CyTOF)5 and proteogenomics (CITE-seq/

Ab-seq)6. These antibody-based methods allow not only the detec-

tion of intra- and extra-cellular proteins but also the specific identi-

fication of post-translational modifications, adding an important

functional layer to nucleotide-based methods (e.g., single-cell RNA

sequencing). Particularly the cytometry-based methods are
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characterized by significant throughput allowing the measurement

of millions of cells per sample1.

While HDCs come with many advantages and opportunities, their

high dimensionality also comes with challenges, of which a major one

is the application of conventional analytical approaches that rely on

consecutive gating based on one or two parameters at a time. It has

been shown recently that conventional analytics are prone to miss the

intricate relationships and patterns that exist within high-dimensional

datasets, which can lead to incomplete and potentially misleading

interpretations1. Effectively harnessing the full potential of HDC data-

sets requires an unbiased perspective and the ability to operate with-

out the need for prior knowledge1. Along these lines specialized

bioinformatics tools were developed capable of navigating the com-

plexity of HDC datasets and extracting meaningful insights without

relying on pre-existing assumptions7–13.

Recent years have seen a surge in open-source and non-

commercial tools for high-dimensional cytometry (HDC) data analy-

sis. These tools empower researchers to leverage data-driven

approaches similar to those used in the single-cell transcriptomics

field. Pioneering projects like Cytofkit10 (not under active develop-

ment), SPECTRE9, Catalyst11, ImmunoCluster7 and TidyTOF8 have sig-

nificantly shaped current HDC analysis standards. However, these

options do not provide some advanced features commonly used in

high-dimensional analysis. To address this, commercially available

alternatives like Cytobank (Beckman Colter), Cytolution (Cytolytics)

and Omiq (Dotmatics) offer feature-rich tools with intuitive graphical

user interfaces (GUIs) that guide wet-lab scientists through data ana-

lysis. While these implementations are particularly helpful, their cost

often limits their broad adoption. We hypothesized that an integrated,

simple to use, end-to-end ecosystem for HDC data analysis would

overcome current shortcomings and enable HDC users to take full

advantage of the high dimensionality of the data. The solution is an

integrated ecosystem (1) unifying different algorithms for a diverse set

of analyzes under a united data structure; (2) being able to analyze a

high number of cells/samples optimized for consumer hardware but

deployable on high-performance computers (HPCs); and (3) designed

with a focus on data interpretation and visualization.

Here we present cyCONDOR (github.com/lorenzobonaguro/

cyCONDOR) for the analysis of HDC data. Our tool provides an inte-

grated ecosystem for the analysis of CyTOF, HDFC, SpectralFlow and

CITE-seq data in R in a unified format designed for its ease of use by

non-computational biologists (Fig. 1a). cyCONDOR offers a compre-

hensive data analysis toolkit encompassing data ingestion and trans-

formation, batch correction, dimensionality reduction, and clustering,

along with streamlined functions for data visualization, biological

comparison, and statistical testing. Its advanced features include deep
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Fig. 1 | Overview of the cyCONDOR ecosystem. a The cyCONDOR ecosystem

accepts HDC data from a variety of technologies combined with sample annota-

tion. b The ecosystem covers a broad variety of analytical tasks, from data import

and transformation to ML-based sample classifiers. Created in BioRender. Bona-

guro, L. (2024) https://biorender.com/h88w007.
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learning algorithms for automated annotation of new datasets and

classification of new samples based on clinical characteristics (Fig. 1b).

Additionally, cyCONDOR can infer the pseudotime of continuous bio-

logical processes to investigate developmental states or disease

trajectories14 (Fig. 1b). Compared to other currently available toolkits,

cyCONDOR provides the most comprehensive collection of analysis

algorithms and an easily interpretable data format (Figure S1a). Fur-

thermore, the entire cyCONDOR ecosystem was designed to be scal-

able to millions of cells while being still usable on common hardware

(Figure S1b). We also tested cyCONDOR performance in direct com-

parison with Catalyst and SPECTRE (Figure S1c). We compared run

times of the core functions (data loading, subsampling, transforma-

tion, dimensionality reduction and clustering using Phenograph15 or

FlowSOM16) according to the availability in each package, while con-

sidering different sample sizes as shown in Figure S1b. As Catalyst does

not provide Phenograph as a clustering algorithm we compared the

runtime of FlowSOM in comparison with cyCONDOR. For the com-

parison with SPECTRE we used Phenograph as this is often one of the

most compute intensive step in data analysis. cyCONDOR shows

comparable performance with both state-of-the-art tools showing an

improved runtime especially when using Phenograph for clustering.

cyCONODR is the first tool to implement multi-core computing for

Phenograph clustering (Figure S1c). Additionally as a metric for the

easeof usewecounted thenumber of functions needed toperformthe

core steps of data analysis. cyCONDOR needs 4 functions to perform

data loading, transformation, dimensionality reduction and clustering

while for the same result Catalyst and SPECTRE require 5 and 9 func-

tions, respectively (Figure S1d). Furthermore, cyCONDOR, providing

the broadest set of implemented downstream options simplifies the

access also to an advanced analytical pipeline for the unexperienced

user (Figure S1a).

We used cyCONDOR on a variety of private and public datasets

showing seamless compatibility with all tested cytometry data for-

mats. Wemade cyCONDOR available in R as a standalone package or as

containerized environments easily deployed on local hardware or

HPCs. With cyCONDOR, we provide an ecosystem that allows the end

user to fully exploit the potential of HDC methods.

Results
cyCONDOR provides a versatile workflow for data pre-
processing
cyCONDOR offers a suite of microservices for data import and pre-

processing to make use of a versatile set of data input formats in HDC

(Fig. 1a) and to provide the necessary data pre-processing prior to an

integrated higher-level data analysis (Fig. 1b). As default input data

format for the cyCONDOR workflow, either Flow Cytometry Standard

files (FCS) or Comma-separated values files (CSV) are used, which can

be exported by current acquisition or flow cytometry data analysis

software such as FlowJo (www.flowjo.com, Supplementary Data 1). In

addition, metadata describing individual samples in the dataset are

also imported. Users may choose to include all recorded events in the

output files or apply upfront broad gating to reduce dataset size. We

recommend applying basic gating prior to cyCONDOR to exclude

debris and doublets, thereby minimizing the downstream computa-

tional demand. This simple pre-filtering step removes irrelevant events

and significantly reduces computational requirements, enabling the

analysis of even large datasets on consumer-grade hardware. In addi-

tion, cyCONDOR offers a workflow for importing FlowJo workspaces.

