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1. INTRODUCTION

Episodic memory, the ability to store, maintain, and recall 

past singular events ( Tulving,  1985), is highly vulnerable 

to impairment in dementia, and particularly in Alzheimer’s 

disease (AD), the most prevalent cause of dementia in old 

age ( Livingston  et al.,  2017,  2020). As AD- related neuro-

pathological changes precede clinically manifest demen-

tia by several years ( Chételat  et  al.,  2005;  Jack  et  al., 

 2000;  Ledig  et  al.,  2018), it is important to define pre- 

clinical stages of AD and risk states, which describe 

intermediate stages between (age- adjusted) normal cog-

nitive functioning ability and manifest disease. Mild cog-

nitive impairment (MCI), a measurable decline of cognitive 

function, but with preserved ability to perform activities of 

daily living ( Petersen,  2016), is a widely recognized risk 

state for dementia due to AD, and, more recently, subjec-

tive cognitive decline (SCD), has been identified as a pre- 

MCI risk state, particularly when associated with worries 

about one’s perceived cognitive deficit ( Jessen, 2014,  

Jessen, Amariglio, et al., 2020;  Jessen,  Kleineidam,  et al., 

 2020). Both SCD and MCI do not per se constitute pro-

dromal stages of AD, but they are associated with ele-

vated risk to develop AD, particularly in individuals with 

the AD- typical findings in cerebrospinal fluid (CSF), that 

is, reduced levels of amyloid beta (A 1- 42), and increased 

levels of total tau (tTau) and especially phosphorylated tau 

(pTau181) ( Blennow  &  Zetterberg,  2010;  Mattsson- Carlgren 

 et al.,  2023;  Olsson  et al.,  2016).

In cognitive and clinical neuroscience, episodic mem-

ory is typically operationalized by various memory encod-

ing and retrieval paradigms ( Richardson- Klavehn  &  Bjork, 

 1988;  Yonelinas,  2002), where both encoding (e.g., inci-

dental vs. intentional) and retrieval task (e.g., recognition 

or free recall) can vary. An encoding task followed by a 

later memory test is frequently employed in neuroimaging 

studies of episodic memory, to infer on neural correlates 

of successful encoding (i.e., later memory) by comparing 

neural responses to remembered versus forgotten items 

(Brewer et  al., 1998;  Kim,  2011;  Maillet  &  Rajah,  2014; 

Wagner et al., 1998). Neural differences related to encod-

ing success are often referred to as subsequent memory 

effect (SME; also DM effect, for “difference due to mem-

ory,” see  Düzel  et al.,  2011). Including both novel and pre-

viously familiarized stimuli in the encoding task allows to 

additionally infer on neurocognitive underpinnings of nov-

elty processing (novel vs. familiar items;  Henson  et  al., 

 2002), which show substantial, but not complete, overlap 

with the SME ( Maass  et al.,  2014; Soch, Richter, Schütze, 

Kizilirmak, Assmann, Behnisch, et al.,  2021).

Given the pronounced episodic memory deficits in Alz-

heimer’s disease and, to a lesser extent, also in MCI, 

applying the subsequent memory paradigm to people 

with Alzheimer’s risk states appears as a plausible 

approach to investigate the functional neuroanatomical 

correlates of AD- related memory impairment. Indeed, 

numerous functional magnetic resonance imaging (fMRI) 

studies of memory encoding and retrieval have been con-

ducted in patients with early- stage AD or MCI ( Billette 

 et al.,  2022;  Browndyke  et al.,  2013;  Düzel  et al.,  2022; 

 Gould  et al.,  2005;  Kircher  et al.,  2007;  Terry  et al.,  2015) 
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as well as in individuals with endogenous or exogenous 

risk factors for AD ( Bookheimer  et al.,  2000;  McDonough 

 et al.,  2020). Converging meta- analytic evidence suggests 

that individuals with AD or MCI exhibit reduced memory- 

related hippocampal activation and increased activation 

of medial parietal structures like the precuneus during 

encoding ( Browndyke  et al.,  2013;  Terry  et al.,  2015), and 

a similar pattern has been found to covary with increased 

risk for AD in clinically unaffected individuals ( McDonough 

 et al.,  2020). It must be cautioned, though, that only few 

studies included in the aforementioned meta- analyses 

actually reported SMEs ( Gould  et al.,  2005;  Kircher  et al., 

 2007;  Trivedi  et  al.,  2008), whereas others compared 

encoding to a low- level baseline or reported novelty 

effects ( Billette  et al.,  2022;  Browndyke  et al.,  2013).

While the reasons for not conducting a subsequent 

memory comparison between patients with AD or MCI 

and healthy controls were not typically reported, it seems 

plausible to assume that low memory performance and 

disintegration of memory networks might have resulted in 

a signal- to- noise ratio that is too low to compute mean-

ingful subsequent memory contrasts in the clinical groups. 

Therefore, we aimed to employ an unbiased approach to 

assess the utility of subsequent memory models in com-

parison to memory- invariant novelty/familiarity models 

across the spectrum of AD risk. We have previously 

applied Bayesian model selection (BMS) to fMRI data 

acquired during an incidental visual episodic memory 

encoding task followed by a recognition memory task 

with a 5- point recognition- confidence rating scale (rang-

ing from “item sure new” over “don’t know” to “item sure 

old”). We found that, in healthy young and older adults, 

SME models (taking encoding success into account) out-

performed memory- invariant novelty models and, among 

SME models, (particularly non- linear) parametric models 

performed better than categorical models of the fMRI 

subsequent memory effect (Soch, Richter, Schütze, Kizil-

irmak, Assmann, Knopf, et al., 2021).

To assess whether this pattern replicates for individu-

als with AD or at increased risk for AD, we applied the 

exact same approach to a large clinical cohort from the 

DZNE Longitudinal Cognitive Impairment and Dementia 

Study (DELCODE;  Jessen  et al.,  2018), a memory- clinic- 

based multi- center study that focuses on individuals with 

SCD. Our sample consisted of healthy older control par-

ticipants (HC, N = 128) and individuals with SCD (N = 199), 

MCI (N = 74), or early- stage Alzheimer’s disease (N = 21), 

as well as first- degree relatives of patients with AD (AD- 

rel, N  =  46). Importantly, all participants performed the 

exact same experimental paradigm as in the original 

study, were scanned with the same MRI protocol, and 

their data were analyzed using the same space of fMRI 

models as in the original study.

The goal of the present study was two- fold: First, we 

aimed to assess the replicability of the model preferences 

found in the original study in the sub- sample of healthy 

older adults (HCs). Second, we sought to identify differ-

ences in the preferences for fMRI episodic memory encod-

ing models across the spectrum of AD risk states (HC  

SCD  MCI  AD). We hypothesized that more severely 

affected individuals (AD and, to some extent, MCI) would 

exhibit less pronounced model preferences for novelty and 

particularly subsequent memory models, up to the point 

that, in AD patients, no model including an SME would 

outperform a memory- invariant model. Such a result would 

suggest that encoding- related fMRI signals in AD patients 

differentiate poorly, if at all, between subsequently remem-

bered and forgotten items, and it would help to explain the 

previously described variability of between- group differ-

ences ( McDonough  et al.,  2020) and the low proportion of 

studies reporting actual SMEs among the sizable number 

of fMRI studies on memory encoding in AD and also MCI 

( Nellessen  et al.,  2015;  Terry  et al.,  2015).

