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Genetic diagnosis of rare diseases requires accurate identification and
interpretation of genomic variants. Clinical and molecular scientists
from 37 expert centers across Europe created the Solve-Rare Diseases
Consortium (Solve-RD) resource, encompassing clinical, pedigree and

genomic rare-disease data (94.5% exomes, 5.5% genomes), and performed
systematic reanalysis for 6,447 individuals (3,592 male, 2,855 female) with

previously undiagnosed rare diseases from 6,004 families. We established a
collaborative, two-level expert review infrastructure that allowed a genetic
diagnosisin 506 (8.4%) families. Of 552 disease-causing variants identified,
464 (84.1%) were single-nucleotide variants or short insertions/deletions.
These variants were either located in recently published novel disease genes
(n=67), recently reclassified in ClinVar (n = 187) or reclassified by consensus
expert decision within Solve-RD (n = 210). Bespoke bioinformatics analyses
identified the remaining 15.9% of causative variants (n = 88). Ad hoc expert
review, parallel to the systematic reanalysis, diagnosed 249 (4.1%) additional
families for an overall diagnostic yield of 12.6%. The infrastructure and
collaborative networks set up by Solve-RD can serve as a blueprint for future
further scalable international efforts. The resource is open to the global
rare-disease community, allowing phenotype, variant and gene queries, as

well as genome-wide discoveries.

While the definition of what constitutes arare diseaseisarbitrary, and
thus varies by jurisdiction, the European Union has adopted a defini-
tion of a rare disease as being an ailment that affects <50 individuals
per 100,000. More than 70% of the >6,000 unique rare diseases are
genetic and, collectively, they constitute a major health issue, with
3.5-6.0% of individuals affected by a rare disease over their lifetime’.

Despite improvements in diagnostics and research options
for rare diseases, many individuals remain without a molecularly
proven genetic diagnosis. In healthcare systems, where exome or
genome sequencing is becoming the standard of care, diagnostic
yield varies between 20 and 70% depending on the type of rare dis-
ease, inclusion criteria, sequencing strategy and analysis stand-
ards, as highlighted by projects such as The 100,000 Genomes
Project via Genomics England, and the Deciphering Developmental
Disorders Study* ™.

Asreviewed in Dai etal.’, it has been shown that reanalysis of exist-
ing genomic data canlead to novel diagnoses, both as aresult of newly
described disease genes and due toimprovementsin theidentification,
annotationand interpretation of genomic variants. However, reanalysis
of such datais not routinely undertaken due to the time and multidis-
ciplinary expertise required, and associated costs.

In 2017, the European Union brought together expertise on rare
diseases into 24 thematic European Reference Networks (ERNs). Each
ERN has multiple national centers across the 27 member states, all
of which have been vetted for their clinical, diagnostic and research
expertise. These collaborations provide a pan-European framework
toimprove care for individuals with rare diseases.

Solve-RDisapan-European omics project that brings together (1)
clinicians, geneticists and translational researchers from four ERNs,
including rare neurological diseases (RND, https://www.ern-rnd.eu/),
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Fig.1| Overview of the Solve-RD analysis and interpretation framework

and community resource established. a, Solve-RD brought together rare-
disease dataand expertise. Central to Solve-RD are four core ERNs relating to
rare diseases; via these expert disease networks, patients with rare diseases
were recruited from 43 research groups from 37 institutes in 12 European
countries (Belgium, Czech Republic, Finland, France, Germany, Hungary,

Italy, the Netherlands, Portugal, Slovenia, Spain and the United Kingdom) and
Canada. The work involved >300 collaborators in the submission, analysis and
interpretation of rare-disease data. The RD-REAL framework allows sharing of
data and expertise on a continental scale, consisting of (1) expert curated data,
(2) acomprehensive analysis suite and (3) a two-level (that is, molecular and
clinical) expert review. The complete dataset comprises 9,645 individuals from
6,004 families and includes phenotypes in Phenopacket format (average of six

HPO terms per affected individual), pedigrees and genomic data (genomes and
exomes). b, lllustration of the utility of this resource to the global rare-disease
community. In total, RD-REAL data of >23,000 individuals with >100 million
unique genomic variants are available via RD-Connect GPAP and EGA. This
represents a growing resource containing data that have been submitted since
the start of Solve-RD. Interpretable data (genetic variants, phenotypes and
pedigrees) are standardized and annotated, and are made available for querying,
analysis and interpretation in RD-Connect GPAP for authorized users. In addition,
allraw and processed data are available for download at EGA under a controlled-
access model. Allicons, except logos of services (GPAP; EGA) and consortia/
networks (Solve-RD; European Reference Networks) that are contributors of this
publication, created with Biorender.com.

intellectual disability, telehealth and congenital anomalies (ITHACA,
https://ern-ithaca.eu/), neuromuscular diseases (EURO-NMD, https://
ern-euro-nmd.eu/) and genetic tumor risk syndromes (GENTURIS,
https://www.genturis.eu), as well as the Spanish undiagnosed dis-
ease program®; (2) patient organizations represented by EURORDIS’

(https://www.eurordis.org/); (3) genomic data-sharing and -analysis
resources, such as the RD-Connect Genome-Phenome Analysis Plat-
form® (RD-Connect GPAP, https://platform.rd-connect.eu/) and the
European Genome-Phenome Archive’® (EGA, https://ega-archive.org/);
(4) European networks aiming toimprove and harmonize the quality of
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Table 1| Solve-RD reanalysis data

Solve-RD RD-REAL data ERN RND ERNITHACA ERN EURO-NMD ERN GENTURIS Sum across ERNs
Experiments (exomes/genomes) 2,852 (2,692/160) 4,470 (4,231/239) 2162 (2,059/103) 390 (369/21) 9,874
Participants (affected individuals) 2,799 (2,453) 4,331(1,933) 2,125 (1,685) 390 (378) 9,645 (6,449)
Families 2,27 1,857 1,517 359 6,004

Diagnosed probands (systematic 242 (10.7) 158 (8.5) 96 (6.3) 10 (2.8) 506 (8.4)
reanalysis) (%)

Diagnosed probands (ad hoc expert 61(2.7) 145 (7.8) 42(2.8) 1(0.3) 249 (4.1)

review) (%)

Probands with ‘candidate diagnoses’ (%) 19 (5.2) 139 (7.5) 4 (27) 45 (12.5) 344 (5.7)

Number of datasets following quality control filtering (Methods), representing the number of previously undiagnosed families/probands. Numbers are given for the entire project and for each
ERN separately. We provide the overall yield of newly diagnosed rare-disease cases for both the multicenter systematic reanalysis and the parallel ad hoc expert review. The table also indicates

the number of (likely) pathogenic variants that led to candidate diagnoses.

genetictesting services, suchas EuroGentest (http://www.eurogentest.
org/); and (5) expertsinthe field of omics technologies, bioinformatics,
knowledge management and rare-disease ontology, suchas Orphanet
Rare Disease Ontology (ORDO, https://www.orphadata.com/ontolo-
gies/) and Human Phenotype Ontology (HPO)™.

One of the core aims of Solve-RD is to improve the rate of genetic
diagnosis forindividuals affected by arare disease. A specific objective
of Solve-RDis to systematically collate and reanalyze existing exome/
genome datasets and corresponding structured ontology-based phe-
notype and pedigree information across the disease areas of its ERN
partners (Fig. 1). Previous pilot studies analyzed only subcohorts and
focussed on established pathogenic (ClinVar) variants, whereas the
work presented hereis the primary large-scale and systematic reanaly-
sisacross all diseases of Solve-RD™" ">, Here we report the results from
the systematic reanalysis of datafrom 6,004 undiagnosed rare-disease
families recruited fromacross Europe by Solve-RD. The entire dataset is
available as aresource for the global rare-disease research community.

