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Oxidative phosphorylation is a key feature of
neonatal monocyte immunometabolism
promoting myeloid differentiation
after birth
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Neonates primarily rely on innate immune defense, yet their inflammatory

responses are usually restricted compared to adults. This is controversially

interpreted as a sign of immaturity or essential programming, increasing or

decreasing the risk of sepsis, respectively. Here, combined transcriptomic,

metabolic, and immunological studies in monocytes of healthy individuals

reveal an inverse ontogenetic shift in metabolic pathway activities with

increasing age. Neonatal monocytes are characterized by enhanced oxidative

phosphorylation supporting ongoing myeloid differentiation. This phenotype

is gradually replaced during early childhood by increasing glycolytic activity

fueling the inflammatory responsiveness.Microbial stimulation shifts neonatal

monocytes to an adult-like metabolism, whereas ketogenic diet in adults

mimicking neonatal ketosis cannot revive a neonate-like metabolism. Our

findings disclose hallmarks of innate immunometabolism during healthy

postnatal immune adaptation and suggest that premature activation of gly-

colysis in neonates might increase their risk of sepsis by impairing myeloid

differentiation and promoting hyperinflammation.

The immune response of newborn infants and adults to microbial

challenges differs considerably1,2, pointing to profound reprogramming

of immunity during childhood. However, our knowledge about

the molecular mechanisms that drive the age-dependent immunologi-

cal differences and reprogramming during childhood is still

fragmentary.

While lacking a fully developedadaptive immune system, newborns

primarily rely on innate immune responses for protection against

pathogens1,2. The capacity of neonatal (NEO) innate immune cells to

mount inflammatory responses to a broad range of microbial stimuli is

typically restricted compared to adults. This peculiarity of neonatal

immune cells is often considered as a sign of immaturity and utilized to

explain severe infections and sepsis in neonates. Conversely, it is

increasingly acknowledged as physiological tolerance preventing

exceeding inflammatory responses to microbial challenges in the new

environment after birth1,3–5.
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The programming of energy metabolism is one of the most

important determinants of an immune phenotype as a switch from

mitochondrial oxidative phosphorylation (OXPHOS) to glycolysis

usually provides the rapid energy supply that is required for strong

immune responses tomicrobial challenges6,7. However, our knowledge

about the metabolic programming of NEO innate immune cells has

considerable gaps. Metabolic cell studies using peripheral blood from

newborns or infants are lacking. Hitherto, only cord blood monocytes

(Mo) from preterm and term newborns were studied showing in both

of them reduced basal glycolytic activity compared to adult (AD) Mo.

This could be associated with an impaired inflammatory response to

Candida and lipopolysaccharide (LPS), however only in preterm but

not in term Mo8. Another study generated cord blood-derived polar-

izedmacrophages and observed reduced glycolytic as well as reduced

OXPHOSactivity compared toADblood-derivedmacrophages, but did

not link this to immune phenotypes directly9. Thus, it remains elusive

how the metabolic programming of innate immune cells in neonates

determines their antimicrobial immune responses, as well as which

cellular metabolic programming is advantageous at what age to meet

the demands of age-specific cell functions.

In this work, we showhow the energymetabolism and the activity

of metabolic pathways change over age in primary human Mo col-

lected from healthy newborns (cord blood), infants (1 month to

12 months old), toddlers and preschoolers (2 to 5 years old), and

adults. By using transcriptomic, metabolic, and immunological

approaches, we reveal age-dependent metabolic Mo profiles that are

linked to age-specific Mo functions. Our findings show that the meta-

bolism of Mo follows a unidirectional reprogramming after birth,

which is important to consider when tailoring age-appropriate inter-

vention strategies that modulate the cell metabolism.

Results
The differential response of AD and NEO Mo to LPS stimulation
is linked to an age-specificbaseline programmingofmetabolism
To decipher the age-specific transcriptional programming of Mo, we

performed RNA sequencing of untreated and LPS-activated Mo iso-

lated from cord blood of healthy newborn infants and peripheral

blood of healthy adults (Fig. 1a). Principal component analysis (PCA)

(Fig. 1b) and the number of differentially expressed genes (DEGs)

(Supplementary Fig. 1a, b, and Supplementary Data 1) showed that LPS

stimulation induced stronger transcriptional changes in AD compared

to NEO Mo, though 82% of the LPS-induced genes in NEO Mo over-

lapped with those upregulated in AD Mo (931 shared of 1135 upregu-

lated DEGs in NEO LPS vs Ctrl) (Supplementary Fig. 1c). Interestingly,

the overlap of genes downregulated by LPS in NEOMo and ADMowas

only 5% (51 shared of 1037 downregulated DEGs in NEO LPS vs Ctrl)

(Supplementary Fig. 1d). The PCA revealed a clear separation by age on

the second principal component, as well as a nearly parallel shift upon

LPS stimulation along the first principal component, suggesting that

the age-specific baseline programming defines the differential LPS

responsiveness. However, the total overlap between DEGs in NEO

versus AD Mo after LPS stimulation and DEGs in NEO versus AD at

baseline was only 16% (180 shared of 531 upregulated genes after LPS

stimulation; 70 shared of 1062 downregulated genes after LPS stimu-

lation) (Supplementary Fig. 1c, d), indicating that it is not a simple

recapitulation of age-dependent differential gene expression in basal

and LPS-activated states.