This functionality allowsusers to loadFCSfiles alongwith their defined

gating hierarchy, simplifying the comparison between cluster-based

and conventional gating-based cell annotation (for detailed informa-

tion see cyCONDOR documentation). Following data import, cyCON-

DOR provides a comprehensive end-to-end ecosystem of HDC data

pre-processing and analysis (Figs. 2a, S2a). In the following sections, we

will exemplify the use of cyCONDOR for the analysis of HDC data. All

output shown here is the result of built-in functions and can be gen-

erated for any other dataset withminimumbioinformatics knowledge.

In the following example, we explore a human PBMCs dataset17 to

exemplify the first steps of a cyCONDOR analysis. This dataset,

including 27 protein markers, provides a broad phenotyping of the

main circulating immune cells in humanperipheral bloodderived from

people living with HIV (PLHIV, Dis) and uninfected individuals (con-

trols, Ctrl). cyCONDOR exploratory data analysis starts with data

loading and transformation to ensure a distribution of values compa-

tible with downstream investigations (see “Methods” for details)

(Figs. 2a, S2a). To initially visualize the underlying data structure and to

explore whether the distribution of samples is linked to factors like

biological group, age, sex or time of sampling, principal component

analysis (PCA) is performed on pseudobulk samples calculated as the

meanof protein expression of all cells (details inMethods, Fig. 2b). The

average expression for eachmarker on a sample level can be inspected

to help identifying the main drivers of the observed biological differ-

ences for example between two defined groups within the dataset

(Fig. 2c). In our example, we see a general decrease in T cell markers

(e.g., CD3 and CD4) in PLHIV versus Ctrl and an overall increased

expression of monocytes markers (e.g., CD14 and HLA-DR), which can

be interpreted as either an increased expression of those markers in

PLHIV cells or, most likely as a shift in the relative frequency of cells in

HIV patients (Fig. 2c). When analyzed at the single-cell level (Fig-

ure S2b), the dataset reveals patterns that can be further elucidated by

visualizing the loadings of the most relevant principal components

(Figure S2c) which - in our example - revealed that PC1 separates

lymphocytes (markers with positive loading) and myeloid cells (mar-

kers with negative loading). Further, to reduce the dimensionality of

the dataset to a bi-dimensional space, cyCONDOR provides the

implementation of two non-linear dimensionality reduction algo-

rithms, Uniform Manifold Approximation and Projection (UMAP18,19)

and t-distributed Stochastic Neighbor Embedding (tSNE20) as they

both have different advantages (see “methods” for details). UMAP18

dimensionality reduction can be performed (Fig. 2d), and visualized as

a two-dimensional scatter plot, colored for any variable of interest

(e.g., experimental group or date, Fig. 2d) or visualized as a density

plot, to highlight the distribution of the cells in the latent space (Fig-

ure s2d). The two-dimensional UMAP embedding can also be used to

visualize the expression of the individual proteinmarkers (Figure S2e).

Additionally, for unsupervised non-linear dimensionality reduction

tSNE is implemented in cyCONDOR (Figure S3a).

To assign cell type labels cyCONDOR provides two different

clustering algorithms Phenograph15 and FlowSOM16 integrated here

into the cyCONDOR workflow (Figs. 2e, S3b–e). The combination of

FlowSOM for fast knowledge-based clustering (Figure S3c-e) and

Phenograph (Figs. 2e, S3b) enables data-driven identification of major

cell lineages and the potential discovery of novel cell states through

slower but fine-grained clustering12. The implementation of both

dimensionality reduction and clustering in cyCONDOR allows the user

to select or deselect specific markers from the calculation, this is

particularly useful when a specific marker was measured but was not

expressed in the population of interest or if high expression of a single

marker dominates all subsequent steps.

To ease the biological annotation of the clusters cyCONDOR

provides an automated heatmap visualization of the average marker

expression of each cluster (Figure S3b, S3e). As a next step, users can

manually label each cluster according to prior knowledge in the field

concerning identity (Fig. 2f). Annotated clusters and embeddings are

the starting point for further downstream analysis provided within

cyCONDOR. It is important to note that heatmaps, while being a

compact and convenient way to visualize marker expression, do not

provide informationon theoverall distribution of expression levels. To

allow the user to investigate the distribution of each marker in more

detail, cyCONDOR implements several visualizations including violin
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Fig. 2 | cyCONDOR workflow for data pre-processing and annotation.

a Schematic overview of the first steps of cyCONDOR analysis, from data ingestion

to cell labeling. b Pseudobulk Principal Component Analysis (PCA) colored by

experimental groups. c Heatmap showing mean marker expression for each sam-

ples, column order is defined by hierarchical clustering. d UMAP colored by

experimental group. e UMAP colored according to Phenograph clustering. f UMAP

colored according to cell type annotation and heatmap ofmeanmarker expression

for each cell type, color coding legend is shared for both. g UMAP visualization of

SpectralFlow data colored by Phenograph clustering. h UMAP visualization of

CyTOF data colored by Phenograph clustering. i UMAP visualization of CITE-seq

data colored by Phenograph clustering. Created in BioRender. Bonaguro, L. (2024)

https://biorender.com/o70s217.
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plots and ridgeline plots (Supplementary Data 2). As in conventional

HDFC data analysis it is of key importance to pre-assess the spectral

overlap between used reagents. As shown in Fig. 2f a moderate CD19

expression in CD16+ monocytes is observed in the test dataset. This is

caused by an overlap between the spectra of CD16-BUV496 and CD19-

BUV563 which were intended to be used as exclusive markers. This

approach is regularly used in conventional HDFC but as exemplified

here it requires further attention when performing high-dimensional

analysis to avoid an incorrect interpretation of the data.

