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N E U R O S C I E N C E

Beyond nature, nurture, and chance: Individual agency 
shapes divergent learning biographies and 
brain connectome
Warsha Barde1,2†, Jonas Renner1,2†, Brett Emery1, Shahrukh Khanzada1, Xin Hu1,  
Alexander Garthe1,2, Annette E. Rünker1,2, Hayder Amin1, Gerd Kempermann1,2*

Individual choices shape life course trajectories of brain structure and function beyond genes and environment. 
We hypothesized that individual task engagement in response to a learning program results in individualized 
learning biographies and connectomics. Genetically identical female mice living in one large shared enclosure 
freely engaged in self-paced, automatically administered and monitored learning tasks. We discovered growing 
and increasingly stable interindividual differences in learning trajectories. Adult hippocampal neurogenesis and 
connectivity as assessed by a high-density multielectrode array positively correlated with the variation in explora-
tion and learning efficiency. During some tasks, divergence transiently collapsed, highlighting the sustained sig-
nificance of context for individualization. Thus, equal environments and equal genes do not result in equal 
learning biographies because life confronts individuals with choices that lead to divergent paths.

INTRODUCTION
Interindividual differences in behavior and underlying brain physiology 
are pervasive throughout the animal kingdom, reflecting the funda-
mental interplay of genetic, environmental, and developmental factors 
(1, 2). Despite the ubiquity of these differences, the precise mechanisms 
underlying the emergence of individuality remain elusive and complex. 
While the debate on nature versus nurture has long dominated discus-
sions on individual variation, newer research indicates that individual-
ity extends beyond such a narrow dualistic framework. Environmental 
enrichment (ENR) has been a paradigm of choice to study gene × envi-
ronment interactions by controlling the genetics using inbred mice. We 
have shown that genetically identical mice living together in the same 
environment still develop divergent behavioral trajectories (3). Given 
the shared genetic background and macroenvironment, only the non-
shared environmental factor, i.e., the component of differential behavior, 
remained as potential catalysts for the emergence of individuality. 
Theories on stochastic experiential variation and noisy developmental 
processes further emphasize the role of positive feedback loops in am-
plifying small initial differences (4–6).

Extending beyond the trichotomy of nature (genes), nurture (envi-
ronment), and chance, we propose individual agency as a major factor 
in shaping developmental trajectories. We here present an innovative 
form of learning-centered ENR that isolates the effects of individual 
choice, learning, and environmental feedback on the emergence of in-
dividual learning biographies and associated neural plasticity.

RESULTS
The IntelliCage acts as an enriched environment
Thirty-two 5-week-old female C57BL/6JRj mice were randomly as-
signed to either the enriched training environment or standard housing 

(STD) for 11 weeks (Fig. 1B). The IntelliCage (IC) is a computer-based, 
fully automated home cage system to longitudinally monitor the ex-
ploratory, learning, and social behavior of mice (Fig. 1A) (7). In four 
operant conditioning corners, which are equipped with two nose-
poke holes, sweetened water as a reward, and doors that allow or 
deny access to the reward, mice can freely and at their own pace learn 
and solve tasks to receive a reward. Access to the reward is based 
on a predefined combination of visits to specific corners, nosepoke 
patterns, and animal identity being automatically recorded through 
radio-frequency identification (RFID) antennas, nosepoke sensors, 
and lickometers. Of the more than 150 IC publications so far, none 
has explored long-term and sequential task exposure (7). In contrast, 
we exposed the mice to a nonstop sequence of learning tasks over 
2 months. While a gradual increase in body weight was observed in 
both STD and IC animals (Fig. 1C), IC mice were consistently lighter 
as one observes in other forms of enrichment (8). Like classical ENR, 
IC also caused an increase in the mean and variance of adult hippo-
campal neurogenesis (Fig. 1D) (9–11). These results validate the IC as 
an effective tool to induce enrichment effects in mice.

Emergence of individuality in behavior
During an adaptation phase (10 days), the mice were familiarized 
with the enclosure, the rewards in the corners, the requirement for a 
nosepoke to obtain the reward, and a time restriction for accessing 
the reward (fig. S1A). The learning phase itself consisted of a total of 
10 variations of five learning tasks: place learning with three correct 
corners (PL3CC); place learning with one correct corner (PL1CC); 
patrolling where the position of the correct corner shifted either in a 
clockwise or anticlockwise direction; reverse patrolling where the 
direction in which the correct corner rotated was reversed; and se-
rial reversal task where initially two diagonally opposite corners 
were rewarded, and the mice had to shuttle between these corners to 
access the reward. The assignment of diagonally opposite correct 
and incorrect corners was reversed every 4 days (fig. S1B).

Roaming entropy (RE) is a metric for uniform territorial coverage 
and spatial exploration exhibited by individual mice (10), also translat-
able to human conditions (12). We used the number of corner visits 
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and time spent in the corners to calculate RE during the adaptation 
phase. Decreasing mean RE suggested habituation to the environment 
(Fig. 2A, middle). Raw as well as cumulative RE trajectories diverged 
over time (Fig. 2B, right). Thus, during the initial 10 days in the IC, 
individual behavioral trajectories emerged as described previously for 
the much larger and elaborate individuality paradigm (11, 13, 14).

