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Purpose of the report: Adults with Down Syndrome (DS) have a substantially 

increased risk for Alzheimer’s disease (AD) due to the triplicated amyloid-

precursor-protein gene on chromosome 21, resulting in amyloid and tau 

accumulation. However, tau PET assessments are not sufficiently implemented 

in DS-AD research or clinical work-up, and second-generation tau tracers 

such as [18F]PI-2620 have not been thoroughly characterized in adults with 

DS. We aim at illustrating feasibility and potential diagnostic value of tau PET 

imaging with [18F]PI-2620 for the diagnosis of DS-AD.

Materials and methods: Five adults with DS (40% female, aged 43–62) and 

cognitive decline underwent clinical assessments, neuropsychological testing, 

lumbar puncture and multimodal neuroimaging. All underwent [18F]PI-2620 

tau PET. Visual read of tau PET scans was performed by three blinded raters, 

assessing increased tracer uptake in brain areas corresponding to the six Braak 

stage regions and basal ganglia.

Results: Visual read of tau burden revealed three tau-positive individuals which 

corresponded to their clinical decline while two cognitively stable individuals 

were rated as negative. Rating showed high inter-rater reliability for all Braak 

stages.

Conclusion: Tau PET imaging is a feasible and important biomarker assessment 

in the differential diagnosis of cognitive decline in adults with DS at risk of 

developing AD.
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Introduction

Down syndrome (DS) is the most common chromosomal 

aberration worldwide (Fortea et al., 2021) caused by the triplication of 

chromosome 21 which harbors the amyloid precursor protein gene 

(APP; Doran et  al., 2017), resulting in an increased gene dosage 

causing APP overexpression and consequently the accumulation of 

beta-amyloid in the central nervous system (Oyama et  al., 2008). 

Following the deposition of amyloid plaques, hyperphosphorylation 

of intracellular tau protein is initiated, leading to changes in its 

metabolism and ultimately to the formation of neurofibrillary tau 

tangles (NFT; Selkoe and Hardy, 2016). �ese processes are considered 

major hallmarks of Alzheimer’s disease (AD), further leading to 

synaptic dysfunction, neuroinflammation, neuronal death and 

cognitive as well as functional decline (Selkoe and Hardy, 2016).

�erefore, adults with DS have a ~ 90% risk of developing clinical 

symptoms of AD by the age of 65(McCarron et al., 2017), rendering AD 

their main cause of death (Hithersay et al., 2019). Yet, due to the inter- 

and intraindividual variability in intellectual disability (ID) as well as the 

heterogeneity in clinical symptoms (Beresford-Webb et al., 2021; Videla 

et  al., 2022), the clinical diagnosis of AD in DS (DS-AD) remains 

challenging and is o�en misdiagnosed as a psychiatric disorder, delaying 

appropriate treatment with acetylcholinesterase inhibitors or an 

n-methyl-d-aspartate inhibitor as well as a timely initiation of supportive 

and social measures with high relevance to their everyday lives.

In this context, the paradigm shi� towards a biological definition of 

AD, supported by the A/T/N-framework (Dubois et al., 2021; Jack et al., 

2018) is of high value for this population. �ese criteria aim to assess 

the absence (“-“) or presence (“+”) of pathophysiological correlates of 

cerebral amyloid (“A”) accumulation, intracellular hyperphosphorylation 

of tau protein (“T”) and general signs of neuronal injury or 

neurodegeneration (“N”; Jack et al., 2016). Considering that in adults 

with DS, first amyloid plaques form early into the third decade, with 

NFT following around the age of 35(Fortea et  al., 2021), there is 

considerable promise in applying the A/T/N framework to facilitate the 

diagnostic process and increase diagnostic certainty for cognitive 

decline due to AD. �is is pivotal since the US Food and Drug 

Administration (FDA) granted full approval to the anti-amyloid drug 

lecanemab (van Dyck et al., 2023) in July 2023 (FDA news release July 

06, 2023) and donanemab in July 2024 (FDA news release July 02, 2024), 

underlining the imperative of including this overlooked and vulnerable 

population in future interventional trials (Strydom et al., 2018).