2. METHODS

2.1. Study cohort

In the present study, we applied a previously described 

methodology, validated in a cohort of healthy young and 

older adults (Soch, Richter, Schütze, Kizilirmak, Assmann, 

Knopf, et al., 2021), to a sample of individuals with SCD, 

MCI, and early- stage AD as well as healthy controls and 

first- degree relatives of AD patients from the DZNE Longi-

tudinal Cognitive Impairment and Dementia Study1 (DEL-

CODE;  Jessen  et al.,  2018), a multi- center study based in 

memory clinics collaborating with the German Center for 

Neurodegenerative Diseases (DZNE). All participant 

groups except HC and AD- rel were memory- clinic referrals 

and underwent clinical assessments, including a medical 

history interview, psychiatric and neurological examina-

tions, neuropsychological testing, and routine MRI scans. 

Cognitive functioning was assessed using the Consortium 

to Establish a Registry for Alzheimer’s Disease (CERAD; 

 Fillenbaum  et  al.,  2008) neuropsychological test battery 

and the Mini Mental Status Examination (MMSE; 

 Beyermann  et al.,  2013). Participants in the HC and AD- rel 

groups were recruited via newspaper advertisements.

The diagnostic assignment of participants to groups 

was as follows: Participants were assigned to HC, if they 

self- identified as cognitively healthy, passed a telephone 

screening for SCD, and their memory test performance 

was within 1.5 standard deviations (SD) of age- , gender- , 

and education- adjusted normal performance on all 

1 https://www . dzne . de / en / research / studies / clinical - studies / delcode/
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CERAD subtests. If participants expressed concerns 

regarding cognitive decline, a semi- structured interview 

with a physician at a memory clinic was conducted, and 

following the SCD- plus criteria ( Jessen  et al.,  2014) and 

their CERAD performance, they were assigned to either 

SCD or MCI. Whereas MCI was assigned, if participants 

performed more than 1.5 SD below normal on the “recall 

word list” subtest, SCD was assigned, when they 

 performed above this threshold. Participants with non- 

amnestic MCI were excluded from participation ( Jessen 

 et al.,  2018), resulting in the MCI group consisting only of 

individuals with amnestic MCI. MCI patients also needed 

to not meet the criteria for AD. In the AD group, only 

patients with  >18 and  <26 points in the MMSE were 

included ( Beyermann  et al.,  2013).

Complete baseline data (i.e., data from the first study 

visit) were available for 844 subjects at the time of data 

analysis. From these subjects, we had to exclude (i) sub-

jects without available diagnosis, (ii) subjects who did not 

perform the fMRI task, (iii) subjects whose logfiles from the 

fMRI experiment were missing, and (iv) subjects lacking 

one or more MRI data files necessary for our pre- 

processing pipeline (see below). This resulted in a final 

sample size of N = 468 subjects (HC: 128; SCD: 199; MCI: 

74; AD: 21; AD- rel: 46) used for the analyses reported here. 

Demographic information for the different groups is given 

in Table 1.

2.2. Comparison with original study

Apart from using a different study cohort, comprising five 

(HC, SCD, MCI, AD, and AD relatives) rather than two 

(healthy young and older adults) groups of participants, 

the present study uses the exact same workflow and pro-

tocols for data acquisition and data analysis as the original 

study (see Supplementary Table S2). While data acquisi-

tion mostly took place before completion of this original 

study used as the reference here (Soch, Richter, Schütze, 

Kizilirmak, Assmann, Knopf, et al., 2021), the complete 

data analysis was performed after its publication, following 

the approval of a detailed analysis protocol by the DEL-

CODE steering committee, such that the present work can 

be considered effectively preregistered2.

2.3. Experimental paradigm

Participants performed an incidental memory task intro-

duced by  Düzel  et al.  (2011) which was slightly adapted 

as part of the DELCODE protocol ( Bainbridge  et al.,  2019; 

 Düzel  et al.,  2018), with the adapted version also used in 
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2 The DELCODE proposal for this data analysis (DELCODE 243) is available 

from the authors upon request.
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3 https://www . fil . ion . ucl . ac . uk / spm / software / spm12/

the “Autonomy in Old Age” study (Richter et  al., 2023; 

Soch, Richter, Schütze, Kizilirmak, Assmann, Knopf,  

et al., 2021;  Soch, Richter, Schütze, Kizilirmak, Assmann, 

Behnisch, et al., 2021). Subjects were presented with 

photographs of indoor and outdoor scenes, which were 

either novel to the participant at the time of presentation 

(44 indoor and 44 outdoor scenes) or were repetitions of 

two pre- familiarized “master” images (22 indoor and 22 

outdoor trials). In a later retrieval session, participants 

were presented with all novel images from the encoding 

session, now considered “old” stimuli (88 images), as 

well as images not previously seen by the participant, 

that is, “new” stimuli (44 images). Participants were asked 

to provide a recognition- confidence rating for each 

image, using a 5- point Likert scale ranging from “sure 

new” (1) over “don’t know” (3) up to “sure old” (5). To help 

participants focus their attention on the stimuli, responses 

were given overtly and recorded by a trained experi-

menter. There was also no response deadline in the 

retrieval task, and the next stimulus was only shown after 

a response had been given. For further details, see previ-

ous descriptions of the paradigm ( Assmann  et al.,  2020; 

Richter et  al., 2023; Soch, Richter, Schütze, Kizilirmak, 

Assmann, Knopf, et al.,  2021;  Soch, Richter, Schütze, 

Kizilirmak, Assmann, Behnisch, et al., 2021).

2.4. MRI data acquisition

MRI data were acquired at eight different sites of the 

DZNE across Germany (see Table 1), using Siemens 3T 

MR tomographs. All sites followed the exact same MRI 

protocol implemented in the DELCODE study ( Düzel 

 et al.,  2018;  Jessen  et al.,  2018). Structural MRI included 

a T1- weighted MPRAGE image (voxel size = 1 x 1 x 1 mm) 

as well as phase and magnitude fieldmaps for later spa-

tial artifact correction. Functional MRI consisted of 206 

T2*- weighted echo- planar images (TR  =  2.58  s, voxel 

size = 3.5 x 3.5 x 3.5 mm) measured during the encoding 

session of the memory task (09:01 min) as well as a 

resting- state session comprising 180 scans (same 

parameters) not used for the present study. For detailed 

scanning parameters, see previous descriptions of data 

acquisition (Soch, Richter, Schütze, Kizilirmak, Assmann, 

Knopf, et al., 2021;  Soch, Richter, Schütze, Kizilirmak, 

Assmann, Behnisch, et al., 2021).

2.5. MRI data processing

MRI data were analyzed with Statistical Parametric Map-

ping3, version 12, revision 7771 (SPM12 R7771; Well-

come Trust Center for Neuroimaging, University College 

London, London, UK). Preprocessing of the fMRI data 

included acquisition time correction (slice timing), head 

motion correction (realignment), correction of magnetic 

field inhomogeneities using the fieldmaps (unwarping), 

coregistration of the T1- weighted MPRAGE image to the 

mean functional image, segmentation of the coregis-

tered MPRAGE image and subsequent normalization of 

unwarped EPIs into the MNI standard space (voxel 

size = 3 x 3 x 3 mm) using the transformation parameters 

obtained from segmentation, and finally, spatial smooth-

ing of the functional images (FWHM = 6 mm).

Statistical analysis of the fMRI data was based on 

voxel- wise general linear models (GLMs) that included 

two onset regressors, one for novel images (novelty 

regressor) and one for the master images (master regres-

sor), six head movement regressors obtained from realign-

ment, and a constant regressor representing the implicit 

baseline. This setup is referred to as the “baseline model” 

and was later varied (see Sections 2.6 and 2.7) in order to 

test specific hypothesis using Bayesian model inference.