Results
Pan-European rare-disease data collection
Solve-RDinvolves over 300 clinicians, laboratory geneticists and trans-
lational researchers from 43 research groups associated with 37 insti-
tuteslocatedin12 European countries and Canada. In total, we collected
10,276 genomic datasets, as well as phenotypic descriptions and pedi-
grees, from 10,039 individuals, all previously analyzed through local
diagnostic or research efforts. The collection includes 554 genomes
and 9,722 exomes enriched using 28 different exome-enrichment
kits and generated on several short-read sequencing platforms. Fol-
lowing quality control (Methods), 9,874 datasets (523 genomes and
9,351 exomes) from 9,645 individuals remained. These represent
6,449 individuals affected by rare diseases, and 3,196 unaffected rela-
tives, from 6,004 families (Fig. 1, Table 1and Supplementary Table 1).
Disease categories comprise rare neurological diseases (RND, n =2,271
families), (multiple) malformation syndromes, intellectual disability
and other neurodevelopmental disorders ITHACA and SpainUDP,
n=1,857), rare neuromuscular diseases (EURO-NMD, n =1,517) and
suspected hereditary gastric and bowel cancer (GENTURIS, n = 359).
Phenotypic information was collected using standardized HPO
terms, consistent with the GA4GH Phenopacket schema', with a
median of six terms (range 0-74) assigned per affected individual
(Extended Data Fig. 1), varying from a median of four terms for GEN-
TURIS to ten for ITHACA, reflecting the phenotypic complexity of
probands affected by the respective rare disease. Inaddition, for 2,126
(35.4%) probands, a clinical diagnosis was encoded using an ORDO
ORPHA code®, of which 338 were unique.

New genetic diagnoses following systematic reanalysis
Atwo-level expert analysis strategy (data-expert and clinical-expert
levels) was applied, as detailed in Methods. All datasets were reanalyzed

forabroad range of genomic variants, including SNVs and shortinser-
tions—deletions (InDels), noncanonical splice variants predicted in
silico, homoplasmic and heteroplasmic mitochondrial DNA variants,
copy number variants (CNVs), structural variants (SVs), mobile ele-
ment insertions (MEIs) and short tandem repeat expansions (STRs)
(Extended DataFig.2). Each ERN generated alist of established disease
genes for their respective conditions, resulting in gene lists ranging
from 230 genes for GENTURIS to 1,820 for RND (Methods and Sup-
plementary Table 2). Systematic reanalyses resulted in 506 genetic
diagnoses, by (probable) pathogenic variants that explained the phe-
notype, representing 8.4% of probands. The amount of time that was
invested in expert reanalysis was manageable at 4.8 min per variant,
or 42.8 min on average per proband.

New molecular diagnoses. SNV/InDel reanalysis revealed 461 (prob-
able) pathogenic variants, enabling a diagnosis in 419 families. To
retrieve the 461 (likely) pathogenic SNV/InDel variants from the
>50,000 prioritized variants, an average of nine variants underwent
molecular and clinical expert review (Supplementary Table 3).

The 461 SNV/InDel variants identified, in 419 probands, consisted
of 282 heterozygous variants with dominant effect, 85 homozygous
and 76 compound heterozygous variants with recessive effect and
18 hemizygous variants. Functionally, these represented 187 nonsense/
frameshift variants, 249 missense variants, 11 in-frame deletions, ten
splicing variants (eight intronic and two synonymous), two 5’ UTR
variants, one promoter region variant and one complex InDel variant
(Fig. 2 and Supplementary Table 4). Forty-one of the 461 (9.1%) vari-
ants could be confirmed as de novo mutations, due to the availability
of proband-parent trios for 1,320 (22%) families, primarily from ERN
ITHACA (1,081).

We evaluated why the 461 SNV/InDel variants had not been clas-
sified as disease causingin previous analyses. We found that 67 affect
genes which were established as a novel disease gene following data
submissionto Solve-RD (thatis, appeared in Online Mendelian Inherit-
ancein Man (OMIM) after 1January 2018; Extended Data Fig. 3and Sup-
plementary Table 4), while the remaining 394 were among established
disease genes at the time of data submission. Of these, 117 variants have
been reclassified in the interim (that is, novel or modified ClinVar'
entry since 2018) and 70 had initially been deemed not fully explaining
disease, despite the variant being classified as pathogenicin ClinVar as
aresultof perceived insufficient clinical concordance at the time. The
remaining 207 variants were notincluded in ClinVar and were classified
only as (probable) pathogenic by the experts involved in this project.

We applied a suite of analysis tools for calling and annotating vari-
ants. Theseincluded queries for noncanonical splice variants, mtDNA
variants, CNVs, SVs, MEIs and STRs. These additional analyses yielded a
diagnosisin 87 rare-disease families among a total of 88 variants, with
CNVs in 44 probands (45 variants) being the most prevalent variant
type (Fig. 3). This included three cases where biallelic pairings of an
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Fig. 2| Systematic reanalysis of genomic datasets for the genetic diagnosis

of rare diseases. a, Flowgram of systematic analysis of 6,004 families. Yield per
analysis type (genetic diagnoses by SNV/InDel and other variant types; candidate
genetic diagnoses and genetic diagnoses by ad hoc expert review) are shown.

For SNV/InDels, we evaluated why the 464 variants previously identified in

419 families had not been classified as disease causing. b, Chart summarizing
diagnostic yield across 6,004 families in Solve-RD. ¢, Chart summarizing

yield per disease category (ERN); the denominator is 6,004 families. d, Chart
summarizing the different variant types that led to amolecular diagnosis in 506

ITHACA

S
Coding
EURO-NMD  GENTURIS SNV/InDel
ERN (82.8%)

of 6,004 families as part of the systematic reanalysis effort of Solve-RD. *Disease-
causing SNVs or shortinsertions/deletions were identified in 419 families.
®Disease-causing non-SNV variants identified in 87 families, including three
cases of compound heterozygosity involving an SNV and a CNV/SV, identified
through the ‘other variant type’ analyses, and are counted only under ‘New
genetic diagnosis other variant types’. ‘In 114 of 147 cases where we could confirm
the variant identified in the ad hoc analysis, we established that it would also
have been found by the standard analysis. RD, rare disease; splicing SNV/InDel,
noncanonical splicing sites; WG, work group.

SNV witha CNV/SV formed acompound heterozygous variant, and one
case where two CNVs affecting different genes led to a digenic diagnosis
(Extended DataFig. 2 and Supplementary Table 4).

The diagnosticyield across disease groups (that is, ERNs) ranged
from 2.8% (genetic tumor risk syndromes, GENTURIS) to 10.6% (rare
neurological disorders, RND), correlating with the number of estab-
lished disease genes provided by the ERNs (Fig. 2 and Supplementary
Table 2). Overall, for the 506 newly diagnosed probands, the inherit-
ance pattern was autosomal dominant for 306, autosomal recessive
for 137, X-linked for 42, mitochondrial for 16, dual diagnoses in four
individuals and digenicinheritancein one individual (Supplementary
Table 4).

Next to the overall yield across the cohort, the importance of
new diagnoses can be illustrated by individual rare-disease case
reports, each benefitting from technical and interpretational
improvements, leading to the closure of diagnostic odysseys. For
example, we highlight a 58-year-old male from the RND cohort who
developed a rare neurological disorder at 42 years of age, includ-
ing sensory neuronopathy or sensory polyneuropathy, which was
later specified as spastic ataxic gait and confirmed the presence of
signs of peripheral neuropathy. Our reanalysis revealed a large intra-
genic deletion in combination with a missense variantin B4GALTNTI,
which were both proven to be pathogenic (P0015028; Extended
Data Fig. 4). Functional confirmation was obtained via glycomics
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Fig. 3| Examples of ‘beyond standard’ variant types by Solve-RD. a-d, lllustrative examples of previously unsolved rare-disease probands for which a new variant
other thana coding SNV/InDel resulted in a new diagnosis. a, De novo CNV affecting BICRA (P0012861). b, MEl variantin COL6A2 (P0014682). ¢, SV in SCN1IA
(P0011371). d, STR expansion affecting AR (P0002409).

analysis of plasmaglycolipids, indicating reduced levels of B#GALNT1  and haplotype analysis had already pointed to an underlying APC vari-

glycolipid products. ant, the diagnostic deletion was not detected in routine diagnostics due
An example of a previously missed CNV was a small. single-exon  toalack of multiplex ligation-dependent probe amplification probes

deletion of APCidentified in anindividual (P0009136, Extended Data  covering the specific region affected.

Fig.5) from the GENTURIS cohort presenting with suggestive familial In the ITHACA cohort we highlight two individuals, one with a

adenomatous polyposis. Although the clinical course, family history = mosaic de novo mutationin PIK3CA (Chr3(GRCh37):2.178916876G>A;
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NM_006218.4:¢c.263G>A; p.(Arg88GIn), present in 13% of the reads) in
anindividual withcomplex partial seizures and asymmetry of the legs
and face (P0012716; Extended Data Fig. 6a). This individual had been
clinically suspected of having underdevelopment of the left side of the
body, rather than overgrowth of the right side of the body, which meant
that an overgrowth syndrome had not previously been considered.
Furthermore, probably due to mosaicism, the proband presented
with a relatively mild phenotype when considering the spectrum of
PIK3CA-related overgrowth, which made accurate clinical diagnosis
challenging.

