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Abstract

Copper radioisotopes including copper-60/61/62, and -64 exhibit a wide range of 
decay characteristics, making them appropriate choices for diagnostic/therapeutic 
(theranostic) applications in nuclear medicine. One notable feature of copper is the 
feasible coordination chemistry, which makes radiolabeling of a wide range of chemi-
cal structures including antibodies, proteins, peptides, and other biologically relevant 
small molecules possible. This chapter will summarize common radiopharmaceuticals 
of copper-64 and their radiation dosimetry in order to highlight recent improvements 
of positron emission tomography diagnostics.
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1. Introduction

Targeted nuclear imaging has significantly improved modern diagnostic methods 
and therapeutic procedures [1] by allowing for better imaging contrast, enhanced 
therapy effectivity, and reduction of radiation dose to the patients [2, 3]. Several 
classes of substances, including endogenous biomolecules, exogenous natural prod-
ucts, and synthetic molecules can be used practically as molecular probes for imaging 
or therapy [1]. Typically, molecular imaging is considered as a revolution in associa-
tion with diagnosis and monitoring of disease [4]. Currently, positron emission 
tomography/computed tomography (PET/CT), alongside other diagnostic modalities, 
is well established, particularly given advances of PET/CT in terms of its superior 
resolution, sensitivity, and imaging quantification. These characteristics have made 
PET/CT a preferred method for molecular imaging [5–7]. In particular, copper radio-
isotopes have attracted much attention among PET radionuclides [8, 9]. Copper is 
an essential trace element in all living organisms [10–13]. The available radioisotopes 
of copper, including copper-60 (60Cu), copper-61 (61Cu), copper-62 (62Cu),  



Advances in Dosimetry and New Trends in Radiopharmaceuticals

2

and copper-64 (64Cu), are appropriate for molecular imaging/or therapeutic applica-
tions (Table 1) [14].

With a wide range of half-lives extending from 9.7 min to 12.7 h, copper pro-
vides a series of radioisotopes suited for diagnostic or therapeutic applications in 
nuclear medicine [13, 15]. Copper coordination chemistry has the ability to form 
complex compounds with many ligands including antibodies, peptides, proteins, 
and other relevant small molecules [14, 16]. The long half-life of 64/67Cu allows for 
sufficient accumulation of radiolabeled compounds in targeted organs, specific 
and proper uptake and, as a result, considerably higher contrast and image quality 
[14]. Each of the above-mentioned copper-based radioisotopes has variably prefer-
able properties based on given applications. For example, the shorter half-life and 
higher positron decay fraction of copper-60 and -62 make them ideal radionuclides 
for imaging evaluation of radiotracers with faster pharmacokinetic procedures 
such as radiolabeled small molecules. In contrast, the longer half-life of 64Cu would 
be appropriate for radiolabeling of chemical structures, in order to formulate 
radiopharmaceuticals with slower pharmacokinetics, including radiolabeled 
peptides, nanoparticles, monoclonal antibodies (mAbs), antibodies, and higher 
molecular weight polypeptides [14]. While all copper radioisotopes are currently 
used in clinical applications, 64Cu has shown the most promising results in both 
preclinical and clinical studies [16]. In particular, the longer half-life of 64Cu 
(12.7 h) allows for the extension of the imaging period, which in turn compensates 
for lower sensitivity [9]. In a study assessing resolution, the “Derenzo” phantom 
application, demonstrated that PET imaging qualities with 64Cu are accurately 
comparable to fluorine-18 (18F) [17]. As 64Cu-radiopharmaceuticals for the evalu-
ation of human morbidities are currently undergoing significant developments 
[18], this chapter will focus on 64Cu-radiopharmaceuticals that have been already 
approved for clinical trials or are close to being transferred to clinical settings 
(Table 2).