To illustrate the applicability of the cyCONDOR ecosystem not

only to HDFC data (exemplified so far in Fig. 2) we performed data

transformation, dimensionality reduction and clustering also on pub-

lished CyTOF (Figs. 2g, S3f, S3g), Spectral Flow and (Figs. 2h, S3h, S3i)

CITE-seq datasets (Figs. 2i, S3j, S3k) showing general applicability of

cyCONDOR to all major cytometry data types.

cyCONDOR provides correction of technical variance across
projects, time, datasets, instruments, or sites
Similar to other high-dimensional techniques (e.g., RNA sequencing or

proteomics), HDC methods suffer from the presence of technical var-

iation making it challenging to integrate datasets generated from dif-

ferent projects, datasets, instruments, sites or at different timesdespite

the use of the same panel21. When compared to other high-dimensional

methodologies, HDC falls behind, since the parameter space is

increasingly inflatedwith new technical opportunities, literally allowing

any combination of antibody and detection reagents such as fluor-

ochromes in flow cytometry in addition to increasing opportunities for

diverse configurations of instruments and instrument performances21.

To cope with these developments, we implemented Harmony22 in

cyCONDOR for batch alignment over multiple sources of technical

variation.Harmonywas introduced as a tool for correction of technical

variation in single-cell RNA sequencing data23 but its applicability can

be easily generalized to other single-cellmethods such as HDCwith the

only requirement of a normal distribution of the parameters to be

harmonized (e.g., normalized fluorescence intensity or principal com-

ponents). We validated the usage of Harmony for batch correction of

HDFC data as its performance was previously evaluated for Spectral

Flow24, cyTOF24 andCITE-seq25data.Neverthelessweprovide validation

for all data types in Supplementary Data 3. Furthermore, with a com-

bination of public/private and synthetic datasets we addressed pre-

viously reported conflicting reports on the performance of Harmony

for the correction of cyTOF data (Supplementary Data 4)24,26.

cyCONDOR offers the option to apply Harmony variance correc-

tion on protein expression or principal components saving the batch

corrected values in a separate data slot of the condor object to simplify

the comparison between corrected and original data (Figs. 3a, S4a).

Although the direct harmonization of fluorescence intensities can

provide important information on the source of variability, corrected

intensities should be used carefully, especially in the analysis of dif-

ferential expression across experimental groups27.

Here, we showcase the performance of technical variation cor-

rection provided by cyCONDOR on a 27-color flow cytometry dataset

where healthy controls were measured at five different time points

across three months with adjustments on the instrument settings due

to inconsistencies in instrument performance (unpublished data).

Such example showcases a rather common situation in clinical studies

where patient samples are processed over several weeks or months if

not years. Instruments performance quality control (QC) and auto-

matic adjustments28,29 can help to reduce those biases but in high-

dimensional data, those are difficult to be fully resolved. This can be

illustrated by representing the data in a UMAP, a non-linear dimen-

sionality reduction, which reveals a high degree of separation between

different experimental dates (Fig. 3b), exemplified also by a low Local

Inverse Simpson’s Index (LISI) score22 (Figure S4b). Harmony correc-

tion on all calculated principal components mitigates the technical

variance in the UMAP embedding showing a more homogeneous dis-

tribution of each batch in the clusters. (Fig. 3c). This improvement was

quantified by calculating the LISI score showing a remarkable increase

compared to pre-correction scores (Figure S4b).

To further investigate the batch effect across dates, Phenograph

clustering was performed on both non-corrected PCs (Fig. 3d) and

Harmony-corrected PCs (Fig. 3e) with identical resolution settings.

Clustering basedonnot-corrected principal components (PCs) leads to

the identification of 18 clusters, but further inspection revealed that

most of them are date-specific - most prominently cluster 6, 14, 15, 18

(Figure S4c). After Harmony batch correction, only cluster 6 and 9

appears to be still specific for batch three (Figure S4d). Investigating

this persisting difference between batches at the level of individual

samples revealed that the majority of the cells in cluster 6 derive from

one sample (belonging to batch 3, Figure S4e) similarly to cluster 9

(batch 1, Figure S4e), showingour approachwas successful in removing

unwanted technical variability while preserving the biological differ-

ence between samples. Additionally, the widely used CytoNorm30 batch

correction approach is implemented in cyCONDOR, including the

documentation on how to use it within the cyCONDOR ecosystem. As

the selection of the optimal batch correction approach is often

dependent on the individual dataset, in addition to two alternative

methods for batch correction, we provide in our documentation sim-

ple code for the calculation of the LISI score as shown in Figure S4b.

The LISI score provides an easy metrics for the integration of two or

more datasets. As such, the user is enabled to test the best performing

batch correction approach for their data. As best practice in data

analysis, we encourage validation of the batch correction with the

expression of hallmark markers.

Pseudotime projection-based trajectory inference allows the
dissection of developmental programs
A valuable insight enabled by single-cell level analysis over bulk analysis

is the capacity to investigate continuous developmental trajectories in

complex tissues14.WhileHDCprovides sufficient resolution for this type

of analysis, conventional analysis approaches based on classical gating

of the data can only capture discrete cell states but fail to capture the

whole scope of continuous processes31. The technical and conceptual

framework of cyCONDOR allows to integrate approaches which are

defining pseudotimes as a proxy for continuous developmental trajec-

tories based for example on cluster-based minimum spanning trees as

they have been realized by the slingshot algorithm32 to predict pseu-

dotime in single-cell data. This addition to cyCONDOR opens the

potential to investigate complex transitional states in HDC data.

To illustrate the potential of pseudotime analysis on HDC data we

analyzed a bone marrow CyTOF dataset from Bendall et al.33 with a

dimensionality of 32 protein markers to visualize the developmental

trajectories of hematopoietic stem cells (HSCs) to monocytes and

plasmacytoid dendritic cells (pDCs).