The second ITHACA example involves an individual (P0013065;
Extended DataFig. 6b) with severe developmental delay and multiple
syndromic features, including delayed motor, communicative and
social milestones: crawling at 15 months, walking at 30 months, first
words at7 years of age and speech characterized by severe verbal dys-
praxia. Additional medical problems comprised divergent strabismus,
muscle tone dysregulation with contractures and inattentive and
hyperactive behavior with aggressive tantrums. Physical examination
revealed a slender body and microcephaly (height 184 cm (s.d. = 0);
weight 51.5 kg; body massindex15.2; head circumference 54.5 cm, s.d.
-2).He had asmall, asymmetric thorax of unusual shape (the midtho-
racic region being broader in the frontal plane and flattened in the
sagittal plane compared with the high thoracic region), high thoracic
kyphosis and scapular winging. His hands and feet were slender, with
long fingers and toes, camptodactyly of the 2nd, 3rd and 4th fingers
of therighthand and he exhibited elbow and knee contractures. Facial
dysmorphismsincluded along and narrow facial shape, full eyebrows
withsynophrys, downslant of the palpebral fissures, prominent eyelids
with ptosis, divergent strabismus, low-set ears with a square-shaped
and flattened upper helix, and a short nose. Here, the identification
of a de novo variant in MN1 ended a 20-year diagnostic odyssey. The
disease-gene relationship for MNI was established following initial
routine analysis, but now finally enables the diagnosis of CEBALID
syndrome.

In the NMD cohort, we highlight a 14-year-old boy with an initial
diagnosis of congenital myasthenic syndrome (CMS) and his mildly
affected mother. Systematic reanalysis led to the identification of a
mitochondrial variant, m.3243A>G in MT-TL1, with an observed het-
eroplasmy of 0.27 in the proband and 0.14 in his mother (Extended
Data Fig. 7). The difference in heteroplasmy probably correlates with
the mild phenotype observedin the proband, and with the absence of
mitochondrial myopathy featuresin his mother. While the initial clini-
calsuspicioninthe proband was CMS due to the notable fatigability, the
fact thatmitochondrial disease canbe highly variable in presentation
means that mild forms of mitochondrial myopathy can be difficult to
diagnose clinically.

An example on how variant annotation pipelines can aid in vari-
ant interpretation is provided through the diagnostic path of a girl
(P0012491) who was clinically suspected to have Rett syndrome
(MIM#312750). Exome sequencing performed in 2014 did not yield a
diagnosis, despite specific attention being applied to variants affect-
ing MECP2, the gene associated with Rett syndrome. Almost 8 years
later, the reanalysis presented here uncovered a pathogenic de novo
MECP2 variant from the same data. Retrospective analysis of previous
interpretation steps revealed that the variant was initially annotated to
aless relevant isoform of MECP2 (MECP2-e2; ENSTO0000303391.11),
inwhich the variantlocated to anintron. However, reannotation here
revealed that the variant truncates the brain-specificisoform of MECP2
(MECP2-e1; ENST00000453960.7), and hence is indeed explanatory
for the Rett syndrome in this girl.

Cases diagnosed by ad hoc expert review. During the course of
Solve-RD, many contributing partners continued to perform analysis
on specific families of interest, both locally and using RD-Connect
GPAP. This ad hoc expert review provided 249 additional diagnoses

(4.1%), some of which have been included in individual reports™"2?,
and novel disease gene discovery efforts**** published previously
(Supplementary Table 5). Cases solved through ad hoc expert review
were reported to Solve-RD and not interpreted further as part of the
systematic reanalysis. For 197 (79%) of these ad hoc diagnoses, the
causative variants were SNVs. For 147 (75%) of these SNVs we could
assess post hoc whether the variants would also have been identified
by the systematic reanalyses performed. We found that in 114 of 147
(78%) casesthe SNVs would have been identified, while the remaining
cases were diagnosed due to the discovery of variantslocated in novel
disease genes notincluded in ERN gene lists, or initially discounted for
technical reasons (for example, having insufficient coverage (fewer
thanten reads) or being deep intronic variants).

Candidate disease-causing variants. In addition to variants that
were deemed causative for disease, we identified a further 378 vari-
ants (in 333 affected individuals) in established disease genes that
have not yet been confirmed as causative, either because the variant
does not fully explain the individual’s phenotype or because the vari-
ant’s pathogenicity cannot yet be conclusively determined (Fig.2 and
Supplementary Table 4).

Cross-ERN analysis, recurrences and clinical actionability
Cross-ERN de novo mutation analysis. Systematic reanalyses were
performed by each of the four ERNs, thus maximizing disease-specific
expertise. Because the clinical spectrum may occasionally cross ERN
boundaries, we assessed all de novo mutationsacross allgenesincluded
inany of the ERN genelists (2,512 unique genes), irrespective of which
ERN originally submitted the case. This led to a molecular diagnosis
in an additional three probands through the identification of (prob-
able) pathogenic de novo variants in CSDEI (ref. 25), EP300 and SYT1
inindividuals P0012248, P0014714 and PO018474, respectively (Sup-
plementary Table 6), which would have been missed without this
cross-ERN analysis. This included a young girl (PO014714) present-
ing with microcephaly, face abnormality, muscle hypotonia and neu-
rodevelopmental delay, leading to a clinical suspicion of Cornelia de
Lange syndrome (MIM#122470; https://www.omim.org/entry/122470).
Solve-RD’s efforts led to theidentification of ade novo frameshift vari-
antinthe histone acetyltransferase p300 gene: EP300(NM_001429.4)
:c.1152_1153del; p.(Gly385GInfsTer25), suggesting a clinical diagnosis
of Rubinstein-Taybisyndrome (MIM#180849). This prompted clinical
re-evaluation of the proband’s phenotype, at which point the clinical
diagnosis was confirmed. Another example (P0012248) concerned
ayoung male with severe neurodevelopmental delay, microcephaly,
absent speech, generalized hypotonia, nystagmus and inability to walk.
Here, the systematic reanalysis of the proband’s ES data within Solve-RD
led to the identification of a de novo missense variant in synaptotag-
min1, SYT1 (NM_001135806.2):¢c.1103T>C; p.(1le368Thr), leading to
amolecular diagnosis of Baker-Gordon syndrome (MIM#618218).
Retrospective analysis of the original ES data of both cases revealed
thatthe variants had not beenidentified by the correspondingin-house
pipeline.

Recurrent variants. We observed recurrence for 21 (probable) patho-
genicvariants, together accounting for 41 diagnoses (Supplementary
Table 7). These 21 variants occurredin 18 genes, with three genes (SPG7,
KCNAZ2 and SPAST) harboring two different recurring variants.

One of the recurring variants was identified across three
ERNs: an identical MT-ATP6 missense variant (chrM:9185T>C
(ENST00000361899:¢.659T>C (p.(Leu220Pro))) was observed
in five affected individuals (P0010243, PO009606, PO009608,
P0004265 and PO004266) from three unrelated families sub-
mitted by ERNs EURO-NMD, RND and ITHACA. The variant was
observed with a heteroplasmy of 77 and 90% in the EURO-NMD
and RND probands, respectively, while it was homoplasmic in the
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Fig. 4| Example of anew discovery by Solve-RD. a,b, An example of discoveries
enabled by the Solve-RD resource. a, RAB14 de novo variants in two cases from
this project contribute to the establishment of a new genotype-phenotype
relationship. The firstindividual (P0012753) presents with mild global
developmental delay in the absence of any facial dysmorphism or congenital
anomalies, and carries a de novo variantin RABI4 (chr9:123952916G>A;
NM_016322.3:c.200C>T; p.(Thr67Met)), whichis rare (not observed in gnomAD
v.2.1.1), likely to be deleterious (CADD score of 29) and has been observed de
novoinatleast four additional individuals with developmental disorders in the
literature”. The second individual (P0012904) presents with mild ID, subtle
facial dysmorphisms comprising a high, square-shaped forehead, downslant

Mild intellectual disability (HP:0001256);
delayed speech and language development

(HP:0000244); downslanted palpebral
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of palpebral fissures and alow-hanging columella, in the absence of congenital
anomalies. The de novo variant found in this individual (chr9:123954475A>C;
NM_016322.3:¢c.80T>G; (p.(Leu27Trp)) is also absent from gnomAD, predicted to
be deleterious (CADD score of 28) and has been observed de novo in at least one
additional individual with aneurodevelopmental disorder in DECIPHER
(https://www.deciphergenomics.org/patient/305550/phenotypes/person/62257).
The female individual reported in Decipher presents with moderate ID, facial
dysmorphism consisting of large earlobes, smooth philtrum, awide mouth and
protruding tongue, short feet with congenital talipes calcaneovalgus, thick hair
and anumbilical hernia. b, Salent features of the two cases ina. aa, Amino acid.

