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Magnetic resonance angiography (MRA) performed at ultra-high magnetic field provides 
a unique opportunity to study the arteries of the living human brain at the mesoscopic 
level. From this, we can gain new insights into the brain’s blood supply and vascular 
disease affecting small vessels. However, for quantitative characterization and precise 
representation of human angioarchitecture to, for example, inform blood-flow 
simulations, detailed segmentations of the smallest vessels are required. Given the 
success of deep learning-based methods in many segmentation tasks, we explore their 
application to high-resolution MRA data and address the difficulty of obtaining large 
data sets of correctly and comprehensively labelled data. We introduce VesselBoost, a 
vessel segmentation toolbox, which utilizes deep learning and imperfect training labels 
for accurate vasculature segmentation. To enhance the segmentation models’ robustness 
and accuracy, VesselBoost employs an innovative data augmentation technique, which 
captures the resemblance of vascular structures across scales by zooming in or out on 
input image patches—virtually creating diverse scale vascular data. This approach 
enables detailed vascular segmentation and ensures the model’s ability to generalize 
across various scales of vascular structures. 

1. INTRODUCTION 

Here, we introduce VesselBoost, a Python-based software 
utilizing deep learning techniques to segment high-reso
lution time-of-flight MRI angiography data with high sen
sitivity towards small vessels. The software suite encom
passes three functional modules: (1) predict, (2) Test Time 
Adaptation (TTA), and (3) booster. By leveraging these mod
ules, users can efficiently segment high-resolution time-of-
flight data (using either the predict or the TTA modules) or 
conveniently improve (or ‘boost’) segmentations for other 
vascular MRI contrasts (using the booster module). 

One of the distinguishing features of VesselBoost lies in 
the idea of incorporating imperfect training labels for ves
sel segmentation1‑3 to improve segmentation of the same  
image data. At the core of VesselBoost is a data augmen
tation strategy that exploits the similarities between large 
and small vessels. Training examples for small vessels are 
created by zooming out from large, easily segmented ves
sels. Using a segmentation model trained this way improves 
coarse (less detailed) segmentations and increases the 
number of segmented small vessels. 

Co-first author 

Co-first author 

Corresponding author: 
saskia.bollmann@uq.edu.au 

a 

b 

c 

Xu M, Ribeiro FL, Barth M, et al. VesselBoost: A Python Toolbox for Small Blood Vessel
Segmentation in Human Magnetic Resonance Angiography Data. Aperture Neuro.
2024;4. doi:10.52294/001c.123217

https://orcid.org/0009-0007-1280-7361
https://doi.org/10.52294/001c.123217
mailto:saskia.bollmann@uq.edu.au
https://doi.org/10.52294/001c.123217


2. METHODOLOGY 

2.1. OVERVIEW 

VesselBoost comprises three modules: 1) predict, 2) TTA, 
and 3) booster. These modules are designed to capture dif
ferent levels of similarity between the original training im
age data and the new image data. Briefly, predict consists 
of our pre-trained network that can be readily applied to 
magnetic resonance angiography (MRA) data; if the prop
erties of the new image data are close to the original train
ing data, predict can be directly applied to the new image. 
Next, the TTA module can fine-tune the pre-trained net
work; TTA will be useful if the new image’s characteristics 
are somewhat similar, but network adaptation is needed. 
Booster utilises the same pre-processing and data augmen
tation strategies as the other two modules but trains a new 
network from scratch. Thus, booster is intended for cases 
where the new image is significantly different from the 
original training data, for example, when using a different 
vascular MRI contrast. 