The first step of this analysis includes the annotation of the

dataset (as described in Fig. 2) and the subsetting for the myeloid

lineage (Figs. 4a, S5a). The subsetting function is especially useful for a

high-resolution analysis of highly heterogeneous tissues, such as the

bone marrow. Bone marrow data was pre-processed and each Phe-

nograph cluster was annotated according to the expression of hall-

mark proteins (Figs. 4b, S5b, S5c). Afterwards, we focused on the

myeloid cell compartment including monocytes and plasmacytoid

dendritic cells (pDCs) (Fig. 4c) to define their differentiation trajec-

tories. Dimensionality reduction and clustering were reiterated on the

selected cell compartment to increase the resolution of cell types and

states, resulting in 15 clusters (FigureS5d). Importantly, the subset data

was not re-scaled for clustering and dimensionality reduction (as it is

e.g., performed in standard single-cell transcriptomics workflow such

as Seurat34 or Scanpy35) to avoid any overrepresentation of proteins

not expressed. Finally, each cluster was labeled according to the
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expression of lineage proteins (Figs. 4c, S5e) revealing the presence of

a commonmyeloid progenitor (CMPs) cluster which was not resolved

before subsetting.

Within the cyCONDOR ecosystem, we can infer pseudotime and

trajectories on the filtered dataset with slingshot32 using the PCs or

UMAP coordinates as an input (Figs. 4d, S6a). In the slingshot func-

tion, it is possible to force the pseudotime to start and end at specific

clusters. However, we suggest allowing slingshot to infer the best

starting and ending point of the trajectory and corroborate the

results with domain knowledge for the analysis32. In our example,

slingshot unbiasedly predicted a developmental trajectory starting at

one of the pDCs clusters via the HSC cluster towards the monocyte

clusters, where it branched at the level of myeloblasts (Fig. 4e).

Incorporating prior biological knowledge, namely that HSCs are at

the starting point of cell differentiation within the myeloid com-

partment, the interpretation of the pseudotime analysis would sug-

gest that pDC development trajectory is distinct from monocyte

development and that the different monocyte subsets share a com-

mon differentiation path from HSCs to myeloblasts and subse-

quently into monocytes (Figs. 4f, S6b). In the first branch, leading

from HSCs to monocytes, we observed a gradual decline of HSCs

markers (e.g., CD34) and an increased expression of monocyte

markers such as CD11b and CD14 (Fig. 4f). In contrast, the develop-

mental trajectory from HSCs to pDCs was defined by a decline of

CD34 and HLA-DR expression and an increased expression of CD123,

a hallmark protein for pDCs (Figure S6b). This CyTOF dataset

exemplifies the value of pseudotime analysis of HDC data beyond

sequencing-based single cell technologies, allowing a more fine-

granular analysis of cellular differentiation states for example in the

hematopoietic system, the immune system, but potentially also in

cancer or other renewing tissues.

cyCONDOR simplifies visual and statistical comparison between
experimental groups
Many HDC analyzes aim to investigate the biological difference

between two ormore experimental groups or conditions. Despite the

availability of tools for pre-processing HDC data9,10,36,37, comprehen-

sive frameworks for in-depth visualization and statistical testing to

compare multiple biological groups remain limited. With cyCONDOR

we provide a set of easy-to-use functions to compare cell frequencies
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and protein expression across multiple experimental groups

(Figs. 5a, S7a). For the statistical testing of differential abundance

and differential expression cyCONDOR streamlines the usage of

diffcyt38, subsequentially to the cyCONDOR clustering workflow.

Additionally, to test differential frequency cyCONDOR provides built-

in function according to the number of groups in the analysis (e.-

g., two-sample t-test and Wilcoxon or Kruskal-Wallis with optional

post-hoc tests).

To exemplify these features of cyCONDORwe re-analyzed a subset

of our previously published dataset on chronicHIV17. Pre-processing of

the dataset, including data transformation, dimensionality reduction,

clustering and cell annotation (as described in Fig. 2) revealed the

presence of the expected cell populations in PBMCs (Fig. 5b). At a

glance, the contribution of each experimental group to each cell type

(Fig. 5c) or cluster (Figures S7b, S7c) can be visualized as confusion

matrix. cyCONDOR provides stacked bar plots as a second integrated

visualization approach to compare cell compositions per group

(Figs. 5d, S7d). Interestingly, already at this level a reduced frequency

of B cells and CD4 +T cells and an increased frequency of monocyte

and unconventional T cells was observed, as expected in individuals

with chronic HIV infection (Figs. 5c, 5d17,). Already these simple

visualization approaches provide fast and easily interpretable
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overviews. Yet, they do not address potential sample outliers or pro-

vide statistical testing.

Cell frequencies at the sample level separated by groups

are visualized with a built-in cyCONDOR function generating

boxplots for each cell type or cluster for each sample group

individually (Figs. 5e, S7e). The differential abundance was tes-

ted with both cyCONDOR built-in functions described above

(Supplementary Data 5, 6, two-sided t-test with bonferroni
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multiple test correction) and diffcyt (Supplementary Data 7, 8,

edgeR). We report in the figure the cyCONDOR t-test calculated

p values, showing significant results for unconventional

T cells (Fig. 5e).

Differential protein expression between conditions of interest

can also be visually investigatedwith a built-in function of cyCONDOR

by providing only the cell labels to be used for the categorization

(e.g., clustering or cell types) and the biological grouping. The result

is visualized as a heatmap of the average marker expression across

groups and cell types, showing for example a decreased expression

of the naive T cell markers CD127 and CD197and an increased

expression of the senescence markers CD57 and CD94 in

CD8 + T cells of PLHIV (Figs. 5f, S8a). Statistical testing can be per-

formed for differential expression using diffcyt (Supplementary

Data 9, cell types, LMM method). Although we did not identify any

expression difference with FDR-corrected p-values < 0.05, likely due

to the low sample size, we report cyCONDOR visualization formedian

expression per sample for the two top markers in CD8 T cells

showing a moderate increase in CD94 and CD57 expression in the

disease group (Figure S8b).

Overall cyCONDOR provides a diverse collection of easy-to-use

functions to investigate the biological differences between experi-

mental groups to cover a wide-range of statistical comparisons and

visualization needs.

Continuous learning and scalability in HDC leveraging data
projection with cyCONDOR

Considering the high scalability and the continuously increasing

affordability ofHDC, it is of utmost importance to establish an analytical

pipeline designed to be scalable to the analysis of thousands of samples

and millions of cells. Given the widespread adoption of HDC as the

primary readout for numerous longitudinal population-wide or clinical

studies, a real-time processing of the growing datasets upon each novel

data acquisition is impractical and inefficient. With cyCONDOR we

propose a two-step approach for continuous learning from new data

(Figs. 6a, S9a). As afirst step, a representative set of sampleswill be used

to generate the initial cell state and protein expressionmodel (Figs. 6b,

S9b). This initial model should be as representative as possible for the

variability of the samples and their cell populations to be analyzed and

the specific scientific question to be answered39. As a second stepwith a

transfer-learning approach, independent data generated with the same

experimental design will be projected onto the annotated reference for

an efficient cell annotation of new data.