2.6. Bayesian model selection

Bayesian model inference was performed via cross- 

validated Bayesian model selection (cvBMS;  Soch 

 et  al.,  2016), as implemented in the SPM toolbox for 

model assessment, comparison, and selection (MACS; 

 Soch  &  Allefeld,  2018). This technique proceeds by cal-

culating the voxel- wise cross- validated log model evi-

dence (cvLME) for each GLM, applied to each 

participant’s data. Then, the cvLME maps from all sub-

jects and models are submitted to voxel- wise random- 

effects Bayesian model selection (RFX BMS;  Penny 

 et  al.,  2010;  Rosa  et  al.,  2010; Stephan et  al., 2009). 

Whenever a particular analysis addresses a compari-

son of model families rather than individual models (see 

below), a cross- validated log family evidence (cvLFE) is 

calculated from the cvLMEs of all models belonging to 

a family, before entering cvLFEs into RFX BMS. Group- 

level analysis results in selected- model maps (SMMs) 

which indicate, for each voxel, the most frequently 

selected optimal model for describing the measured 

group fMRI data. For each model or family comparison, 

we report continuous SMMs which indicate, for the 

winning model, the likeliest frequency (LF) of this model, 

based on the posterior distribution over candidate 

models from RFX BMS. The LF can be interpreted as 

the proportion of subjects in the population for which 

this model best explains the measured fMRI data or, 

alternatively, as the probability that the measured fMRI 

data of an individual subject were generated by this 

model (Soch, Richter, Schütze, Kizilirmak, Assmann, 

Knopf, et al., 2021;  Stephan  et al.,  2009).
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2.7. Overview of the model space

There are two groups of variations that were applied to the 

baseline model (see Table A1 and Fig. A1 in the Appendix): 

First, there were variations of no interest, testing different 

ways of describing the encoding event as such, without 

regard for actual encoding success. Second, the baseline 

model was modified to include different variants of the 

subsequent memory effect.

Variations of no interest included (i) replacing event 

duration of 2.5  s (the actual trial duration; model family 

“GLMs_TD”) with an event duration of 0 s (assuming point 

events; model family “GLMs_PE”); (ii) collapsing novel and 

master images (model family “GLMs_00”) rather than mod-

eling them as separate regressors (model family “GLMs_0”); 

and (iii) separating indoor and outdoor images (model fam-

ily “GLMs_x2”) rather than collapsing them into a single 

regressor (model family “GLMs_x1”). For details regarding 

variations of no interest, see Soch, Richter, Schütze, Kizilir-

mak, Assmann, Knopf, et al., (2021), Section 3.1.

Model modifications introducing a subsequent memory 

effect included (i) splitting novel images into 2, 3, or 5 cate-

gories based on the corresponding later memory responses 

(model family “GLMs_2” and models “GLM_3” and 

“GLM_5”); (ii) parametrically modulating the novelty regres-

sor with theoretical (i.e., a priori defined) functions of the 

subsequent memory response (model family “GLMs_1t”); 

and (iii) parametrically modulating the novelty regressor with 

empirical (i.e., single- subject- data- derived) functions of the 

subsequent memory response (model family “GLMs_1e”).

Model “GLM_5” included five categorical regressors, 

one for each of the five response categories of the 

recognition- confidence scale (“sure new,” “probably new,” 

“don’t know,” “probably old,” “sure old”). Model “GLM_3” 

collapsed the “probably” and “sure” responses, resulting 

in three categorical regressors (“old,” “don’t know,” “new”). 

Model family “GLM_2” collapsed the five response options 

to two categorical regressors, where neutral responses 

were either considered forgotten (“GLM_2nf”) or remem-

bered (“GLM_2nr”), or split between these two categories, 

according to responses frequencies (“GLM_2ns”).

The parametric model family “GLMs_1t” employed 

parametric modulations of the single novelty regressor 

with continuous functions of the participant’s responses 

on the recognition- confidence scale, namely either a linear 

transformation (“GLM_1t- l”), or an arcsine transformation 

(“GLM_1t- a”) or a sine transformation (“GLM_1t- s”), in 

order to either put a more weight on the “sure” responses 

than on the “probably” responses (arcsine) or weighting 

the “probably” responses more strongly than the linear 

model (sine).

The parametric model family “GLMs_1e” also employed 

parametric modulations of the single novelty regressor 

with a function of the participant’s memory response, 

which was, in this case, not defined a priori, but instead 

based on individual response frequencies, using either 

conditional probability, inverse probability, or a logistic 

regression model for modulator values (see Table A1). For 

further details about modeling the subsequent memory 

effect, see Soch, Richter, Schütze, Kizilirmak, Assmann, 

Knopf, et al. (2021), Sections 3.2- 3.3.

In total, these variations resulted in 19 first- level GLMs 

describing the fMRI data scanned during memory encod-

ing (see Appendix, Table A1 and Fig. A1). This model 

space is successively explored using model family and 

individual model comparisons (see Supplementary 

Table  S1). For some of these analyses, models were 

grouped into families according to their abbreviations. 

For example, “GLMs_1” is the family of all parametric- 

modulator models, “GLMs_2” is the family of all categor-

ical models with two regressors, “GLMs_12” is the family 

of all memory models with one or two regressors, etc.

2.8. Statistical analyses

In addition to group- level Bayesian model comparisons, 

classical analyses were performed on the single- subject 

extent of novelty and memory effects according to voxel- 

wise log Bayes factors (LBF). For this purpose, the num-

ber of voxels exceeding LBF  >  3 (corresponding to a 

Bayes factor threshold of exp(3) ≈ 20) on either the com-

parison for novelty processing (comparing models sepa-

rating novel and familiar items vs. models not doing so) or 

subsequent memory (comparing models with one or two 

memory regressors vs. the baseline model) was extracted 

from each subject’s LBF maps and used as the depen-

dent variable.

These numbers were then subjected to an analysis of 

covariance (ANCOVA) with diagnostic group as categor-

ical independent variable and additional factors and 

covariates of no interest (acquisition site, gender, age, 

years of education, and years of employment; see Fig. 2 

and Supplementary Table S3), followed by two- sample 

t- tests of each diagnostic group against healthy con-

trols as well as Bayesian t- tests against healthy controls 

to quantify evidence for the hypothesis of no difference 

(see Table 2). Moreover, binary support vector classifi-

cations (SVC) were performed using both contrasts 

(novelty and memory) as features to assess separability 

of each diagnostic group from healthy controls (see 

Table 2).

ANCOVAs and two- sample t- tests were run in MAT-

LAB R2018b using the functions “fitlm,” “anova,” and 

“ttest2.” Bayesian t- tests were implemented in JASP 

0.18.3 with a two- sided alternative hypothesis and the 

default Cauchy prior, reporting the Bayes factor in favor 
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of the null hypothesis BF
10

 and the posterior median 

effect size 
med

. For classification analyses, SVMs were 

calibrated with regularization hyperparameter C = 1 and 

using k = 10- fold cross- validation. To account for unequal 

sample sizes among participant groups, we repeatedly 

drew subsamples with a constant number of observa-

tions per class (N = sample size of smallest group). Clas-

sification accuracy and 90% confidence interval as 

measures of predictive performance were obtained as 

averages across all S = 1000 subsamples. These analy-

ses were implemented using Machine Learning for MAT-

LAB (https://github . com / JoramSoch / ML4ML).

