

DOI: 10.1002/alz.089273

BASIC SCIENCE AND PATHOGENESIS

POSTER PRESENTATION

MOLECULAR AND CELL BIOLOGY

ABCA7-dependent Neuropeptide-Y signalling is a resilience mechanism required for synaptic integrity in Alzheimer's disease

```
Huseyin Tayran<sup>1</sup> | Elanur Yilmaz<sup>2</sup> | Prabesh Bhattarai<sup>3,4</sup> | Yuhao Min<sup>5</sup> |
Xue Wang<sup>5</sup> | Yivi Ma<sup>4,6,7</sup> | Nastasia Nelson<sup>1</sup> | Nada Kassara<sup>1</sup> |
Mehmet I Cosacak<sup>8</sup> | Ruya M Dogru<sup>1</sup> | Dolly Reyes-Dumeyer<sup>4,9,10,11</sup>
Joseph S. Reddy<sup>5</sup> | Min N Qiao<sup>12</sup> | Delaney Flaherty<sup>1</sup> | Zikun Yang<sup>13</sup> |
Tamil Iniyan Gunasekaran<sup>14</sup> | Andrew F Teich<sup>4,6,12,15</sup> | Badri N. Vardaraian<sup>4,12,16</sup> |
Giuseppe Tosto<sup>4,17,18,19</sup> | Ozkan Is<sup>5</sup> | Nilüfer Ertekin-Taner<sup>5</sup> |
Richard Mayeux<sup>4,9,20,21,22</sup> | Caghan Kizil<sup>4,17,23</sup>
```

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2024 The Alzheimer's Association. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.

¹Columbia University Irving Medical Center, New York City, NY, USA

²Department of Neurology and The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY,

³The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA

⁴Columbia University Irving Medical Center, New York, NY, USA

⁵Mayo Clinic, Jacksonville, FL, USA

⁶Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA

⁷Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York City, NY, USA

⁸German Center for Neurodegenerative Diseases, Dresden, SN, Germany

⁹Gertrude H. Sergievsky Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA

¹⁰Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA

 $^{^{11}}$ Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA

¹²Columbia University, New York, NY, USA

¹³ Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA

 $^{^{14}}$ The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA

¹⁵Department of Pathology and Cell Biology, New York, NY, USA

¹⁶Department of Neurology, The New York Presbyterian Hospital, New York, NY, USA

 $^{^{17}}$ The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University, New York, NY, USA

¹⁸ Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, USA

¹⁹G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA

²⁰Departments of Neurology, Psychiatry, and Epidemiology, Gertrude H. Sergievsky Center, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA

²¹Department of Neurology, Columbia University Medical Center, New York, NY, USA

²²The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA

Correspondence

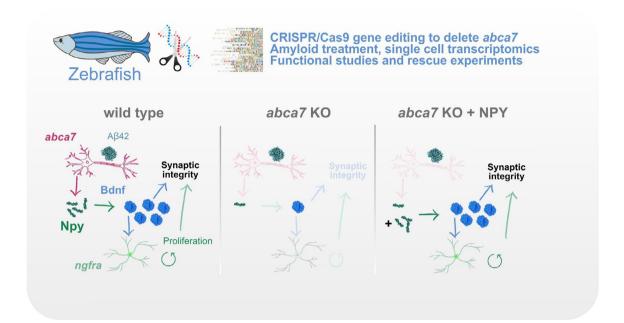
Elanur Yilmaz, Department of Neurology and The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY USA

Email: ey2357@cumc.columbia.edu

Abstract

Background: Genetic variations have emerged as crucial players in the etiology of Alzheimer's disease (AD), and they serve for a better understanding of the disease mechanisms; yet the specific roles of these genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Therefore, we generated zebrafish models for AD variants to analyze the in depth molecular and biological functions of these variants.

Method: Using CRISPR/Cas9, we generated a knockout model for abca7, orthologous to human ABCA7. We performed single cell transcriptomics and analyzed the altered genes and molecular pathways in zebrafish. We leveraged data from multiethnic AD cohorts at Mayo Clinic and Columbia University, to perform genetic association studies, co-expression analyses, in silico interaction mapping, family based variant segregation analyses and epigenetic association studies, and the functional and histological studies in zebrafish.


Result: The abca7[±] zebrafish reduced astroglial proliferation, synaptic integrity, and microglial response after Aβ42 toxicity. We found that the abca7 loss-of-function (LOF) reduced neuropeptide Y (npy) expression as well as Brain-derived neurotrophic factor (bdnf) and Nerve growth factor receptor (ngfr). Human brain analysis showed reduced NPY in AD, regulatory interaction between NPY and BDNF, genetic variants in NPY associated with AD, and segregation of variants in ABCA7, BDNF and NGFR in families. ABCA7 variants altered the epigenetic codes in NPY, BDNF, and NGFR promoter regions. Human results paralleled with zebrafish findings to indicate an evolutionarily conserved disease mechanism through ABCA7-NPY signalling axis. NPY administration to zebrafish rescued the phenotypes in abca7 knockout, suggesting a true biological relevance.

Conclusion: Our results demonstrate a previously unknown link between ABCA7 and NPY in regulation of synaptic integrity and neurogenesis in AD. We propose that ABCA7-dependent NPY is a resilience factor in vertebrate brains, and this reserve mechanism is impaired in AD.

²³Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA

15525279, 2024, S1, Dowloaded from https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz.089273 by Deutsches Zentrum Für Neurodeg, Wiley Online Library on [1501/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms/

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

Genetic association, co-expression, segregation, epigenetic regulation, in silico interaction and disease association studies in different large multiethnic cohorts (EFIGA, NIA-LOAD, New York Brain Bank, ADNI, Mayo Clinic, MSBB, ROSMAP)

Immunohistochemistry and transcriptomics

- NPY and BDNF co-expressed in postmortem human brains
- NPY and BDNF mRNA and protein reduce in AD

Epigenetic mQTL

ABCA7 variants alter epigenetic codes on NPY, BDNF and NGFR promoters

- NPY and BDNF co-expressed with NPY1R in neurons.
- Co-expression linked to AD modules

NicheNet interaction analyses

NPY regulates the expression of BDNF in neurons

Segregation in families

NPY and BDNF variants segregate in families with AD with high CADD score

Association with Braak stage

Reduced ABCA7 and NPY associates with higher Braak stage and NGFR expression

ABCA7-dependent NPY signaling maintains synaptic integrity and is impaired in Alzheimer's disease