Radioisotope Half-life 

(T1/2)

Decay mode 

(abundance %)

Energy 

(keV)

Source Application

60Cu 23.7 min β+ (93) 2940,3920 Cyclotron Imaging

γ (7) 511-467-826-
1332

61Cu 3.3 h β+ (60) 1220,1159 Cyclotron Imaging

γ (40) 511-283-589-
656

62Cu 9.7 min β+ (98) 2925 Cyclotron Imaging

γ (2) 511 Generator

64Cu 12.7 h β+ (19) 657 Cyclotron Imaging/
Therapy

γ (43) 511-1346

β− (38.4) 573

67Cu 2.58 d β− (100) 575 Cyclotron Therapy

Table 1. 
Physical characterization of copper radioisotopes [11]. β = Beta decay, γ = Gamma decay.
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1.1 64Cu radiopharmaceuticals and their role in clinical studies

As it described above, 64Cu is a promising radionuclide that can be incorporated 
into many bio-conjugated chemical structures to further develop diagnostic and ther-
apeutic agents with specific oncological indications [19]. The intermediate half-life 
of copper-64 (12.7 h) and its’ short positron range (comparable to fluorine-18) allow 
64Cu to create high-resolution PET tracers [20, 21]. Hypoxia imaging agents based on 
bis(thiosemicarbazone) complexes radiolabeled with 64Cu have been used success-
fully for PET imaging of various types of tumors [22–24], blood flow [25], disease 
related to metabolism alterations [26–29], and cell tracking [30]. Free [64Cu]CuCl2 
can also been used as a valuable radiopharmaceutical for quantifying physiological 
biodistribution of Cu in associated disorders including Wilson’s and Menkes diseases 

Radiopharmaceuticals Condition or disease Phase Last update posted

60Cu — — — —

61Cu — — — —

62Cu [62Cu]Cu-ethylglyoxal bis 
(thiosemicarbazone)

Renal failure 2 April, 2017 
(Terminated)

64Cu [64Cu]Cu-ATSM Rectal cancer 2 May, 2021

Cervical cancer 2 February, 2021

NSCLC N/A July, 2013

[64Cu]Cu-DOTA-TATE Neuroendocrine tumors 3 July, 2019 (Approved 
for marketing)

[64Cu]Cu-DOTA-alendronate Breast carcinoma Early 1 November, 2021

[64Cu]
Cu-DOTA-trastuzumab

Gastric cancer N/A March, 2021

Breast cancer N/A January, 2021

[64Cu]Cu-Rituximab Non-Hodgkin’s 
lymphoma

N/A October, 2016

[64Cu]Cu-DOTA-ECL1i Head and neck cancer 1 December, 2021

[64Cu]Cu-LLP2A Multiple myeloma Early 1 August, 2021

[64Cu]Cu-SARTATE Neuroendocrine tumors 2 May, 2021

[64Cu]Cu-SAR-bisPSMA Prostatic neoplasms 1 August, 2021

[64Cu]Cu-DOTA-TLX592 Metastatic prostate 
cancer

Early 1 August, 2021

[64Cu]
Cu-DOTA-pembrolizumab

Hematopoietic and 
lymphoid cell neoplasm

1 November, 2021

[64Cu]Cu-Macrin

[64Cu]Cu-NOTA-PSMAi-
PEG-Cy5.5-C′ dots

Sarcoid 1 September, 2021

[64Cu]Cu-FBP8 Prostate cancer 1 September, 2021

Pulmonary embolism 1 July, 2019

Table 2. 
64Cu radiopharmaceuticals list entered in clinical trials.
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in preclinical studies [29, 31], Alzheimer’s disease [32, 33], and cancer PET imaging 
(e.g., prostate cancer) [34]. Also, preclinical studies have shown the diagnostic effi-
ciency of [64Cu]CuCl2 in a glioblastoma xenograft model [35]. Suitable visualization 
of the tumor by [64Cu]CuCl2 can provide a theory that supports the non-dependency 
of 64Cu complexes on ligands for tumor accumulations [35]. The following passages 
will discuss notable applications of 64Cu radiopharmaceuticals in accomplished clini-
cal trials with the aim of clarifying new PET tracers’ roles in nuclear medicine.