The successive learning tasks progressed in difficulty. Initially, 
the mice were required to learn the location of rewarded corners. In 
subsequent tasks, they had to unlearn the previous corner assign-
ments and learn the new locations of rewarded corners. Learning 
success of individual mice was calculated as the percentage of cor-
rect visits, normalized to the chance level (= 0) of the respective 
task. The resulting learning curves, over the entire learning phase, 
diverged and increased in variance, demonstrating individualiza-
tion of the trajectories (Fig. 2B). Within individual tasks, the average 
performance mostly increased except for “reverse diagonal 1” and 
“diagonal 3” (Fig. 2C). However, the group-average learning curve 
does not adequately represent the behavior of individual animals. 
Individual learning trajectories fanned out even within individual 

tasks, but there also was a fanning-in of curves in certain tasks (Fig. 
2C). Individual mice differed in their baseline performance levels 
(intercept), learning rates (slope), as well as endpoint performance, 
and the variance for all three parameters increased (Fig. 2, D to F).

It has been shown that the formation of individual behavioral 
trajectories in ENR at least in part depends on adult neurogenesis 
(14) and that adult-born neurons facilitate flexible relearning (15–
17). On the basis of this, we calculated the percentage of times mice 
visited the previously correct corner during a new task (flexibility 
curves; fig. S2A). On average, this measure decreased over the 
course of the tasks, except for “reverse patrolling” and reverse diago-
nal 1. The flexibility curves of individual mice also showed a 
fanning-out or fanning-in pattern depending on the task. Intercepts, 
slopes, and endpoints of these curves showed a nonsignificant trend 
of increase in variance (fig. S1, B to D).

While divergent learning trajectories indicate the amplification of 
stochastic or other baseline differences through different rates 
of adaptation to the tasks, the convergence of curves suggests that ani-
mals became more similar to each other in their learning outcome, 
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Fig. 1. IC as an enriched environment. (A) Schematic representation of IC that can house up to 16 mice and is equipped with four operant conditioning corners with RFID an-
tennas (left). Each corner contains two nosepoke ports with motorized doors, light-emitting diodes (LEDs) above nose ports, and access to sweetened water as a liquid reward 
behind the door (right). (B) Thirty-two female C57BL/6JRj mice, aged 5 weeks, were randomly assigned to IC and STD for 11 weeks. For quantification of adult hippocampal 
neurogenesis, all mice were injected with the thymidine analog 5-chlorodeoxyuridine (CldU) 4 weeks before the end of the experiment. After the experiment, IC animals were 
stratified according to their learning performance. The top two learners, the bottom two learners, and two STD mice were used for ex vivo hippocampal electrophysiology. The 
remaining IC and STD mice were perfused followed by immunohistochemistry to quantify adult hippocampal neurogenesis. (C) IC mice had lower body weights compared to 
STD mice. (D) IC mice showed higher mean and variance in the number of new hippocampal neurons compared to STD mice (STD, n = 14; IC, n = 12). Box and whisker plots: 
center line, median; upper and lower hinges, first and third quartiles; whiskers, highest and lowest values within 1.5 times the interquartile range (IQR) outside hinges.
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despite differences in intercept and slope. In line with the postulate that 
choice architectures influence behavior (18), learning-induced indi-
vidualization was not uniform but was shaped by the task’s structure, 
dictating the degree of freedom of choices available to the animals.

Stability in the face of change
To assess the stability or predictability of an individual’s behavioral 
pattern over time and across contexts, we quantified how individu-
als maintained their relative placement or rank order within the 
group. During the adaptation phase, animals maintained high 

rank-order correlations in their mean RE suggesting consistent pat-
terns of exploration and habituation (Fig. 3A, left). In the learning 
phase, for the mean percentage of correct visits, animals exhibited a 
high level of rank-order consistency between tasks indicating that 
animals consistently performed relative to one another (Fig. 3A, 
right). While the “reverse diagonal” tasks exhibited a low correlation 
with other tasks, they correlated highly with each other, indicating 
that they shared unique characteristics that led to consistent perfor-
mance patterns among the animals. In comparison, overall rank-
order consistency was low for behavioral flexibility (fig. S2E).
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Fig. 2. Emergence of individuality in behavior. (A) Individual mouse trajectories for exploratory behavior were assessed by calculating RE by using time spent in corners. 
The black dashed line indicates the decrease in mean RE, implying habituation to the environment (left). Raw and cumulative RE trajectories (middle) diverged in the adapta-
tion phase indicated also by the significant increase in the SD of REs (right). (B) Individual learning curves were derived after centering the percent correct visit values on the 
chance level of each learning task. The black dashed line indicates a significant increase in learning success at the group level (left). Raw and cumulative learning trajectories 
(middle) demonstrated divergence over time (left), evident also by a significant increase in SD (right). (C) Learning curves centered at chance level, displayed both divergence 
and convergence depending on the task (top), which corresponded with fluctuations in the variance over the task timescale (bottom). The dashed lines in the top and bottom 
indicate the mean and variance, respectively, of percent correct visits obtained from linear regression. Refer to table S2 for statistical details. (D to F) Variance in baseline 
performance (intercept), rate of learning (slope), and final performance (endpoint) increased as the tasks progressed. Before calculating variance, values of intercept, slope, 
and endpoint are centered with respect to fixed-effect coefficients specific to each task. The trajectory of each mouse is represented by a colored line, as shown in the bottom, 
and is derived from a linear mixed-effect model. R2 and P values are obtained from linear regression. The envelope indicates SE. Legend of learning tasks: Task 1, PL3CC; task 
2, PL1CC; task 3, patrolling; task 4, patrolling reversal; tasks 5, 7, and 9, diagonal (Diag); tasks 6, 8, and 10, reverse diagonal (Rev Diag).
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Repeatability, which quantifies the constancy of a feature over 
time and helps identify stable interindividual differences that sur-
pass intraindividual fluctuations (19), gradually increased for ex-
ploratory activity, learning, and flexibility (Fig. 3B and fig. S2F). 
Correspondingly, we observed an increase in interindividual vari-
ance in these behaviors (Fig. 3C and fig. S2G), while the intraindi-
vidual variance either decreased or remained constant (Fig. 3D and 
fig. S2H). This suggests that animals become increasingly consistent 
in their individual behavior that distinguishes them from others 
while retaining their intraindividual variability.