In recent years, positron emission tomography (PET) has emerged 

as promising tool for visualizing and quantifying topological 

disseminations of tau pathology in vivo (Ossenkoppele and Hansson, 

2021). First generation radiotracers such as [18F]AV-1451 and [18F]

THK-5351 showed high correspondence with tau pathology 

distribution at autopsy as well as cognitive performance (Smith et al., 

2019; Bucci et al., 2021; Sperling et al., 2018) and performed well at 

differentiating AD from other non-AD-tauopathies (Ossenkoppele 

et  al., 2018). However, insufficient tracer specificity, resulting in 

significant off-target binding at pigment-containing and vascular 

structures, meninges and monoaminoxidases A and B, remained a 

major concern (Lemoine et al., 2020). Since, second-generation ligands 

such as [18F]PI-2620 have been developed, providing increased affinity 

for tau and considerably less off-target binding (Kroth et al., 2019). In 

line with tau distribution patterns in sporadic AD (Braak and Braak, 

1991), autopsy investigations of DS have found tau pathology to affect 

the entorhinal cortex first, then the hippocampus as well as the locus 

coeruleus and dorsal raphe nucleus, eventually reaching the neocortical 

areas in the fi�h decade (Davidson et al., 2018; Mann et al., 1986).

With this case-series, we  aim to illustrate the feasibility and 

potential diagnostic value of tau PET imaging using a second-

generation tracer for the diagnosis of DS-AD in a clinical setting.

Methods

Patients and clinical work up

All cases were referred to our department of neurology at the 

university hospital due to a suspected cognitive decline and are part of 

a monocentric study investigating AD in adults with DS, for which each 

individual or their respective legal proxy provided informed written 

consent. �e study is approved by the local ethics committee (vote 

#17-126) and conducted in accordance with the Declaration of Helsinki.

For each patient, chromosome analyses assessed the type of trisomy 

21. ID was stratified according to the criteria of the Diagnostic and 

Statistical Manual of Mental Disorders, 5th edition (DSM-V; American 

Psychological Association, 2022) into mild, moderate, severe, or 

profound based on the individuals’ best-ever level of functioning 

according to detailed interviews with caregivers, neuropsychological 

assessment, behavioral observation, and review of medical records.

For all patients, cognitive assessments were carried out by trained 

neuropsychologists using the validated German version of the 

Cambridge Cognitive Examination for Older Adults with Down 

Syndrome (CAMCOG-DS) assessing the individual performance on 

orientation, language, memory, praxis, abstract thinking, attention 

and visual perception (Beresford-Webb et al., 2021; Nübling et al., 

2020; Loosli et al., 2024). Diagnostic blood and, for some, cerebral 

spinal fluid (CSF) samples were collected and analyzed.

Tau PET data was acquired between February 2019 and October 

2021 at the department of nuclear medicine at our University Hospital. 

All PET scans were performed with the clinical suspicion of progressive 

cognitive and/or functional decline using the investigational [18F]

PI-2620 tracer (Life Molecular Imaging Technologies, Inc., Germany). 

A�er intravenous injection of 185 ± 10 MBq [18F]PI-2620 tracer, PET 

imaging was performed in a full dynamic 0–60 min setting, preceded 

by a low-dose CT scan for attenuation correction. For PET, dynamic 

emission recordings were framed into 6 × 30 s, 4 × 60 s, 4 × 120 s, and 

9 × 300 s. PET data were reconstructed iteratively with a matrix 

size of 336 × 336 × 109/ 400 × 400 × 148, a voxel size of 

1.018 × 1.018 × 2.027/1.018 × 1.018 × 1.500 mm3/and a slice thickness 

of 2.027/1.500 mm and standard corrections were applied. Further, tau 

PET assessments from sex-matched healthy controls (HC) without 

cognitive impairment were included as reference, each of these 

participants provided written consent.

Visual rating of tau PET images

�ree physicians specialized in the field of nuclear medicine (MB, 

JG, MZ) and blinded to the patients’ symptoms and clinical diagnoses 

were asked to rate all five DS tau PET scans, and five scans from 

euploid HC, independently. A scan was considered tau positive when 

tracer uptake was rated as mildly (1), moderately (2) or markedly (3) 

elevated. For rating, the distribution pattern of cortical tracer binding 

was assessed in six areas according to Braak staging (Braak and 
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Braak, 1991), and the basal ganglia as seventh region of interest. By 

adjusting the color scale, the predominant color in the inferior 

cerebellar cortex was set to 1 to function as reference. A final 

consensus was defined as a 2/3 majority for each Braak-stage region 

and the basal ganglia for every patient.