To identify the age-dependent transcriptional differences at

baseline that link to the differential LPS response, we performed gene

co-expression network analysis that groups genes basedon expression

profiles into similarly regulated (color-coded) gene modules (Fig. 1c,

Supplementary Fig. 1e), allowing detection of shared and distinct

transcriptional signatures between NEO and AD Mo at baseline and

after LPS stimulation (Supplementary Fig. 1f). Differential expression

after LPS stimulation was strongest in genes belonging to themodules

seagreen and lightgreen with strong upregulation in AD Mo but only

minor LPS-induction in NEO Mo (Fig. 1c, Supplementary Fig. 1e, f,

Supplementary Data 1). Functional enrichment based on gene ontol-

ogy (GO), Hallmark (HM) and KEGG (KG) annotations associated these

genes with inflammatory immune response terms such as “TNFA sig-

naling via NFKB” (Fig. 1d, Supplementary Data 1). Higher LPS-induced

TNF production byADMocompared to NEO could also be validated at

the protein level (Fig. 1e).

At baseline, the strongest gene expression differences were

detected in the modules maroon and steelblue. Genes of the maroon

module were lower expressed in AD compared to NEO, in fact both at

baseline and after LPS activation, and enriched for cell cycle control

and chromatin remodeling functions. Their increased expression

might be related to more active myeloid differentiation processes in

NEO Mo, as NEO Mo distinguish from AD Mo by a higher GM-CSF

production (Fig. 1f). Oppositely, genes of the steelbluemodule showed

higher basal expression in AD than inNEOMo andwere thereby linked

to the similarly differential expression (higher in AD than NEO Mo) of

inflammatory genes (seagreen and lightgreen modules) after LPS

activation. Functional enrichment highlighted an association of the

steelblue module genes with glycolysis, suggesting higher basal gly-

colytic activity in AD than NEO Mo.

To assess how NEO and AD Mo use glucose, we performed U-

[13 C]-glucose tracing studies (Fig. 1g). We found comparable isotopic

enrichment inm3+ isotopologues of lactate but elevatedm3+pyruvate

(Fig. 1h), supporting enhanced glycolysis in AD Mo compared to NEO

Mo. In contrast, isotopic enrichment in tricarboxylic acid cycle (TCA)

metabolites pointed to an increased TCA and OXPHOS activity in NEO

Mo compared to AD Mo (Fig. 1i). Higher levels of m2+ citrate in NEO

Mo indicated enhanced pyruvate metabolism and intermediate

transfer to the TCA, while lower m2+ succinate levels with slightly

increased m2+ malate levels (p = 0.0676) reflected higher electron

transfer and OXPHOS activity6,10.

Taken together, thesedata suggested that the lower inflammatory

response of NEO Mo to LPS is linked to the lower baseline glycolytic

activity, while this might be inversely associated with vivid cell differ-

entiation processes that come with high OXPHOS activity.

Metabolic reprogramming during the first years of life shifts Mo
from OXPHOS to glycolytic dependence
To elucidate how the metabolic state of Mo changes during the first

years of life, we applied SCENITH to blood sampled from healthy

newborns, infants, toddlers, and adults (Fig. 2a, Supplementary

Table 1). SCENITH allows quantifying protein translation by pur-

omycin incorporation as a measure of their global metabolic activity

and its dependence on OXPHOS (mitochondrial dependence, MD)

and glycolysis (glucose dependence, GD) (Fig. 2b)11. NEO Mo were

characterized by high metabolic activity (Fig. 2c) with a high

dependence on OXPHOS (Fig. 2d) but low dependence on glycolysis

(Fig. 2e), supporting the isotope tracing studies (Fig. 1h, i). With

increasing age, this metabolic phenotype shifted towards lower

metabolic activity with high dependence on glycolysis but low

dependence on OXPHOS in ADMo. The overall relationship between

OXPHOS and glycolytic dependence in Mo of all ages was inverse

(Fig. 2f). Correlations with the cytokine markers of inflammatory

responsiveness and cell differentiation revealed that a high glycolytic

dependence came with an increased TNF response (Fig. 2g), whereas

a high OXPHOS dependence was associated with high GM-CSF levels

(Fig. 2j). In contrast, there was no correlation between OXPHOS

dependence and TNF levels (Fig. 2i) or glycolytic dependence and

GM-CSF levels (Fig. 2h). These data, combined with the tran-

scriptomic and isotope tracing data, corroborated that NEO Mo are

characterized by ongoing cell differentiation that is linked to high

OXPHOS activity at the cost of glycolytic activity and inflammatory

responsiveness.
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To determine the potential effect of endogenous and environ-

mental factors on the metabolic phenotype of Mo, we built generalized

linear models to integrate the metabolic parameters with clinical para-

meters. Age was the strongest positively influencing factor on energy

metabolism (Supplementary Fig. 2a) and OXPHOS (Fig. 2k) and the

strongest negatively influencing factor on glycolysis (Supplementary

Fig. 2b). In contrast, sex, gestational age (GA), mode of delivery (MOD),

body weight, and the number of vaccinations or vaccines had no major

impact on the metabolic phenotype of Mo. However, it should be

emphasized that in this study population the number of vaccinations

and vaccines were virtually non-varying parameters due to vaccination

of all individuals at comparable ages according to the national
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immunization program, impeding the disclosure of a potential impact.

Infections were insufficiently documented and validated in the study

population to allow reliabledata integration.Only thenumberof siblings

had a decreasing effect on the OXPHOS activity (Fig. 2k), albeit low

compared to the influence of age. Still, assuming that a high number of

siblings is associated with a high microbial turnover in families12–16, this

finding indicated that microbial exposure in early life might promote

metabolic reprogramming towards an AD-like phenotype.

LPS exposure induces a metabolic shift in NEO Mo towards an
AD-like phenotype
Next, the impact ofmicrobial stimulation on themetabolism of human

Mo was studied by ex vivo treatment of NEO and AD Mo with LPS and

subsequent metabolic profiling. In both NEO and AD Mo, LPS treat-

ment for up to 24 h did not significantly change total energy meta-

bolism, which thus remained higher in NEO compared to AD Mo

(Supplementary Fig. 3a). However, LPS treatment had an opposite

effect on the dependence of OXPHOS significantly decreasing over

time in NEO to AD-like baseline levels, while increasing in AD Mo

(Fig. 3a). This opposite effect resulted in a reversed pattern compared

to the baseline state with the dependence on OXPHOS being higher in

AD than NEO Mo after LPS stimulation (Supplementary Fig. 3b). In

contrast, LPS stimulation increased glycolysis in NEO Mo only slightly

with strong inter-individual variance but in AD Mo uniformly and

highly significant (Fig. 3b). Thus, the glycolytic dependence in NEO

converged to AD basal levels following LPS treatment but still

remained lower than in LPS-treated AD Mo (Supplementary Fig. 3c).

