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Abstract

The resonance assignment of large intrinsically disordered proteins (IDPs) is difficult due to the low dispersion of chemical 
shifts (CSs). Luckily, CSs are often specific for certain residue types, which makes the task easier. Our recent work showed 
that the CS-based spin-system classification can be improved by applying a linear discriminant analysis (LDA). In this 
paper, we extend a set of classification parameters by adding temperature coefficients (TCs), i.e., rates of change of chemical 
shifts with temperature. As demonstrated previously by other groups, the TCs in IDPs depend on a residue type, although 
the relation is often too complex to be predicted theoretically. Thus, we propose an approach based on experimental data; 
CSs and TCs values of residues assigned using conventional methods serve as a training set for LDA, which then classifies 
the remaining resonances. The method is demonstrated on a large fragment (1-239) of highly disordered protein Tau. We 
noticed that adding TCs to sets of chemical shifts significantly improves the recognition efficiency. For example, it allows 
distinguishing between lysine and glutamic acid, as well as valine and isoleucine residues based on HN , N, C

�
 and C ′ data. 

Moreover, adding TCs to CSs of HN , N, C
�
 , and C ′ is more beneficial than adding C� CSs. Our program for LDA analysis 

is available at https:// github. com/ gugum atz/ LDA- Temp- Coeff.

Keywords Temperature coefficients · Intrinsically disordered proteins · Tau protein

Introduction

Intrinsically disordered proteins (IDPs) are widespread and 
play essential biological roles, especially in molecular rec-
ognition, signaling, and regulatory processes (Dunker et al. 
2001; Dyson and Wright 2005). Most IDPs are impossible to 

crystalize; thus, liquid-state NMR remains the key technique 
to study their nature. The NMR analysis usually starts with 
the resonance assignment. Typically, we establish sequen-
tial connectivities of chemical shifts and then form spin-
system chains that are eventually mapped onto the protein 
sequence. The mapping can be executed by recognizing 
residues corresponding to characteristic amino-acid types. 
Due to the low dispersion of chemical shifts in IDPs (espe-
cially HN ), it is often beneficial to employ high-dimensional 
techniques, which better resolve spectral peaks and thus 
reduce the number of ambiguities during the chains’ for-
mation (Kazimierczuk et al. 2013; Brutscher et al. 2015; 
Grudziaz et al. 2018). Also, using 13

C-detected experiments 
(Felli and Pierattelli 2022) can increase the chains’ lengths, 
as the presence of proline residues does not break the chain, 
as it is when detecting the amide proton signal. Another 
possibility to facilitate chains mapping is based on amino-
acid selective experiments (Dötsch et al. 1996), later exten-
sively developed (Schubert et al. 2005; Pantoja-Uceda and 
Santoro 2008; Piai et al. 2016). Such an approach requires 
recording several experiments, each providing signals of a 
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different group of amino-acid residues. More widely used 
are the methods based on chemical shift statistics for dif-
ferent residues [e.g. using BioMagResBank (Ulrich et al. 
2007)]. However, manual analysis of such multidimensional 
data (chemical shifts of several nuclei types) is difficult. One 
of the tools for automating the analysis process and assign-
ing ambiguous amino acid residues is advanced statistical 
method, e.g., linear discriminant analysis (LDA), which 
can automatically recognize the type of amino acid residue 
(Romero et al. 2022).

Once the resonance assignment is done, NMR can be 
used to study the structure and dynamics of a protein. For 
example, tracking changes in NMR chemical shifts with tem-
perature is a sensitive indicator of solvent exposure (Stevens 
et al. 1980). In typical temperature ranges, the changes are 
linear and are described with a temperature coefficient (TC), 
corresponding to a slope of the dependence. The deviations 
from linearity indicate the presence of low-populated excited 
states (Doyle et al. 2016; Cierpicki et al. 2002). TCs (differ-
ent for each nucleus) are typically measured using a series of 
spectra acquired at different temperatures. Alternative meth-
ods such as non-stationary NMR (Shchukina et al. 2021) or 
techniques based on non-uniform sampling (Bermel et al. 
2014; Shchukina et al. 2023) have been also proposed.