Statistical analysis

Statistical analyses were performed using R (version 4.1.3; R Core 

Team, 2021). For inter-rater reliability between the three raters, 

Fleiss’s kappa was assessed as average of all possible two-rater’s kappa 

(Conger, 1980).

Results

Case 1

A 51-year-old male (Table 1) presented with increasing memory 

problems over the past 6 months, forgetting birthdays, names and 

telephone numbers while also engaging less in social interactions. 

A recent MRI reported a mesiotemporal brain atrophy with subtle 

enlargement of the subarachnoid space. �e neurological 

examination showed no abnormalities, the neuropsychological 

assessment revealed a performance score on the CAMCOG-DS in 

the medium range (68/108) compared to other adults with DS, with 

individual weaknesses in memory, attention and a task testing 

apraxia. CSF analysis showed a decreased amyloid ratio (Aβ42/40) 

ratio, without changes in phosphorylated tau 181 (pTau-181) and 

total tau (tTau). �e A/T/N-score therefore was summarized as 

A + T-N+ and, due to a reported cognitive decline that so far had 

not impacted daily functions, the diagnosis of a mild cognitive 

impairment with early-stage correlates of AD pathology was 

reached and symptomatic treatment with donepezil 5 mg 

was initiated.

Over the course of 3 years, it was reported that memory 

impairment had worsened and that support for daily life activities 

(e.g., showering) had become necessary. However, the cognitive 

performance at the recurring clinical visits remained stable (52 years: 

68/109, 54 years: 69/109) and a Florbetaben-PET at 54 found no signs 

of cortical amyloid plaques. At the age of 56 years, an additional 

tau-PET was performed without any compliance issues, with the 

official report finding no cortical increase of [18F]PI-2620 and only 

mild tracer enrichment in the bilateral striatum.

Case 2

A 60-year-old male presented with a 7-year history of progressive 

memory problems, resulting in frequent misplacement of belongings 

and struggling to remember recent events. He had become dependent 

on other people’s support in everyday life and developed behavioral 

abnormalities like collecting random objects. In addition, his 

day-night rhythm was disturbed, causing him to be very active at 

night. In the neurological assessment, no abnormalities were seen. 

His performance on the CAMCOG-DS amounted to a score of 

65/109. For further differential diagnosis, a Florbetaben-PET was 

performed, showing elevated tracer uptake in the posterior cingulate 

cortex as well as the frontal, parietal and temporal cortex. �e 

diagnosis of clinical dementia with probable AD (A + T?N?) was 

reached and donepezil 5 mg was prescribed.

TABLE 1 Characteristics of DS patients included in this case series.

Case 1 2 3 4 5

Sex M M F F M

Type of trisomy 21 Full Full Full Full Full

Intellectual disability (best level) Mild Mild Mild Moderate Moderate

Chronic diseases

Hypothyreoidism, 

sleep apnea

Hypothyreoidism, 

epilepsy, tinnitus, right 

bundle branch block

Hypothyreoidism, 

bradycardia, myoclonia of 

unknown etiology

Hypothyreoidism, asthma 

bronchiale, hepatopathy, status post 

ards due to covid19 pneumonia, 

status post acute kidney failure

Hypothyreoidism, 

bilateral cataract, 

prebyacusis

Age at symptom onset 51 53 39 52 60

Age at baseline 51 60 42 53 62

CAMCOG-DS at baseline 68/108 65/109 23/109 DNA DNA

Age at tau PET 56 61 43 53 62

CAMCOG-DS at time of tau PET 69/108 51/109 NA 64/109 62/109

Qualitative majority read tau PET*

Braak I— III 0 3 3 3 0

Braak IV 0 2 3 3 0

Braak V 0 2 3 3 0

Braak VI 0 2 3 3 0

Basal Ganglia 1 3 1/0/2 2/0/3 1

*Tau positivity was qualitatively assessed by three blinded raters as tracer uptake in the respective region being not (0), mildly (1), moderately (2) or markedly (3) elevated. If a majority 

consensus could not be reached, the rating of each rater is listed. NA = not available. DNA = does not apply since baseline assessment was at time of tau PET.
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On 1 year follow-up, the cognitive performance had worsened 

(51/109). �erefore, a tau-PET was performed, reporting moderate [18F]

PI-2620 enhancement in the precuneus and posterior cingulate cortex 

of both sides, as well as a mild enhancement in the parietal and lateral 

temporal cortices of both sides, confirming AD (A + T + N?). Further, 

strong [18F]PI-2620 enhancement was observed in the bilateral striatum.