Summarized, these studies suggested that a short-term single LPS

treatment induced ametabolic reprogramming of NEOMo towards an

AD-like baseline phenotype, particularly by decreasing OXPHOS and

slightly increasing glycolysis. In contrast, AD Mo responded to LPS

with a strong activation of both OXPHOS and glycolysis.

To test whether the LPS-induced metabolic shift in NEO Mo also

comes with a functional maturation towards an AD-like immune phe-

notype, we studied the effect of a repeated LPS exposure on marker

cytokine responses. In NEOMo, long-term low-dose LPS pretreatment

indeed improved the inflammatory responsiveness to a second chal-

lenge with LPS as reflected by a stronger induction of TNF secretion

(Fig. 3c), suggesting that continuous low-dose LPS exposure promotes

the glycolytic activity of NEOMo. Opposite, the inducibility of GM-CSF

as measure of cell differentiation activity was significantly inhibited in

NEOMo following LPS pretreatment (Fig. 3d), which is in line with LPS

decreasing the OXPHOS dependence of NEO Mo. In contrast, LPS-

pretreatment of AD Mo impaired the subsequent LPS inducibility of

TNF (Fig. 3c) and had no significant impact on the inducibility of GM-

CSF (Fig. 3d). Interestingly, the secretion of the regulatory cytokine IL-

10, which was like TNF less LPS-inducible in NEO Mo than in AD Mo,

was not affected by LPS-pretreatment, neither in AD nor in NEO Mo

(Fig. 3e). The findings in AD Mo thus corresponded to classical LPS

tolerance and suggested that LPS tolerance is achievedwhen a primary

LPS activation induces a concurrent activation of both OXPHOS and

glycolysis (Fig. 3a, b).

Metabolic blocking experiments corroborated our assumption

that a strong inflammatory response of AD Mo to a primary LPS sti-

mulus and NEO Mo to a secondary LPS stimulus after LPS priming is

linked to their glycolytic activity. In line with the low glycolytic activity

of untreated NEO Mo, blocking glycolysis suppressed their TNF

response but to a lesser extent and not significantly as in untreated AD

Mo (Fig. 3f). In contrast, after LPS pretreatment, the then enhanced

TNF response of NEOMo to secondary LPS activation was significantly

inhibited when glycolysis was blocked, while no effect was detectable

in LPS-pretreated and thus tolerized AD Mo (Fig. 3g). Blocking

OXPHOS had no clear effects on TNF responses neither on the primary

or secondary responses of NEO Mo nor that of AD Mo (Fig. 3h, i).

Ketogenic diet cannot induce a NEO-like immunometabolic
phenotype in AD Mo
Ketogenesis appears to be an integral part of extrauterine metabolic

adaptation in the term human neonate, as from 12 h of age, healthy

term infants show high ketone body turnover rates approaching those

found in adults after several days of fasting17–19. All infants included in

our study were exclusively breastfed for the first six months of life.

Breast milk is a high-fat and slightly carbohydrate-restricted diet

(Supplementary Table 3). It has been speculated that augmented

ketogenesis in breast-fed infants may be due to the activation of

mitochondrial fatty acid b-oxidation by breast milk factors20.

To investigate whether ketosis induces a NEO-like immunometa-

bolic phenotype in AD Mo, 10 healthy adult volunteers underwent an

eucaloric KD for one week (Supplementary Table 2). The immuno-

metabolic profile of blood Mo was determined under carbohydrate-

richwestern diet conditions before (PreKD) and on day 7 after starting

KD (Post KD) (Fig. 4a). One week of KD was chosen since KD in adults

induced significant ketosis from day 2 on, so that after 7 days of KD

ketosis prevailed for at least 5 days (Fig. 4b). This time period corre-

sponded with the time period of elevated ketone body concentrations

in neonates during the first 5–7 days of life21,22. KD did not induce a

NEO-like increase but oppositely a significant decrease of baseline

metabolic activity in AD Mo (Fig. 4c). This was associated with a sig-

nificant reduction of the dependence onglycolysis (Fig. 4d) but did not

change the dependence on OXPHOS (Fig. 4e), and did therefore not

achieve an adoption of a NEO-like metabolic state. Also different from

NEOMo(Fig. 3, Supplementary Fig. 3), LPS stimulationof adult PostKD

Mo led to a consistent increase of the energy metabolism and glyco-

lysis (Supplementary Fig. 4a, b), in fact to levels comparable with that

of Pre KD Mo (Fig. 4c, d), whereas OXPHOS remained unaffected (not

decreasing like in NEO Mo) (Fig. 4e, Supplementary Fig. 4c). Accord-

ingly, KD neither changed the inducibility of TNF (Fig. 4e) or GM-CSF

(Fig. 4f) in LPS-activated AD Mo.

Thus, there is no evidence for different diets in neonates and

adults explaining the immunometabolic differences between theirMo,

which further supports the concept that the immunometabolism of

Mo primarily follows a developmentally-driven unidirectional repro-

gramming linked to age and environmental cues such as microbial

exposures.