2.2. DATA 

2.2.1. TRAINING DATA 

All pre-trained models were trained on the SMILE-UHURA 
challenge dataset,4 which uses the data collected in the 
StudyForrest project.5 The dataset consists of 3D multi-slab 
time-of-flight MRA data acquired on a 7T Siemens MAGNE
TOM magnetic resonance scanner with an isotropic reso
lution of 300 µm.5 Twenty right-handed individuals (21-38 
years, 12 males) participated in the original study, but we 
used the 14 samples for model training where correspond
ing segmentations were made available through the SMILE-
UHURA challenge. Moreover, we use the 14 labelled sam
ples in Experiment 2 and Experiment 4, described below, for 
quantitative evaluations. 
We pre-trained three models, each using a specific set 

of labels, as provided for the SMILE-UHURA challenge: 
OMELETTE 1, OMELETTE 2, and manually corrected labels. 
The two sets of OMELETTE labels were generated in an au
tomated fashion6 using two sets of parameter values. The 
manually corrected labels were initially generated by inten
sity thresholding, followed by manual annotation of these 
segmentations to remove noise and delineate missing small 
vessels.4 

2.2.2. EVALUATION DATA 

We use a diverse range of image data resolutions—for which 
ground-truth segmentations are not available—to evaluate 
all VesselBoost modules qualitatively. All evaluation data 
are 3D multi-slab time-of-flight MRA data acquired on 7T 
Siemens MAGNETOM whole-body scanners (Siemens 
Healthcare, Erlangen, Germany) from different partici
pants. They consist of one image acquired at 150 µm  
isotropic resolution (TR/TE = 35 ms/6.63 ms, flip angle = 23 
degrees),7 one image at 160 µm isotropic resolution (TR/
TE = 20 ms/6.56 ms, flip angle = 18 degrees),8 one image 

acquired at 300 µm isotropic resolution (TR/TE = 24 ms/
3.84 ms, flip angle = 20 degrees), taken from the Study
Forrest5 for which no manually corrected segmentation was 
available, and one image acquired at 400 µm isotropic res
olution (TR/TE = 20 ms/4.73 ms, flip angle = 18 degrees).8 

These four images were used across all experiments. 

2.3. DATA AUGMENTATION 

Before model training, all MRA data were bias-field cor
rected and denoised, as described below. Data augmenta
tion was performed to increase the amount of training data 
and to leverage the similarities between large and small 
vessels. In our first step, four 3D patches of random sizes 
and at random locations were first extracted from the in
put image at each training epoch. Then, each patch was 
resized to 64×64×64 using nearest-neighbour interpolation 
(we refer to the resized patch as ‘copy 1’). To capture a di
verse range of scales for the vessel structures, the minimum 
crop size was 32×32×32, and the maximum was the dimen
sion size of the original image. This procedure is equiva
lent to zooming in or out for patches smaller or larger than 
64×64×64. We generated multiple copies (5 more copies 
from the original copy, i.e., copy 1) of each of these patches 
and applied rotation by 90°, 180°, and 270° (copies 2-4) 
or flipping horizontally and vertically (copies 5 and 6), to
talling six copies per patch at each epoch. Therefore, each 
training image contributed 4 patches × 6 copies per training 
epoch. Like a conventional training iteration, our training 
epoch is defined as a complete traverse through the train
ing dataset, meaning all samples (image files) in the train
ing set contributed with augmented patches described 
above for model training in a given training epoch. By in
creasing the number of unique patches per training sample 
and setting the minimum size for each dimension of the 
cropped patch to 32, we found that the segmentation mod
els were more stable across a range of random seeds used to 
initialize model weights. 

2.4. MODEL ARCHITECTURE 

Our segmentation model consists of a 3D U-Net model.9 

We performed several modifications to the 3D U-Net archi
tecture. Previous works10,11 have shown that adding more 
convolutional layers to the 3D U-Net model architecture 
can help capture more complex features, and that deeper 
networks have improved ability to learn more details and 
hierarchical features from volumetric data. As such, we in
creased the default 3D U-Net depth, expanding the encoder 
and decoder blocks from 3 to 4 layers each. Additionally, 
the number of input channels was equal to 1 to accommo
date a single MRI contrast, e.g., an angiogram, which is a 
grayscale image, and the number of output channels was 
equal to 1 for the binary segmentation task. Furthermore, 
to decrease the total number of parameters, we changed 
the base number of convolution filters to 16. We imple
mented these modifications to reduce training time and 
make the trained model more lightweight while retaining 
its prediction performance. The models were implemented 
using Python 3.9 and Pytorch 1.13.12 This modified 3D U-
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Net architecture is provided as a starting point. However, 
users can easily tune the hyperparameters or change the 
model architecture based on the image attributes of their 
data. 