Individuality in behavior correlates with individuality in 
brain plasticity
After the experiment, animals were stratified according to their 
learning performance, and the top two learners, the bottom two 
learners, and two standard mice were used for electrophysiological 
analyses. For the remaining mice, adult hippocampal neurogenesis 
was quantified immunohistochemically. We found a trend for a pos-
itive correlation between mean RE and the number of newborn 
neurons in the dentate gyrus (DG), suggesting that animals who ex-
plore more tend to grow more neurons in their hippocampus (Fig. 4, 
A and C), in line with earlier work (11). The weak correlation can be 
explained by the short recording time for RE (first 10 days), while 

the neurogenesis counts cover the last 4 weeks. Adult hippocampal 
neurogenesis positively correlated with both learning and flexibility 
(Fig. 4, B and C, and fig. S2I).

Building on our previous work on the effects of ENR on hippocam-
pal circuitry (20), ex vivo electrophysiology using a high-density (HD) 
microelectrode array (MEA) [complementary metal-oxide semicon-
ductor (CMOS) based] detected substantial subregion-specific differ-
ences in local field potential (LFP) amplitude between the individuals 
in the different experimental conditions (Fig. 4, D and E). To examine 
synaptic plasticity, evoked field excitatory postsynaptic potential (fEP-
SP) amplitude responses were recorded through electrical stimulation 
of the stratum radiatum of the cornu ammonis 1 (CA1) subregion to 
activate the Schaffer collateral (SC) pathway. Comparing the tuning 
curves assessed the range of synaptic plasticity. The increased fEPSP 
evoked amplitude response in the top learning mice, compared to 
standard or bottom learning mice, suggested that the synaptic connec-
tions exhibited greater responsiveness or sensitivity to changes in the 
stimulation parameters (Fig. 4J and fig. S4A). This indicates that the 
synapses are more capable of undergoing potentiation in response to 
certain stimulation patterns and also have a higher capacity for synap-
tic strengthening and plasticity of neuronal circuits. This heightened 
capacity for plasticity might be associated with improved learning and 
memory formation (21). Furthermore, IC top learning mice showed 
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Fig. 4. Individuality in brain plasticity. (A and B) Adult hippocampal neurogenesis correlates with mean levels of exploration and learning. (C) Immunohistochemical 
detection of CldU-positive cells. (D) Topographical pseudo-color mapping of mean LFP amplitude spatial maps, computed over 5-min recordings, superimposed on the 
light-microscopic image. (E) Statistical quantification of the pharmacologically induced spontaneous spatiotemporal firing activity illustrates significantly higher regional 
LFP amplitude in top learners. (F) Functional connectivity matrices representing cross-correlation of pairs of firing neurons. The top learner displays higher correlation in 
all networks. White squares located along the diagonal illustrate modular graphs with highly connected nodes. (G and H) Graph clustering coefficient and transitivity in-
dicate higher network segregation in the top learner networks. (I) Connectome mapping and network visualization of the hippocampal-cortical (HC) networks. To illus-
trate exemplary functional connectivity from the dynamic detected LFP events in STD (node = 2701 and links = 123,623), IC top learner (node = 2988 and links = 157,176), 
and IC bottom learner (node = 2391 and links = 80,178) similar dynamic timeline (100 s) and degree range (>10 functional links per node) parameter constraints were 
placed on the functional links for plotting each condition. Nodes are scaled according to degree strength with nodal color indicating layer and link color identifying the 
intra- and interlayer connections. (J) Statistical quantification of the stimulation-evoked responses obtained as tuning curve of fEPSP slope amplitude as function of 
stimulus intensities. Tuning curves were averaged across all evoked electrodes to determine response amplitude with 10-μA pulse intensity difference from 20 to 130 μA 
and 140-μs pulse width and 30-s time interval between pulses. Inset shows topographical pseudo-color mapping of CA3/CA1 regionally evoked peak-to-peak amplitude 
spatial maps, obtained from an 80-μA electrical stimulation, superimposed on the HC microscope light image [***P < 0.001, **P < 0.01, and *P < 0.05, analysis of variance 
(ANOVA)]. DG Supra, DG suprapyramidal; DG Infra, DG infrapyramidal.
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significantly higher strength of local and global spatial interactions, as 
shown in the cross-correlograms (Fig. 4F).