It has been reported in the past (Baxter and Williamson 
1997), that protein temperature coefficients, similarly to 
chemical shifts, are also residue-specific. Thus, they seem 
to be a promising parameter that may facilitate amino-acid 
type recognition and support resonance assignment. Yet, 
TCs of different residues of the same amino-acid type are 
not identical (see Fig. 1). The previous studies (Baxter and 
Williamson 1997; Cierpicki and Otlewski 2001) showed that 
temperature coefficient values largely depend on the local 
structure. However, they are difficult to predict theoretically 
(Baxter and Williamson 1997). Even random coil chemical 
shift calculators that take temperature into account (Kjaer-
gaard et al. 2011; Nielsen and Mulder 2018) apply relevant 
correction in a simplified way, i.e., the same for all residues 
of a given type.

This paper exploits TCs to support resonance assignment 
using a data-driven approach instead of theoretical predic-
tions. We propose using TCs as extra dimensions in the 
aforementioned linear discriminant analysis, in addition to 
chemical shifts. Since no widely available databases contain 
TCs for IDPs, we construct a training data set using easily 
assignable protein fragments under investigation. We vali-
date the proposed approach using an intrinsically disordered 
Tau protein construct (residues 1-239) (Ukmar-Godec et al. 
2020).

Methods

Protein expression and purification

To produce the U-15N , 13
C Tau239 protein, the vector pNG2 

(a derivative of pET-3a, Merck-Novagen, Darmstadt) codi-
fying for its gene was transformed into E. coli BL21(DE3) 
competent cells. These were grown using Luria-Bertani (LB) 
medium supplemented with Ampicillin at 37

◦ C until they 
reached an OD

600
 of 0.6 to 0.8. At this point, the cells were 

centrifuged at low speed, washed with M9 salts ( Na
2
HPO

4
 , 

KH
2
PO

4
 , and NaCl), centrifuged again and resuspended in 

1

4
 of the initial LB volume M9 minimal medium containing 

15NH
4
Cl (1 g/L) and U-13C

6
-D-glucose (2 g/L) as the only 

nitrogen and carbon source respectively. Then, the cell cul-
ture was incubated for 1 hr at 37

◦ C and induced with 1.0 mM 
isopropyl �-D-1-thiogalactopyranoside (IPTG) overnight. 
Next, the cells were harvested through centrifugation and the 
resulting pellet was resuspended using a lysis buffer 20 mM 
MES pH 6.8, 1 mM EGTA, 2.0 mM dithiothreitol (DTT), 
protease inhibitor cocktail, 1.0 mM MgCl2 , deoxyribonu-
clease (DNase) I and lysozyme. After incubation, a French 
press was used to disrupt the cells. Then, sodium chloride 
(NaCl) was added to reach a final concentration of 500 mM, 
followed by a 20 min boiling step. To remove all denatured 
proteins, the sample was ultracentrifuged at 127,000× g and 
4
◦ C. The DNA in the solution was precipitated by adding 

20 mg/mL of streptomycin sulfate to the supernatant. Then, 
after incubation for 15 min, the sample was centrifuged 

Fig. 1  A glycine region of stacked 15N-HSQC spectra of the studied 
1-239 Tau protein fragment acquired at different temperatures: 5◦ C 
(red), 10

◦ C (orange) and 15◦ C (yellow). It can be seen that peaks cor-
responding to different glycine residues shift at different rates
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at 15,000× g, and the DNA pellet was removed. The pre-
cipitation of Tau239 was induced by adding 0.361 g/mL 
ammonium sulfate (NH

4
)
2
SO

4
 followed by the 15 min incu-

bation and centrifugation at 15,000× g. The resulting pel-
let of Tau239 was resuspended and dialyzed against buffer 
20 mM MES pH 6.8, 1.0 mM EDTA, 2.0 mM DTT, 0.1 mM 
phenylmethylsulfonyl fluoride (PMSF) at 4◦ C overnight. The 
sample recovered from the dialysis was then loaded onto 
an ion-exchange chromatography column where the Tau239 
was purified from its contaminants. Finally, Tau239 protein 
was dialyzed against 50 mM sodium phosphate (NaP), pH 
6.8, and concentrated by ultrafiltration (3 KDa Viva spin 
from Sartorius).