3. RESULTS

3.1. Participant groups differ by their behavioral 

response pattern

Behavioral response frequencies that were used as para-

metric modulators in the empirical parametric GLMs are 

shown in Figure 1. They included the conditional proba-

bility (i.e., the likelihood of a stimulus being old, given the 

subsequent memory response) and the inverse probabil-

ity (i.e., the likelihood of a subsequent memory response, 

given the stimulus being old). Two patterns of variability 

across participant groups could be observed: First, “old” 

responses to old items (i.e., hits) became less frequent 

and “new” response to old items (i.e., misses) became 

more frequent when moving from HC towards AD (see 

Fig.  1A). Second, the degree to which the subsequent 

memory response informs about an item being old dimin-

ished when moving from healthy controls towards AD 

patients (see Fig. 1B). In both instances, healthy relatives 

of AD patients were qualitatively indistinguishable from 

healthy controls.4

3.2. Variations of no interest are replicated  

in independent cohorts

Regarding modeling variations of no interest, that is, 

modifications of the GLM unrelated to the subsequent 

memory effect, we could replicate all observations from 

the original study, albeit to a somewhat lesser degree in 

AD patients (see Supplementary Results):

•  First, the model family “GLMs_TD” was preferred 

throughout the gray matter in all subject groups (see 

Supplementary Fig.  S1), indicating that the actual 

trial duration of 2.5 s represents a better description 

of the measured neural signals than point events.
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• Second, the model family “GLMs_0” was preferred 

in large clusters spanning temporal, occipital, and 

parietal cortical structures (see Fig. 3A and Supple-

mentary Fig. S2), indicating differential neural 

responses to novel versus non- novel stimuli in these 

regions. Notably, this novelty effect was already 

diminished in AD patients (see Fig. 3A, 4th column).

• Finally, we observed that the model family “GLMs_

x2” was preferred in selected portions of the occip-

ital cortex only (see Supplementary Fig.  S3), 

suggesting that the indoor- outdoor distinction was 

only important in a small subset of visual associa-

tion cortices likely involved in scene processing. 

Since those regions were not the focus of our study, 

we omitted the indoor/outdoor distinction from the 

model, as in the original study with young and 

healthy HC (Soch, Richter, Schütze, Kizilirmak, Ass-

mann, Knopf, et al., 2021, p. 6).

3.3. Subsequent memory effects decrease across 

the AD risk spectrum

Based on the outcomes described in Section 3.2., all fol-

lowing analyses were based on modifying a baseline 

model (i) using the actual trial length as event duration, (ii) 

modeling novel and master images separately, and (iii) 

collapsing indoor and outdoor images. First, we com-

pared the family of models with either one parametric 

memory modulator or two categorical memory regres-

sors (model family “GLMs_12”; i.e., models assuming a 

subsequent memory effect described using either one or 

two regressors) against the baseline GLM (model “GLM_

TD_0x1”; i.e., a memory- invariant model).

While including an SME in the model improved the 

model fit in the bilateral middle occipital gyrus (MOG), 

right temporo- parietal junction (TPJ), and the precuneus 

(PreCun) in the HC, SCD, and AD- rel groups (see Fig. 3B 

and Supplementary Fig. S4; HC & AD- rel: no PreCun 

effect), memory- invariant models outperformed models 

considering subsequent memory performance in the MCI 

and AD groups (see Fig. 3B, 3rd & 4th column).

To further substantiate the decline of memory —  and, to 

some extent, novelty — effects across the AD risk spec-

trum, we performed a one- way ANOVA on the number of 

voxels with the respective model preferences, using diag-

nostic group as the between- subject factor. To this end, 

single subjects’ log Bayes factor (LBF) maps from model 

comparisons testing for effects of novelty processing 

(“GLMs_0” vs. “GLMs_00”; see Fig. 2A) and subsequent 

memory (“GLMs_12” vs. “GLM_TD_0x1”; see Fig.  2B), 

Fig. 1. Behavioral response data across diagnostic groups. Empirically observed probabilities of (A) subsequent memory 

responses, given stimulus being old (“inverse probability”), and (B) stimulus being old, given a subsequent memory 

response (“conditional probability”). These probabilities were used as parametric modulators in the empirical parametric 

GLMs (see Table A1, model family “GLM_1e”). Error bars depict standard deviations (SD) across subjects. This figure 

corresponds to Figure 2B from the original publication.
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respectively, were generated, and the number of voxels 

exceeding LBF > 3 (corresponding to a Bayes factor thresh-

old of exp(3) ≈ 20) was extracted as the dependent variable.

For both contrasts, there was a main effect of diag-

nostic group (novelty: F
4,446

 = 4.00, p = 0.003; memory: 

F
4,442

 = 3.64, p = 0.006) when additionally controlling for 

gender, site, age, educational years, and employment 

years (see Supplementary Table S3 for detailed results), 

supported by significant differences of the MCI and AD, 

but not the SCD and AD- rel groups, from healthy con-

trols. When using either a more liberal threshold (LBF > 1, 

corresponding to BF ≈ 3) or a more conservative thresh-

old (LBF  >  5, corresponding to BF ≈ 150), numbers of 

voxels were expectedly different, but the results were 

qualitatively identical in terms of observed effects and 

ranking of the groups.

Bayesian t- tests supported evidence for the null 

hypothesis (i.e., no group difference) when comparing 

HC against the SCD and AD- rel groups (all BF
01

 > 3.47), 

but not when comparing HC against the MCI and AD 

groups (all BF
01

  <  0.36; see Table  2). Furthermore, the 

number of supra- threshold voxels differentiated the AD 

and MCI groups from healthy controls when using SVM 

classification (see Table 2, last row).

3.4. Number of regressors effect increases across 

diagnostic groups

Among the GLMs modeling subsequent memory, we 

additionally tested for the influence of the number of 

regressors used to model the SME, which increases from 

the parametric memory models (1 parametric modulator 

per model) to the categorical memory models (2, 3, or 5 

regressors; see Table A1). To this end, we calculated the 

LFE for each of these model families and subtracted the 

LME of the baseline GLM (0 memory regressors) to com-

pute LBF maps in favor of memory models against a no- 

memory model. The rationale behind this was that some 

models assuming a memory effect might be too com-

plex, thus performing even worse than memory- invariant 

models (see Soch, Richter, Schütze, Kizilirmak, Assmann, 

Knopf, et al., 2021, Fig. 3B).

Note that the categorical model with five memory 

regressors (“GLM_5”) could only be estimated when 

Fig. 2. Bayesian model comparison for novelty processing and subsequent memory. Number of voxels exceeding a log 

Bayes factor of 3 (approximately, a Bayes factor of 20) in Bayesian model comparisons testing for (A) novelty processing 

(comparing models separating novel and familiar items vs. models not doing so) and (B) subsequent memory (comparing 

models with one or two memory regressors vs. the baseline model), for each subject from all five participant groups. 

Sample sizes are given in the left panel. Horizontal bars correspond to group- wise means. Statistics inside the panels 

correspond to the main effect of diagnostic group, controlled for gender, site, age, education, and employment (F/p- value), 

as well as two- sample t- tests of each group against DELCODE healthy controls (significance markers). Abbreviations: HC 

= healthy controls, SCD = subjective cognitive decline, MCI = mild cognitive impairment, AD = Alzheimer’s disease, AD- rel 

= AD relatives. Significance: *p < 0.05, Bonferroni- corrected for **number of tests per contrast (4) or ***number of tests 

and number of contrasts (4 x 2).
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each of the five behavioral response options occurred at 

least once. Therefore, these analyses were based on a 

subset of the participants (total N = 248; for N by group, 

see Fig. 4). This procedure led to a very small N for the 

AD group, making the results for this group potentially 

less generalizable.