In addition, the hippocampal networks of the IC top learners ex-
hibited higher uni- and bidirectional interaction link counts than 
those of STD mice, while the networks from IC bottom learners 
showed a decreased interaction link count compared to both STD 
mice and IC top learners (Fig. 4I and fig. S4B). The top learners’ 
functional networks showed a higher complexity (Fig. 4I), had more 
edges, and a higher degree centrality (fig. S4, D and E). On the basis 
of the clustering coefficient and transitivity, the top learner’s net-
works were more segregated (Fig. 4, G and H), suggesting that the 
connectome is more modular, which is consistent with the idea that 
less segregated networks, as associated with cognitive aging, are 
more vulnerable and less functional (22, 23). Last, the average short-
est path length was shorter for the networks of both the IC top and 
bottom learners compared to those of the STD mice, indicating a 
greater network integration (fig. S4F) (24).

DISCUSSION
The convergence and divergence of behavioral trajectories were not 
observed in our previous experiments with conventional and more 
stable ENRs, which lack the dynamic changes in reward contingen-
cies and learning demands that the IC-based enrichment offers. A 
new level of complexity arises from potential feedback loops be-
tween exploratory, social, and learning behaviors, intertwined with 
their reliance on task-specific constraints. Theoretically, positive 
and negative state-behavior feedback loops have been shown to lead 
to divergence and convergence of behavioral trajectories (25). An 
intriguing observation is that after converging phases, during which 
individuality is reduced to a level of lower performance, upon a new 
task, the mice switch back to a wider range of starting points into the 
next task. The shared environment, i.e., the learning situation, thus 
continues to matter, but the same stimulus can elicit different re-
sponses based on past experience.

At the center of our study lies a within-group comparison toward 
an identical intervention. This is conceptually challenging: The inter-
vention is shared, but the response is increasingly individualized. 
Nevertheless, the intervention (the task) still originates from the out-
side and is imposed on the individual. The cross-sectional compari-
son that we included into our study simply shows that, irrespective of 
the within-group variability and the role of the nonshared environ-
ment, there is a group-level effect that compares to what has been 
described in many studies on enriched environments in the past (26).

The “variation in variability” suggests that the emergence of indi-
vidual differences is not fixed or predetermined but is nonlinear and 
dynamic and contingent upon environmental demands and contex-
tual factors. For instance, when faced with challenging tasks, some 
individuals may exhibit adaptive responses, such as increased perse-
verance or exploration, while others may show decreased motiva-
tion or avoidance. These shifts in behavior can lead to divergent or 
convergent trajectories in learning biographies, depending on the 
nature of the environmental feedback.

For the current as well as our previous studies, a linear model has 
been the best fit, but first unpublished data suggest that, over ex-
tended periods of time, an exponential model might become the 
better fit. While this remains to be confirmed, it is important to note 
that, on the basis of the present data, we cannot claim a general lin-
ear relationship.

The idea of a dynamic interplay between individual choice and 
actions on one hand, and environmental opportunities and de-
mands on the other, challenges theories that attribute individual 
differences solely to stochastic or noisy developmental processes, 
highlighting the active role of individuals in shaping their own 
life trajectories.

It is not possible to further disentangle the mechanistic nature of 
this effect: To which extent the reward for learning versus learning 
per se is the driving stimulus cannot be determined. However, re-
ward is given for a particular learning performance, so that in any 
case a link to learning can be made. It is conceivable that purely 
triggering the dopaminergic system, as in the self-administrating 
models in addiction research, might create some within-group vari-
ability as well, but such “individuality” would be independent of 
learning. We here show that learning, possibly in part through the 
reward system, induces individualized trajectories.

To further determine whether the variance observed in our data 
was driven by learning reinforcement or merely by the amplification 
of initial stochastic differences through developmental noise, we 
compared a “reinforcement model” with two “null models” using a 
bootstrap analysis with baseline differences and reinforcement fac-
tors derived from experimental data. The null models included a 
random walk model, where trial success varied randomly around 
initial differences, and an additive noise model, where success was 
the sum of previous success plus noise, simulating the emergence of 
interindividual differences through stochastic development. Across 
1000 bootstrap simulations, the mean difference in slope for change 
in variance between the reinforcement and random walk models 
was 0.1405 [95% confidence interval (CI): 0.06775, 0.20904; P < 
0.001], and between the reinforcement and additive noise models 
was 0.10774 (95% CI: 0.03081, 0.18994; P = 0.003) (table S6). This 
indicates that trajectory divergence in the reinforcement model was 
significantly greater than in the null models (fig. S6, A to C). The 
reinforcement mechanism introduces variability in the slopes of the 
individual learning curves, amplifying the initial differences and 
leading to divergent trajectories. In contrast, the null models lack 
this reinforcement; without which, the success rate remains largely 
driven by random fluctuations. As a result, reinforced mice showed 
significant improvements in average success rates (fig. S6D and table 
S6) and greater increases in variance compared to the null model 
mice (fig. S6E and table S6).

We applied a similar approach to explore variance emergence in 
exploratory behavior using negative reinforcement. In our data, we 
observed a decrease in mean RE as a result of habituation, yet the 
trajectories diverged significantly over time. As mice become famil-
iar with the environment, the reduced novelty can function as a 
form of negative reinforcement. As expected, we observed a diver-
gence in trajectories for negatively reinforced mice (fig. S6, F to H) 
compared to mice in the null models. Reinforced mice exhibited a 
significant decrease in mean RE (fig. S6I and table S7), and their 
increase in variance was significantly higher than that of the null 
model mice (fig. S6J and table S7). This further supports the idea 
that reinforcement mechanisms, whether positive or negative, am-
plify initial differences and drive greater variability in behavioral 
outcomes compared to stochasticity. The precise role of the brain’s 
reward system (and hence dopaminergic signaling) in this context 
remains to be studied.