ITHACA proband, in line with the variable phenotypic presentation
(Supplementary Table 8).

Beyond diagnosis to clinical actionability. We investigated the
number of diagnosed individuals that would potentially benefit from
therapy or other actionability, by considering medications or inter-
ventions included in three databases: IEMbase”®, Treatabolome” and
ClinGen?®, and ininternational cancer guidelines.

Weidentified 73 affected individuals (14.4% of diagnosed individu-
als) thatharbored variantsin a potentially actionable gene (Extended
DataFig. 8).

Implementation, and feedback to referring clinicians and eventu-
ally to families and patients, is following local guidelines that differ
between centers. Actual actionability has already happened and is
continuously ongoing. To date we have received feedback for a subset
ofthe aforementioned cases, with details of 16 examples summarized
inSupplementary Table9.

An example from ERN EURO-NMD is provided by the case of two
young-adult patients from different families who had presented with
limb-girdle muscle weakness and fatigability from 2 years of age, and
subsequently developed ptosis and difficulty in swallowing, lead-
ing to a suspected diagnosis of limb-girdle myasthenic syndrome

(P0020778). While previous ES analyses were negative, reanalysis
within Solve-RD using SpliceAl*’ led to the identification of ahomozy-
gousintronic variant with a potential splice donor effect, c.1023+5G>A
proximal to the exon 5-intron 5 junction of DES in both patients. In
parallel, but outwith Solve-RD, a female with a similar phenotype,
among a cohort of patients suspected of having CMS being treated
in the same hospital, was also found to be homozygous for this muta-
tion. Subsequent laboratory analyses indicated reduced produc-
tion of normal desmin transcript and protein. Administration of the
standard CMS treatment of pyridostigmine and salbutamol was ini-
tiated and, while one of the two patients showed no improvement
after 3 months, the other exhibited 50% improvement in measures of
fatigable weakness.

Discussion

Genomic data from rare-disease cases that have been extensively
analyzed by experts in the past can still yield a large number of new
diagnoses, with previous studies reporting success rates commonly
in the range of 6-13% (ref. 5). We previously reported on preliminary
ClinVar-focussed reanalyses undertaken within Solve-RD, which
resulted in molecular diagnoses being provided for 111 families™". The
value of anin-depth systematicreanalysisis supported by our success
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indiagnosing 8.4% of affected individuals through our systematicrea-
nalysis, and the further 4.1% diagnosed in parallel by local reanalysis in
individual centers through ad hoc expert review. In total, we have suc-
cessfully diagnosed12.6% of families to date. While afew recent studies
have reported higher diagnostic rates following reanalysis, ranging
from15-21% (refs.30-33), it should be noted that those datasets were
more homogeneousin nature, usually originated fromasingle country
and were of substantially smaller scale and breadth. Nevertheless, our
diagnosticyield is at the top end of the typical range’.

The proposed framework, rare disease-reanalysis logistics
(RD-REAL), with its two-level expert review (Methods), represents a
practical blueprint for reanalysis efforts. Here we limited our analysis
to four of 24 ERN rare-disease domains and, although it remains to
be established whether similar results can be obtained in the other
domains, the approach applied in Solve-RD is generic and can eas-
ily be implemented across the full gamut of rare diseases and at
globalscale.

Such collaborative reanalysis efforts can, for the present, exist
in parallel with local or national reanalysis efforts, ideally embedded
withinthe healthcare systemand allowing for prompt return of results
with immediate actionability in some individual cases. Ultimately,
reanalysis efforts should be automated.

Further, the previously generated exome and genome sequenc-
ing data were highly heterogeneous because this is a pan-European
project aiming to provide diagnoses for individuals across Europe.
This heterogeneity, both in terms of the quality of the historic ES
data and the breadth of phenotypic descriptions, impacted upon
our ability to confidently identify potentially pathogenic variants.
The limited number of genomes, and the focus on well-established
disease genes used in this study, were not sufficient to support a sys-
tematic advantage of genome over exome sequencing in rare-disease
studies (Supplementary Table 10). Another limitation was that,
for two-thirds of the families analyzed (4,103 of 6,004), we had
sequencing data only from the affected proband, thus limiting sup-
porting segregation information during downstream variantinterpre-
tation, especially with respect to the identification of pathogenic de
novo variants.

Thisstudy provides several key insights. After more than adecade
of diagnostic exome sequencing®**, our knowledge of the spectrum
of genes and variants causing monogenic rare disease, and of the bio-
informatic pipelines used to detect them, is still increasing. This is
exemplified not only by the large number of SNV/InDel variants that
can now be correctly interpreted, leading to 84.1% of all novel diag-
noses (n=419), based on the availability of new gene- or variant-level
information, but also by the substantial proportion (15.9%, n = 87) of
novel diagnoses that were a result of individually rare variant types
not previously detectable by standard diagnostic bioinformatics
pipelines.

With the growing size of rare-disease datasets, we shall identify
an increasing number of identical variants in multiple individuals,
improvingthe odds of arriving at the correct variant interpretation for
multiple cases. This is evident here, because we identified 21 (probable)
pathogenic variants that occurred two or three times across a total of
41unrelated probands from the 6,004 families analyzed, sometimes
straddling different clinical disease categories.

We examined clinical actionability for the diagnosesin the series,
using a definition that considered only approved medication or (pre-
ventive) interventions. This is a more restrictive definition than that
applied in a previous study’. Even without considering reproductive
choice and surveillance of family members, there was potential for
medical actionability in 14.4% of those receiving a diagnosis in our
series, with ongoing implementation and the first concrete examples
showninSupplementary Table 9.

InSolve-RD, we developed several practical recommendations for
large-scale distributed genomic reanalysis initiatives.

Because data submitted are likely to be heterogeneous, it is
essential to standardize phenoclinical dataand metadata, and to start
genomicreanalysis using raw sequencing reads: define strictinclusion
criteria, including checking and verifying biological relationships; and
defineaminimum on-target coverage of 80-fold for exome sequencing
and 30-fold for genome sequencing. Multiple variant-calling pipelines
shouldbe used for each variant type, as highlighted by the results of our
CNVanalysis. Regular updates to bioinformatic workflows are essential
for integration of new tools and the latest versions of databases such
as gnomAD and ClinVar. When variants are found in genes linked to
the individual’s phenotype, consider reducing stringency in alterna-
tive allele frequency and/or read-depth to detect mosaicism or true
heterozygotes with poor allele balance.

When prioritizing cases for reanalysis, focus on those analyzed
further in the past, and prioritize variants based on their presence
in clinical interpretation databases such as Clinvar, HGMD and simi-
lar resources. Favor specificity over sensitivity when sharing short
lists of variants, and ensure they are shared only once per individual.
Record feedback from variant interpretation—whether confirming
disease-causing variants, identifying potential candidates or discard-
ing them—in an accessible database to prevent duplicated efforts.
Finally, reverse phenotyping is crucial for re-evaluation of clinical
diagnoses, particularly in syndromic cases.

We already have the first insights into the future value of the
Solve-RDresource and infrastructure. Our current effort focussed on
diagnoses in established rare-disease genes. However, this resource
and the datasets in Solve-RD should be well suited for the generation
of continued insights. Since the systematic analysis presented here was
completed, we have already promoted two SVs and seven CNVs from
candidate to disease causing®®*, and likewise for an additional ten
SNV/InDel variants (Supplementary Table11). This resource shall also
allow the discovery of novel disease genes or loci, and the discovery of
new disease mechanisms and causesis an ongoing part of Solve-RD™",
Therecentassociation of the noncoding RNA gene RNU4-2withacom-
plex NDD phenotype*** led to one further solved case in Solve-RD
(P001996), in addition to the Solve-RD case (P0007197) that contrib-
uted to the original discovery (Extended Data Fig. 9¢). As a further
example we highlight RAB14, which had been suggested to play arole
inneurodevelopmental disorders by a statistically significant enrich-
ment of de novo variants in a developmental disorder cohort in 2020
(ref. 23). The Solve-RD dataset includes data from two male indi-
viduals with neurodevelopmental phenotypes harboring de novo
variants in RAB14, now enabling genotype-phenotype characteri-
zation as a result of the comprehensive HPO description collected
here (Fig. 4a,b). Similarly, many additional genotype-phenotype
and/or mechanistic studies have been initiated from the Solve-RD
datasets and are currently followed up within the Solve-RD
RDMM-Europe initiative*.