2.5. TRAINING PROCEDURE 

Each pre-trained model was trained for 1000 epochs at an 
initial learning rate of 0.001, and a learning rate scheduler, 
ReduceLROnPlateau (available through PyTorch12), was 
used to reduce the learning rate and make the training 
process more efficient when the loss reached a ‘plateau’ 
during training. The Tversky loss determined the learning 
objective, where the hyperparameters were set to be α = 0.3 
and β = 0.7, to make our models more sensitive to small 
vessels (potentially leading to higher number of false posi
tives).1,13 

2.6. VESSELBOOST MODULES 

2.6.1. MODULE 1: PREDICT 

The prediction pipeline includes input image pre-process
ing (Figure 1a, step i), image segmentation using a pre-
trained model (Figure 1b, step ii), and post-processing (Fig
ure 1b, step iii). The pre-processing step includes bias-field 
correction using N4ITK14 and non-local means denoising15 

to increase the signal-to-noise ratio (SNR) (Figure 1a, step 
i). The model output is post-processed to appropriately 
convert the predicted probabilities to binary classes by set
ting the threshold to 0.1. Finally, any connected compo
nents with a size smaller than 10 voxels are removed16 to 
clean up the final segmentation. The predict module can be 
used to simply segment classical MRA data using our pre-
trained model. In addition, it provides extra flexibility for 
users to manipulate post-processing parameters to obtain 
a more suitable proxy (an initial segmentation) before, for 
example, using it for TTA. 

2.6.2. MODULE 2: TEST-TIME ADAPTATION 

TTA involves adapting pre-trained weights using an initial 
segmentation (a proxy) to guide parameter optimization 
(Figure 1b, step ii). The user has the flexibility to define the 
number of epochs, initial learning rate, type of optimizer, 
and loss function for model adaptation. The initial learn
ing rate, optimiser, and loss function have default config
urations equal to 0.001, Adam,17 and the Tversky loss (α 
= 0.3 and β = 0.7), respectively. The default learning rate 
scheduler is the ReduceLROnPlateau, which automatically 
reduces the learning rate when the loss reaches a plateau. 
The user can either provide a proxy segmentation, in 

which case TTA will enhance the details, or a proxy seg
mentation is generated using predict, which is then further 
improved. This module is particularly useful for users with 
access to a small number of labelled MRA data who want to 
improve small vessel segmentation. 

2.6.3. MODULE 3: BOOSTER 

Booster (Module 3) allows users to train a segmentation 
model from scratch using imperfect training labels from a 
new data set. This module benefits users with access to a 
small amount of labelled data who want to improve small 
vessel segmentation for data other than classical MRA im
ages. This module shares the general training settings pre
viously described, but the user can specify the parameters 
for training (e.g., number of epochs, learning rate) similar 
to the TTA module. 

2.7. EXPERIMENTS 

2.7.1. EXPERIMENT 1: USING PREDICT TO SEGMENT 
NEW, OUT-OF-DISTRIBUTION MRA DATA 

In our first experiment, we tested the generalizability of the 
pre-trained segmentation model using predict. Specifically, 
this model was trained using all SMILE-UHURA challenge 
data with manually corrected labels. We ran predict on 3D 
MRA image slabs with a diverse range of image resolutions 
(from 400 µm to 150 µm4,7,8), and evaluated prediction per
formance qualitatively. 