Our results demonstrate that even with uniform genetic back-
ground and exposure to identical tasks, individual trajectories in 
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learning-associated behaviors, such as learning ability, exploration 
strategies, and flexibility, emerge in the context of a rich choice archi-
tecture and are associated with differences in brain plasticity and the 
hippocampal connectome. The supplement contains the results from 
a smaller pilot study with the same design that independently con-
firms the observations reported here (fig. S5). Our results confirm 
that the development of individuality depends on sources beyond 
genes and the external environment (27). In a previous study, we have 
shown that exposure to ENR that promotes individualization is also 
associated with lasting epigenetic changes at gene loci related to adult 
neurogenesis and brain plasticity (11). The positive correlations be-
tween learning, neurogenesis, and network connectivity highlight the 
dynamic feedback loop between cognitive processes and experience-
dependent plasticity. There is a dynamic interplay between genetic 
predisposition and environmental and experiential factors. Learning 
as an isolated environmental factor shapes the brain. Individual learn-
ing trajectories emerge even when the “talent” is controlled for and 
are stable in response to different “teaching” interventions.

An experiment with our paradigm, in which the genetic back-
ground varies systematically (e.g., using a recombinant inbred panel 
of mice such as BXD, which we have used in the past (28), would be 
a major next step but would be so large, logistically complex, and 
expensive that it is now not conceivable and financeable. In theory, 
with such an approach, a genetics of the nonshared environment 
would be possible.

Variation in learning can also be observed under highly con-
trolled conditions with traditional experimenter-guided behavioral 
tests. The International Brain Laboratory has published a across-lab 
comparison that revealed that there was initial variance in training, 
which diminished, when performance after training was compared. 
This was taken as argument that standardization is possible to im-
prove lab-to-lab comparisons (29). The apparent subsequent reduc-
tion in variability, however, presumably reflected a ceiling effect, 
when the mice reach a criterion in the standardized test. This is fun-
damentally different from our case of self-paced learning in a series 
of tasks over weeks, in which—as we here show—task performance 
remains dependent on extrinsic cues and the reduction in variability 
is reversed, when the task changes again.

In our experiment, substantial individual differences emerged in 
the course of development, although genetic variance was mini-
mized and the environment was kept uniform. We show that these 
long-term individual differences in the brain and behavior origi-
nated from individual differences in learning experiences. Our re-
sults indicate that equal opportunities and equal genes do not 
guarantee equal biographies. The consequences of this discovery for 
education and lifelong learning in humans are highly suggestive.

MATERIALS AND METHODS
Animal husbandry
All animal husbandry and experiments were conducted in accordance 
with the applicable European and national regulations (Tierschutzge-
setz) and were approved by the local authority (Landesdirektion 
Sachsen; file number TVV8/2019). Female C57BL/6JRj mice at 5 weeks 
of age were purchased from Janvier Labs. At the animal facility of 
the German Center for Neurodegenerative Diseases (DZNE) Dres-
den, the mice were initially housed in standard cages in groups of four 
for 2 weeks for acclimatization. During the second week, half of the 
animals were randomly assigned to the IC group, and a glass-coated 

microtransponder (DataMars) was injected subcutaneously into the 
neck area. The other half were randomly allocated to four standard 
(STD) cages. All mice were kept on a 12-hour light/12-hour dark cycle 
and received water and food ad libitum. Cages were cleaned weekly. 
Four weeks before the end of the IC period, all mice were injected with 
the thymidine analog 5-chlorodeoxyuridine (CldU; dissolved in 0.9% 
sodium chloride) three times at 9-hour time intervals.

IntelliCage
The IC (TSE Systems, Bad Homburg, Germany), a computer-based, 
fully automated home cage system, was used for longitudinal moni-
toring of exploratory, learning, and social behavior of mice. The ap-
paratus houses up to 16 mice and is equipped with four operant 
conditioning corners (hereafter “corners”), each of which contains 
two bottles of sweetened water as a reward, two nosepoke holes, and 
doors that allow or deny access to the reward. The software that con-
trols the IC device enables the users to design specific learning pro-
tocols where access to reward is based on a predefined combination 
of factors, including visits to specific corners, nosepoke patterns, 
and animal identity. The time and duration of each behavioral event 
(corner visit, nosepoke, and lick), mouse ID, and corner ID were 
automatically recorded via RFID antennas, nosepoke sensors, and 
lickometers on the computer connected to the IC. Two paper houses 
and red plastic compartments were placed in the center of the IC. A 
water bottle was placed in the top grid of the cage next to the food so 
that the mice had ad libitum access to unsweetened water.

The following protocols were applied by appropriately designed 
modules in the IC apparatus:

1) Free adaptation: All doors were open, and the mice had free 
access to sweetened water in all corners of the IC.

2) Nosepoke adaptation: To access the reward, mice had to per-
form a nosepoke, which opened the respective door for 5 s. The 
mice had to leave the corner before they could reactivate the sensor 
to get to the reward again.

3) Drinking time adaptation: Access to the reward was restricted 
to a time window of 4.5 hours during the dark phase, from 10:30 p.m. 
to 3:00 a.m.