1.2 Imaging tumor hypoxia

In circumstances under which cells are deprived of oxygen, hypoxia will occur 
and resistance to radiotherapy or chemotherapy and risk of invasion and metastases 
increases [11, 36, 37]. Hypoxia is a common condition in 50–60% of locally advanced 
solid tumors [11]. In addition to variable levels in different tumors, heterogeneity in a 
particular tumor tissue also can affect the reliable estimation of hypoxia [38]. Given 
a specific physiological state in hypoxia cells, they can be diagnosed with medical 
imaging modalities [39]. As a result, there are various PET tracers, which specifically 
detect hypoxia in humans [40–42]. In a series of ex-vivo studies, Fujibayashi et al. 
initially identified the critical role of the lipophilic radioactive copper (II) complex of 
the N2S2 ligand termed [62Cu]Cu-ATSM, specifically in relation to selective accumula-
tion in hypoxia cells [43, 44]. Later, in-vivo studies demonstrated further that copper 
radiolabeled ATSMs have high specificity and selectivity as tracers for the detection 
of tumor hypoxia [45–49]. Despite the fact that the exact localization mechanism of 
Cu-ATSM is still not fully understood, theoretical evaluations suggest that Cu-ATSM 
can passively diffuse through cell membranes due to its high permeability. Moreover, 
due to the low redox potential of the tracer, it can be trapped constantly following 
the reduction process in hypoxic cells [14]. This reduction can only occur in hypoxic 
cells given that the abnormally reduced state of their mitochondria is not common in 
normoxic cells [43].

In a comparison study by Lewis et al., [64Cu]Cu-ATSM, [64Cu]Cu-PTSM, and [18F]
F-MISO were identified as the most promising tumor hypoxia radiopharmaceuticals 
while also showing that the former ([64Cu]Cu-ATSM), exhibits heterogeneous oxygen 
concentration-dependent accumulation in different cells compared to the more 
stable uptake of the [64Cu]Cu-PTSM and [18F]F-MISO [50]. Also, [64Cu]Cu-ATSM 
presented faster clearance from normal tissues compared to the other tumor hypoxia 
tracers [51]. All in all, previous data show that PET/CT utilizing [64Cu]Cu-ATSM 
is a reliable and non-invasive imaging method that can accurately map hypoxic 
areas [52, 53]. In a clinical study of 10 cervical cancer patients, results showed that 
the signal-to-noise ratio was superior for [64Cu]Cu-ATSM was superior to [60Cu]
Cu-ATSM. Consequently, [64Cu]Cu-ATSM has been proposed as a safe radiophar-
maceutical that can be used to achieve high-quality imaging in tumor hypoxia cases 
[54]. Moreover, these data also showed that imaging reproducibility is feasible for up 
to 9 days. Accordingly, the authors concluded that [64Cu]Cu-ATSM is an ideal radio-
tracer for chronic tumor hypoxia rather than as an acute condition [55].

Furthermore, in a case report on a glioblastoma multiforme (GBM) patient, the 
authors observed accumulation of [64Cu]Cu-ATSM from early acquisition to late 
acquisition in hypoxia sites as well as high correlation between 64Cu-ATSM PET/CT 
results and HIF-1α expression as a hypoxia marker [56]. Feasibility of 64Cu-ATSM 
PET/CT in both cervical cancer and lung cancer has also been previously demon-
strated [57–59], while in a comparative clinical study in 11 patients with head and 



5

Recent Advances of Copper-64 Based Radiopharmaceuticals in Nuclear Medicine
DOI: http://dx.doi.org/10.5772/intechopen.1003993

neck cancer treated with chemoradiotherapy, the efficacy of [64Cu]Cu-ATSM and 
[18F]FDG was evaluated [60]. According to the findings of [64Cu]Cu-ATSM in 
seven patients, nodal metastases were detected and 22 cancer foci were identified 
in total calculated amounts for sensitivity and specificity of [64Cu]Cu-ATSM based 
on evaluated SUVmax were 100 and 50% and the same estimation considering the 
volume were 100 and 33%, respectively [60]. In conventional theories accumulation 
mechanism of [64Cu]Cu-ATSM was interpreted based on 64Cu(II) oxidation state 
[43, 61]. It was proposed that 64Cu(II) be reduced to 64Cu(I) by NADH/NADPH 
under the hypoxia circumstances. According to the lower stability of 64Cu(I) com-
pared to 64Cu(II) dissociation of the [64Cu]Cu-ATSM results in H2-ATSM and free Cu 
ions [50]. However, the exact reduction process is under debate until now. Colombié 
et al. reported that the functional mechanism of [64Cu(II)]-Cu-ATSM is related to 
redox potential and formation of reactive oxygen species which can appear under the 
hypoxia cellular condition [53]. Further studies suggest that the accumulation  
of [64Cu(II)]-Cu-ATSM is not mediated depending on the oxygen pressure of the 
tumors [62]. In sum, these results show a comparable efficacy between [64Cu]
Cu-ATSM and [18F]FDG PET/CT in the estimation of biological tumor volume 
(BTV), while clarifying that [64Cu]Cu-ATSM has higher sensitivity and lower speci-
ficity in predicting neoadjuvant chemoradiotherapy responses [60].