Following the principles described above (Fig. 2), a representative

set of samples is processed by dimensionality reduction, clustering

and cluster annotation. Next, the UMAP model is retained (uwot

package) and a k-Nearest Neighbors (kNN) classifier is trained on the

combination of marker expression and cell identities (caret package,

see “methods” for details).
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To illustrate themethod, we used a dataset consisting of 10 PBMC

samples fromour previouswork17. A randomset of nine PBMC samples

was used to train the initial model and one independent sample was

projected on the reference UMAP and annotation (Fig. 6c). The pro-

jected data alignedwell with the referenceUMAP embedding as shown

by a LISI score close to two demonstrating the desired mix between

cells derived from the original embedding and the projected data

(Fig. 6d). Furthermore, the training of the kNN classifier resulted in an

overall accuracy higher than 99% when predicting cell types (Fig-

ure S9c) and 97% when predicting Phenograph clusters (Figure S9d).

The kNN classifier implementation in cyCONDOR also outputs the

importance score calculated by the kNNmodel for eachmarker in the

classification (Figures S9e, S10) providing information on the rele-

vance of each marker in the panel for the classification task. Label

predictionbasedon the train classifier leads to a goodoverlapbetween

the annotation of the training dataset and the new data (Figs. 6e, S11a).

When comparing the automated annotation provided by cyCONDOR

with the manual annotation performed by annotating Phenograph

clusters according tomarker expression for the projected samples, we

observe an almost perfect overlap (Fig. 6f). Furthermore, also at the

level of individual cell types and clusters a LISI score around two

showed a good projection of the UMAP even for small clusters or

minor cell types (Figures S11b, S11c). With this efficient approach, new

samples can be automatically analyzed using a reference dataset

without the need for manual annotation. As this process does not rely

on the parallel processing of multiple samples, this analysis can be

efficiently scaled providing a robust framework for the analysis of

thousands of samples and millions of cells. Considering the potential

challenges in evaluating the expected variance in biological data, we

envision our approach to be implemented incrementally. Initially, a

reference dataset comprising a limited number of samples, designated

as model V1, can be employed. While a small sample size may not fully

encompass the entire range of human variation, as the number of

samples increases, we anticipate developing an updated reference

model, V2, to accommodate this expanded diversity. This can be

achieved by simply retraining a new model with more data using the

same pipeline. This incremental approach enables the continuous

refinement of the model.

Harnessingmachine learning for clinically relevant classification
with cyCONDOR

Flow cytometry is commonly used as a clinical test for the diagnosis of

several hematological diseases such as leukemia40. Furthermore, in

recent years, thanks to the advent of high-dimensionalmethodologies,

HDChas been assigned great potential for the diagnosis ofmany other

diseases (e.g., HIV, COVID-19, neurological diseases41). Expanding from

the use of a general model to project new samples (Fig. 6), we imple-

mented in cyCONDOR a set of functions to train clinical classifiers for

the categorization of new samples without manual investigation (see

“methods” for details - Figs. 7a, S12a).

As a starting point for clinical classification tasks, we utilized the

CytoDx package42 which predicts clinical outcomes by individually

assessing each cell’s association and averaging these signals across

samples, and adapted it to the cyCONDOR ecosystem. To test the

functionality of this module in cyCONDOR, we made use of the Flow-

CapII dataset, which serves as one of the gold-standard datasets for

benchmarkingmachine learning (ML) classifiers on cytometry data43,44.

As a first step, we created amodel using a selection of 20 samples from
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the FlowCapII dataset (also included as test data in the CytoDx pack-

age), which included samples from patients with acute myeloid leu-

kemia (aml) and healthy control samples. We split the subset into a

training dataset (5 aml and 5 controls) and a test dataset (5 aml and 5

controls). We first explored the difference between control and aml

samples at the level of their UMAP embedding (Fig. 7b) showing that

cells from aml and control samples differentially populated the dif-

ferent subclusters. Independently from any cell type label, using a

classification tree42 we trained two classifiers, first at the level of indi-

vidual cells (i.e., cellular classifiers Figure S12b), and consequently at

the sample level (i.e., sample classifier Figure S12c). Already at the

single-cell level, the CytoDx classifier results showed a separation

between aml samples and controls with an overall higher aml classifi-

cation probability for aml-derived cells (Figure S12b). The aml model,

derived by the decision tree algorithm was visualized as a tree map

illustrating that the model can be visualized to allow further investi-

gation of the decision-making processes employed by the classifier to

assign a probability to each cell. As anticipated, the feature importance

analysis for the cellular model showedmarkers of themyeloid lineage,

such as CD13, as key determinants for classification (Figure S12d). For

the sample classifier, the trained model was able to correctly classify

the 10 samples used for training (Figure S12c). Next, the model was

evaluated on the test dataset, which has no overlap with the training

data, and we could see a similar increase in probability for aml-derived

cells (Fig. 7c) as well as a perfect classification of the 10 new samples at

the sample level (Fig. 7d). To extend the validation of the cyCONDOR

implementation of CytoDx for sample classification, we then included

in the analysis the entire FlowCapII dataset, comprised of 359 samples

(43 aml and 316 controls). We split this dataset into 80% training and

20% test data and randomized this selection 100 times to evaluate the

real-world performances of the classifier (Fig. 7e). Before training the

training dataset of 80% of the data was balanced to have an equal

number of aml and control cases while the test dataset was left

unbalanced (1 aml / 7.3 controls) to reflect a real-world scenario. For

each permutation, we calculated accuracy, specificity and sensitivity

on the 20% test dataset showing optimal performance also on real-

world data (Fig. 7e). Collectively, cyCONDOR facilitates the classifica-

tion of clinical HDC data on cellular and sample level, opening avenues

for the widespread application of ML to HDC data.