The LBF maps were subjected to a one- way ANOVA 

model with the four- level within- subject factor number of 

regressors (see Fig. 4A). There was a main effect of num-

ber of regressors throughout the whole brain (p < 0.05, 

FWE- corrected; results not shown). By performing a con-

junction analysis between (i) a contrast of “GLMs_1” and 

“GLMs_2” against baseline and (ii) a t- contrast linearly 

decreasing with number of regressors (see Fig.  4B), a 

global maximum was identified in the original study (see 

Soch, Richter, Schütze, Kizilirmak, Assmann, Knopf, et al., 

2021, Fig. 3B). From the coordinates of that global maxi-

mum ([x, y, z] =  [- 30, - 85, 26]; MNI  coordinates in mm), 

LBFs were extracted to calculate parameter estimates, 

standard deviations, and statistics for the linear contrast 

(see Fig. 4B). These showed that GLMs with one or two 

memory regressors outperformed the memory- invariant 

Fig. 3. Modeling preferences for novelty processing and subsequent memory. Selected- model maps, showing (A) voxels 

with group- level preference in favor of the family of models separating novel and pre- familiarized images, against the 

family of models not considering novelty, and (B) voxels with group- level preference in favor of memory models, against 

the baseline GLM. Three sagittal slices (x- coordinates given at the left), roughly equal to those used in results display in 

the original study, are shown for each subject group (sample size given on top). Colored voxels display estimated group- 

level frequency (A) of the model family “GLMs_0” (novelty and master regressor), rather than the model family “GLMs_00” 

(both regressors collapsed), and (B) of the model family “GLMs_12” (one or two memory regressors), rather than the model 

“GLM_TD_0x1” (no memory effect). This figure corresponds to Figure S3B and Figure 3A from the original publication.
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model in the HC, SCD, and AD- rel groups, while they per-

formed equally or even worse than the memory- invariant 

baseline GLM in the MCI and AD groups (see Fig. 4B).

3.5. Parametric outperforms categorical  

models in memory- related brain structures

When treating GLMs with one parametric modulator 

describing subsequent memory (“GLMs_1”) and categori-

cal GLMs using two regressors for remembered versus 

forgotten items (“GLMs_2”) as model families (i.e., calcu-

lating voxel- wise cvLFEs and comparing the two families 

via group- level cvBMS), we observed a  preference for 

parametric GLMs throughout the memory network (see 

Fig. 5A and Supplementary Fig. S5), especially in regions 

that also showed a novelty effect (cf. Fig. 3A). The overall 

preference for parametric models was present in all diag-

nostic groups and extended to almost all voxels in the MCI 

and AD groups (see Fig. 5A).

Within the family of parametric memory models, we 

additionally compared theoretical GLMs (“GLMs_1t”) to 

empirical GLMs (“GLMs_1e”). Comparing these two sub- 

families via group- level cvBMS, we found an almost whole- 

brain preference for the empirical GLMs (see Fig.  5B  

and Supplementary Fig. S6). This observation is in accor-

dance with the original study with HC only (Soch, Richter,  

Schütze, Kizilirmak, Assmann, Knopf, et al., 2021, Section 

4.3) and was independent of disease status (see Fig. 5B).

3.6. Model preferences within model families are 

replicated

Following the observation that models with one or two 

memory regressors outperform the memory- invariant 

model in large portions of the temporo- parieto- occipital 

memory network (see Fig. 3B), we aimed to identify the 

optimal models within these different families. Within all 

sub- families of the memory models, we observed clear 

Fig. 4. Influence of number of regressors on Bayesian model quality. (A) Design matrix of a second- level GLM in which 

log Bayes factor (LBF) maps comparing models with 1, 2, 3, or 5 memory regressors against the baseline GLM were 

submitted to a one- way ANOVA with dependencies between levels (here: number of regressors). A conjunction contrast 

of a significant memory effect (lower contrast) and a significant linear decrease of LBF with number of regressors (upper 

contrast) were used to identify coordinates of a global maximum in the original study. (B) Average LBFs from these 

coordinates in each group, along with t- statistics from the contrast testing for linear decrease of LBF with number of 

regressors. Bar plots depict contrasts of parameter estimates of the group- level model; error bars denote 90% confidence 

intervals (computed using SPM12). Note that this analysis could only be run for a subset of the participants, namely 

all those subjects that used the full range of behavioral responses, such that “GLM_5” could be fitted, hence the lower 

sample sizes in comparison to the other analyses (cf. Table 1). Bar plots are shaded, and statistics are not reported for 

sample sizes smaller than 10. This figure corresponds to Figure 3B from the original publication.
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model preferences, consistent with observations in the 

original study (Soch, Richter, Schütze, Kizilirmak, Ass-

mann, Knopf, et al., 2021, Section 4.4):

• Among the two- regressor categorical GLMs, there 

was a clear preference for the model categorizing 

images with later neutral responses (response “3”) 

as forgotten items (“GLM_2- nf”), rather than either 

categorizing them as remembered items or randomly 

sampling neutral images as remembered or forgot-

ten (see Fig. 6A and Supplementary Fig. S7).

• Among the GLMs with theoretically based paramet-

ric modulators calculated, there was a clear prefer-

ence for the model using an arcsine transformation 

of subsequent memory reports (“GLM_1t- a”)— 

which puts a higher weight on definitely remembered 

and forgotten items (responses “5” and “1”)— , rather 

than either a linear or a sine- transformed subsequent 

memory report (see Fig.  6B and Supplementary  

Fig. S8). However, this preference was weaker in the 

AD group, possibly due a general deterioration of 

memory effects, in addition to a probably larger vari-

ance due to the relatively small sample size (N = 21).

• Within the GLMs with parametric modulators esti-

mated from memory responses separately for each 

single subject, there was a clear preference for the 

model using the probability of “old” item given mem-

ory response as PM (“GLM_1e- ip”) over either 

employing the probability of memory response given 

“old” item as PM or estimating the conditional prob-

ability via a logistic regression model (see Fig.  6C 

and Supplementary Fig. S9).

3.7. Novelty and memory parameter estimates 

reflect model preferences

Finally, in addition to the group- level Bayesian model 

selection— which informs us about the relative quality of 

different GLMs (e.g., parametric vs. categorical models) 

in explaining the measured BOLD signals— , we also per-

formed group- level Frequentist statistical tests to probe 

statistically significant effects of task manipulations (nov-

elty processing and subsequent memory) within each 

diagnostic group.

Specifically, we statistically tested for significantly 

positive or negative effects on (i) the novelty contrast 

from the GLM with arcsine- transformed PM (“GLM_1t- a”)5, 

(ii) the memory regressor from the parametric GLM with 

arcsine- transformed PM, (iii) from the parametric GLM 

with inverse probability PM, as well as (iv) the memory 

contrast from the categorical GLM categorizing neutral 

responses as forgotten. All analyses were performed 

using F- contrasts in SPM, and a stringent family- wise 

error (FWE) correction at voxel level was applied (FWE, 

p < 0.05, k = 10). We observed two general patterns:

• First, the voxels showing statistically significant 

effects in a particular fMRI contrast showed a large 

overlap with those exhibiting model preferences in the 

respective model comparison. This pattern was found 

for both, novelty processing (cf. Fig. 7A vs. Fig. 3A) 

and subsequent memory (cf. Fig. 7B vs. Fig. 3B), and 

statistical significances are generally a bit stronger 

than model preferences (cf. Fig. 7 vs. Fig. 3).

• Second, there was a decline of novelty and memory 

effects across the AD risk spectrum, with (i) proto-

typical memory network activations in the HC, SCD, 

and AD- rel groups, (ii) reduced novelty effects and 

largely absent memory effects in individuals with 

MCI, and (iii) almost non- identifiable effects of both 

novelty and subsequent memory in AD patients 

(see Fig. 7 and Supplementary Figs. S10- S13).