1.3 Tumor targeting by radiolabeled antibodies

1.3.1 [64Cu]Cu-trastuzumab

Epidermal growth factor receptor (ErbB) is composed of four closely related 
members including ErbB-1 (HER1 or epidermal growth factor receptor, EGFR), 
ErbB-2 (HER2), ErbB-3 (HER3), and ErbB-4 (HER4). HER1, HER3, and HER4 
bind to approximately a dozen of different ligands while HER2 has no specific 
ligand [63, 64]. Previously, it has been demonstrated that HER2 is activated through 
dimerization with other HER derivatives. This complex will subsequently activate 
intracellular signaling pathways of MAPK (mitogen-activated protein kinase) and 
PI3K (phosphoinositide 3-kinase) [65]. These pathways are responsible for tumor 
growth, invasion, migration, and survival while gene coding associated with breast 
cancer can amplify 15–20% of them [66, 67]. Gene amplification or protein overex-
pression are notable criteria for the candidacy of breast cancer patients from primary 
to metastatic stages for HER2-directed therapy [63]. Trastuzumab is confirmed as 
the first-line of a therapeutic plan for HER2-positive in advanced breast cancer [68]. 
Trastuzumab is a humanized antibody that binds to the extracellular domain of 
HER2 and inhibits the proliferation progress [69]. It was demonstrated as a remark-
able point that [64Cu]Cu-trastuzumab can be used for pretreatment assessment of 
breast cancer. Since measurements of [64Cu]Cu-trastuzumab uptake in lesions is 
a very promising criterion of patient selection for treatment procedures [63]. In a 
clinical trial performed of five HER2-positive breast cancer patients, results indicated 
that [64Cu]Cu-trastuzumab PET/CT scan is a safe and feasible for non-invasive and 
serial detection of HER2 status in metastatic brain tumors [70]. Based on clinical 
trials, [64Cu]Cu-trastuzumab can be efficient for the diagnosis of metastases related 
to other malignancies [71]. For instance, radiolabeled trastuzumab can be men-
tioned as a standard tracer for HER2-positive gastric or gastro-esophageal junction 
cancer patients [72]. Moreover, a recent clinical trial compared [64Cu]Cu-NOTA-
trastuzumab in a HER2-positive primary gastric cancer patient with liver metastases, 
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to [18F]FDG [73] with results showing comparable outcomes. Specifically, six liver 
metastases >1 cm were identified by both detection radiopharmaceuticals. Two 
metastases <0.5 cm were detected only with [18F]FDG and were not easily identified 
with [64Cu]Cu-NOTA-trastuzumab [73]. However, SUVmax of [64Cu]Cu-NOTA-
trastuzumab in the primary lesion was estimated 28.6 ± 0.50 versus 13.5 ± 0.30 for 
[18F]FDG [73]. Based on comparable clinical results between [18F]FDG and [64Cu]
Cu-trastuzumab attained by these data, it can be argued that further clinical evalua-
tions of [64Cu]Cu-trastuzumab are needed.

1.3.2 [64Cu]Cu-rituximab

Rituximab (RTX) is a chimeric human/murine mAb that targets CD20 positive 
B-cell malignancies and has been used for immunotherapy of patients with non-
Hodgkin’s lymphoma (NHL) [74, 75]. Radiolabeling of RTX with (β−/β+) emitters 
could augment the antibodies’ theranostic activity. In this regard, 64Cu-labeled RTX 
([64Cu]Cu-DOTA-rituximab) as a PET imaging agent could be used to track the prog-
ress of NHL treatment [75]. The ongoing pre-clinical trial using [64Cu]Cu-DOTA-
rituximab PET/CT was established to determine the tracers’ pharmacokinetics, 
biodistribution, stability, uptake, and radiation dosimetry in CD20-positive B-cell 
NHL patients compared to the [18F]FDG PET/CT [76]. Following this study, Natarjan 
et al. reported validated production of [64Cu]Cu-rituximab under good manufactur-
ing practices (GMP) in order to clinical indication for the diagnosis of CD20 positive 
B-cell non-Hodgkin lymphoma [75]. Finally based on strong evidences efficacy of 
[64Cu]Cu-rituximab in detecting of B-cells in a murine model of MS was confirmed 
[77]. This achievement can be very hopeful in detection or even early diagnosis of MS 
in patients who respond to anti-B-cell therapies.