4) PL3CC: Access to the reward was restricted to only three cor-
ners upon performing a nosepoke.

5) PL1CC: Access to the reward was restricted to only one corner 
upon performing a nosepoke. The formerly incorrect corner be-
came the only correct corner.

6) Patrolling with nosepoke: The position of the rewarded or cor-
rect corner shifted in either a clockwise or anticlockwise manner.

7) Reverse patrolling with nosepoke: The direction in which the 
correct corner rotated was reversed.

8) Serial reversal learning task: Initially, two diagonally opposite 
corners served as the rewarded corners, between which the mice 
had to shuttle to access the reward. The assignment of diagonally 
opposite correct and incorrect corners was reversed every 4 days.

9) Free days: On free days, no specific task took place, allowing 
the mice to rest without any learning protocols.

Large-scale CMOS-based biosensor and recording 
acquisition setup
To record pharmacologically induced and electrical stimulation-
evoked responses, HD CMOS-based MEA chips were incorporated 
into an acquisition system (3Brain, AG, Switzerland). These HD 
CMOS chips comprise 4096 recording electrodes with a 42-μm 
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pitch size, forming an active sensing area of ∼7 mm2, which is suf-
ficient for recording the entire hippocampal-cortical (HC) area. The 
on-chip amplification circuit is capable of band-pass filtering in the 
range of 0.1 to 5 kHz, achieved by a global gain of 60 dB to record 
both slow and fast oscillations. The aforementioned acquisition sys-
tem was supplemented with a zero-drift triple-axis micromanipula-
tor system (Sensapex, Finland) and a bipolar, platinum/iridium 
blunt microtip electrode (World Precision Instruments, Germany 
GmbH) for external on-chip electrical stimulation. To maintain 
slice health and minimize experimental variation, a heat-stabilized 
perfusion system (ALA Scientific Instruments, USA) delivered the 
appropriate oxygenated recording perfusate to the brain-chip inter-
face at a flow rate of 4.5 ml/min and was kept temperature controlled 
at 37°C throughout the experiment.

Acute brain slice preparation and recovery
Following behavioral testing, mice from three groups (n = 2 each)—
top and bottom behavioral performers from IC housing and controls 
from STD housing—were chosen for large-scale CMOS-based bio-
sensor recordings. Mice were anesthetized with isoflurane before de-
capitation, and horizontal, 300-μm-thick brain slices were prepared 
using a Leica Vibratome VT1200S (Leica Microsystems, Germany) 
according to previous studies (20, 30, 31). Briefly, the brain was ex-
tracted from the skull and immediately immersed in a chilled sucrose 
solution. The brain was then positioned in a custom-made agarose-
based container and affixed to the cutting plate. Horizontal brain 
slices were sectioned at 0° to 2°C and continuously perfused with a 
high-sucrose artificial cerebro-spinal fluid perfusate solution saturat-
ed with 95% O2 and 5% CO2. This high-sucrose perfusate contained 
in 250 mM sucrose, 10 mM glucose, 1.25 mM NaH2PO4, 24 mM 
NaHCO3, 2.5 mM KCl, 0.5 mM ascorbic acid, 4 mM MgCl2, 1.2 mM 
MgSO4, and 0.5 mM CaCl2 (pH = 7.30 to 7.40; 350 to 360 mOsm/liter).

Electrical stimulation-evoked response recordings
HC slices were incubated at 32°C for 45 min, followed by a recovery 
at room temperature for 1 hour in an aCSF recording perfusate solu-
tion saturated with 95% O2 and 5% CO2. The aCSF perfusate con-
tained in 127 mM NaCl, 3.5 mM KCl, 1.25 mM NaH2PO4, 26 mM 
NaHCO3, 10 mM glucose, 1 mM MgSO4, and 2.5 mM CaCl2 (pH = 
7.25 to 7.35; 305 to 315 mOsm/liter). Slices were then moved and 
coupled onto the HD CMOS chips using a custom platinum anchor 
placed on top of the tissue. To determine external electrode place-
ment for electrical stimulation, an optical imaging stereomicroscope 
(Leica Microsystems, Germany) was connected to the CMOS-based 
biosensor to capture HC brain slice structures. The electrode was 
placed in the stratum radiatum of the CA1 to activate the SC pathway 
and elicit fEPSPs (30). To confirm electrode placement in this path-
way, a monophasic, 60-μA pulse with a pulse half-width of 140 μs 
was applied, and the responses were recorded. To determine the in-
tensity of evoked responses, a tuning curve was established using a 
10-μA stepwise stimulation application from 20 to 130 μA applied at 
30-s intervals. These evoked synaptic responses were integrated into 
offline analysis with the microscope images described previously to 
obtain the spatial arrangement of tissue relative to the recording dur-
ing offline analysis. To characterize specific synaptic function, active 
electrodes were grouped offline based on statistically determined 
bioelectrical signal differences using EVOS software (3Brain AG, 
Switzerland). Specifically, fEPSP signals obtained from the stratum 
radiatum and stratum pyramidale were analyzed.