Global data sharing is essential for discoveries in rare-disease
diagnostic research*, and has been enabled here. Authorized users
can use either RD-Connect GPAP to search and analyze integrated
phenotype (HPO and ORPHA codes) and gene- and variant-level data,
or EGA to download all data. The worldwide detection of gene-level
recurrence in other individuals affected by a rare condition is further
facilitated through connection to the MatchMaker Exchange net-
work*2. To benefit the rare-disease community, our framework will
involve expansion to other types of rare diseases through their respec-
tive ERNs, the incorporation of novel omics datasets* **—including
those obtained from long-read technologies**~'—and the inclusion
of artificial intelligence-based methodology*. The tools and infra-
structure developed within Solve-RD have been adopted as the core
framework for undiagnosed rare-disease case reanalysis within the
ERDERA project, which aims to extend out to all 24 ERNs and reanalyze
>100,000 datasets from rare-disease families across all disease types
(https://erdera.org/).
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Methods

Ethics oversight and enrollment

The ethics committee/IRB of University of Tiibingen gave ethical
approval for this work (ClinicalTrials.govno.NCT03491280). Informed
consent for datasharing, including indirect identifiers within Europe
for the purpose of research, was obtained fromall recruited individuals,
and all data submitters signed the Adherence Agreement and Code of
Conduct of RD-Connect GPAP. This covers the use of P-numbers that
linktosample IDs only inanarbitrary fashion and have the function to
allow traceability of results throughout the manuscript.

Allindividuals were recruited via four ERNs. Inclusion criteria
were a clinical rare-disease diagnosis in at least one family member
by one of the associated expert centers and aninconclusive exome or
genome analysis at the time of submission. We did not exclude anyone
based onsex, gender, ethnicity, race, age or any other socially relevant
groupings.

Each patient entry was associated with its submitting investi-
gator or clinician and linked to its corresponding ERN or UDP. The
responsibility of checking that the data were suitable for submission to
RD-Connect GPAP and Solve-RD lay with the data submitter, as required
by their Code of Conduct (current institution: Consorcio paralaExplo-
tacion del Centro Nacional de Analisis Gendmico) and Data-sharing
Policy (institution: Solve-RD general assembly), respectively. In some
cases, individuals had to bereconsented before data submission. The
individuals described in Extended DataFig. 6 gave permission for their
photographs to be used in this publication, for which we thank them
and their families. This study adheres to the principles set out in the
Declaration of Helsinki.

Family recruitment

Any undiagnosed individual with an apparent genetic rare disease
that falls under the umbrella of conditions in which one of the four
partner ERNs specialize, and for whom a previous ES analysis had
been undertaken and proven inconclusive, was a candidate for inclu-
sioninthisstudy. The pan-European recruitment effortinvolved over
300 clinicians with expertise in rare-disease working in 43 research
groupsacross 37 institutions located in 13 countries. To facilitate data
submission and sharing, we implemented a pragmatic approachto col-
lecting datasets to allow efficient reanalysis across centers. We refer to
these datasets as RD-REAL, which must include genomic data, family
information and phenotypic descriptions. The RD-REAL framework
facilitates sharing of data and expertise at a continental scale, con-
sisting of (1) expert curated data, (2) a comprehensive analysis suite
and (3) two-level (thatis, molecular and clinical) expertreview (Fig.1).

Data pertaining to 10,039 individuals from 6,246 undiagnosed
families wereinitially assembled, whichwere thenreducedto 9,645 indi-
viduals (6,447 affected) in 6,004 families following application of
quality control measures, as described below. Of the 6,447 affected
individuals, 3,592 (56%) were male and 2,855 (44%) female; 6,215 (96.4%)
were alive at the start of the study, 84 (1.3%) were deceased and for 148
(2.3%) their vital status was unknown.

Pseudonymized phenotypic data collation for allindividuals was
facilitated using the PhenoStore module of RD-Connect GPAP. Pheno-
Store promotes deep phenotyping of affected individuals using HPO
terms, and disease classification using Orphanet Rare Disease Ontology
(ORDO) ORPHA codes (http://www.orphadata.org/cgi-bin/index.php)
and/or OMIMidentifiers (https://www.omim.org/) asappropriate, and
can import/export this information using the GA4GH Phenopackets
format™.

ERN cohort descriptions

For all families recruited to Solve-RD, local standard-of-care genetic
diagnostic work-up and/or research-based analyses had failed to
identify any molecular genetic cause underlying the proband’s rare
condition.

ERNRND

The ERNRND cohort consists of 2,799 individuals from 2,271 families
with previously unsolved rare neurological diseases. Genomic and
phenotypic data for all affected individuals, and for family members
where available (-20% of families), were submitted for reanalysis by
nine ERNRND partner institutions located in eight European countries:
Belgium, France, Germany, Hungary, the Netherlands, Slovenia, Spain
andthe UK. Individuals had beenrecruited and sequenced either as part
of standard diagnostic care or through participationinlarge European
rare-neurological disease research projects such asNeurOmics (https://
rd-neuromics.eu/) and Treat-HSP (https://www.treathsp.net/). The
2,271 families comprised 1,924 singletons, 168 duos, 141 triples (103
of which were parent-child trios) and 38 families with four or more
members, giving a total of 2,453 affected individuals. The HPO terms
most frequently used to describe phenotypes were ataxia, gait distur-
bance, dysarthria and spastic paraplegia (Supplementary Table 12).

ERNITHACA

The ERNITHACA cohort consists of 4,405 individuals from 1,836 fami-
lies, submitted for reanalysis by 12 partner institutions located in six
countries: the Czech Republic, France, Germany, Italy, the Netherlands
and the UK. A further 65 individuals from 21 families from the Span-
ish Undiagnosed Disease Program (SpainUDP)° were included in this
cohortforanalysis, due to the similarity of the underlying phenotypes.
The clinical spectrum of the ERNITHACA cohort consisted of individu-
als with intellectual disability (ID) with or without additional pheno-
typic features, and individuals with (multiple) congenital anomalies
without ID. Given the importance of de novo mutations underlying
the rare conditions within ERN ITHACA***, unaffected parents and/
or unaffected siblings were also included, wherever possible, to allow
for direct segregation of variants. The 1,857 families comprised 632 sin-
gletons, 38 duos, 1,138 triples (1,081 parent—-child trios) and 49 families
with four or more members, giving atotal of 1,933 affected individuals.
The HPO terms most frequently used to describe affected individu-
als related to global developmental decay, intellectual disability and
autism (Supplementary Table 12).

ERN EURO-NMD

The ERN EURO-NMD cohort consists of 2,125 individuals from 1,517 fam-
ilies, submitted for reanalysis by 16 partner institutions located in eight
countries: Belgium, Canada, Finland, France, Germany, Italy, Spain and
the UK. Previously unsolved datasets submitted to Solve-RD had either
beenrecruited and sequenced as part of large international neuromus-
cularresearch projects, suchas NeurOmics (https://rd-neuromics.eu/),
SeqNMD, Myocapture (https://www.france-genomique.org/projet/
myocapture-novel-for-genes-myopathies/?lang=en), MYO-SEQ**,
UK10K (https://www.uk10k.org/), Unravel-CMS, BBMRI-LPC (https://
cordis.europa.eu/project/id/313010), CMS CMG (https://cmg.broa-
dinstitute.org/) or Consequitur®, or through participating centers’
owndiagnostic or research pipelines. Samplesincorporated from the
MYO-SEQ project were recruited from 50 specialized neuromuscular
disease centers across Europe and the Middle East, and some data-
sets incorporated from the Unravel-CMS, BBMRI-LPC and CMS CMG
projects were from privately sequenced undiagnosed individuals fol-
lowed at Nimhans, India (https://nimhans.ac.in/). The 1,517 families
comprised 1,202 singletons, 90 duos, 156 triples (135 parent-child
trios) and 69 families with four or more members, giving a total of
1,685 affected individuals. The HPO terms most frequently used to
describe affected individuals related to muscle weakness, myopathy
and abnormal muscle morphology (Supplementary Table 12).