Case 3

A 42-year-old female presented with progressive cognitive 

decline over the past 3 years with increasing difficulty in word-

finding, reading, and writing as well as being more withdrawn and 

emotional, resulting in frequent crying and anxiety. She also showed 

general motoric slowing due to which she had been reassigned within 

her workplace. �e neurological assessment remained unremarkable; 

however, the cognitive examination using the CAMCOG-DS revealed 

deficits in all areas examined (23/109). Blood analysis showed no 

abnormalities, and the clinical diagnosis of dementia was reached.

During a follow up visit 12 months later, further differential 

diagnostics was carried out, with CSF analysis showing slightly 

decreased Aβ42 levels but normal levels for Aβ42/40 ratio, pTau-181 

and tTau. Meanwhile, a cCT reported general brain atrophy.

To assess fibrillar tau pathology, a tau PET was performed with 

good compliance from the patient. Here, imaging revealed strong 

[18F]PI-2620 enhancement in the mesial temporal, lateral temporal, 

parietal and frontal cortices of both sides. Also, moderate striatal [18F]

PI-2620 enrichment was observed. Reaching the diagnosis of AD 

(A + T + N+), donepezil 10 mg and memantine 5 mg were prescribed.

Case 4

A 53-year-old female visited our clinic due to increasing 

forgetfulness first noticed approximately 9 months ago. Temporal and 

spatial orientation was reportedly impaired, and she o�en forgot 

instructions, resulting in her leaving her work place a couple months 

prior. In addition, she had become more anxious and o�en worried 

about being le� alone. �e neurological status was without 

abnormalities. Her cognitive performance on the CAMCOG-DS was 

set in the medium range (64/109), with distinct deficits in memory 

function. Due to cognitive deficits, reportedly impacting the patient 

in everyday life, she was clinically diagnosed with dementia.

To investigate the underlying cause, lumbar puncture and tau PET 

were performed without complications, with the former revealing a 

decreased Aβ42/40 ratio as well as elevations of pTau-181 and tTau 

levels in the CSF. �e tau imaging report found strong cortical [18F]

PI-2620 enhancement in the mesial temporal, lateral temporal, 

parietal and frontal cortices of both sides, each with emphasis on the 

le� side. Moreover, moderate [18F]PI-2620 enhancement was seen in 

the caudate nucleus. With the diagnosis AD (A + T + N+), medication 

with donepezil 5 mg was initiated.

Case 5

�e 62-year-old male presented with progressive forgetfulness and 

a word-finding disorder over the course of 2 years. In addition, 

he  seemed more emotional, with frequent outbursts of anger, 

especially when feeling overwhelmed in everyday life. He slept a lot 

during the day and had had to switch to part-time employment.

While the neurological examination remained inconspicuous, the 

cognitive assessment revealed distinct deficits in praxia, memory and 

orientation with a total score of 62/109  in the CAMCOG-DS. In 

context of the reported progressive functional decline, a clinical 

dementia syndrome was diagnosed.

For further etiological differential diagnosis, lumbar puncture and 

tau PET were sought, but due to compliance issues, only the latter was 

performed. Here, tau imaging reported mild [18F]PI-2620 

enhancement in the temporal and parietal cortex while the basal 

ganglia showed moderate symmetric [18F]PI-2620 enrichment. 

Medication with rivastigmine, which had already been described by 

the general physician, was continued. Upon a follow-up visit 1 year 

later, the patient was reported to have shown further functional 

decline but showed comparable performance on the CAMOG-DS.

Visual [18F]PI-2620 tau-PET rating

In addition to the diagnostic reads, visual interpretation of all 

generated [18F]PI-2620 tau PETs (Figure 1) from our patients with DS, as 

well as five HC for reference, were performed by three physicians blinded 

to the patients’ symptoms and clinical diagnosis. �e results showed good 

inter-rater reliability between the three for all Braak Stages leveraging 

Fleiss’s kappa (I-III: kappa = 0.6, p < 0.001; Braak IV: kappa = 1, p < 0.001; 

Braak V: kappa = 0.8, p < 0.001; Braak VI: kappa = 1, p < 0.001). 