Pharmacologically induced response recordings
HC slices were incubated at 32°C for 45 min, followed by a recovery 
at room temperature for 1 hour in an aCSF recording perfusate solu-
tion saturated with 95% O2 and 5% CO2. This aCSF perfusate con-
tained in 127 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 24 mM 
NaHCO3, 25 mM glucose, 1.25 mM MgSO4, and 2 mM CaCl2 (pH = 
7.25 to 7.35; 315 to 325 mOsm/liter). Slices were then moved and 
coupled onto the HD CMOS chips using a custom platinum anchor 
placed on top of the tissue. Ten minutes of spontaneous and 5 min 
of pharmacologically induced extracellular recordings were collect-
ed at a 14 kHz per electrode sampling frequency. Pharmacologically 
induced circuit activation recordings were acquired through the ap-
plication of 100 μM 4-aminopyridine. A stereomicroscope captured 
brain slice structures through optical imaging, which were used to 
obtain the spatial arrangement of tissue relative to extracellular re-
cordings during offline analysis.

Tissue preparation and immunohistochemistry
Mice were deeply anesthetized with a mixture of ketamine (100 mg/
kg) and xylazine (10 mg/kg) and then transcardially perfused with 
0.9% saline and 4% paraformaldehyde (PFA) in phosphate buffer 
(pH 7.4). Brains were removed from the skull, left in 4% PFA over-
night at 4°C, and transferred to 30% sucrose for at least 2 days. 
Forty-micrometer coronal sections were obtained using a sliding 
microtome with a dry ice–cooled copper block (Leica, SM2000R). 
Brain sections were stored at 4°C in cryoprotectant solution (25% 
ethylene glycol and 25% glycerol in 0.1 M phosphate buffer; pH 7.4). 
For the detection of CldU-positive cells, the peroxidase method was 
applied. Free-floating sections were first incubated in 0.6% hydro-
gen peroxide for 30 min to inhibit endogenous peroxidase activity. 
For antigen retrieval, the sections were then incubated in preheated 
2.5 M hydrochloric acid for 30 min at 37°C, followed by thorough 
washing steps. To block unspecific binding sites, the sections were 
treated with tris-buffered saline (TBS) supplemented with 10% don-
key serum and 0.2% Triton X-100 (Carl Roth) for 1 hour at room 
temperature. Next, the sections were incubated with primary mono-
clonal rat anti-CldU antibody (1:500) overnight at 4°C followed by 
biotinylated secondary antibodies for 2 hours at room temperature. 
Antibodies were diluted in TBS supplemented with 3% donkey se-
rum and 0.2% Triton X-100. For the detection of CldU-positive 
cells, the VECTASTAIN Elite ABC Reagent with diaminobenzidine 
(0.075 mg/ml; Sigma-Aldrich) and 0.04% nickel chloride as a 
chromogen were used. All washing steps were performed using 
TBS. The stained sections were mounted onto glass slides, cleared 
with Neo-Clear (Millipore), and lastly cover-slipped using Neo-
Mount (Millipore). CldU-positive cells were counted on every sixth 
section along the entire rostro-caudal axis of the DG using a bright-
field microscope.

Electrophysiology data analysis
All further analyses used in this study were developed and implement-
ed with custom-written Python scripts. Package add-ons are cited ac-
cordingly. All statistical analyses were performed with OriginLab 2022.
HC structural clusters
To characterize hippocampal network behavior locally and globally, 
functional firing electrodes were overlaid on the corresponding 
brain slice images to obtain structure-function information. Elec-
trodes were then grouped on the basis of annotated structural mark-
ers on the HC slice. These structures included seven regions of the 
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HC circuit: DG infrapyramidal blade, DG suprapyramidal blade, 
hilus, CA1, CA3, entorhinal cortex, and perirhinal cortex.
Mean activity basic analysis
To examine specific LFP waveform patterns, LFP event detection 
was performed using a hard threshold algorithm. Events were de-
noised and filtered using a low-pass fourth order Butterworth filter 
(1 to 100 Hz) processed by a custom-written Python script. The sig-
nal amplitude analysis was obtained through full-wave rectification 
and low-pass filtering with a cutoff frequency of 100 Hz.
Functional connectivity and causality
Cross-covariance was calculated between pairs of electrodes in the 
64 by 64 array using Pearson’s correlation coefficient to infer large-scale 
statistically dependent connectivity on a multilayered hippocampal 
network. Multivariate Granger causality was performed to quantify 
the influence of one time series on another followed by directed 
transfer function to measure directional information flow (20, 30–32). 
Electrodes were sorted by HC regions, and the statistical calculations 
for the count of interconnection links were based on paired layers.
Network connectivity metrics
To describe the overall network topology and interconnectedness 
from LFP events, graph theoretic analyses were applied. Graph 
metrics were computed in custom-written Python code with 
adapted functions from NetworkX Python package (32, 33), avail-
able on GitHub (https://github.com/networkx). Briefly, function-
al network connectivity metrics are described by considering 
node n as the central potentially connected component of the 
graph, which in our case corresponds to a specific electrode in the 
sensing array. The edges e are the functional links or connections 
between each node n. Other metrics, such as degree, degree cen-
trality, clustering coefficient, average shortest path length, and 
transitivity, are described (20).
Graph map visualization
To visualize the large-scale network, connectivity maps were con-
structed with the data architecture containing nodes and edges us-
ing the Gephi program 9.2 version (https://gephi.org). To illustrate 
exemplary functional connectivity from the dynamic detected LFP 
events in each condition, similar dynamic timeline (100 s) and de-
gree range (>10 functional links per node) parameter constraints 
were placed on the functional links for plotting each condition. 
Nodes are scaled according to degree strength and sorted on the 
basis of each structural layer.