2.7.2. EXPERIMENT 2: USING TTA TO IMPROVE A PROXY 
SEGMENTATION 

To qualitatively evaluate TTA and determine whether TTA 
can improve upon less detailed (or less accurate) initial seg
mentation, we used a segmentation model pre-trained on 
all SMILE-UHURA challenge data using OMELETTE 2 la
bels (see section 2.2. for more details) to generate the ini
tial segmentation. To better capture the potential of TTA 
for improvement, we used the OMELETTE 2-based model 
for initial segmentation, as we expected this model to pro
vide less accurate segmentation than the model pre-trained 
on the manually corrected labels. An initial segmentation 
was generated for each evaluation data, and the pre-trained 
model was adapted for each data separately for over 200 
epochs using TTA, generating data-specific models. 
To quantitatively evaluate TTA, we trained a new model 

using 13 MRA images from the SMILE-UHURA challenge 
and the OMELETTE 2 labels, leaving one sample out for 
evaluation. This pre-trained model was used for proxy gen
eration (analogous to running predict) and adapted for 200 
epochs using our TTA module and the holdout test sample. 
Using the manually corrected segmentation as the ground 
truth, we determined prediction performance by computing 
the Dice score.18 

2.7.3. EXPERIMENT 3: USING BOOSTER TO TRAIN A 
SEGMENTATION MODEL FROM SCRATCH WITH 
IMPERFECT TRAINING LABELS 

In this experiment, we tested whether our booster module 
can provide improved and more accurate segmentation 
than what is captured in the training data—e.g., an initial 
segmentation based on simple intensity threshold
ing—even when only a single image volume is available. We 
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Figure 1. VesselBoost  overview.  
(a) Predict allows users to segment high-resolution time-of-flight data using our pre-trained models. (b) The TTA module allows users to provide a proxy segmentation to drive fur
ther adaptation of the pre-trained models. (c) Booster allows users to train a segmentation model on data with imperfect training labels. 

trained new models from scratch using booster for the 160 
µm and 150 µm MRA data, with initial segmentations gen
erated by setting intensity thresholds. These models were 
trained for 1,200 epochs, keeping it the same as the total 
epoch number set for TTA (1000 epochs for training + 200 
epochs for fine-tuning) and setting all other parameters to 
default values. 

2.7.4. EXPERIMENT 4: INVESTIGATING THE EFFECT OF 
OUR DATA AUGMENTATION STRATEGY ON 
SEGMENTATION PERFORMANCE 

Finally, we performed an ablation study to determine 
whether our data augmentation strategy improved segmen
tation results beyond the training data. We focused on five 
distinct settings: (1) without data augmentation, (2) zoom 
only, (3) zoom with one transformation of the image data 
that could be either rotation or blurring, (4) zoom with 
copied patches and both rotation and blurring as data 
transformation, and (5) our proposed augmentation set
ting—zoom with copied patches and both rotation and flip

ping as data transformation. For settings 1-3, the number 
of copies per patch was equal to 1, while for settings 4 and 
5, the number of copies was equal to 6 (see section 2.3. for 
more details). Using the SMILE-UHURA challenge data, we 
evaluated each of these settings in a leave-one-out cross-
validation fashion. Specifically, we trained models using 13 
MRA images from the SMILE-UHURA challenge and their 
corresponding OMELETTE 2 labels at each cross-validation 
fold and evaluated segmentation performance on the held-
out sample, resulting in 14 distinct models. Models were 
trained for 1,000 epochs using default settings. 
To test the robustness of each of these settings, we 

trained models using all 14 MRA images and OMELETTE 2 
labels, and ran predict on the high-resolution 3D MRA im
ages (150 µm and 160 µm isotropic resolution). Specifically, 
we trained five distinct models (different initial random 
seeds) for each augmentation setting. Then, we computed 
the percentage of voxels that differed between predicted 
segmentations, for which higher values indicate more vari
ability. 
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Figure 2. Qualitative evaluation of    Module 1 (predict)  .  
Maximum intensity projection of predicted segmentations (red contour) overlaid on the 
input images with diverse resolutions. 

2.8. HARDWARE SETTINGS 

The VesselBoost segmentation pipeline has been tested with 
AMD EPYC ‘Milan’ processors @ 3.70 GHz, and an NVIDIA 
Tesla H100 graphics card, with 80 GB total requested RAM. 
During training, we used a dataset comprising 14 images, 
each with dimensions of [480, 640, 163], for 1000 epochs, an 
initial learning rate of 0.001 and a batch size of 4. The en
tire training duration amounted to 2 hours and 35 minutes. 
For booster, the training and inference time for each evalua
tion data (150 µm and 160 µm resolution data) was 23 min
utes. The image dimensions were [312, 972, 1296] and [312, 
1090, 1277] for 150 µm and 160 µm data, respectively. 