1.4  Tumor targeting by radiolabeled somatostatin derivatives: [64Cu]Cu-DOTA-
TATE, and [64Cu]Cu-DOTA-TOC

Somatostatin receptors (SSTR) have been reported as qualified targets for the 
evaluation of neuroendocrine tumors (NETs) [78]. After [68Ga]Ga-DOTA-TATE, 
which was introduced as a gold standard for diagnosis purposes of NETs, it was 
hypothesized that 64Cu would be superior for radiolabeling of somatostatin deriva-
tives [78]. The physical properties of 64Cu compared to 68Ga, including longer half-life 
(12.7 h versus 67.7 min for 68Ga), and shorter positron range (1 mm versus 4 mm), 
makes 64Cu more accessible radionuclide with higher spatial resolution for clinical 
studies [79]. Various comparative studies have been performed to clarify the emphasis 
of radiolabeled somatostatin derivatives with 64Cu. In a clinical trial study of 59 
NET patients carried out by Johnbeck and colleagues, the authors compared diag-
nostic results derived from [68Ga]Ga-DOTA-TOC and [64Cu]Cu-DOTA-TATE PET/
CT radiopharmaceuticals [78]. Results showed that 701 lesions were concordantly 
recognized with both radiopharmaceuticals. However, in detection of 68 lesions, 
there were no correlation between the [68Ga]Ga-DOTA-TOC and [64Cu]Cu-DOTA-
TATE. Forty-two lesions were detected only by [64Cu]Cu-DOTA-TATE, of which 33 
were found to be true positives. Moreover, only 26 lesions were found with [68Ga]
Ga-DOTA-TOC, of which seven were true positive [78]. These results demonstrated 
that [64Cu]Cu-DOTA-TATE exhibits higher specificity and sensitivity compared to 
[68Ga]Ga-DOTA-TOC [78].
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Further studies have confirmed that [64Cu]Cu-DOTA-TATE’s role as a safe imag-
ing protocol in providing of accurate and high-quality images for diagnosis, treat-
ment, and follow-up of NETs [80–83]. In accomplished comparative clinical studies 
for [64Cu]Cu-DOTA-TATE, [99mTc]Tc-HYNIC-octreotide, and [111In]In-DTPA-OC, 
superiority of [64Cu]Cu-DOTA-TATE in the diagnosis of NETs was demonstrated 
[82, 84]. [64Cu]Cu-DOTA-TATE is the most appropriate choice for the diagnosis of 
NETs due to robust manufacturing with no need for regional generators, and a longer 
half-life allowing a wide geographical range for commercial distribution. This drug 
was approved in September 2020 by FDA and is now commercially available in the 
USA. Figures 1–3 display detection rate of [64Cu]Cu-DOTA-TATE in NETs. In a clinical 
trial [64Cu]Cu-MeCOSar-Tyr3-octreotate ([64Cu]Cu-SARTATE) was applied in [68Ga]
Ga-DOTA-TATE positive NET patients [85]. A significant advantage of this radiophar-
maceutical compared to [68Ga]Ga-DOTA-TATE is the higher stability of sarcophagine 
(Sar) linker versus DOTA. The concluded results showed comparable diagnosis 
visualization in 9 of 10 patients in 1 h imaging. In one patient a liver lesion was missed 
by [64Cu]Cu-SARTATE. However, the imaging obtained in 24 h, demonstrated the 
diagnostic superiority of [64Cu]Cu-SARTATE compared to [68Ga]Ga-DOTA-TATE [85].

Several somatostatins analogs radiolabeled with SPECT and PET radionuclides 
have been evaluated in clinical trials to ascertain a possible gold standard for the diag-
nosis and treatment of NETs [86]. To date, 68Ga radiolabeled somatostatin deriva-
tives including DOTA-TOC, DOTA-TATE, and DOTA-NOC (Figure 4) have shown 
promising results as diagnostic radiopharmaceuticals for NETs [78]. Recently, it was 
also demonstrated that 64Cu radiolabeled somatostatin analogs have advantages 
compared to former radiopharmaceuticals, some of which are discussed previously. 