ERN GENTURIS

The ERN GENTURIS cohort consists of 390 individuals, from 359 fami-
lies, with a suspected genetic tumor risk syndrome, submitted for
reanalysis by seven partner institutions located in four countries:
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Germany, the Netherlands, Portugal and Spain. All individuals were
either recruited and sequenced as part of daily diagnostic care, or as
part of research projects. The 359 families comprised 345 singletons,
six duos, four triples (one parent-child trio) and four families with
four or more members, giving a total of 378 affected individuals. The
terms most frequently used to describe affected individuals related to
colorectal cancer, followed by gastric cancer and pheochromocytoma
(Supplementary Table 12).

Phenotype and clinical diagnosis

A median of six HPO terms (range 0-74) were used to describe each
affected individual across this Solve-RD cohort. This drops to five
HPO terms (range 0-45) following removal of HPO redundancies. To
remove annotation redundancy, only the most specific HPO terms
were considered by counting terms from leaf nodes, or nodes with-
out selected parent or child entities. Overall quality of phenotypic
descriptions was assessed using the Monarch Initiative annotation
sufficiency score (maximum possible value of 5.0). The median annota-
tion sufficiency value across the Solve-RD cohort was 3.61 (Extended
Data Fig. 1). Clinical diagnosis was reported using ORDO codes for
2,126 affected individuals.

Generation of ERN-specific candidate gene lists

To facilitate the potential for clinicians to confirm adiagnosis based on
identified variants, findings returned to the ERN data interpretation
task forces (DITFs) for interpretation were restricted tothose indisease
genesof interest to the specific ERN, apart from any potentially patho-
genic variants encountered in the mitochondrial genome, all of which
were returned. Each of the four ERNs generated a curated list of genes
implicated in diseases studied, exploiting their pan-European disease
expertise. The RND list was primarily based on genes associated with
neurological disease with green review status in Genomics England
PanelApp®, with the addition of a further 25 genes based on recommen-
dations by clinical experts (n =1,821genes). For ITHACA, a consolidation
of gene lists pertaining to ID fromavariety of resources was undertaken,
followed by evaluationbased on occurrence in multiple resources and
the quality of curation of said resources, resulting in alist of diagnosti-
callyrelevantgenes (n=1,645).Inthe case of GENTURIS, thelistincluded
all genes routinely screened in the partners’ diagnostic laboratories
(n=230).For EURO-NMD, the manually curated and annually updated
Gene Table of Muscular Disorders” was used (n = 615in2021). These ERN
genelists were used as a primary filter in the identification of potentially
pathogenic variants of any type in affected individuals submitted to
Solve-RD by collaborators from the corresponding ERN, irrespective
of the individual’s phenotype. This resulted in a list of 2,512 distinct
genes implicated in rare diseases of interest to the four ERNs, many of
which wereidentified by more than one ERN (Supplementary Table 2).

Identification of clinically actionable genes

Potentially clinically actionable genesin affected individuals wereiden-
tified fromthree independentinitiatives: ClinGen?® (n = 77), IEMbase™®
(n=214)and Treatabolome® (n = 154; https://treatabolome.cnag.crg.
eu). This provided a total of 392 unique genes, of which 311 (79%) were
included in at least one of the curated gene lists from the ERNs. For
the assessment of clinically actionable genes in individuals affected
by ahereditary cancer disposition, we searched GeneReviews and the
National Comprehensive Cancer Network Clinical Practice Guidelines
inOncology (https://www.nccn.org/guidelines/category 1) for action-
ability based on surveillance for cancer advice.

Data submission and analysis workflow

Raw sequencing data, associated metadataand phenotypicand pedigree
descriptions were collated from 43 research groups across Europe using
RD-Connect GPAP®. To ensure secure, rapid and robust transfer of the
large quantity of raw genomic data (FASTQ, BAM or CRAM) for reanalysis

(approximately 100 TBintotal), each research group was provided with
access to a dedicated private space in which to upload their sequenc-
ing data, on an Aspera server hosted by RedIRIS, the Spanish national
research and education network (https://www.rediris.es/). From here
the sequencing datawere downloaded to the Centro Nacional de Analisis
Gendmicoin Barcelona, which develops and hosts RD-Connect GPAP.

All genomic data submitted to Solve-RD were analyzed in identi-
cal fashion to minimize any batch effects, using the RD-Connect GPAP
standard analysis pipeline®. Briefly, reads were aligned to the decoy
version of GRCh37 (hs37d5) using BWA-MEM. Short variants (that is,
SNVs) andinsertions and deletions <50 ntinlength (referred to here as
InDels) were identified across the genome, independent of the target
capture region of interest, using the GATK HaplotypeCallerinaccord
with the GATK Best Practices workflow. The output of the pipeline for
each experiment is an aligned, base quality score recalibrated BAM,
and a genetic variant call format (gVCF) per chromosome and for the
mitochondrion. All variant positions covered by at least eight reads,
and a GATK-assigned genotype quality of at least 20, are uploaded to
RD-Connect GPAP, as are any nonvariant positions for which at least
one other experimentin the uploaded batch has a variant position at
the same genomic location. SNVs, InDels and mitochondrial variants
received detailed annotations provided by Ensembl Variant Effect
Predictor®, gnomAD® and ClinVar'®, among other resources.

Inadditionto the above described annotations available through
RD-Connect GPAP, all gVCFs derived from affected individuals were
converted to VCFs and annotated by a custom annotation pipeline at
RadboudUMC, as described previously®®. This comprises variant-based
annotations, including nucleotide conservation scores (phyloP and
CADD), RadboudUMC in-house database allele frequencies and
gene-based annotations including, for example, mouse knockout
model phenotypes and pLI/LOEUF scores, among others. These anno-
tated VCF fileswere made available to the Solve-RD consortium through
the Solve-RD Sandbox, a cloud environment used by project partners
to conductbespoke analyses and thereby to securely share analysis and
interpretation results, hosted by UMC Groningen, the Netherlands. A
more detailed description of the Solve-RD datainfrastructure hasbeen
published previously®*.

Raw sequencing data (FASTQ), and newly generated alignment
(BAM or CRAM) and variant call (gVCF) files for each experiment,
accompanied by the corresponding phenotypic description in Phe-
nopackets and pedigree descriptions in PLINK PED format, were sub-
mitted to EGA’ in Hinxton, UK for long-term archival and to allow
controlled access by the wider human genomics community.

Quality control

Atotal of 10,276 ES and GS RD-REAL datasets from 10,039 individuals
were initially submitted to Solve-RD for reanalysis. Preliminary qual-
ity control of sequencing data required a median coverage of at least
ten reads over at least 70% of the defined target region of interest for
the corresponding enrichment kit, or across the entire genome in
the case of GS data. Furthermore, with respect to phenotypic data,
each submitted family was required to have an affected proband with
associated HPO terms. Misassigned relationships were identified, and
subsequently corrected where possible, using KING (https://www.
kingrelatedness.com/). Following application of these quality control
measures, the final number of datasets taken forward for reanalysis
comprised data from 9,645 individuals from 6,004 families, of which
6,447 (66.9%) were affected by a rare disease. Of these, ES data were
available for 9,124 (94.6%) individuals, GS data for 333 (3.5%) and both
ES and GS data for the remaining 190 (2.0%).

Variant identification and prioritization

RD-REAL data analysis and interpretation. We applied two-level
expertanalysis and interpretation to the RD-REAL datasets, compris-
ing firstly bioinformatic and molecular genetics experts working
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together in dedicated working groups within a data analysis task
force, and secondly, clinicians and rare-disease experts from each
ERN who jointly prioritized and interpreted all variants returned
by the data analysis task force, working in four distinct DITFs. To
maximize the generalizability of this effort, the entire dataset of
6,004 families was included in a comprehensive analysis suite
comprising an initial centralized analysis of each different variant
type: short SNVs and InDels; de novo mutations; and mitochondrial
variants, noncanonical splice variants, CNVs, SVs, STRs and MEls.
Subsequently, filters were applied with respect to variant quality,
control population allele frequencies and predicted consequence,
followed by further ERN- and disease-specific filters including
the application of the ERN-specific gene lists described above.
Details of all tools applied in these analyses are provided in
Supplementary Table 13.

