

DOI: 10.1002/alz 083400

BASIC SCIENCE AND PATHOGENESIS

PODIUM PRESENTATION

miRNA, transcriptional regulation and cognitive decline

Andre Fischer¹ | Farahnaz Sananbenesi² | Kwangsik Nho^{3,4,5} | Dennis Manfred Krüger⁶ | Leslie M. Shaw^{7,8,9,10,11} | Andrew J. Saykin^{12,13,14,15,16} Ivana Delalle¹⁷

Correspondence

Andre Fischer, German Center For Neurodegenerative Diseases (dzne), Goettingen, Lower Saxony, Germany, Email: andre.fischer@dzne.de

Abstract

Background: Despite significant advancements in the development of blood biomarkers for AD, challenges persist due to the complex interplay of genetic and environmental risk factors in AD pathogenesis. Epigenetic processes, including noncoding RNAs and especially microRNAs (miRs), have emerged as important players in the molecular mechanisms underlying neurodegenerative diseases. MiRs have the ability to fine-tune gene expression and proteostasis, and microRNAome profiling in liquid biopsies is gaining increasing interest since changes in miR levels can indicate the presence of multiple pathologies. We have profiled blood samples via smallRNA sequencing for 1056 individuals of the DELCODE and 847 individuals of the ANDI cohort.

Methods: We profiled blood samples via smallRNA sequencing for 1056 individuals of the DELCODE (German Longitudinal Cognitive Impairment and Dementia Study) and

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2024 The Alzheimer's Association. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.

¹German Center For Neurodegenerative Diseases (dzne), Goettingen, Lower Saxony, Germany

²German Center For Neurodegenerative Diseases (dzne), Goettingen, Germany

³Indiana University School of Informatics and Computing, Indianpolis, IN, USA

 $^{^4}$ Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA

⁵Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA

⁶German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Lower Saxony, Germany

 $^{^{7}}$ Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA

⁸Department of Pathology and Laboratory Medicine, Philadelphia, PA, USA

⁹Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

¹⁰University of Pennsylvania, Philadelphia, PA, USA

¹¹Dept of Pathology & Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA

¹²Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA

 $^{^{13}}$ Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA

¹⁴Indiana University, Indianapolis, IN, USA

¹⁵Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA

¹⁶Indiana University School of Medicine, Indianapolis, IN, USA

¹⁷Boston University, Boston, MA, USA

 $847\,individuals$ of the ANDI (Aging and Dementia in the Community) cohort, consisting of individuals diagnosed with SCD, MCI, AD, or control.

Results: By applying differential expression, WGCNA, as well as linear and non-linear machine learning approaches, we identify microRNA signatures that can help identify patients at distinct stages of disease progression, as well as signatures that can predict the course of the disease. These data are compared with phenotyping data, such as cognitive function and ATN biomarkers. We will also discuss the role of other noncoding RNAs besides microRNAs and provide a framework for developing RNA-based point-of-care assays.