Figure 1. 
Physiologic uptake is seen in the pituitary, salivary, and lacrimal glands, liver, spleen, GI tract, adrenals, kidneys, 
and urinary bladder. Mild & diffuse bone marrow uptake or focal activity in the pancreas might occur as normal 
physiologic variants (e.g., uncinate process of the pancreas). (Courtesy of Courtesy Ebrahim Delpassand, MD 
RadioMedix, Inc. Houston, TX, USA).
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Figure 2. 
53-year-old female with newly diagnosed neuroendocrine tumor in the terminal ileum. The red arrow points to 
the primary tumor. The blue arrow points to the uncinate process uptake, which is a normal physiological variant. 
(Courtesy Ebrahim Delpassand, MD, RadioMedix, Inc. Houston, TX, USA).

Figure 3. 
49-year-old male with pancreatic neuroendocrine tumor. On the fused [64Cu]Cu-DOTA-TATE PET/CT images 
a [64Cu]Cu-DOTA-TATE avid lesion is noted in the pancreatic tail. Also, multiple hypodense [64Cu]Cu-DOTA-
TATE avid lesions are noted in both liver lobes suggesting metastatic involvement. (Courtesy Courtesy Ebrahim 
Delpassand, MD RadioMedix, Inc. Houston, TX, USA).
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Figure 4. 
Chemical structures of DOTA-TOC (top), DOTA-TATE (middle), and DOTA-NOC (bottom).
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In a retrospective study, 33 patients with NETs who had surgically removed primary 
lesions, underwent [64Cu]Cu-DOTA-TOC PET/CT scan [87]. Five patients exhibited 
no detectable pathological lesion in PET/CT scan, while eight showed enhanced 
uptake at the skull base, and 20 presented at least one pathological lesion [87]. Based 
on this clinical trial, it was concluded that [64Cu]Cu-DOTA-TOC PET/CT scan can 
differentiate NET lesions with a feature of high target-to-background contrast [87]. 
Interestingly, these findings also correlated with [177Lu]Lu-DOTA-TATE results 
obtained from a follow-up assessment in another patient’s group [87]. Further studies 
on larger populations are needed to identify the most appropriate somatostatin 
derivative for NETs diagnosis in radiolabeling with 64Cu. As an example, (Figure 5) 
displays the detection rate of [64Cu]Cu-DOTA-TOC in NET of the bladder.

1.5 Tumor targeting by radiolabeled PSMA ligands

1.5.1 [64Cu]Cu-PSMA-617

Previous studies have been demonstrated that prostate-specific membrane antigen 
(PSMA) is over expressed in prostate cancer (PCa) [88], suggesting that PSMA 
can be used as a potent tumor marker for PCa, as well as a vital target for imaging 
and therapy [88]. Among the recognized radiolabeled PSMA inhibitors, it has been 
shown that [68Ga]Ga-PSMA-11 is highly effective as a PET tracer for the detection 
of PCa [88]. Furthermore, PSMA can also be radiolabeled with 64Cu, offering a 
longer half-life and higher spatial resolution [89]. In a comparative clinical trial, the 
biodistribution of [64Cu]Cu-PSMA-617 and [68Ga]Ga-PSMA-11 were assessed in PCa 
patients [89]. Diagnostic results showed that both radiopharmaceuticals show similar 
biodistribution, except the excretion route, in which [64Cu]Cu-PSMA-617 excreting 
takes place through the gastrointestinal tract rather than the renal excretion of [68Ga]
Ga-PSMA-11 [89]. The low metabolic rate of PCa cells leads to negligible uptake 
of [18F]FDG in PCa. [18F]FDG accumulates based on glucose consumption and as 
a consequence of the mentioned fact unacceptable specificity of [18F]FDG for the 
detection of PCa is raised [90–92]. However, it has also been demonstrated that [18F]
FDG is useful for selected PCa patients with hormone-resistant poorly differentiated 
cell types [93–95].

Choline is an essential precursor for phospholipid synthesis of membranes in 
normal cells and based on the proliferation rate, uptake of choline increases mainly 
in cancerous cells [96, 97]. [18F]F-choline ([18F]FCH) PET/CT has been used for 
the detection of PCa widely during the last decade and optimistic results have been 
achieved [90]. It assessed that [18F]FCH PET/CT is useful for detection of local and 
distant nodal recurrence and bone metastases [90, 98–100]. In another cohort study, 
the efficacy of [64Cu]Cu-PSMA-617 and [18F]FCH PET/CT was compared [101]. 
This study, conducted on 43 patients, assessed restaging after biochemical recur-
rence [101]. In terms of detection rate, results indicated no statistically significant 
differences. However, [64Cu]Cu-PSMA-617 showed better performance with overall 
positivity at 74.4% compared to 44.2% for [18F]FCH [101]. This retrospective study 
demonstrated that [64Cu]Cu-PSMA-617 is promising in the prediction and assessment 
of recurrent sites relative to other PET tracers [101].