Because Solve-RD processed datain multiple data freezes, sub-
sets of experiments continued to undergo analyses in parallel, some
of which resulted in diagnoses before the results of the centralized
systematic analyses were returned to submitters. This includes the
preliminary analysis of a smaller dataset'>"”. Furthermore, many
datasets underwent parallel or additional analyses in the labora-
tories of the respective submitters, resulting in the identification
of (probable) pathogenic, or candidate disease-causing, variants
in established or novel genes. These results are labeled as ad hoc
expert review (Fig. 2 and Supplementary Table 5), although the
majority of these variants were also prioritized in the systematic
analyses.

Takentogether, thisresultedin either diagnosedindividuals (that
is, those harboring (probable) pathogenic variants that fully explain the
proband’s phenotype, unequivocally allowing amolecular diagnosis of
arare condition) or affected individuals with candidate variants worthy
of further follow-up and/or functional studies, which may prove to be
diagnostic in the future, as adjudged by the referring clinicians and/
orexpert ERN partners.

SNVs/InDels. Programmatic reanalysis was undertaken on annotated
variants from RD-Connect GPAP using application programminginter-
face endpoints, enabling complex queries with different combinations
of filters across specific datasets™. Two different sets of parameters
were used: first, a low-hanging fruit analysis to identify (probable)
pathogenic variants already listed in ClinVar; second, identification
of rare variants of high or moderate impact in ERN genes of interest,
matching the expected mode(s) of inheritance.

(1) Low-hanging fruit analysis: depth of coverage (DP) >7; GATK
genotype quality (GQ) >19; minor allele frequency (MAF) <0.01
ingnomAD; observed allele frequency <0.02 in the internal
RD-Connect GPAP database; affecting a gene in the correspond-
ing ERN gene list, and annotated as pathogenic (class 5) or prob-
ably pathogenic (class 4) for any disorder in ClinVar as of May
2021.

(2) High-moderate-impact variant analysis: DP >7; GQ >19; MAF
<0.01in gnomAD:; observed allele frequency <0.02 in the
internal RD-Connect GPAP database; affecting a gene in the cor-
responding ERN gene list, predicted to have a high or moderate
consequence at the protein level according to Ensembl VEP and
matching the expected inheritance pattern (that is, autosomal
dominant, autosomal recessive or X-linked).

Variants passing the above filtering criteria were returned in a
singletabletothe respective DITF for each ERN, to facilitate evaluation
and provision of feedback. Across the Solve-RD cohort we identified a
mean of eight SVs per affected individual for interpretation, ranging
fromoneto13 across ERNSs, this difference largely reflecting differences
in the number of genes included in the corresponding ERN gene lists
(Supplementary Tables 2and 14).

De novo mutations. For all families for which parent-child trios were
available (n=1,320; 22% overall), de novo mutation calling was under-
taken using both HaplotypeCaller and DeNovoCNN®. De novo muta-
tion calls from DeNovoCNN with probability >0.85 of being abonafide
event, and any apparent de novo mutations identified by Haplotype-
Caller which were located in a gene on the respective ERN gene list,
were returned to DITFs for variant interpretation.

Mitochondrial genome variants. Mitochondrial DNA variants were
identified using MToolBox.The workflow includes mapping reads to
the revised Cambridge Reference Sequence mitochondrial genome
and annotation using the MITOMAP database (https://www.mitomap.
org/MITOMAP, accessed 28 June 2021). Both homoplasmic and hetero-
plasmic variants were identified (Supplementary Table 15).

Identification of noncanonical SVs. For identification of variants
potentially affecting splicing at sites other than canonical splice sites,
two novel tools were applied, SpliceAl”” and SQUIRLS®®. Rare variants
receiving a strong splice-altering prediction from both tools (that is,
both a delta-score >0.8 in SpliceAl and a pathogenic classification by
SQUIRLS, whichwould potentially alter splicing of any gene in the cor-
responding ERN gene list) were returned to DITFs for interpretation.

Large CNVs and SVs. Three different tools were used to maximize
the likelihood of identifying pathogenic CNVs, as described in Demi-
dov et al.?>: ClinCNV¥, Conifer and ExomeDepth. Variants observed
to have a frequency >0.01 across the cohort were discarded, and
the remaining rare CNVs were intersected with the corresponding
ERN gene list and annotated using AnnotSV*® before being returned
to DITFs for interpretation. In parallel, Manta®” was run in exome
mode to search for signatures of split reads, which might indicate
the presence of balanced SV such as inversions. To facilitate inter-
pretation, Integrative Genomics Viewer (IGV) tracks were generated
for all large variants, indicating the exons, the position and type of
call produced by the tools and beta-allele frequency. See Supple-
mentary Table 13 for details regarding sources and exact versions of
toolsapplied.

STR expansions. The identification of potentially pathogenic STR
expansions was largely based on the work of van der Sanden etal.*’. In
brief, ExpansionHunter”® was used to screen 21 genomic loci previously
described as harboring pathogenic repeat expansions in both ES and
GS data (Supplementary Tables 16 and 17), from a total of 5,983 fami-
lies. Following retrieval of predicted pathogenic genotypes across
all samples, any frequently observed events were discarded and the
remaining variants affecting genes on the corresponding ERN gene list
were manually curated by visual inspection, before being returned to
DITFsforinterpretation.

MElIs. Toidentify any MEIs potentially affecting ERN genes of interest,
the methods described by Wijngaard et al.” were followed. In brief, MEI
identification was undertaken using both MELT and SCRAMble. MEls
of potential interest were limited to those that fell within a window of
+50 base pairs (bp) of ES target areas. All MEIs observed in nonaffected
cases wereremoved, followed by the exclusion of those presentin the
Database of Retrotransposon Insertion Polymorphismsin Humans. MEI
frequency was calculated by counting all overlapping (+50 bp) MElsin
the cohort, and only rare events—defined as having afrequency <0.03%
intheir respective cohorts—wereretained. We further filtered to MEls
foundinclinically relevant genes based on the patient’s phenotype as
defined by the ERN. The remaining MEIs were visually inspected in IGV
todiscardlow-quality calls. Finally, MEIs were selected for confirmation
by ERN members, taking into consideration the phenotype-genotype
match, inheritance pattern and presence of asecond variant in the case
of anautosomal recessive disorder.
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Anoverview of the accurate number of families analyzed for each
variant type is provided in Supplementary Table 18.

Statistics and reproducibility

This study includes only observational statistics, primarily counts. We
report means and medians where appropriate, and applied two-tailed
Fisher’s exact tests to compare differences between groups. Each
family was analyzed independently, in order of submission, and no
statistical method was required to predetermine sample size. No data
were excluded, with the exception of cases that failed quality con-
trol as described above. Sex is not a relevant variant, because both
sexes are essentially equally likely to be affected by a rare disease.
The investigators were not blinded to allocation during outcome
assessment.

Reproduction of results was not applicable. However, follow-up
and validation of identified variants by orthologous means and/or
using other bioinformatic tools were undertaken in the vast major-
ity of cases, to ensure that the variants identified were biologically
real and relevant. As commonly found in the rare-disease field,
replication of previously variant observations has happened, or
will happen, via databases (for example, ClinVar) or the scientific
literature.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Access to pseudonymized phenotypic information for all individu-
als and their genetic variants is possible through RD-Connect GPAP
(https://platform.rd-connect.eu/), on completion of registration and
approval by the independent RD-Connect Data Access Committee
(Code of Conduct and registration details can be found at https://
platform.rd-connect.eu/userregistration/). Allraw and processed data
files (FASTQs, BAM/CRAMSs, gVCFs, PED and Phenopackets) are avail-
able at the European Genome-Phenome Archive (https://ega-archive.
org/datasets/; datasets EGAD00001009767, EGAD00001009768,
EGAD00001009769 and EGAD00001009770, under the Solve-RD
study EGAS00001003851), following approval from the Solve-RD Data
Access Committee. Confirmed causative variants were submitted to
ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) under the follow-
ingaccession nos: SCV005091231-SCV005091564, SCV005199960-
SCV005200075and SCV005200692-SCV005200738.