Fig. 1 | The differential response of AD and NEOMo to LPS stimulation is linked

to an age-specific baseline programming of metabolism. a Experimental setup

andworkflow for blood samples obtained fromhealthy newborns (NEO) and adults

(AD) (each n = 3). Created in BioRender. Holsten, L. (2025) https://BioRender.com/

c95u965. b PCA of the transcriptome data depicting the group relationship of NEO

and ADMowithout (Ctrl) and with 4 h treatment with LPS (100ng/ml). Proportion

of variance in percent. c Module heatmap resulting from hCoCena colored by the

meanGFCwithin the respectivemodules and age and treatment groups.dGSEA for

themodules identified in c, selected Hallmark (HM), gene ontology (GO) and KEGG

(KG) terms shown (complete table of enrichment in Supplementary Data 1). e TNF

and fGM-CSF production by untreated (Ctrl) and 16 h LPS-treated (100ng/ml) NEO

Mo (each n = 8) and ADMo (each n = 8) represented as means ± SEM. The p-values

were determined using one-way ANOVA and post hoc Tukey’s multiple comparison

tests. ns, not significant. g–iUntreated NEO and ADMo (each n = 3) were cultivated

in U-[13 C]-glucose tracer medium and isotopic enrichment determined after 24h

using GC–MS. g Scheme of glucose m+6 metabolism and isotopic enrichment.

ETC, electron transfer chain. Created in BioRender. Tödtmann, A. (2025) https://

BioRender.com/e96w997. h Relative abundance of m+ 3 and m+ 2 isotopologues

of indicated glycolytic pathway and i TCA intermediates. Plotted are means ± SEM.

The p-values were determined using two-sided t-tests. Source data are provided as

a Source Data file.
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Control of baselinemyeloid differentiationdepends onOXPHOS
The transcriptomic and immunometabolic data suggested that high

OXPHOS activity in NEO Mo is associated with ongoing cell differ-

entiation processes, whereas AD Mo primarily spend energy on

inflammatory responsiveness with glycolysis as main energy source.

To elucidate whether myeloid differentiation under baseline

conditions differs between NEO and AD Mo, we let them differentiate

ex vivo into macrophages (MDM) in the presence of human AD blood

plasma, without additional cytokine-driven polarization. Unexpect-

edly, significantly more AD than NEO Mo survived during
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differentiation (Fig. 5a), yielding higher numbers of ADMDM thanNEO

MDM (Fig. 5b). This was linked to increased apoptosis and necrosis

rates in NEO MDM (Fig. 5c), while neither NEO nor AD MDM pro-

liferated actively (Fig. 5d). However, NEO MDM appeared morpholo-

gically further differentiated than AD MDM, showing more irregular

cell shapes and prominent cell extensions (Fig. 5e) and larger average

cell sizes (Fig. 5e, f). In line with the higher cell death rates, a significant

proportion of cell-free nuclei was observed among NEO but not AD

MDM (Fig. 5e, g). Furthermore, NEO MDM differentiation resulted in

higher proportions of CD68 macrophage marker positive MDMs

(Fig. 5h, Supplementary Fig. 5a, b) with increased expression of CD80

(Fig. 5i, Supplementary Fig. 5d) compared to AD MDM, while the ratio

of M1-like CCR7+ and M2-like CCR7- subsets23 was similar (Fig. 5j,

Supplementary Fig. 5a–c). These fully differentiated NEO MDM pro-

duced also higher levels of TNF and IL-10 (but not IL-6) in response to

LPS than ADMDM (Fig. 5k), collectively suggesting higher stemness of

NEO Mo compared to AD Mo.

Of note, using high-dose GM-CSF/M-CSF (50 ng/ml) instead of

AD blood plasma (with physiological concentrations of GM-CSF ( < 1

to 10 pg/ml) and M-CSF (20–1000 pg/ml)24), maximized and aligned

the yield of well-differentiated MDMs derived from NEO and AD Mo,

concealing the age signature ofMDMdifferentiation (Supplementary

Fig. 6a–c). Using cord blood plasma instead of AD blood plasma did

not change total cell yield, apoptosis rates, and proportions of CD68+

MDMs significantly but the differences between NEO and AD MDM

differentiation became blurry and lost significance, likely due to the

higher compositional variability of cord blood25–27 (Supplementary

Fig. 6d–f).

To investigate how the metabolic pathways are linked to myeloid

differentiation,we inhibited glycolysis andOXPHOS inNEOandADMo

seeded for MDM differentiation. Overall, the yield of AD MDM was

again higher than in NEO MDM (Fig. 5l). In both NEO and AD MDM,

cultivation under low, in fact physiological glucose conditions led to a

slight but in the presence of DG to a significant cell loss compared to

standard high glucose culture conditions. Oppositely, inhibition of

OXPHOS significantly improved the survival of NEO and AD MDM

compared to physiological low glucose conditions, even compared to

high glucose conditions slightly higher MDM numbers were observed

(Fig. 5l), suggesting that OXPHOS promotes while glycolysis inhibits

apoptosis and cell death in differentiating Mo. The analysis of apop-

tosis rates and the yield of proportions of well-differentiated CD68+

MDMs confirmed an expected increase of both when glycolysis was

inhibited, which was particularly consistent in the highly glycolysis-

dependent AD cells (Fig. 5m, o). In contrast, apoptosis rates and pro-

portions of CD68+ MDMs were decreased when OXPHOS was inhib-

ited, however, consistently only in the highlyOXPHOS-dependent NEO

cells (Fig. 5n, p).

Collectively, these findings show that myeloid differentiation is

well controlled in NEO Mo and accompanied by apoptosis-mediated

cell sorting that is supported by high OXPHOS activity, resulting in

lower macrophage yield but improved phenotypic and functional

differentiation. High glycolytic activity like in AD Mo prevents cell

death and apoptosis during differentiation intomacrophage but at the

cost of the macrophage quality.