In another clinical trial performed by Grubmuller et al., it was shown that [64Cu]
Cu-PSMA-617 has high potential as a PET tracer in detection of recurrent cases or pro-
gressive local lesions in primary staging of PCa patients [102]. In comparison to [68Ga]
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Ga-PSMA-11, higher image quality resulting from higher image contrast and superior 
uptake for [64Cu]Cu-PSMA-617 was shown, suggests the latter as an appropriate 
radiopharmaceutical compared to conventional PCa radiotracers [102]. Subsequently, 
[64Cu]CuCl2 has also been reported as an applicable diagnostic tracer for PCa [34, 
103]. Cu is an essential requirement for normal cells in signaling transduction path-
ways of proliferation processes [104]. So increased uptake of Cu in aggressive uncon-
trolled cancerous prostate cells with a high proliferation rate would be inevitable [103]. 
In a previous study 50 patients with biochemical relapse PCa after surgery or external 
beam radiation therapy went through [64Cu]CuCl2 and [18F]F-choline PET/CT scans 
[34], results indicated that biodistribution of [64Cu]CuCl2 is more appropriate for 
exploring the prostate and pelvic bed. Finally, it was shown that in patients with 
relapsed PCa and low levels of PSA, [64Cu]CuCl2 has a higher detection rate compared 
to [18F]F-choline [34]. In sum, it can be argued that [64Cu]CuCl2 is a suitable tracer for 
the primary staging of PCa and regional lymph nodes [103]. However, based on high 
diagnostic accuracy, [64Cu]Cu-PSMA-617 has been suggested in both primary staging 
in patients with progressive local disease and recurrent cases [102, 105, 106].

Figure 5. 
68-year-old male patient with a neuroendocrine tumor of the bladder (G3) with multiple pelvic LN and bone 
metastases. Additionally, we see the primary tumor in the bladder with infiltration into the surrounding tissue. 
[64Cu]Cu-DOTA-TOC (179 MBq) PET/CT. (Courtesy of Clinic Ottakring, Institute of Nuclear Medicine with 
PET-Center, Vienna, Austria).
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Pharmaceutical Dose 

(MBq)

Average 

effective dose 

(mSv/MBq)

Study type Organs with 

highest 

absorbed dose 

(mGy/MBq)

Ref.

[64Cu]Cu-DOTA-
trastuzumab

115–136 0.036 ± 0.009
(mean: 4.5 mSv)

Patient Heart: 0.340 [71]

Liver: 0.237

Spleen: 0.142

[64Cu]Cu-NOTA-
trastuzumab

3.7 — Animal/
Monte Carlo 
simulation

Heart: 0.048 [107]

Liver: 0.079

Spleen: 0.047

[64Cu]
Cu-PSMA-617

18.7* 
119–160#

0.0292 Animal/
patient

Gallbladder wall: 
2.04

[108]

Liver: 0.014

Kidney: 0.009

[64Cu]
Cu-DOTA-TATE

193–232 0.0315 Patient Pituitary gland: 
0.19

[109]

Liver: 0.16

Kidneys: 0.14

[64Cu]Cu-DOTA-
pembrolizumab

7.4 0.004 Animala Liver: 0.032 [110]

Red marrow: 
0.018

Lungs: 0.010

[64Cu]Cu-TETA-OC 107–130# 0.013 Animal/
patient

Bladder wall: 0.25 [111]

Liver: 0.092

Kidneys: 0.078

[64Cu]
Cu-DOTA-AE105

197–213 0.0276 Human Liver: 0.175 [112]

Kidney: 0.0562

[64Cu]Cu-DOTA-
alendronate

37–74 0.0418 Animalb LLI wall: 0.159 [113]

ULI wall: 0.113

Kidneys: 0.108

[64Cu]Cu-Cl2 4.0 MBq/
kg

0.051 (m) Human Liver: 0.310 (m) [114]

Liver: 0.421 (f)