When reporting cluster- level- corrected instead of 

whole- brain FWE- corrected results for these analyses 

(see Supplementary Methods), one additionally observes 

mild effects of novelty processing in AD patients and mild 

effects of subsequent memory in MCI patients, but no 

memory effects for individuals with AD (see Supplemen-

tary Fig. S14).

4. DISCUSSION

In this study, we have applied cvBMS to fMRI data 

obtained during a visual novelty and memory encoding 

paradigm in older healthy controls (HC) and in individuals 

with AD or at an increased risk state (SCD, MCI, AD- rel). 

While we were able to replicate earlier findings regarding a 

superiority of parametric subsequent memory fMRI mod-

els (Soch, Richter, Schütze, Kizilirmak, Assmann, Knopf,  

et al., 2021) in HC as well as in the SCD and AD- rel groups, 

we found that memory- invariant models largely outper-

formed subsequent memory models in individuals with 

MCI and AD and that manifest AD was associated with an 

additionally diminished novelty response.

4.1. Utility of parametric subsequent memory 

models in healthy older adults

We have previously demonstrated that subsequent  

memory models with one or two memory regressors are 

superior to memory- invariant models in healthy young and 

older adults and that, among the subsequent memory 

5 Note that novelty contrasts from other models give rise to very similar 

results, since memory models of interest did not differ in their description of 

the novelty effect.
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Fig. 5. Bayesian comparison of memory model families. Selected- model maps, showing (A) voxels with group- level 

preference in favor of parametric models of the subsequent memory effect, using parametric modulators, against 

categorical models, separating response options, and (B) voxels with group- level preference in favor of empirical 

parametric models, using data- driven transformations, against theoretical models, using a priori defined transformations. 

The layout of the figure follows that of Figure 3. Colored voxels display estimated group- level frequency (A) of the model 

family “GLMs_1” (one memory regressor), rather than the model family “GLMs_2” (two memory regressors), and (B) of the 

model family “GLMs_1e” (empirical modulators), rather than the model family “GLMs_1t” (theoretical modulators). This 

figure corresponds to Figure 4 from the original publication.
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models, parametric models outperform categorical mod-

els (Soch, Richter, Schütze, Kizilirmak, Assmann, Knopf,  

et al., 2021). In the present study, we were able to largely 

replicate this pattern of model preferences in the group of 

older healthy controls and also in individuals with SCD and 

in healthy relatives of AD patients. Assuming a novelty 

effect (i.e., a difference between novel and pre- familiarized 

master images) improves model quality in an extensive 

network including parietal, occipital, and temporal cortices 

(hippocampus, parahippocampal and middle occipital 

gyri, MOG) as well as parts of the default mode network 

(precuneus, temporo- parietal junction, TPJ; see Fig. 3A). 

Parts of this network further exhibited improved model 

quality when assuming a subsequent memory effect (see 

Fig. 3B), particularly when employing a parametric subse-

quent memory model (see Fig. 5A). As in our original study, 

BMS favored the model using an arcsine- transformed 

memory regressor among the theoretical parametric mod-

els (see Fig. 6B), and the model using the inverse probabil-

ity among the empirical models (see Fig. 6C).

As model family selection favored empirical over theo-

retical models, one might conclude that the model using 

the inverse probability would be the best- fitting model. 

However, it should be noted that a direct comparison of the 

two models in the original study yielded inconclusive results 

(Soch, Richter, Schütze, Kizilirmak, Assmann, Knopf, et al., 

2021). Furthermore, in all diagnostic groups, there were 

participants with a high number of (high- confidence) misses 

(see Fig. 1). In such a situation, high- confidence hits and 

misses would both contribute to the “hits,” whereas items 

with low- confidence judgments would contribute to the 

“misses” of a regressor based on the inverse probability. 

This would rather reflect a participant’s response confi-

dence than actual memory performance and thus consti-

tute, at best, a questionable index of subsequent memory, 

despite providing a good model fit. Furthermore, different 

participants’ parametric modulators also operate at differ-

ent scales which limits across- subject interpretability of 

their parameter estimates. High variability of response pat-

terns among study participants would result in potentially 

large differences of the inverse probability regressor across 

subjects and possibly diagnostic groups, making group- 

level analyses difficult to interpret. We therefore recom-

mend using the arcsine- transformed regressor that, like the 

inverse probability regressor, puts higher weight on high- 

confidence versus low- confidence hits which typically 

show more robust subsequent memory effects ( Hayes 

 et al.,  2017;  Rugg  et al.,  2015).

4.2. Decline of subsequent memory and novelty 

responses across the AD risk spectrum

Across the AD risk spectrum, we generally observed a 

progressive deterioration of memory model quality, with 

Fig. 6. Winning models within memory model families. Selected- model maps in favor of (A) the GLM treating neutral 

images as forgotten items (“GLM_2- nf”), compared to the other two- regressor models (“GLM_2- nr”, “GLM_2- ns”), (B) 

the GLM using an arcsine- transformed parametric modulator (“GLM_1t- a”), compared to the other theoretical- parametric 

models (“GLM_1t- l”, “GLM_1t- s”), and (C) the GLM using an inverse probability parametric modulator (“GLM_1e- ip”), 

compared to the other empirical- parametric models (“GLM_1e- cp”, “GLM_1e- lr”). The layout of the figure follows that of 

Figure 3. Colored voxels display estimated group- level model frequencies. Due to clear model preferences, only one (the 

most medial) slice is shown for each comparison. This figure corresponds to Figure 5 from the original publication.
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the effects of subsequent memory seen in HCs being 

largely preserved in the SCD and AD- rel groups, but 

practically absent in the MCI and AD groups (see 

Figs. 3B/7B and Supplementary Figs. S11- S13). Consid-

ering the rarity of studies reporting an actual subsequent 

memory effect rather than an encoding versus baseline 

comparison (often a novelty effect) in patients with AD or 

MCI ( Billette  et  al.,  2022;  Browndyke  et  al.,  2013), our 

results point to the inherent difficulty of measuring a 

robust successful encoding response in these popula-

tions. In the group of AD patients, the absence of a robust 

fMRI effect (see Fig. 7) was mirrored by a disrupted rela-

tionship between subsequent memory report (1- 5) and 

item type (old vs. new) at the behavioral level (see Fig. 1). 

This suggests that, with reduced behavioral accuracy, 

the predictive value of neural signals with respect to later 

remembering and forgetting also drops, such that fMRI 

responses do not covary with subsequent memory 

reports when the latter most likely reflect mere guessing, 

at least to a considerable proportion. On the other hand, 

the declining subsequent memory effect across the AD 

spectrum could also be interpreted as indicative of the 

memory decline, with a potential diagnostic or prognostic 

utility ( Soch  et al.,  2024).

Despite showing a preserved, albeit diminished, rela-

tionship between subsequent memory report and item 

Fig. 7. Novelty and memory effects from winning GLM. On the second level, a one- sample t- test was run across parameter 

estimates obtained from (A) the novelty contrast (novel vs. master images) and (B) memory contrast (parametric modulator) 

of the GLM using the arcsine- transformed PM. In SPM, statistical inference was corrected for multiple comparisons (FWE, 

p < 0.05, k = 10). Colored voxels display F- statistics indicating (A) significant (positive or negative) differences between novel 

and master images and (B) significant (non- zero) effects of the transformed memory response, on average across subjects 

from the respective participant group. This figure corresponds to Figure 7A and 7B from the original publication.
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type (see Fig. 1), individuals with MCI still exhibited, sim-

ilarly to AD patients, a preference for memory- invariant 

models over subsequent memory models (see e.g. 