Network studies identify potential transcriptional regulators of
the ontogeny of Mo immunometabolism
Considering the complexity that two metabolic pathways are repro-

grammed with age in an inverse andmutual manner raises the question

which transcription factors (TFs) in human Mo regulate the balance

between glycolytic and OXPHOS activity and related functions, i.e.

control of myeloid differentiation and inflammatory responsiveness. To

address this question, we first determined which genemodules differed

most significantly in mean baseline gene expression between NEO and

AD Mo and identified the modules maroon, steelblue, and lightgreen

(Fig. 6a, Supplementary Fig. 7a). Following our concept that the cell

metabolism determines Mo functions, we defined those transcription

factors (TFs) as top candidate regulators, whose binding sites (TFBS)

were enriched in the proximity of metabolism-related steelblue genes

and additionally and either maroon genes (cell cycle control and dif-

ferentiation) or lightgreen genes (inflammatory response) or both. This

approach identified a total of 16 candidate TFs (Fig. 6b, Supplementary

Table 4), of which E2F1, MYB, STAT1, and FLI1 additionally proved to be

among the topfifteenhubgeneswithin their respectivenetworkmodule

(Fig. 6c). Besides fulfilling the basic prerequisite of being regulators of

metabolism-related (steelblue) genes, all of them were additionally

predicted regulators of inflammatory response-related (lightgreen)

genes. E2F1was theonlyTFwhosebinding siteswerealsoenriched in the

proximity of cell differentiation-related (maroon) genes (Fig. 6b, Sup-

plementary Table 4). In fact, about two-third of E2F1 target genes

belonged to lightgreen genes and one-third to maroon and steelblue

genes, respectively (Supplementary Fig. 7b). Network construction

based on all 16 candidate TFs and their target TFs also positioned E2F1,

MYB, STAT1 and FLI1 as central TFs connecting all three functional

modules by regulating transcriptional regulators of the other modules

(Fig. 6d, Supplementary Fig. 7c). Importantly, E2F1,MYB, and STAT1were

also the only TFs differentially expressed in NEO and AD Mo, namely

E2F1 andMYB higher in NEO than ADMo and oppositely STAT1 higher in

AD than NEO Mo (Fig. 6b, Supplementary Tables 3 and 5).

Collectively, based on their module affiliations, central positions

in the entire regulatory network, and differential expression, the data

point to central roles for E2F1 and MYB as drivers of the NEO immu-

nometabolic phenotype, whereas the adult immunometabolic phe-

notype appears to be guided by STAT1, and potentially also by FLI1.

E2F1, MYB, STAT1 and FLI1 are important regulators of the age-
dependent immunometabolism of Mo
To validate age-dependent expression and gain further evidence for a

connection to the metabolic programming, we studied the age

dependence of E2F1, MYB, STAT1 and FLI1 expression longitudinally

using Mo isolated from blood sample of healthy newborns, infants,

toddlers, and adults. Both E2F1 andMYB were expressed at high levels

in newborn Mo that steadily decreased to AD-like levels by age 2–3

years (Fig. 7a). Their expression profiles thus strongly resembled the

Fig. 2 | Metabolic reprogramming during the first years of life shifts Mo from

highOXPHOStohighglycolyticdependence. a Experimental setup andworkflow

for blood samples obtained from healthy newborns (NEO), infants (1 y), toddlers

and preschoolers (2–5 y), and adults (AD). Created in BioRender. Ehlers, G. (2025)

https://BioRender.com/f67m295. b Representative flowcytometric SCENITH stu-

dies in infant and AD untreated (Ctrl) or metabolically blocked (DG (2-Deoxy-D-

Glucose) or O (oligomycin) or both (DGO)) MNCs showing the mean fluorescence

intensity of puromycin (Puro-MFI) of the Mo population. c Age dependent energy

metabolism (Puro MFI), and percentages of d OXPHOS dependence (MD, mito-

chondrial dependence) and (e) glycolytic dependence (GD) of Mo (NEO: n = 10; 1 y:

n = 16; 2–5 y: n = 8; AD: n = 15) at baseline plotted as means ± SEM. Significant dif-

ferences were determined using one-way ANOVA and post hoc Tukey’s multiple

comparison tests. f Correlation between baseline OXPHOS and glycolytic depen-

dence in Mo obtained from the entire study population. Indicated are best fit

regression lines, r, Pearson’s correlation coefficients and p-values of correlations.

g–j Correlations between the LPS-induced production of TNF (g, i) and GM-CSF

(h, j) by NEO (triangles) and AD (dots) Mo and their baseline glycolytic (g, h) and

OXPHOS (i,j) dependence. Indicated are best fit regression lines, r, Pearson’s cor-

relation coefficients and p-values of correlations. k Effect sizes building a gen-

eralized linearmodel of indicated factors potentially influencing the basal OXPHOS

dependence in Mo (NEO: n = 10; 1 y: n = 16; 2–5 y: n = 8; AD: n = 15) were plotted as

log means ± CI. The p-values were determined using the Wald test. GA, gestational

age, MOD, mode of delivery, VD, vaginal delivery. Source data are provided as a

Source Data file.
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gradual decrease of OXPHOS dependence, which also reached AD-like

levels only at toddler age (Fig. 2d). In contrast, the expression of STAT1

was low in newborn Mo and then increased within the first year of life

to AD-like levels (Fig. 7a). This was strikingly similar to the age-

dependent progression of glycolysis dependence, which also became

AD-like within one year after birth (Fig. 2e). FLI1 expression did not

significantly change over age (Fig. 7a), yet it still might support reg-

ulatory functions of STAT1 as STAT1 is its direct target of regulation

(Fig. 6d, Supplementary Fig. 7c).