Discussion
Flowcytometry, developed in the early 1950s, has been a revolutionary

technique for the understanding of heterogeneous tissues3. It allows

the quantification of multiple protein markers at single-cell resolution

and canmeasure millions of cells in a single experiment3. While recent

advances in HDC have expanded the potential of cytometry to dissect

complex tissues at the single-cell level45, these advancements have also

introduced a multitude of analytical challenges.

Traditional cytometry data analysis relies on the sequential

selection of cells in two-dimensional plots (gating), which is adequate

for a limited number of protein markers. However, as novel meth-

odologies enable the simultaneous measurement of more than 50

proteins per cell, traditional analytical approaches become increas-

ingly cumbersome and less effective.

In the last few years, several approaches besides commercial

software have provided the cytometry community with tools to

investigateHDCdata using data-driven approaches commonlyusedby

the single-cell transcriptomics community. Cytofkit, a pioneering

project that ceased development in 2017, played a pivotal role in cat-

alyzing a paradigm shift in the analysis ofHDC10. This tool hasprovided

several data transformation and clustering approaches still used in the

field10. Other projects such as SPECTRE9 and Catalyst36 have increased

the feature set available to the community by introducing approaches

for signal overlap correction in CyTOF data11 or computational pipe-

lines for the analysis of CyTOF imaging datasets9.

Complementary, several non-academic projects, such as Cyto-

banks (Beckman Coulter), Cytolution (Cytolytics) and Omiq (Dot-

matics) provide feature-rich tools, often with an intuitive graphical

user interface (GUI) for the guided analysis of HDC data. Accessibility

to these pipelines is not free and in the case of purely cloud solutions

such as Cytobanks necessitates access to external web servers, raising

concerns about data privacy following national regulations46.

In this study, we introduce cyCONDOR as an easy-to-use, open-

source ecosystem for HDC data analysis. Building upon existing

tools like SPECTRE, Catalyst and Cytofkit, cyCONDOR prioritizes

not only user-friendliness but also the biological interpretation of

data with the scalability to millions of cells and the implementation

of state-of-the-art ML methods. We first demonstrate the applic-

ability of the cyCONDOR workflow to a broad range of data types

including HDFC, CyTOF, Spectral Flow and CITE-seq. Furthermore,

we showcase how cyCONDOR can efficiently mitigate the technical

batch between datasets and provide “publication-ready” compar-

isons between experimental groups. Most of these steps were

already individually available in other analytical pipelines, never-

theless cyCONDOR focuses on the simplicity of use for non-

computational biologist and offers better performance thanks to

the implementation ofmulti-core computing for themost intensive

steps (e.g., UMAP calculation or Phenograph clustering), drastically

reducing computing times.

Additionally, cyCONDOR provides new analytical workflows

aiming at the biological interpretation of the data and scalability to

population-wide studies. In this manuscript, we demonstrate the

application of cyCONDOR to investigate the continuous development

of HSCs into the major immune cell lineages by inferring pseudo-

time. Moreover, the integration of a kNN classifier enables the pro-

jection of new data onto existing embeddings, facilitating scalability

of the cyCONDOR workflow and enabling continuous analysis of

large-scale studies. Furthermore, the possibility to easily train a

clinical classifier within the cyCONDOR pipeline enables the applic-

ability of cyCONDOR to clinical settings where sufficient data are

available.

The focus of cyCONDOR on ease of use is still limited in some

aspects. Cell type identification is still a laborious process and cannot

be automated yet. When compared to single-cell transcriptomics

where all transcripts are measured, HDC relies on a pre-selected set of

markers. This pre-selection in the available parameter limits the use of

reference mapping techniques such as SingleR and will still require

manual annotation based on the marker expression. Future develop-

ments of cyCONDOR will provide the implementation of Astir47, an

interesting tool simplifying the process of cluster annotation. Fur-

thermore, cyCONDOR can be currently used for the analysis of a variety

of data types but cannot integrate datasets from different analysis

platforms, e.g., CITE-seq and CyTOF. Despite this limitation, the

cyCONDOR ecosystem eases the comparison of samples measured

simultaneously on different platforms (shown for HDFC and CITE-seq

in Supplementary Data 10).

Taken together, cyCONDOR provides an easy-to-use, end-to-end

ecosystem forHDCdata analysis extending on the available features of

other approaches. We provide cyCONDOR as an open-source R pack-

age making it compatible with any common operating system (Mac

OS, Windows and Linux). Furthermore, we provide cyCONDOR with a

companion Docker Image ensuring full reproducibility of the analysis

while costing only little computational overhead46, simplifying the

deployment of our tool, and limiting the risk of any incompatibility

with other R packages.

Methods
Analysis of samples from DELCODE study complied with all relevant

ethical regulations and was approved by the University of Bonn (Lfd,

Nr. 227/19).
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Datasets
Chronic HIV, human PBMCs, HDFC. The in-house HDFCphenotyping

data from control and chronic HIV donors17 was re-analyzed in this

manuscript. Before the analysis, debris were removed according to

FSC-A and SSC-A, singlets were selected (FSC-A vs. FSC-H) and dead

cells were removed. Compensated FCS files were then exported for

cyCONDOR analysis. This dataset was used to exemplify cyCONDOR

capabilities for pre-processing (Fig. 2), differential analysis (Fig. 5) and

data projection (Fig. 6).

Rheumatoid arthritis, human whole blood, CyTOF. For the evalua-

tion of the cyCONDOR ecosystem with CyTOF data (Fig. 2), we

downloaded the dataset reported by Leite Pereira et al.48. From this

dataset only healthy control 1 and 2 were used including both

unstimulated and IL7 stimulated cells (HEA1_NOSTIM.fcs, HEA1_ST-

IM.fcs, HEA2_NOSTIM.fcs, HEA2_STIM.fcs). The dataset was down-

loaded from FlowRepository (FR-FCM-Z293, http://flowrepository.

org/id/FR-FCM-Z293).

Healthy, Murine Spleen, SpectralFlow. For the evaluation of the

cyCONDOR ecosystemwith SpectralFlow data (Fig. 2), we downloaded

the dataset reported by Yang et al.49. From this dataset we only used

Spleen 1 and Spleen 2 (S1.fcs and S2.fcs). Before the analysis debris were

removed according to FSC-A and SSC-A, singlets were selected (FSC-A

vs. FSC-H) and dead cells were removed. Compensated FCS files were

then exported for cyCONDOR analysis. The dataset was downloaded

from FlowRepository (FR-FCM-Z4NB, http://flowrepository.org/id/FR-

FCM-Z4NB).