3. RESULTS 

3.1. EXPERIMENT 1 

To qualitatively evaluate the generalizability of our pre-
trained segmentation model used in predict, we used 3D 
MRA image slabs with a diverse range of image resolutions 
(from 400 µm to 150 µm4,7,8). Figure 2 shows the maximum 
intensity projections (MIP) of predicted segmentation over
laid on the original input images. We found that even 
though our model was trained on time-of-flight MRA data 
acquired at a single isotropic resolution (300 µm), it can 
generalize to MRA images with varying resolutions. 

3.2. EXPERIMENT 2 

3.2.1. QUALITATIVE EVALUATION 

Figure 3 demonstrates that TTA can offer additional seg
mentation improvement when pre-trained models are fine-
tuned on automatically generated, imperfect proxy seg
mentations— for example, generated with predict. Figure 3a 
shows the MIP of the original input images, and Figure 3b 
shows the initial segmentation of the OMELETTE 2-based 
pre-trained model. Note how this pre-trained model cannot 
segment the smallest vessel shown in the ‘zoomed-in’ 
patches. Despite being imperfect, these segmentations can 
be leveraged as proxy segmentations for TTA. Accordingly, 
we found improved segmentation of the smallest vessels 
(see 400 µm and 300 µm images) and improved segmenta
tion continuity (see 160 µm and 150 µm images) (Figure 3c). 

3.2.2. QUANTITATIVE EVALUATION 

Figure 4 shows the OMELETTE 2 segmentation (coarse seg
mentation), the ground-truth (i.e., manually corrected) 
segmentation, the initial segmentation generated with pre
dict and the OMELETTE 2-based pre-trained model, and the 
final segmentation after TTA using the initial segmenta
tion as a proxy. Note that, to remove unwanted false-pos
itive voxels from outside the brain, a semi-automatically 
derived brain mask was applied. Using the ground-truth 
segmentation as a reference, the final segmentation after 
TTA showed an increase in the Dice score of 0.04 compared 
to the initial proxy segmentation. This result demonstrates 
that imperfect segmentation can be leveraged as proxy seg
mentations for TTA, and TTA can improve segmentation 
performance. 

3.3. EXPERIMENT 3 

Figure 5 shows the utility of booster to train a segmentation 
model from scratch using imperfect training labels (mid
dle), which were generated simply by thresholding the orig
inal image. Note that in contrast to TTA, the network has 
not seen any (MRA) images beforehand and, in this case, is 
only trained on the example image shown in Figure 5. By 
leveraging the similarities between large and small vessels 
through data augmentation, it is possible to train a model 
from scratch using imperfect labels to improve the segmen
tation of the smallest vessels, thus improving the segmen
tation results beyond the training data. 

3.4. EXPERIMENT 4 

Figure 6 shows the distributions of Dice scores across folds 
for each of the augmentation settings: (1) without data 
augmentation, (2) zoom only, (3) zoom with one data 
transformation that could be either rotation or blurring, 
(4) zoom with copied patches and both rotation and blur
ring as data transformation, and (5) our proposed augmen
tation setting—zoom with copied patches and both rota
tion and flipping as data transformation. We also include 
the Dice score between the OMELETTE 2 labels of each 
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Figure 3. Qualitative evaluation of    Module 2 (TTA)  .  
(a) Maximum intensity projection of input images with a diverse range of image resolutions. (b) Predicted segmentations of the OMELETTE 2-based pre-trained model. (c) TTA-based 
segmentation using the segmentation shown in (b) as proxy segmentation to guide model adaptation. The ‘zoomed in’ patches show the missing small vessels in panel (b) that are re
covered with TTA. 