NMR spectroscopy

The NMR sample was prepared with 100 � M U-15N , 13
C 

Tau239 in 50 mM sodium phosphate buffer pH 6.8 and 10% 
D

2
O . The NMR experiments were performed on a Bruker 

800 MHz spectrometer equipped with a triple-resonance cry-
ogenic probe and Avance NEO console. The following tri-
ple-resonance experiments were recorded using the Bruker 
pulse sequence library: HNCO (Kay et al. 1990), HN(CA)
CO (Yang and Kay 1999), HNCA (Kay et al. 1990), HN(CO)
CA (Sattler et al. 1999), and (HAHB)CACB(CO)NH. The 
complete set of NMR experiments was collected at 5◦ C. The 
experiments HNCO, HN(CO)CA, and (HAHB)CACB(CO)
NH (Muhandiram and Kay 1994) were collected for 10

◦ C 
and 15◦ C. All NMR experiments were acquired using non-
uniform sampling and processed using a CS module of 
MDDNMR program (iterative soft thresholding algorithm, 
200 iterations, virtual echo option) (Orekhov et al. 2004-
2024; Mayzel et al. 2014). The experimental parameters are 
shown in Table 1. All spectra were displayed and analyzed 
using the Sparky program (Lee et al. 2015).

The theoretical chemical shift vs. temperature dependence 
is not linear, but sigmoidal. Moreover, the deviations from 
linearity coherent for all peaks may result from inaccurate 

referencing and other instrumental factors. In any case, for 
LDA it is better to abandon the traditional determination of 
TC as the global slope. Instead, we determined separately 
TC

5−10
 , reflecting changes between 5 and 10

◦ C, and TC
10−15

 , 
reflecting changes between 10 and 15◦C.

Results and discussion

Linear discriminant analysis is a classification method that 
calculates the probability that a multidimensional data point 
belongs to one of the user-defined classes. The algorithm, 
trained with data points belonging to known classes, finds 
a combination of dimensions that minimizes the variance 
within each class and maximizes the variance between 
classes (Balakrishnama and Ganapathiraju 1998; Tharwat 
et al. 2017). In our previous work (Romero et al. 2022), we 
used LDA to find the most differentiating combination of 
chemical shifts, allowing us to assign a new spin system 
to one of the amino acid residue types. In this study, we 
undertake a similar task using not only chemical shifts, but 
also TCs.

Previously, we used chemical shifts of IDPs deposited in 
BMRB (Romero et al. 2022) for the training step. However, 
such an approach would not be feasible for TCs since a rel-
evant database does not exist. A possible solution is to use 
partial resonance assignment of the studied protein to train 
the algorithm, which will be later used to classify the not-
assigned parts. There are many practical situations in which 
such a partial assignment is available. One of them is when 
we want to transfer the resonance assignment performed on 
a different sample of the same protein (e.g., measured under 
slightly different conditions). In such a case, some peaks are 
often well-separated and can be unambiguously assigned, 
while others are in crowded regions or severely shifted with 
respect to the original peak list. Another situation is that in 
the course of sequential assignment, some chains can be 
easily mapped on the protein sequence, but others are not 
sufficiently long or characteristic. Mapping the latter chains 
requires sophisticated methods of residue-type recognition, 
like LDA, that can also exploit the “easy part” of the data 
for training. Of course, an approach exploiting data from 
the same protein for training is justified only for relatively 
large proteins—for others, the number of assigned residues 
of each amino acid type can be too small to train the algo-
rithm effectively. Also, the chemical shift values have to 
be dependent predominantly on the residue type, thus the 
approach applies to proteins of disordered nature. We dem-
onstrate the method using spin systems from a Tau protein 
fragment of 239 residues containing 28 glycines and 26 pro-
lines. Peaks corresponding to 141 residues from the peak list 
previously deposited in BMRB (entry 28065) fitted well to 
our spectra acquired at 5◦ C and were used for training. As 