Specifically, 3 out of 5 patients showed increased uptake of [18F]PI-2620 in 

the predefined Braak regions, thereby receiving the overall rating of being 

tau-positive, with case 3 and 4 exhibiting marked uptake in Braak I-VI 

while case 2 showed marked uptake in Braak I-III and moderate tracer 

binding in remaining Braak regions. Cases 1 and 5 on the other hand 

were found to show no qualitative tracer uptake in any Braak stage but 

showed mild tracer binding in the basal ganglia.

Assessing sensitivity and specificity for DS vs. HC depending on the 

visual read of basal ganglia, raters evaluated all but one of the HC as 

showing no tracer binding in this area and found in their majority read 

all adults with DS to show binding in the basal ganglia. �is resulted in 

a specificity of 0.8 and a sensitivity of 1 for the differentiation of DS and 

HC via basal ganglia visual read using the [18F]PI-2620 tracer.

Discussion

In this case series, we demonstrate five cases of clinical and/or 

cognitive decline in adults with DS undergoing tau PET imaging for 

further differential diagnosis.

All five assessments were carried out a�er obtaining written consent 

and without any clinical complications, adverse events or compliance 

issues raised by patients or their care givers during or a�er the procedure. 

Visual reading of these PETs showed good inter-rater reliability and 

revealed two patients without any increased tracer binding in the 

respective areas, one individual with moderate and the two remaining 

participants with pronounced tracer binding up to Braak VI.

Tau PET imaging has great potential to improve differential 

diagnosis in adults with DS at risk of developing AD and exhibiting 

cognitive decline in a clinical setting. Established diagnostic processes 

applied in sporadic AD such as lumbar puncture, for one considered 

rather invasive and therefore an unfavorable procedure as seen for 
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case 5, further provide no detailed, region-specific information about 

tau accumulation in the brain, rendering tau PET imaging, 

specifically when using second-generation tau tracers with reduced 

off-target binding, a powerful tool for correlating pathology with 

clinical symptoms and tracking disease progression. Its 

implementation is further a necessary step for a better inclusion of 

adults with DS in AD research and getting them trial-ready for future 

interventional studies with anti-amyloid or anti-tau agents.

Adults with DS have been reported to exhibit tau tracer binding 

according to Braak stages (Fleming et al., 2023; Hartley et al., 2022; Rafii 

et al., 2017), with a similar pattern as in euploid individuals with sporadic 

rather than autosomal-dominant AD (Mann et al., 1986; Rafii et al., 2017; 

Mueller et  al., 2020; Wisch et  al., 2024). While information on the 

association of tau PET burden with CSF tau markers in DS is scarce, and 

more research is needed to understand the temporal relationship 

between these biomarker modalities in that population, studies in 

euploid adults with and without cognitive impairment have found 

positive correlations between CSF tau measures and PET tau burden 

especially in the symptomatic and amyloid-positive individuals 

(Janelidze et al., 2020; Gordon et al., 2016). At the same time, investigators 

have found a certain disconcordance between CSF phosphorylated tau 

and PET tau burden for the prediction of cognitive decline, suggesting 

caution with the interchangeability of both modalities (Bucci et al., 2021).

In DS, a study in plasma has found pTau-217 and GFAP 

consistently positively correlated with increased tau tracer binding in 

the temporal region of amyloid-positive DS individuals (Janelidze 

et al., 2022), suggesting the potential for a multimodal approach for 

increased diagnostic accuracy and ability to monitor disease 

progression as well as contextualizing tau PET results within the 

current framework of AD criteria.

Further, correlation of tau PET burden and cognitive performance 

has been established consistently in sporadic AD (Bucci et al., 2021; 

Mueller et al., 2020) as well as DS-AD (Rafii et al., 2017; Grigorova et al., 

2022), showing a worse performance on neuropsychological assessments 

with marked tracer binding. While isolated baseline assessments are 

subject to great inter- and intrasubject variability (Nübling et al., 2020), 

we  found that individuals with a longitudinal decline on the 

CAMCOG-DS did in fact exhibit increased tracer binding up to Braak 

stage VI at the point of PET imaging. Accordingly, for case 1, exhibiting 

no objectifiable longitudinal decline in cognitive performance, our raters 

did not see any marked tracer binding according to Braak staging, 

suggesting a stable disease status. Similarly, case 5, being well beyond the 

expected age of symptom onset exhibited an performance on the 

CAMCOG-DS set in the medium range and upon follow-up, showed no 

significant cognitive decline in the assessment, with raters finding no 

qualitative tracer uptake. �is suggested impairment in functional 

activities due to another reason than AD further to be  investigated, 

however there was no amyloid status available.