Figure 4. Quantitative evaluation of    Module 2 (TTA)    on 3D MRA image slab with an isotropic resolution of           
300  µm.  
Dice scores were estimated for the initial segmentation (proxy) and the final segmentation (after TTA), with the ground truth image as a reference. In green, we show the boost in 
Dice score after Test-Time Adaptation. 
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Figure 5. Qualitative evaluation of    Module 3 (booster)  .  
Maximum intensity projection of input images (left), imperfect segmentation (middle), and predicted segmentation (right) for 160 µm (panel a) and 150 µm data (panel b) using mod
els trained from scratch. The ‘zoomed in’ patches show the segmentation boost afforded with the booster module. 

subject and the corresponding manually corrected segmen
tation for reference (OML). We performed a one-way re
peated measure ANOVA using Jamovi19 to examine the ef
fect of augmentation setting (including OML) on prediction 
performance across folds. The sphericity assumption was 
tested using Mauchly’s test and met (p = 0.166). There was a 
significant main effect of augmentation setting on segmen
tation accuracy, F(5, 65) = 15.8, p < 0.001. This means that 
segmentation accuracy varied depending on the augmen
tation strategy. Post-hoc test (using the Bonferroni correc
tion to adjust p; Supplementary Material) indicated that 
predictions from all settings with zoom were significantly 
more accurate than the ones generated without zoom or the 
OMELETTE-based labels (p < 0.05). No statistically signif
icant difference was found for the remaining comparisons. 
Thus, we performed an equivalence test with the small
est effect size of interest (SESOI) of 0.05.20 We tested the 
groups previously found not to be statistically different and 
found that the observed differences between these groups 
are statistically equivalent (SESOI < 0.05; supplementary 
material; Figure 6), i.e., we found no further improvement 

in Dice scores when adding one additional data augmenta
tion step (rotation or blurring), when increasing the num
ber of copied patches and applying rotation and blurring, 
and when changing the data augmentation strategy from 
blurring to flipping. In addition, the Dice scores between 
the model trained without zoom and the OMELETTE 2 la
bels were also found to be equivalent. 
Although the different augmentation settings provided 

similar results, we found that occasionally (between 5% to 
10% of cases), artefacts were present in the segmentation. 
In other words, when training a model from scratch, we 
found that the quality of model performance varied. Us
ing a smaller batch size (setting (2) and (3)), we observed 
false positive voxels as shown in Figure 7. Further, the aug
mentation strategy including blurring (setting (4)) resulted 
in segmentation occasionally degraded by noise. Indeed, 
when computing the percentage of voxels that differed be
tween predicted segmentations from models trained using 
different initial states (random seeds) but the same training 
data, we observed that segmentation setting (4) led to the 
highest inconsistency in predicted segmentations (Figure 
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Figure 6. The cross-validation results where each      
value corresponds to the Dice score between the         
resultant segmentation (or the OMELETTE 2 labels        
used for training) and the manually corrected labels.         
Shown are: (OML) OMELETTE 2 segmentation; (1) model trained without data augmen
tation or transformation; (2) model trained with zoom only; (3) model trained with 
zoom and one data transformation that could be either rotation or blurring; (4) model 
trained with zoom and six copied patches on which rotation or blurring was applied; (5)  
model trained with zoom and six copied patches on which rotation or flipping is applied. 

Figure 7. Ablation study of data augmentation      
technique.  
Maximum intensity projection of input images (left), probabilities output of the model 
implemented with augmentation setting 3 (middle) and our proposed setting (right) for 
160 µm (panel a) and 150 µm data (panel b) are shown. The ‘zoomed in’ patches show 
fewer artifacts in our proposed augmentation technique. 

8). Accordingly, we recommend setting (5), i.e., zoom, ro
tation, flipping and larger batch size, as the preferred aug
mentation strategy. 