Table 1  NMR acquisition parameters

The maximum evolution times in N
H and H

N dimensions in all 
experiments were set to 71.96  ms and 71.68  ms, respectively. The 
maximum evolution times for 13

C dimension are listed in the second 
column. The NS stands for the number of scans. The acronym ‘sct’ 
stands for semi-constant time

Experiment t
max

 for 13
C 

dim. (ms)
NS NUS points (% sampling)

HNCO_sct 50.54 4 600 (7.03%)

HN(CA)CO_sct 50.54 16 1000 (11.70%)

HNCA_sct 20.10 8 600 (4.60%)

HN(CO)CA_sct 20.10 8 450 (3.45%)

(HBHA)CBCA(CO)NH 66.29 8 1000 (8.92%)
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discussed below, the ambiguities in assigning the 19 spin 
systems have been solved using LDA. For training and test-
ing, we considered only residues for which complete sets of 
chemical shifts ( HN , N, C ′ , C

�
 , C� ) could be clearly found 

from our spectra. The glycines were excluded from the anal-
ysis since their assignment was, as usual, rather obvious. 
The remaining 22 resonances (not counting the N-terminal 
one) were missing.

Figure 2 shows the results of using LDA on a 1-239 Tau 
fragment with and without TCs. We constructed six sets of 
CSs and TCs of different nuclei: subset (i) HN , N, C ′ , C

�
 

CSs; subset (ii): HN , N, C ′ , C
�
 CSs and TC

5−10
 ; subset (iii): 

H
N , N, C ′ , C

�
 CSs and TC

5−10
 and TC

10−15
 ; subset (iv): HN , 

N, C ′ , C
�
 and C� CSs; subset (v): HN , N, C ′ , C

�
 , C� CSs 

and TC
5−10

 ; subset (vi): HN , N, C ′ , C
�
 , C� CSs and TC

5−10
 

and TC
10−15

.
Adding TC

5−10
 to a set of H

N , N, C ′  , and C
�
 CSs 

(Fig.  2B) allows unambiguously recognizing lysine, 

leucine, and glutamine residues, which were not recog-
nized by CSs only. Although, in one case, adding TC

5−10
 

causes misclassification of isoleucine residue (I151 is rec-
ognized as valine), the problem is solved by adding the 
TC

10−15
 . We get better results in subset (iii) than in subset 

(iv). Thus, when C� CS is not available, good variable-
temperature data (e.g., for three different temperatures) 
can replace it. The most efficient is a subset (vi) (Fig. 2F). 
Generally, it correctly classifies amino acid residues, 
except for arginine, which is assigned to three classes. 
Nonetheless, the arginine has the highest probability 
(above 50%) of these three. As can be seen, the subset (vi) 
is only slightly better than (v) but requires collecting more 
data at higher temperatures, which is time-consuming 
and may be problematic in the case of not stable protein. 
Thus, we will use subset (v) for further examples discussed 
below. It is not crucial at which temperatures the spectra 
are acquired as long as differences in chemical shifts are 

Fig. 2  Results of linear discriminant analysis of CSs and TCs of 19 
Tau 1-239 residues. The residues for which peak list transfer (from 
BMRB entry 28065) was ambiguous are presented. A subset (i): HN , 
N, C', C

�
 ; B subset (ii): HN , N, C', C

�
 and their TC

5−10
 ; C subset (iii): 

H
N , N, C', C

�
 and their TC

5−10
 and TC

10−15
 ; D subset (iv): HN , N, C', 

C
�
 and C�

 ; E subset (v): HN , N, C', C
�
 , C� and their TC

5−10
 ; F subset 

(vi): HN , N, C', C
�
 , C� , and their TC

5−10
 and TC

10−15
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residue type-specific, the protein is stable and amide pro-
ton chemical exchange does not hamper the measurement.