To test the effect of overexpression of E2F1, MYB, STAT1 and FLI1

on predicted functions at a population-based level, we performed

a human variation analysis (HUVA)28. This recently introduced
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computational approach allows to contrast adult individuals with

highest versus lowest gene of interest expression within the Human

Functional Genomics Project (FG500 cohort, 96 whole blood RNAseq

samples of healthy adult volunteers)29 (Fig. 7b). Individuals within the

top and bottom 0.1 quantiles of gene of interest expression in circu-

lating immune cells (Fig. 7c, f, i, l) proved to show highly differential

E2F1, MYB, STAT1 and FLI1 expression (Fig. 7d, g, j, m). Interestingly,

and similar to the situation in NEO versus AD Mo, E2F1 and FLI1 were

oppositely (Fig. 7d, m) and STAT1 and FLI1 concordantly (Fig. 7j, m)

differentially expressed in their high versus low donor subgroups,

pointing again to contrary (E2F1 versus FLI1) respective similar (STAT1

and FLI1) regulatory functions. High and low expressing donors were

then contrasted and co-regulated genes interrogated for functions

(GSEA based on FC ranked gene lists). This revealed an enrichment of

genes involved in OXPHOS, cell cycle control, and myeloid cell dif-

ferentiation in E2F1 and MYB high individuals, and even a negative

enrichment of inflammatory response genes in MYB high individuals

(Fig. 7e, h). This further established E2F1 and MYB as important reg-

ulators of the NEO Mo phenotype and suggested that E2F1 and MYB

high expressing adults are characterized by a NEO-like immunometa-

bolism. In contrast, co-regulated genes in STAT1 and FLI1 high indivi-

duals were positively enriched for inflammatory response genes but

negative for OXPHOS-related genes, and FLI1 high individuals even

negative for cell differentiation-related genes (Fig. 7k, n), supporting

STAT1 and FLI1 being drivers of the AD Mo phenotype.

To assess the effect of inhibition of the candidate TFs on pre-

dicted functions, we avoided genetic editing of Mo to not distort their

primary transcriptional and metabolic programming but decided to

employ pharmacological inhibitors. Therefore, AD Mo were treated

with either HLM006474 (HLM) inhibiting E2F130,31, all-trans retinoic

acid (ATRA) inhibiting MYB32,33, fludarabine (FA) inhibiting STAT134,35,

and camptothecin (CPT) inhibiting FLI136,37. Even though these inhibi-

tors might have broader effects than exclusively inhibiting E2F1, MYB,

STAT1, and FLI1, respectively, the consequences for metabolic path-

ways activities and MDM differentiation largely supported the com-

putationally predicted TF functions. Inhibition of E2F1 slightly

decreased the OXPHOS activity of Mo (Fig. 8a) while glycolysis

remained largely unaffected (Fig. 8b). With respect to the outcome of

MDMdifferentiation, E2F1 inhibition yielded higher numbers ofMDMs

(Fig. 8c) but lower proportions of well-differentiated CD68 macro-

phage marker positive MDMs (Fig. 8e), while no effect on apoptosis

was observed (Fig. 8d). MYB inhibition led to a significant down-

regulation of OXPHOS but also activated glycolysis (Fig. 8a, b), which

together hampered MDM differentiation profoundly as reflected by

low MDM yield, increased apoptosis rates and strongly reduced

numbers of CD68-expressing MDMs (Fig. 8c–e). Inhibition of STAT1

had no clear effect onMo cell metabolismwhile FLI1 inhibition led to a

significant decrease in glycolysis but no perceivable effect onOXPHOS

(Fig. 8a, b). However, inhibition of both STAT1 and FLI1 hampered

MDM yield due strongly enhanced apoptosis but did not impair the

quality of MDM differentiation in terms of proportions of CD68+ cells

(Fig. 8c–e). Thus, in essence, E2F1 and MYB concordantly promoted

OXPHOS and high-quality myeloid differentiation. In contrast, inhibi-

tion of MYB, STAT1 and FLI1 promoted cell death during myeloid dif-

ferentiation, which was therefore unlikely linked to glycolysis since

glycolysis was inhibited by MYB but promoted by FLI1.

Collectively, our findings strongly support a model of E2F1, MYB,

STAT1 and FLI1being important regulators of thepostnatal ontogenyof

Mo immunometabolismwith high E2F1 andMYB expression in NEOMo

promoting OXPHOS and cell differentiation that shifts to low E2F1 and

MYB expression and high STAT1 expressionwith increasing age, driving

glycolysis and inflammatory activity in AD Mo in liaison with FLI1.

Discussion
The restriction of innate immune responses in neonates is a con-

undrum. It has been associated with an increased risk of invasive

infections but also suggested as neonate-specific physiological pro-

gramming preventing overshooting responses to the new extrauterine

environment5,38. In adults, the importance of a fast adaptability of

energy metabolism to meet the demands of immune cells responding

to microbial challenges has repeatedly been demonstrated6,7. How-

ever, the physiology of the immunometabolism in neonates remains

elusive. By combining comprehensive systems biology approaches

and functional studies, we revealed hallmarks of the postnatal onto-

geny of immunometabolism in human Mo that might change our

understanding of how age and environmental cues influence meta-

bolic programming and related cell functions.

In line with published correlative data in AD and NEO Mo and

macrophages8,9, we demonstrated by direct linkage of metabolic and

cellular functions that the reduced inflammatory responsiveness of

NEO Mo results from a reduced basal glycolytic activity. This recapi-

tulates the immunometabolic coupling in AD Mo, where rapid energy

demand for immediate inflammatory response tomicrobial challenges

ismet fastest by glycolysis though producing less ATP thanOXPHOS6,7.

However,we showed that reduced glycolysis in NEOMo comeswith an

increased OXPHOS activity that provides high energy supply for

ongoing myeloid differentiation processes in NEO Mo involving

apoptosis, cell cycle control, and chromatin remodeling. Recently,

macrophages in proliferation states (S-G2/M-phase) have been shown

to be less plastic and sensitive to interferon-g-induced polarization39.