4. DISCUSSION AND CONCLUSION 

We have introduced VesselBoost, a software toolbox that al
lows the segmentation of small vessels in high-resolution 
magnetic resonance angiography data. We found that our 
pre-trained models (available in predict) perform well on 
unseen data, that our test-time adaptation (TTA) module 
provides a fully automatic workflow to improve vessel seg
mentation, and that booster allows for the training of new 
segmentation models on single images, which generate 
segmentations with more detail than the training data. 
We adapted the idea of training with imperfect labels1‑3 

to vessel segmentation. This might considerably reduce the 
need for manually segmented training data, potentially re
stricting this laborious process to evaluating the final seg
mentation performance. Moreover, we used a compara
tively simple model architecture, which showed good 
generalizability when tested on higher-resolution time-of-
flight data. 
We showed that our data augmentation is crucial to in

crease segmentation sensitivity and model training stabil
ity. In detail, we found that zooming in and out of patches 
significantly increased prediction accuracy, whereas image 
rotation, flipping, and a larger batch size increased the sta
bility of the model training process. Interestingly, the blur
ring of the training image had a detrimental effect on the 
model stability. Accordingly, we have chosen the recom
mended augmentation strategy to minimize the occurrence 
of segmentation artefacts (Figure 7). In cases where they 
do occur, they are best removed by repeating the training 
procedure. Alternatively, post-processing strategies, such 
as increasing the cluster-removal threshold (Figure 9), can 
be applied. Note that the released models have been thor
oughly tested on all data sets, and no segmentation arte
facts were observed. Noteworthy, we always trained and 
predicted on images with skulls but applied a brain mask af
terwards to remove unwanted false positive segmentations 
stemming from the skin or fat around the skull. Thus, to 
obtain the best performance of VesselBoost, we recommend 
predicting on original, unmasked images first and then ap
plying a brain mask. Note that VesselBoost was designed to 
be as sensitive as possible to small vessels, as we intended 
to increase small vessels detection rate, and, as a side ef
fect, VesselBoost may capture the dura mater as a vessel-
like structure, seen as vertical lines in the leftmost image 
in Figure 3 of panel b. Thus, if VesselBoost were to be used 
in clinical applications, it is paramount to implement addi
tional checks to ensure segmentation accuracy. 
Based on these insights, we developed an augmentation 

strategy and training pipeline (booster), which can leverage 
imperfect segmentation, for example, obtained through 
simple thresholding, and automatically boost these to cap
ture smaller vessels within the same image. This strategy 
illustrates a way for leveraging deep learning on single ex
ample data sets. Importantly, VesselBoost can also be com
bined with various segmentation tools. The initial segmen
tation used for TTA and booster can be generated using 
pattern recognition methods, such as the 3D elevation 
maps used to detect intensity ridges,21,22 or a surface cur
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Figure 8. Predicted segmentation consistency across models trained with different random seeds.           
We show the percentage of voxels that differed between predicted segmentations (sum of absolute difference divided by the total number of voxels) from models trained using differ
ent initial states (labelled as (a), (b), (c), (d), (e)) for each augmentation setting (1-5). 

Figure 9. Prediction results for the 160 µm data with         
different cluster removal threshold in post-processing.       

vature method.23 Alternatively, it can utilize alternative 
model architectures for segmentation model training, in
cluding the well-known U-Net and its modifications, such 
as UNet++,24,25 nnU-Net,26 and VM-UNet,27 as well as re
cent techniques focused on preserving the topological28,29 

or geometric features30 of vascular structures. 
VesselBoost is a toolbox with significant potential for ad

vancing research in vascular morphology and could also 
be valuable in identifying new biomarkers for cerebrovas
cular diseases.31‑34 VesselBoost enables precise segmenta
tion of vascular structures from angiograms, facilitating a 
deeper understanding of the differences in vascular mor
phology across human brain regions and different individ
uals. It also has the capabilities to extend its segmenta
tion strategy to new image contrast such as T2*-weighted 
imaging to depict venous vasculature. This can lead to new 
insights into the geometrical and topological properties of 
brain vasculature.35 

CODE AVAILABILITY 

VesselBoost is freely available at https://osf.io/abk4p/, 
https://github.com/KMarshallX/VesselBoost and via Neu
rodesk,36 a reproducible data analysis environment 
(https://neurodesk.org/), as Docker and Singularity con
tainers. 
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