Healthy, human PBMCs, CITE-seq. Healthy controls were collected

as part of the DELCODE50 study. PBMCs were stained with BD

Rhapsody Ab-seq Immune Discovery Pannel kit (BD) according to

manufacturer instructions. Raw sequencing reads were processed

with the BD Rhapsody Pipeline (v.2.1) and UMI counts per cell were

used for cyCONDOR analysis. Ab-seq counts were transformed with a

Center log ratio transform (clr) before dimensionality reduction and

clustering. This dataset was used to exemplify the use of cyCONDOR

with CITE-seq data (Fig. 2). This dataset was generated as part of this

study. Raw data is provided on FigShare (https://doi.org/10.6084/

m9.figshare.25351981).

Healthy, human PBMCs, HDFC. Healthy controls were collected as

part of theDELCODE50 study andmeasured over several dayswith a BD

Symphony S6 cell sorter. Similarly to the SpectralFlow dataset repor-

ted above, debris was removed according to FSC-A and SSC-A, singlets

were selected (FSC-A vs. FSC-H) and dead cells were removed. Com-

pensated FCS files were then exported for cyCONDOR analysis. This

dataset was used to exemplify the batch correction workflow imple-

mented in cyCONDOR (Fig. 3). This dataset was generated as part of

this study. Raw data is provided on FigShare (https://doi.org/10.6084/

m9.figshare.25351981).

Healthy, bone marrow, CyTOF. The CyTOF dataset reported by

Bendall et al.33 was downloaded from CytoBank. Before cyCONDOR

analysis the data was cleaned as described in the CytoBank analysis.

Shortly singlets were selected according to cell length and 191-DNA

staining. The surface staining for bone marrow 1 was used for the

analysis (Marrow1_00_SurfaceOnly.fcs). With this dataset we exemplify

the trajectory inference and pseudotime capabilities of cyCON-

DOR (Fig. 4)

AML, FC - flowcap-II. The FlowCap-II AML dataset43,44 was down-

loaded from FlowRepository (FR-FCM-ZZYA, http://flowrepository.

org/id/FR-FCM-ZZYA). For the evaluation of the performances of

cyCONDOR clinical classifier all samples from panel 4 were used

without any further processing. We use this dataset to benchmark the

machine learning classifier implemented in cyCONDOR (Fig. 7).

Structure of the cyCONDOR object
We developed the cyCONDOR ecosystem as an R package. The current

version of the cyCONDOR package (v 0.1.6) was developed with R v

4.3.0 and Bioconductor v 3.17. The condor object, containing all the

data resulting from a cyCONDOR analysis is structured as an R list with

separate data slots for marker expression (expr), cell annotation

(anno), dimensionality reduction (pca, umap, tsne), and clustering

(clustering). Individual elements are structured as R data frames with

each row representing an individual cell and each column a parameter.

The structural integrity of the condor object can be evaluated at each

step with built-in functions to ensure the object was correctly

manipulated.

Data pre-processing and transformation
Individual FCS files are imported in R and merged with the sample

annotation using the prep_fcd function. This function imports each FCS

or CSV file, merges all expression tables into a single data frame and

performs an autologicle transformation (with the exception of CITE-

seq data where clr transformation was used)10,51,52 marker-wise. Before

merging, each cell is assigned a unique cell name composed of the

nameof the file of origin and sequential numbering. Additionally, a cell

annotation table is initialized from a provided sample metadata table.

The output condor object will contain both data frames, the trans-

formed expression data frame, and the annotation data frame, andwill

be used for all the downstreamprocesses. For the end user cyCONDOR

provides also an arcsinh transformation with cofactor 5 as standard in

the field of cyTOF analysis.

Dimensionality reduction
cyCONDOR provides several functions to perform different types of

dimensionality reductions, each function requires a condor object and

outputs a condor object including the coordinates of the reduced

dimension for each cell. Except for the PCA, all other dimensionality

reductions provided with cyCONDOR (UMAP, tSNE and DM) can use as

input the principal components (recommended option shown in this

manuscript) or the marker expression. The user can also decide the

number of PCs to use for the calculation to reduce the computational

requirements.

Pseudobulk principal component analysis (PCA). To calculate the

pseudobulk principal components the cyCONDOR func-

tion runPCA_pseudobulk calculates at first themeanmarker expression

across all cells. The resulting matrix is then used to perform a PCA. As

the dimensionality of the output matrix differs from the dimension-

ality of the condor object, the output of the function will not be the

modified condor object but a new list comprising only the PCA coor-

dinates and the input dataset.

Principal component analysis (PCA). The cyCONDOR runPCA func-

tion uses the prcomp base R function to compute the principal com-

ponents for each cell. The output of the function is the original condor

object extended by the PC coordinates.

Uniform Manifold Approximation and Projection (UMAP). The

cyCONDOR runUMAP function uses the uwot UMAP implementation

(CRAN). Compared to other R native implementations of the UMAP

algorithms this implementation allows parallelizing the UMAP calcu-

lation, enables high performances and allows to retain the neural

network model, which is used to project new data to existing UMAP

embeddings (see section “Data projection” below). The output of the

function is the original condor object extended by the UMAP

coordinates.
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t-distributed Stochastic Neighbor Embedding (tSNE). The cyCON-

DOR function runtSNE relies on the Rtsne implementation of the tSNE

algorithm to calculate this non-linear dimensionality reduction. Simi-

larly to the UMAP calculation, the output is the original condor object

added with the tSNE coordinates.

Diffusion map (DM). To calculate a diffusion map, the cyCONDOR

function runDM relies on the destiny package53. Similar to the other

dimensionality reduction approach this function will output the ori-

ginal condor object extended by the DM coordinates.

Clustering
Phenograph. Phenograph clustering is performed with the Rphe-

noannoy R package which compared to the original R implementation53

allows parallelization of Phenograph calculation. For applying the

cyCONDOR function runPhenograph the user will provide a condor

object and decide which data to use for Phenograph clustering (usually

PCA). The function will return a condor object including the result of the

clustering algorithm. The user can also optimize the k parameter to

generate a more broad or fine-grained clustering.