Notably, even when only CSs are used, training based 
on different parts of the Tau protein is optimal and 
increases classification efficiency compared to BMRB-
based training discussed in our previous work (Romero 
et al. 2022) (see Supplementary Information Fig. S1). This 
might be caused by the temperature used in our experiment 
( 5◦ C) being very different from the typical temperatures in 
the BMRB entries from the training set.

Another example application of LDA, besides peak list 
transfer, is mapping spin-system chains formed during 
sequential assignment on the protein sequence. The pro-
cess is generally easier for long chains containing residues 
with characteristic chemical shifts (i.e., alanines, glycines, 
serines, and threonines). However, the chains are often 
interrupted when peaks are missing due to fast nuclear 
relaxation, chemical exchange, peak overlap, or lack of HN 

at proline residues. Unambiguous mapping of such short 
chains in a large protein is often difficult.

In the studied Tau fragment, several short chains between 
prolines were present. Figure 3 compares the efficacy of 
amino acid type recognition in these chains using LDA with 
three different kinds of training data: CSs from BMRB, and 
CSs from the same protein (Tau 1-239) with and without 
TC

5−10
 . We used the same training data for the latter two 

as for Fig. 2. Some of the short chains could not be mapped 
using LDA with CS-only BMRB-based training (Fig. 3, 
left side). In contrast, by training using data from the same 
protein in three of the shown cases (Fig. 3, panels C, D, E) 
the chains could be correctly mapped. For chains shown in 
Fig. 3a, b, the ambiguity still remains but is resolved by 
TC

5−10
.

Let us discuss the short-chain identification from Fig. 3 in 
more detail. For the chain shown in panel A), LDA trained 
with chemical shift data from BMRB wrongly classifies the 

Fig. 3  Comparison of LDA-based amino acid type recognition in 
short chains using 3 training data sets: BMRB, chemical shifts from 
the same protein (Tau 1-239) with and without TCs. LDA was per-
formed using subset (iv): HN , N, C', C

�
 , C� ; and subset (v): HN , N, 

C', C
�
 , C� , and their TCs. The recognitions with probability scores 

exceeding 10% are shown, and the correct residue type is marked in 
bold. Panels A–E show the recognition of different short chains
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211Arg, although a complete set of chemical shifts for this 
residue is available ( HN , N, C', C

�
 and C� ). The correct clas-

sification has the second highest probability (26%). Using 
training data from the same protein increases it by 10%, but 
still, the classification is wrong. The additional use of TC

5−10
 

resulted in the correct amino acid recognition (at the level of 
57%). Another residue in the same chain—212Thr—is also 
misclassified if CS-only data is used (although only HN , N 
and C

�
 ), but with TC

5−10
 , the 100% correct classification 

is achieved). A similar scenario is repeated for the 215Leu 
from Fig. 3b). Examples shown in Fig. 3c–e) present the 
superiority of the “same protein” approach over BMRB-
based training. For all residues, the correct classification is 
better with the former approach. 217Thr, 50Thr, and 181Thr 
are properly classified only using LDA trained on chemical 
shifts from the same protein. Importantly, these are the spin 
systems with incomplete sets of chemical shifts (only HN , N 
and C

�
 ). The additional use of TC

5−10
 improves the correct 

classification even more.

Conclusions

In this paper, we showed that temperature coefficients can 
be used to support the resonance assignment of intrinsically 
disordered proteins. A similar approach, however without 
LDA, has recently been applied to support resonance assign-
ment in small molecules (Nawrocka et al. 2024). Although 
the relationship between amino acid residue type and TC 
values is neither strict nor straightforward, the linear dis-
criminant analysis can find it. We believe that creating tem-
perature coefficient databases would enable wider use of 
approaches like the one described.

Supplementary information

The linear discriminant analysis of chemical shifts of Tau 
protein fragment (1-239) using two approaches based solely 
on chemical shifts (not TCs): training data generated from 
BMRB (proteins other than Tau) vs. training data from the 
assigned part of the same protein.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10858- 024- 00452-9.
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