Figs.  3B and 4B). This may be best explained by the 

notion that individuals with MCI, by definition, show clin-

ically measurable deficits in memory performance 

( Petersen  et al.,  1999), and are thus likely to also exhibit 

higher guessing rates and thereby a decreased signal- to- 

noise ratio in fMRI subsequent memory models. On the 

other hand, not all individuals diagnosed with MCI even-

tually convert to AD ( Grundman,  2004) which might be of 

importance when deriving putative biomarkers from fMRI 

data ( Soch  et al.,  2024).

Effects of novelty processing, on the other hand, were 

preserved, albeit at a reduced level, in individuals with MCI, 

but largely absent in patients with manifest AD (see Figs. 3A 

and 7A). As the expression of a novelty effect requires prior 

successful familiarization of the baseline images (here 

called “master” images), we suggest that, at the MCI stage, 

encoding can still take place to some degree, for example 

with repeated presentation as was done with the master 

images. In the AD patients, on the other hand, familiariza-

tion might have been less effective, resulting in a poorer 

ability to distinguish novel from pre- familiarized images.

Despite the largely absent subsequent memory effect 

in the MCI and AD groups, the preference for parametric 

over categorical models of the subsequent memory 

effect was also evident in the MCI and AD groups and 

possibly even more pronounced than in the HC and SCD 

groups (see Fig. 5A). In our view, the most parsimonious 

explanation for this observation is that, due to a pro-

nounced reduction or even absence of the memory effect 

in the MCI and AD groups, BMS will inherently favor the 

parametric models due to their lower complexity.

The same pattern as in healthy older controls was, at 

least qualitatively, also observed in individuals with SCD 

and in healthy older relatives of patients with AD (see 

Figs.  2, 3, 4, 6). Compatibly, individuals with SCD and 

healthy relatives also showed behavioral memory perfor-

mance and fMRI signals comparable to that of healthy 

controls (see Figs. 1 and 7). This points out the need to 

stratify SCD into those with subjective complaints and 

normal performance versus those with subjective com-

plaints and sub- normal performance ( Koppara  et  al., 

 2015), possibly based on amyloid pathology ( Jessen 

 et al.,  2022;  Soch  et al.,  2024). Like the SCD group, healthy 

relatives often showed model preferences and activity pat-

terns qualitatively identical to those of HCs (see e.g., 

Figs. 2, 3, and 6), consistent with AD relatives in the DEL-

CODE study not significantly differing from HCs in terms of 

MMSE total (see Table 1), NPT global score (Wolfsgruber 

et al., 2020), the PACC5 neuropsychological composite 

score (Papp et al., 2017), or ApoE genotype (see  Soch 

 et al.,  2024). Thus, the overall preserved patterns of model 

preference in the SCD and AD- rel groups suggest that 

moderately increased clinical (SCD) or genetic (AD- rel) 

risk for AD is not per se associated with a disruption of 

functional memory network integrity.

4.3. Comparison with previous studies of memory 

encoding in AD and MCI

At first sight, our results seem to be at odds with previous 

studies reporting encoding- related fMRI activation differ-

ences between healthy controls and individuals with AD 

or MCI (for meta- analyses, see  Browndyke  et al.,  2013; 

 Nellessen  et al.,  2015;  Terry  et al.,  2015). However, it must 

be noted that most studies contributing to those meta- 

analyses did not report subsequent memory contrasts in 

a strict sense, but contrasts comparing encoding against 

a low- level baseline or novelty contrasts (for exceptions, 

see  Gould  et al.,  2005; Heun et al., 2007;  Kircher  et al., 

 2007;  Trivedi  et al.,  2008). The broad inclusion of different 

encoding contrasts may explain the conflicting results of 

those meta- analyses with respect to encoding- related 

hippocampal activations ( Terry  et  al.,  2015: HC  >  AD; 

 Nellessen  et al.,  2015: MCI > HC). A common finding in all 

three meta- analyses was, on the other hand, the rela-

tively increased encoding- related activation of DMN 

structures, particularly precuneus.

The precuneus typically shows deactivations during 

successful encoding ( Kim, 2011), which are attenuated 

in older adults ( Kizilirmak  et al.,  2023;  Maillet  &  Rajah, 

 2014;  Schott  et al.,  2023). Deactivations of the precu-

neus are not specific to successful encoding, but have 

also been observed during novelty processing ( Schott 

 et  al.,  2023) and are more pronounced in individuals 

with SCD and MCI compared to HC ( Billette  et al.,  2022). 

With respect to the present results, it must be noted 

that, at a more liberal threshold (p < 0.05, FWE- corrected 

at cluster level), we did observe reduced DMN deactiva-

tions in the MCI group during both, novelty  processing 

and successful encoding (see Supplementary Fig. S14).

It must be noted that our results with respect to the 

reduced expression of fMRI subsequent memory effects 

in AD and, to a lesser extent, also in MCI may not neces-

sarily apply to other, for example, electrophysiological 

modalities like event- related potential (ERPs) to the same 

extent. ERP studies of successful encoding typically 

show frontal and centro- parietal positive deflections for 

subsequently remembered compared to subsequently 

forgotten stimuli ( Fernández  et  al.,  1998;  Otten  et  al., 

 2007;  Paller  et al.,  1987;  Schott  et al.,  2002). While the 

importance of a sustained, positive potential (also referred 

to as “P600”) for successful encoding has been noted in 

the context of AD and MCI ( Jackson  &  Snyder,  2008), a 
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reduced P600 amplitude has thus far only been reported 

in the context of word repetition ( Olichney  et al.,  2006). As 

such, it may correspond to the reduced or absent late 

positive component (LPC) in AD ( Tendolkar  et al.,  1999), 

which likely reflects context- rich, recollection- based 

retrieval and depends on the integrity of the hippocampus 

( Düzel  et  al.,  2001). Notably, the most recent available 

comprehensive review of cognitive ERP studies in AD and 

MCI ( Paitel  et al.,  2021) did not include any studies of the 

subsequent memory effect. Therefore, while studies of 

repetition and retrieval point to abnormal memory- related 

ERPs in AD and MCI, specific alterations related to suc-

cessful encoding are subject to future research.

4.4. Limitations and directions for future research

The primary benefit of this investigation lies in the use of 

cvBMS as an objective and unbiased procedure for voxel- 

wise fMRI model selection which accounts for both, model 

accuracy and model complexity, and allows for non- nested 

model comparison (unlike statistical significance tests on 

additional regressors; see  Soch  et al.,  2016). A key limita-

tion in this approach, however, is that cvBMS only provides 

information about the model quality without allowing for 

direct inferences on the sign or magnitude of a given 

regressor or contrast. For example, the preference for nov-

elty or subsequent memory models within the default 

mode network (DMN) in a memory- impaired older person 

might originate from the prototypical encoding- related 

deactivations observed in healthy young and also cogni-

tively unimpaired older individuals ( Kim,  2011;  Kizilirmak 

 et al.,  2023;  Maillet  &  Rajah,  2014), which are associated 

with memory performance ( Schott  et al.,  2023), and atten-

uated in individuals with memory impairment ( Billette  et al., 

 2022;  Düzel  et al.,  2011;  Maillet  &  Rajah,  2014) . Moreover, 

it cannot be excluded that cvBMS shows model prefer-

ences in voxels outside the networks of interest, even in 

white matter. This is simply a consequence of the fact that, 

in case of poor model fit, the most parsimonious model will 

be preferred. Therefore, one must cautiously examine the 

preferred models with respect to the plausibility of the vox-

els or clusters in which a model comes out as preferred 

model from cvBMS and, furthermore, complement cvBMS 

results by GLM- based analyses.