We found amyloid PET burden associated with tau PET burden, 

whereas the CSF Aβ42/40 ratio did not consistently align with tau 

PET. For example, in case 1, neither tau nor amyloid PET showed 

significant tracer binding, yet the CSF Aβ42/40 ratio was notably 

decreased, suggesting a disconnect between CSF measures and PET 

findings. In contrast, case 2 demonstrated amyloid PET positivity, 

which was followed by a marked increase in tau PET tracer uptake 

1 year later, highlighting the alignment between both measures. 

Further illustrating this pattern, case 3 showed extensive tau PET 

tracer binding despite normal Aβ42/40 levels (with only slightly 

reduced Aβ42). Case 4 did show a decreased Aβ42/40 ratio with 

positive tau PET findings. With prior studies reporting a strong 

FIGURE 1

Surface renderings of SUVR images for each case. Tau PET SUVRs are shown as continuous values, white outlines define areas which surpass a pre-

established pathological tau SUVR threshold of 1.3.
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correlation between amyloid and tau PET imaging (Zammit et al., 

2021; Tudorascu et al., 2020; Zammit et al., 2024; Pegueroles et al., 

2023), the discrepancy between CSF amyloid measures and tau PET 

could be due to the fact that the former change as early as about 

25 years prior to symptom onset, while changes in tau metabolism are 

further down the temporal sequence of AD pathology as a direct result 

of manifest amyloid plaques appearing roughly 10 years a�er CSF 

amyloid changes (Fortea et al., 2020).

Considerable off-target binding to monoaminooxidases A and B 

has been widely reported for first-generation tracers, resulting in 

elevated signal in the basal ganglia and other structures (Ossenkoppele 

et al., 2018; Leuzy et al., 2019). With second-generation tracers such as 

[18F]PI-2620 this has been greatly reduced (Leuzy et al., 2019), allowing 

for a more reliable read-out of binding patterns, which becomes even 

more relevant considering that most but not all (Pegueroles et al., 2023; 

Nuebling et al., 2021) studies in DS so far have leveraged first-generation 

tau tracers, resulting in the need of the exclusion of the striatum due to 

apparent off-target binding (Hartley et  al., 2022; Rafii et  al., 2017; 

Grigorova et  al., 2022; Zammit et  al., 2021; Tudorascu et  al., 2020; 

Handen et al., 2021). In our case series however, visual reads of the basal 

ganglia using [18F]PI-2620 demonstrated promising sensitivity and 

specificity for differentiating DS from healthy controls without AD and 

no clinical signs of cognitive impairment.

For the visual interpretation of tracer binding in the striatum, 

there remained a certain ambiguity which is represented in the lack of 

a majority read for two of the five individuals. �e challenge of 

interpreting tau PET in AD in DS individuals as well as in other 

populations remains in the effort of distinguishing actual tau 

pathology from off-target binding, which underscores the importance 

of leveraging advanced tracers like [18F]PI-2620 with reduced 

off-target effects and high affinity to 3/4-repeat tau (Mueller et al., 

2020). �erefore, we  believe that this case series highlights the 

potential of [18F]PI-2620 to more easily overcome these limitations 

than earlier tracers, offering a foundation for future research to 

explore tau deposition in DS-AD with greater accuracy and reliability.

Another limitation lies in the small sample size which in turn limits 

the generalizability of our findings. Yet, this case study provides first 

valuable insights into the value of tau tracer [18F]PI-2620 in DS, which can 

serve as a foundation for larger, more comprehensive studies in the future.

In summary, we present the first qualitative analysis of the [18F]

PI-2620 tau tracer in a case series of adults with DS and suspected 

cognitive decline, demonstrating its feasibility and practicability for 

clinical application. Our findings highlight the concordance between 

cognitive decline and increased cerebral tau tracer binding, 

underscoring its potential role in differential diagnosis within the 

context of DS-AD. Future research should focus on longitudinal 

imaging studies to further characterize disease progression, ideally 

leveraging the integration of tau and amyloid PET for a more 

comprehensive diagnostic framework, and aim to conduct 

comparative analyses across broader population groups.
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