0.061 (f) LLI wall: 0.153 
(m)

LLI wall: 0.161 
(f)

[60/61/62/64Cu]
Cu-ATSM

4801 0.0111 Animal/
patientsc

Liver: 0.0641 [115]

0.0292 Liver: 0.2752

0.0033 Liver: 0.0173

0.0364 Liver: 0.3904

[64Cu]
Cu-SARTATE

192 0.0454 Human Spleen: 0.361 [85]

Kidneys: 0.202

Adernals: 0.169
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2.  Pre-clinical and clinical dosimetry results of 
64Cu-radiopharmaceuticals

Table 3 shows the results of the injected dose level and the estimated absorbed 
doses and organs at risk in 64Cu radiopharmaceuticals. Based on previous stud-
ies on 64Cu-radiopharmaceuticals, injected dose levels for patients were between 
105 and 192 MBq which is about half of [18F]FDG dose and provided acceptable 
image quality. The calculated effective absorbed dose for the total body with 
64Cu-radiopharmaceuticals in human studies or in animal studies indicated a range 
of 0.01–0.06 mSv/MBq. In the case of radiation potential hazards, these ranges are 
within an acceptable level and lower than other similar radiopharmaceuticals.

3. Conclusion

The number of developing 64Cu labeled radiopharmaceuticals is growing. The 
most considerable characteristics of 64Cu include a longer half-life and superior 
image quality, resulting in high image contrasts, robust centralized manufactur-
ing, and wider geographical range of distribution and ease of use by the end user. 
These characteristics have led to the introduction of novel and promising 64Cu 
radiopharmaceuticals in both pre-clinical and clinical trials. [64Cu]Cu- DOTATATE 
(Detectnet™) is the first 64Cu labeled radiopharmaceutical approved by the FDA and 
is commercially available in the USA. 64Cu/67Cu pair has great and true theranostic 
applications. Impressive numbers of clinical trials using 64Cu labeled compounds 
suggest that the menu of approved radiopharmaceuticals in this field will increase in 
the near future.

Pharmaceutical Dose 

(MBq)

Average 

effective dose 

(mSv/MBq)

Study type Organs with 

highest 

absorbed dose 

(mGy/MBq)

Ref.

[64Cu]Cu-DOTA-
Rituximab

7.4 0.024 Animalb Spleen: 0.098 [76]

Liver: 0.051

Osteogenic cells: 
0.042

LLI wall: lower large intestine wall.
ULI wall: upper large intestine wall.
m: men.
f: women.
*mice.
#patient.
1copper-60.
2copper-61.
3copper-62.
4copper-64.
abased on ex-vivo biodistribution and PET/CT images.
bestimation for humans.
cdose estimation for human based on copper-60.

Table 3. 
Injected dose level, estimated absorbed doses, and organs at risk in [64Cu]Cu-radiopharmaceuticals.
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Abbreviations

ATSM: diacetyl-bis(N4-methylthiosemicarbazone)
BTV: biological tumor volume
CD20: cluster of differentiate 20
CT: computed tomography
Cu: copper
DOTA: 2,2′,2”,2”'-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraace-

tic acid
FCH: fluorocholine
FDG: fludeoxyglucose
FDA: food and drug administration
Ga: gallium
GBM: glioblastoma multiform
GI: gastro intestinal
HER: human epidermal growth factor receptor
MAb: monoclonal antibody
MAPK: mitogen-activated protein kinases
MBq: mega becquerel
MISO: misonidazole
NADH: nicotinamide adenine dinucleotide (NAD) + hydrogen (H)
NADPH: nicotinamide adenine dinucleotide phosphate
NET: neuroendocrine tumors
NHL: non-Hodgkin lymphoma
NOC: [Nal3]-octreotide
NOTA: 2,2′-(7-(2-((2,5-dioxopyrrolidin-1-yl)oxy)-2-oxoethyl)-1,4,7-

triazonane-1,4-diyl)diacetic acid
PCa: prostate cancer
PET: positron emission tomography
PTSM: pyruvaldehyde-bis(N4-methylthiosemicarbazone)
PSA: prostate specific antigen
PSMA: prostate specific membrane antigen
RTX: Rituximab
SAR: sarcophagine
SPECT: single-photon emission computed tomography
SSTR: somatostatin receptor
TATE: [Tyr3]-octreotate
TOC: [Tyr3]-octreotide
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