FlowSOM. FlowSOM clustering is performed with the FlowSOM R

package16. With the cyCONDOR function runFlowSOM the user will

provide a condor object and decide which data to use for FlowSOM

clustering (usually PCA). The function will return a condor object

including the results of the clustering algorithm.Theuser also needs to

provide the number of final clusters as input.

Batch correction
The cyCONDOR ecosystem implements Harmony22 to account for dif-

ferences between experimental batches. The implementation of Har-

mony provides the option to correct for experimental batches at both

the levels ofmarker expressionwith the function harmonize_intensities

and principal components with the function harmonize_PCA. The

output of both options can be used to calculate a non-linear dimen-

sionality reduction and clustering. The harmonized intensities matrix

and PC coordinates will be saved in a separate data slot of the condor

object (condor$expr$norm for the harmonized intensities and condor

$pca$norm for the PC coordinates). Preserving both, original and

harmonized data simplify the evaluationof the batch correction.While

it is technically possible it is not advisable to use the harmonized

marker expression for differential expression analysis as this might

lead to overestimation or underrepresentation of the differences. For

both functions, the output will consist of the original condor object

with the addition of the harmonized values.

Pseudotime analysis
cyCONDOR implements slingshot32 for pseudotime analysis and tra-

jectory inference. After data pre-processing including transformation,

dimensionality reduction, clustering and cell annotation, the function

runPseudotime takes the coordinates of a dimensionality reduction

(e.g., PCA or UMAP) to infer pseudotime and trajectories. The runP-

seudotime function also requires a vector with the cell labels. Within

the runPseudotime function the user can define fixed starting and

ending points for the trajectory. Additionally, cyCONDOR offers a user-

friendly validation option that recalculates the trajectory using each

cluster/metacluster as the starting point. This functionality aids in

identifying the best-fittingmodel for any given cell differentiation task.

Pseudotime and trajectories can be easily visualized with cyCONDOR

built in functions. In the exemplary data shown in Fig. 4, to visualize

both lineages overlaid in a UMAP plot, the mean values of pseudotime

for each cell was used. For ordering the cells according to pseudotime

in the lineage from HSCs to Monocytes the pseudotime of this lineage

was used.

Data projection
The workflow for the projection of new data to an existing reference

dataset consists of two main steps. First, the preparation of the refer-

ence dataset consists of the training of the UMAP neural network and

retaining the model within the condor object with the runUMAP func-

tion setting ret_model to TRUE. After annotation of the dataset, a kNN

classifier is also trained on the reference data using as input the

expression values and the cell labels of each cell. This step is per-

formed with the cyCONDOR function train_transfer_model which takes

advantage of the caret framework formachine learning in R54. The kNN

model will alsobe retainedwithin the condorobject. For the projection

of new data, the functions learnUMAP and predict_labels will take the

built models from the reference dataset to project the new cells into

the existing UMAP embedding and to predict the cell labels. Both

reference dataset and projected data need to be generated with the

same experimental design.

Clinical classifier
With the cyCONDOR implementation of the CytoDx42 model it is pos-

sible to easily train a machine-learning (ML) classifier. The cyCONDOR

function train_classifier_model takes as input a condor object (expres-

sion values) and a variable defining the different categories to train a

classifier of both individual cells and samples. The performance of the

classifier can be easily exploited with the pre-build function as well as

the decision tree used for the classification42. The output of this

function will be the original condor object with the addition of the

ML model.

For the classification a of new samples, the predict_classifier

function takes as input the condor object containing the samples to

classify and the pre-trained model (stored in the training condor

object). The output of this function will be the condor object added

with the probability of the classification for each cell and each

sample.

Statistics & reproducibility
Statistical significance was calculated in R (v. 4.3.0) with an unpaired

two-sided t-test if not stated differently. A bonferroni corrected p-

value < 0.05 was considered significant. Differential aboundance and

expression analysis with diffcyt38 was performed using the method

edgeR and LMM respectively, and p-values and FDR-corrected p-

values were reported. With the exemplary dataset the robustness of

results was tested with different transformation methods (auto-

logical and arcsinh with cofactor 150) showing comparable results.

cyCONDOR implements several statistical testing methods for com-

paring cell population frequencies between groups. Individual

functions can calculate a t-test or Wilcoxon test for two groups, or

ANOVA, Kruskal-Wallis or Friedman test with matching post-hoc test

for more than two groups. For t-tests and Wilcoxon tests, the user

can specify whether the samples are paired. Further, cyCONDOR

provides a function to convert the condor object into a diffcyt com-

patible format for further analysis. All data were visualized using R (v.

4.3.0) with the packages ggplot2, pheatmap or the built-in functions

of cyCONDOR (v. 0.2.0). All box plots were constructed in the style of

Tukey, showing median, 25th and 75th percentiles; whisker extends

from the hinge to the largest or lowest value no further than 1.5 ∗ IQR

from the hinge (where IQR is the interquartile range, or distance

between the first and third quartiles); outlier values are depicted

individually. Confusion matrices were used to show relative pro-

portion across groups as a fraction of samples from the respective

condition contributing to each cluster or cell type.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.
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Data availability
All data used in this manuscript are publicly available as described in

the individualfigure, data fromDELCODEhealthdonorswasgenerated

for this study, raw data are provided on FigShare (https://doi.org/10.

6084/m9.figshare.25351981). R environment and data necessary to

reproduce the analysis shown in this manuscript are available on Fig-

Share (https://doi.org/10.6084/m9.figshare.25351981).We also include

supplementary files (Supplementary Data 11 to 20) from the compiled

script for each figure to provide the user with easy reference to the

code used to produce the figure. Source data are provided with

this paper.

Code availability
cyCONDOR source code is available on GitHub (https://github.com/

lorenzobonaguro/cyCONDOR), cyCONDOR is distributed under GPL-

3.0 license. All code to reproduce the analysis shown in this manu-

script is available on GitHub (https://github.com/lorenzobonaguro/

cyCONDOR_reproducibility). The data reported in this manuscript

were analyzed with cyCONDOR v0.2.055 and Bioconductor 3.17.
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