Code availability

All analysis was undertaken using previously published tools and
resources. No custom code was used. Details of all tools applied in
these analyses, and relevant repositories, are provided in Supplemen-
tary Table13.
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Extended Data Fig. 2| Flowgram of all analyses performed within the Solve-
RD systematic reanalysis. “See Supplementary Table 2 for ERN specific gene
lists; °De novo analysis was performed genome-wide, irrespective of previously

identified disease genes; “SNV/InDels were investigated within the mitochondrial
DNA; ¢Small exceptions in the prioritisation were made between ERNs for certain
genes. See Online Methods, and Supplementary Tables 15-18 for further details.
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P0015028 - B4GALNT1 chr12:58024802C>T - missense variant & B4GALNT1 intragenic heterozygous deletions exons 6-11

58y v\

progressive gait disturbances,
lower limb spasticity,

ataxia,

urinary urgency,

peripheral neruopathy

Extended DataFig. 4| Example of an individual diagnosed with arare disease
from ERN RND. The left panel shows the pedigree of a 58-year old individual
first diagnosed at 42 years of age with progressive gait disturbance and urinary
urgency, in the absence of family history of these symptoms (P0015028). The
right panel shows two IGV screenshots indicating a heterozygous missense

SNV (c.451G>A (p.(Gly151Ser)) in B4GALNTI (top) and a heterozygous,
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incomplete deletion of exons 6-11 (commencing in exon 5, removing exons
6-11(NM_001478.5), and ending in the 3’'UTR (Chr12(GRch37): g.58014705-
58024263del). Location of the deletion is indicated by the red line in the top
track, supported by the reduced beta-allele frequency of variants in this region as
showninthe centre track, and further supported by read pairs spanning the full
10kb (inred) observed in the lower track.

approximately 10kb in length, deletion on the other allele (bottom), resulting
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Extended DataFig. 5| Example of anindividual diagnosed with a rare disease
from ERN GENTURIS. Left panel: pedigree of proband P0O009136 (indicated by
the arrow). Haplotype analysis demonstrated that all affected individuals carry

the same allele at the APClocus, inherited from the paternal branch of the family.

Right panel: comprehensive CNV analysis uncovered a heterozygous germline
deletion, approximately 200bp in length, at the beginning of coding exon 15 of
the APC gene which could not be identified by routine diagnostics using just the
sequencing and MLPA methods.
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Extended Data Fig. 6 | Examples of two individuals diagnosed with arare
disease from ERNITHACA. a) The left panel shows the phenotypic presentation
of a24-year old male diagnosed at fifteen years of age with asymmetry of

legs and face, described at that time as underdevelopment of the left side
(P0O012716, written consent that allows sharing of photographs was given). At
birth, asymmetry of the legs and face was evident and there was a postaxial
rudimentary digit on the right hand that regressed to a small nodule over

time. The asymmetry of the face and legs was reported to be stable over time
and his cognitive development was within the normal range (IQ of 89). He was
affected by complex partial seizures with continuous spike-and-wave during
sleep from childhood, however the seizures had a good clinical progression

and medication could be discontinued at eleven years of age. Other medical
problems included scoliosis, autism spectrum disorder, clumsy motor skills, and
sleeping problems. The IGV screenshot in the right panel confirms the presence
of arare de novo mosaic missense variant (observed in only 13% of reads) in
PIK3CA (chr3:178916876G>A), validated by Sanger sequencing. This variant had

previously been reported elsewhere to cause PIK3CA-related overgrowth, leading
to achange in the clinical diagnosis for this young man, and the resolution of his
diagnostic odyssey. b) The left panel shows the phenotypic presentation of an
undiagnosed 22-year old male who had experienced severe developmental delay,
and presented with a variety of physical anomalies, including an open mouth with
fulllip vermillion, a high and narrow palate with gum hypertrophy and irregular
dentition. A brain MRIwas initially reported to be uninformative (P0013065,
written consent that allows sharing of photographs was given)., The IGV
screenshot in the right panel indicates the presence of arare de novo nonsense
variantin MNI (Chr22(GRCh37):g.28146963C>T; NM_002430.2:c.3903G>A;
p-(Trp1301*)) unobserved in the parents. Retrospective reanalysis of the brain
MRIrevealed dysplasia of the cerebellar vermis, rhombencephalosynapsis and
mild bitemporal narrowing of the skull, consistent with a diagnosis of CEBALID
syndrome. The individuals described gave permission for their photos to be used
in this publication, for which we thank them and their families.
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Extended Data Fig. 7| Example of an individual diagnosed with arare
disease from ERN EURO-NMD. The left panel shows the pedigree, and clinical
history of proband P0005327 (indicated by the arrow). At eight years of

age he began to develop progressive lower limb weakness and fatigability.

He started to experience recurrent falls at eight years of age and went on to
develop progressive proximal lower limb weakness with prominent fatigability,
and awaddling gait. There was no history of bulbar or ocular symptoms. On
examination, bilateral asymmetric ptosis with fatigability was observed, as was
polyminimyoclonus. Muscle strength was normal in all four limbs, but fatigue
occurred upon sustained arm abduction. Deep tendon reflexes were normal,
as were serum creatine kinase levels, while repetitive nerve stimulation was
inconclusive. Due to a clinical suspicion of Congenital Myasthenic Syndrome
(CMS), atrial of pyridostigmine was initiated, but the individual was non-
compliant. However, his parents reported spontaneous improvementin

MT-TL1
baseline limb weakness and falls over the following six years with only episodic
worsening due to fever and exertional myalgias. There was a strong family history
of diabetes on the maternal side and the mother’s fasting glucose levels were
suggestive of borderline diabetes, and she also has along history of migraines.
Retrospective serum lactate testing in both proband and mother showed mildly
elevated levels (>20 mg/dl). The IGV screenshot in the right panel indicates the
presence of a heteroplasmic mitochondrial variant (MT-TL1, MT:3243A>G))
observed with afrequency of 27% in the proband, and 14% in his mother. This
difference in heteroplasmy may explain the divergence in symptoms between
mother and child. While the initial clinical suspicion in the proband was CMS due
to the notable fatigability, the fact that mitochondrial disease can be clinically
highly variable means that mild forms of mitochondrial myopathy can be
difficult to diagnose clinically.
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Extended Data Fig. 8| Clinical actionability. a) Percentage of solved cases
for which the causative gene is reported in one of the three gene-treatment
databasesincluded in this study (ClinGen, IEMbase and Treatabolome) and
guidelines for surveillance of genetic tumour risk syndromes. b) Gene-treatment
databases and surveillance guidelines for genes in which (likely) disease-causing
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variants have been identified per ERN. ¢) List of genes with (likely) disease-
causing variants, and number of rare disease probands/families diagnosed in this
study in parentheses, identified in each of the three gene-treatment databases as
well as surveillance guidelines included in this study.
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Extended Data Fig. 9 | Examples of ‘beyond standard’ variant types and inARIDIA (individual PO017701); b) mtDNA variant in ND3-MT (P0002456).c) The
discovery by Solve-RD. Panels A&B provide illustrative examples of previously new discovery of recurrent de novo variants in RNU4-2led to likely new diagnoses
unsolved rare disease probands for which a new variant other than standard intwo Solve-RD cases. Both variants have been validated, and the phenotypes
coding SNV/InDel resulted in a new diagnosis. a) Non-canonical splicing variant match the recently published phenotypic descriptions***,
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Recruitment All individuals were recruited via the four European Reference Networks. Any undiagnosed individual with an apparent
genetic rare disease that falls under the umbrella of conditions in which one of the four partner ERNs specialise, and for
whom a prior ES analysis had been undertaken and proven inconclusive, was a candidate for inclusion in this study. We did
not exclude anyone based on sex, gender, ethnicity, race, age or any other socially relevant groupings. Informed consent for
data sharing, including indirect identifiers within Europe for the purpose of research was obtained from all recruited
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variants identified were biologically real and relevant. To a large extent and as common practice in the rare genetic disease field, replication of
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Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.
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provided.
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Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

-
g
C
=
()

©
O
Et\
o
=
—
™

©
O
E,..
)

Q
wn
C
3
=
Q
>

<

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.
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say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.
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Data quality
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Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
enable peer review. Write "no longer applicable" for "Final submission" documents.

Describe the experimental replicates, specifying number, type and replicate agreement.

Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.
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Flow Cytometry

Plots
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|:| All plots are contour plots with outliers or pseudocolor plots.
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Gating strategy

Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
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Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
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samples and how it was determined.
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|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design
Design type

Design specifications

Indicate task or resting state; event-related or block design.

Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used

Acquisition
Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI [ ] used

Preprocessing

Preprocessing software
Normalization
Normalization template

Noise and artifact removal

to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).

Specify: functional, structural, diffusion, perfusion.
Specify in Tesla

Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

|:| Not used

Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).
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Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain [ | ROI-based || Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.qg. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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