Behavioral analysis
The IC software outputs a raw data file with descriptive information 
about each animal’s visit to the corners, which allows the computa-
tion of the variables per day listed below. In the adaptation phase, 
exploratory activity was examined by calculating RE. Corner visit 
durations were converted to probabilities pi,j,t of a mouse i being 
found at a corner j on a day t. Shannon entropy of the roaming dis-

tribution was calculated as REi,t = −

4
∑

j=0

pi,j,t log
(

pi,j,t
)

∕ log(4). Di-

viding the entropy by log(4) which is the number of corners in the 
IC scales the RE to the range between zero and one. Cumulative RE 
was calculated by the cumulative addition of mean RE from the pre-
vious days. In the learning phase, the percentage of correct visits 
(correct visits∕total visits×100) was used as a metric to analyze learn-
ing behavior of individual mice during all tasks. A correct visit is defined 
as a visit to a correct corner followed by more than one nosepoke which 

indicates a reward-seeking behavior as opposed to just exploratory 
behavior. To assess the flexibility of individual mice in forgetting the 
previous learning rule when a new task starts, we calculated the per-
centage of times mice visited the previously assigned correct corner

Simulation and comparison of reinforcement and 
null models
To test whether the emergence of variance in our data is due to 
learning reinforcement and not to the amplification of stochastic 
initial differences through developmental noise, we simulated a re-
inforcement model and compared it to null models using boot-
strap analysis.

Two null models were used. In the random walk model, the suc-
cess in the trials is obtained from a random distribution around the 
initial differences. In the additive noise model, the success in the 
current trial is the sum of success in the previous trial plus noise. 
This model simulates the hypothesis that interindividual differences 
emerge as a result of stochasticity or noise during development 
which is then canalized as a result of the developmental process.

For the simulations, 16 mice underwent a series of trials—50 tri-
als for the learning phase and 10 for exploration. Each mouse was 
assigned a different baseline or intercept, randomly selected from 
ranges based on our experimental data: between −0.27 and 0.43 for 
learning and between 0.09 and 0.16 for exploration. In the reinforce-
ment model, each mouse also received a unique reinforcement fac-
tor, randomly chosen from ranges of [−0.011, 0.045] for learning 
and [−0.0063, 0.00024] for exploration, again derived from our ex-
perimental observations. The stochastic noise was set equal to the 
maximum value of the reinforcement factor, which was 0.045 for 
learning and 0.00024 for exploration.

The behavioral response in the different models was calculated as
Random walk model

Additive noise model

Reinforcement model

We performed a bootstrap analysis with 1000 simulations to 
compare the slopes of change in mean and variance between the 
three models. For each bootstrap iteration, we fit regression models 
to the mean and variance changes over time. We then calculated the 
pairwise differences in slopes between the three models for each 
simulation, yielding a bootstrap distribution that reflects the vari-
ability in slope differences due to baseline variability and noise.

(visits to correct corners of previous task∕total visits×100).

%CorrectVisits(t+1) =NormalDistribution
(

μ=Baseline, σ2=Noise
)

(1)

RE(t+1) =NormalDistribution
(

μ=Baseline, σ2=Noise
)

(2)

%CorrectVisits(t+1) =%CorrectVisits(t) +Noise (3)

RE(t+1) =RE(t) +Noise (4)

%CorrectVisits(t+1) =%CorrectVisits(t)

+ReinforcementFactor+Noise
(5)

RE(t+1) =RE(t) +ReinforcementFactor+Noise (6)
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To assess the significance of the differences, we calculated the 
95% CIs for the slope differences by identifying the 2.5th and 97.5th 
percentiles of the bootstrap distribution. In addition, P values were 
computed by determining the proportion of bootstrap iterations 
where the slope difference was equal to or less than zero.

Statistical analysis
Statistical analyses were conducted using the R software (R Core Team, 
2014). To compare longitudinal data means, we used a rank-based 
nonparametric test, using the “nparLD” function from the nparLD 
package (34). This test provides analysis of variance (ANOVA)–type 
statistics for time, group, and their interaction. Post hoc pairwise 
comparisons were executed using the Wilcoxon’s test. Variances be-
tween groups were compared using the Brown-Forsythe test, con-
ducted with the “leveneTest” function from the “car” package. All 
statistical tests were two-tailed, and significance was considered at P < 
0.05. To correct for multiple comparisons, the Holm-Bonferroni 
method was used.

The data visualizations were generated using the “ggplot2” pack-
age (35). In the box-whisker plots, the centerline represents the me-
dian. The upper and lower hinges indicate the first and third 
quartiles, respectively. The upper whisker extends from the hinge to 
the largest value within 1.5 times the interquartile range (IQR), 
while the lower whisker extends from the hinge to the smallest value 
within 1.5 times the IQR.

For longitudinal analysis of RE, learning and flexibility for indi-
vidual mice, linear mixed-effect models were used from the “lme4” 
package (36). Mouse identity was added as a random effect to the 
within-subject factor (i.e., repeated measure) and between-subject 
fixed effects. To estimate repeatability (R) which is the relative decom-
position of variance into interindividual and intraindividual variance�  
[ R=(interindividual variance)∕(interindividual variance+ intraindividual variance) ] , 
“rptR” package was used (37).

Supplementary Materials
This PDF file includes:
Figs. S1 to S6
Tables S1 to S7
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