This is well in linewith our finding of high expressionof genes involved

in cell cycle control by NEO Mo, particularly G2/M checkpoint reg-

ulators, that might warrant high plasticity and high-quality myeloid

differentiation. A multitude of findings well explain the generally

higher cell differentiation activity of NEO Mo, e.g., ongoing fetal

growth hormonal cues40, differentiation and expansion of nonclassical

Mo after birth41,42, or colonization of tissues with NEO Mo that differ-

entiate into tissue-resident macrophages43–45. Murine in vitro and

in vivo studies support the linkage between OXPHOS and myeloid

differentiation showing that an inhibition of fatty acid β-oxidation,

which primarily fuels OXPHOS, impairs Mo differentiation into den-

dritic cells andmacrophages46. Furthermore, insulin-like growth factor

2, one of the most important drivers and markers of intrauterine and

postnatal growth and differentiation40, was reported to induce per-

sistent OXPHOS in maturing murine macrophages keeping them in an

anti-inflammatory state47. Therefore, considering the general devel-

opmental state of neonates and these major tasks of NEO Mo, it is

plausible that high OXPHOS activity in NEO Mo is a physiological

program at the cost of glycolytic and related inflammatory activity.

Accordingly, our findings suggest that shifting the balance at this age

prematurely towards glycolysis could increase the risk of hyperin-

flammation and inhibit essential OXPHOS and related myeloid

Fig. 3 | LPS exposure induces a metabolic shift in NEO Mo towards an AD-like

phenotype. aOXPHOS and (b) glycolytic dependence inNEO andADMoover time

of LPS activation assessed by SCENITH studies in NEO and ADMNCs treated for 4 h

(each n = 8) and 24h (NEO n = 8, AD n = 15) with LPS (1 µg/ml) compared to baseline

(untreated Ctrl; NEO n = 10, AD n = 11). Plotted are means ± SEM. Significant dif-

ferences were determined using one-way ANOVA and post hoc Tukey’s multiple

comparison tests. c–e Isolated NEO and AD Mo were control or LPS (0.1 ng/ml)

pretreated for 16 h followedby activationwith 1 µg/ml LPS for 4 h. cTNF (NEO n = 6,

AD n = 7), d GM-CSF (NEO n = 6, AD n = 7), and (e) IL-10 (each n = 3) production

represented asmeans ± SEM. p-values were determined using one-way ANOVA and

post hoc Tukey’s multiple comparison tests. f–i TNF production by not pretreated

(f, h; primary response) and 16h LPS (0.1 ng/ml) pretreated (g, i; secondary

response) NEO and AD Mo (each n = 3) upon activation with 1 µg/ml LPS for 4 h

without (G-high) and in the presence of DG (f, g) or oligomycin (Oligo) (h, i).

p-values were determined using paired two-sided t-tests. Source data are provided

as a Source Data file.
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Fig. 4 | Ketogenic diet cannot induce a NEO-like immunometabolic phenotype

in ADMo. a Experimental setup and workflow of blood samples obtained from 10

healthy adults before and 7 days after start of ketogenic diet (KD). Created in

BioRender. Ehlers, G. (2025) https://BioRender.com/f67m295.bUrine ketone levels

before and during the course of KD in the 10 healthy adults. Direct comparison of

(c) energy metabolism, (d) glycolytic and (e) OXPHOS dependence of Pre-KD and

Post-KD Mo (n = 10 per group) assessed by SCENITH studies in MNCs at baseline

and after 4 h and 24 h of LPS stimulation (1 µg/ml). f TNF and (g) GM-CSF produc-

tion by isolated Pre-KD and Post-KD Mo (n = 10 per group) upon LPS stimulation

(100ng/ml) for 16 h. Plotted aremeans ± SEM. p-values were determined using two-

sided MWU-tests. Source data are provided as a Source Data file.
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differentiation, which bothwould promote fatal courses of sepsis. This

is supported by recent clinical observations in preterm infants and in a

preterm piglet model both showing that increased parental glucose

supply significantly increases the risk of fatal sepsis48,49. Acknowl-

edging that the immune responsiveness of Mo depends inversely on

the activity of cell differentiation processes that are in turn primarily a

function of age, it is conclusive that a KD in adults could not sig-

nificantly increase OXPHOS in ADMo and therefore not induce a NEO-

like metabolic phenotype.

In this work, we were interested in the age-specific cell-intrinsic

myeloid differentiation capacity and therefore used standardized

culture conditions with pooled AD blood plasma. This approach
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neglects potential age-specific influences from the tissue micro-

environment on macrophage differentiation in vivo. Using blood

plasma is presumably generally not appropriate to model tissue

microenvironments, particularly not that of neonates when using cord

bloodplasmagiven its dramatic compositional changeswithin the first

days after birth50. Nevertheless, we tested the effect of cord blood

plasma and observed that MDM differentiation tended to be less

supported than by AD blood plasma and lost significance regarding

differences between NEO and AD MDM. We ascribe this to the high

compositional variability of cord blood plasma25–27,50 that can be rich in

factors promoting (e.g. GM-CSF) as well as regulating myeloid differ-

entiation (e.g. TGF-β)51,52.

Our study revealed that the postnatal increase of glycolysis in Mo

takes place within the first year of life with microbial exposures being

likely the most important drivers for the activation of glycolysis. The

major microbial exposures accumulating in the first year of life are the

colonizing microbiota, vaccines, and natural infections, which are all

well-known to additively and/or synergistically promote innate immune

functions in children. Thedirect associationbetweenearly-life exposures

to microbial triggers and the cellular metabolism has not been studied

yet in vivo.We found a small though significant decreasing sibling effect

on theOXPHOS activity, preliminarily suggesting a link to amorediverse

microbial exposure12–16. A recent study innewborn infants founda strong

association between BCG vaccination-induced decreases of plasma

lysophospholipid levels, particularly of lysophosphatidylcholine meta-

bolites (LPCs), and enhanced blood cytokine inducibility in vitro53. Of

note, since LPCs are metabolites of phosphatidylcholine, the major

component of cellular membranes and marker of high cell turnover54,

this might point to a BCG-induced increased immune reactivity at the

cost of cell growth and differentiation processes.