A limitation common to most fMRI studies of memory 

function in AD is the low number of participants in the most 

severely affected AD group. While the number of 21 partic-

ipants in this study was at the upper end compared to pre-

vious studies (see meta- analysis by  Terry  et al.,  2015), it 

was nevertheless below the numbers desirable to obtain 

reproducible results ( Button  et  al.,  2013;  Turner  et  al., 

 2018). Sample size was even smaller in the comparison of 

all models, which included only nine individuals from the 

AD group, and we therefore refrained from interpreting the 

results of that group (see Fig. 4). In addition to sample size, 

within- group heterogeneity in the clinical groups may 

potentially contribute to a lower signal- to- noise ratio and 

thus reduced expression of novelty- related and memory- 

related fMRI activation patterns. While we aimed to reduce 

such heterogeneity, for example by including only individu-

als with amnestic, but not non- amnestic MCI ( Jessen  et al., 

 2018), we cannot exclude a potential influence of, for 

example, different atrophy patterns within the clinical 

groups ( Baumeister  et  al.,  2024). Ultimately, replication 

studies are needed to corroborate our findings, along with 

meta- analytic approaches with more stringent selection of 

contributing studies and contrasts (see Section 4.3).

Another more general limitation inherent to all fMRI 

studies in populations with cerebrovascular risk (e.g., 

aged populations, populations with AD/AD risk) is that 

changes of the cerebrovascular system can potentially 

affect the BOLD response ( Sweeney  et  al.,  2018; 

 Zimmermann  et al.,  2021). Cerebral blood flow shortfalls 

are early findings in neurodegenerative disorders. Base-

line differences in cerebral blood flow rates between 

experimental groups have the potential to produce a con-

found in the BOLD signal. However, in our study, we 

addressed specific contrasts rather than BOLD signal 

relative to baseline. Furthermore, differences between 

diagnostic groups do not only include reduced deactiva-

tions, but also atypial activations on the memory contrast 

(i.e., effects of subsequent memory) in DMN regions for 

Alzheimer’s disease patients (see Fig. 1E in  Soch  et al., 

 2024). Therefore, we conclude that, although the poten-

tial impact of cerebrovascular differences cannot be 

excluded, it is, in our view, unlikely that vascular effects 

are the main drivers of our results. Furthermore, potential 

vascular contributions to the reduced expression of fMRI 

subsequent memory effects in individuals with MCI and 

AD do not call into question that the effects are reduced. 

Potential differences in cerebrovascular health therefore 

warrant caution with respect to mechanistic interpreta-

tions of our findings, but are unlikely to affect their poten-

tial diagnostic utility (see also  Soch  et al.,  2024).

A limitation more specific to the present study is that 

participant groups significantly differed regarding age 

range, gender distribution, acquisition site (see Table 1), 

ApoE genotype, and cognitive measures (MMSE total, 

NPT global and PACC5 scores; see  Soch  et al.,  2024). 

While some of these differences are a direct consequence 

of the study design (e.g., AD patients show lower cogni-

tive performance than the HC or SCD groups), other vari-

ables constitute confounds which cannot be as easily 

integrated into cvBMS as, for example, in a statistical 

design like a linear regression analysis.
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We suggest that, to overcome at least some of the 

aforementioned limitations, future studies should assess 

the potential of reductionist or whole- brain multivariate 

data analysis approaches to both test for pathology- 

related deviations from more prototypical fMRI activa-

tions and assess the influence of potential risk factors 

(e.g., amyloid pathology) or confounding variables (e.g., 

study site). To this end, we have employed contrast  

maps obtained with the winning theoretical parametric 

GLM (i.e., the model using the arcsine- transformed 

memory regressor) to calculate single- value scores 

(Richter et al., 2023; Soch, Richter, Schütze, Kizilirmak, 

Assmann, Behnisch, et al., 2021). In a direct follow- up to 

the present study, we describe the extent to which these 

scores can further differentiate between the diagnostic 

groups in the clinical sample described here ( Soch  et al., 

 2024). Furthermore, we are currently working on 

improved computational modeling of the subsequent 

memory reports, which could be used in the future to 

differentiate participant groups based on purely behav-

ioral response patterns ( Soch  et al.,  2022).

5. CONCLUSIONS

Taken together, we could replicate the preference for 

parametric over categorical models of the fMRI subse-

quent memory effect in healthy older adults and demon-

strate that this pattern also applies to cognitively 

unimpaired individuals at increased risk for Alzheimer’s 

disease (SCD, AD- rel). In individuals with MCI or manifest 

AD, on the other hand, memory- invariant models outper-

form any model considering the subsequent memory 

effect. Our results suggest that voxel- wise memory- 

related fMRI activity patterns in MCI or AD should be 

interpreted with caution and point to the need for addi-

tional or alternative analyses strategies, such as whole- 

brain approaches, in these populations.
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APPENDIX

Table A1. Model space for GLM- based fMRI analyses. Eight models without memory effects varying model features of 

no interest (top) and 11 models varying by the way how memory effects are modeled (bottom).

Model name Event duration

Novel/ 

master images

Indoor/ 

outdoor images

Parametric modulator 

(x = response)

Categorical regressors 

(1- 5 = responses)

GLMs with variations of no interest

GLM_PE_00x1 0s Collapsed Collapsed

GLM_PE_00x2 0s Collapsed Separate

GLM_PE_0x1 0s Separate Collapsed

GLM_PE_0x2 0s Separate Separate

GLM_TD_00x1 2.5 s Collapsed Collapsed

GLM_TD_00x2 2.5 s Collapsed Separate

GLM_TD_0x1 2.5 s Separate Collapsed “Baseline model” w.r.t. memory

GLM_TD_0x2 2.5 s Separate Separate

GLMs with subsequent memory effect

GLM_1e- ip 2.5 s Separate Collapsed 2 Pr(x|“old”) 1

GLM_1e- cp 2.5 s Separate Collapsed 2 Pr(“old”| x ) 1

GLM_1e- lr 2.5 s Separate Collapsed 2 p̂(“old”| x ) 1

GLM_1t- l 2.5 s Separate Collapsed

x 3

2

GLM_1t- a 2.5 s Separate Collapsed
arcsin

x 3

2

2

GLM_1t- s 2.5 s Separate Collapsed sin
x 3

2 2

GLM_2- nf 2.5 s Separate Collapsed 1 + 2 + 3 – 4 + 5

GLM_2- nr 2.5 s Separate Collapsed 1 + 2 – 3 + 4 + 5

GLM_2- ns 2.5 s Separate Collapsed 1 + 2 +(3) – (3) + 4 + 5

GLM_3 2.5 s Separate Collapsed 1 + 2 – 3 – 4 + 5

GLM_5 2.5 s Separate Collapsed 1 – 2 – 3 – 4 – 5

All parametric modulators are specified, such that the categorical responses {1, 2, 3, 4, 5} are mapped into the range [– 1, + 1]. This table 
reproduces Table 1 from the original publication which is available under the license CC- BY- NC- ND 4.0 (original work at: https://www 
. sciencedirect . com / science / article / pii / S1053811921000975 # tbl0001; license file at: https://creativecommons . org / licenses / by - nc - nd / 4 . 0/).
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Fig. A1. Model space for GLM- based fMRI analyses. (A) Eight models without memory effects varying model features 

of no interest, namely modeled event duration (top), consideration of stimulus novelty (middle) and consideration of 

stimulus type (bottom). (B) Eleven models varying by the way how memory effects are modeled. Each box represents a 

single first- level GLM; the box with red outline represents the model referred to as “baseline GLM” in this paper. This figure 

reproduces Supplementary Figure S2 from the original publication which is available under the license CC- BY- NC- ND 4.0 

(original work at: https://www . sciencedirect . com / science / article / pii / S1053811921000975 # sec0031; license file at: https://

creativecommons . org / licenses / by - nc - nd / 4 . 0/).