Microbial pretreatment of innate immune cells can have two dif-

ferent functional consequences for subsequent antimicrobial respon-

ses, either enhancement based on “priming” or “trained immunity” or

containment resulting in “immune tolerance” or “immunoparalysis”55.

In our study, LPS pretreatment had age-dependently opposite effects

and enhanced subsequent LPS responses in NEO Mo but paralyzed

those of AD Mo, suggesting that the initial state of metabolic pro-

gramming might determine the outcome of LPS pretreatment. The

higher baseline glycolytic activity in AD Mo is likely the result of pre-

vious microbial exposures56,57 and possibly not further gradable in

contrast to the low baseline glycolytic activity in largely naïve NEOMo.

However, the even more important key to the opposite effects of LPS

pretreatment in AD and NEO Mo might be the differential OXPHOS

activity. A high OXPHOS activity like in NEO Mo prevents the accu-

mulation of TCA metabolites such as α-ketoglutarate and itaconate58

and thus induction of immune tolerance59–61. In addition, highOXPHOS

activity leads to an accumulation of malate and fumarate, both pro-

moting innate immune training62. The concept of high OXPHOS

activity being the basis for a strong priming effect on innate immunity

is further corroborated by our observation that the OXPHOS activity is

still higher in Mo of one-year aged infants than adults, as the innate

immune system is still more plastic and receptive for imprinting cues

at infancy than at adulthood63.

Based on TF network construction and overexpression studies at

a population-based level, E2F1,MYB, STAT1, and FLI1were predicted as

central regulators balancing Mo metabolism to meet age-specific

functions. Their expression profiles over age together with TF inhibi-

tion experiments suggested that E2F1 and MYB drive the NEO Mo

phenotype bypromoting cell cycle control andmyeloid differentiation

as well as OXPHOS. Both has been shown for E2F1, its critical function

formyeloid development64–66 and its promoting influence on OXPHOS

by regulating the supercomplex assembly factor HIG2A67. Moreover,

there is compelling evidence that E2F1 induces apoptosis and triggers

the elimination of potentially hyperplastic cells64,68–70, supporting our

finding that NEO Mo control myeloid differentiation by OXPHOS-

dependent apoptotic cell sorting.MYB is also a known key regulator of

hematopoietic cell proliferation and differentiation71, in particular the

differentiation of fetal Mo72, and has been implicated in mediating a

metabolic switch from glycolysis to OXPHOS73. Opposite, our study

pointed to STAT1 and FLI1 being the drivers of the AD immunometa-

bolicMophenotype by promoting inflammatory responsiveness at the

cost of myeloid differentiation control. This is in line with the strongly

proinflammatory skewed Mo phenotype in patients with STAT1 gain-

of-function mutations74. Moreover, though we could not detect an

effect of STAT1 inhibition on the cell metabolism in Mo, STAT1 oppo-

site to E2F1 andMYB has been shown to promote glycolysis during M1

macrophage polarization75. The direct impact of FLI1 on glycolysis and

OXPHOS has not been investigated so far but our studies revealed a

promoting effect on glycolysis, in linewith its known effect to enhance

inflammatory LPS responses of human Mo and macrophages76. The

strong inhibitory effect found for FLI1 and STAT1 on apoptosis during

MDM differentiation is in line with the apoptosis repressive effect of

STAT1 in activated macrophages shown by others77. Collectively, this

supports the concept that myeloid differentiation in neonates is con-

trolled byOXPHOS-dependent apoptotic cell sorting as long as there is

no need for enhanced inflammatory responsiveness.

In summary, our data suggest that the ontogeny of the immuno-

metabolismof humanMoprogresses in a unidirectionalmanner that is

tightly regulated to ensure an age-appropriate balancing of energy

demands and cell functions. We propose a model according to which

the cell metabolism of Mo switches during early childhood from

OXPHOS towards glycolysis to support age-specific Mo tasks. While

myeloid differentiation requiringOXPHOS-derived high energy supply

is a central mission of newborn Mo, childhood comes along with

increasing exposures to microbial challenges that induce an essential

switch to glycolysis to ensure fast and strong immune responsiveness.

Fig. 5 | Control of baseline myeloid differentiation depends on OXPHOS.

a Percent of surviving NEO (n = 8) and AD (n = 7)Mo at indicated timepoints during

ex vivo differentiation into macrophages (MDM) in the presence of human AD

bloodplasma. bMDMnumbers after 14 days of differentiation of equal numbers of

NEO (n = 8) and AD (n = 7) Mo. c Proportion of apoptotic (Annexin V+7-AAD-) and

necrotic (Annexin V+7-AAD+) cells amongNEOandADMDM(eachn = 5). Plotted are

means ± SEM. p-values were determined using two-sided MWU-tests. d Proportion

of Ki67+proliferating cells amongNEOandADMo treated for 24hwithGM-CSFand

Jurkat cells as positive control represented as means ± SEM (each n = 3). p-values

were determined using one-way ANOVA and post hoc Tukey’s multiple comparison

test. e Representative images of the morphology of NEO and AD MDM. May-

Grunwald-Giemsa-staining. Scalebars, 50 µm. fMeanof cell areas counted in4HPFs

of n = 2 samples, respectively. Box plots show medians (central line), interquartile

ranges (box edges) and whiskers extending to the smallest and largest data points.

The p-value was determined using a two-sided MWU-test. g Mean number of cell-

associated (CA) and cell-free (CF) nuclei perHPF. The p-valuewasdetermined using

a two-sided Fisher’s exact test. h Proportion of CD68+ MDM after 14 days of dif-

ferentiation. i CD80 expression (MFI) in CD68+ MDM. j Proportion of CCR7+ and

CCR7- cells from CD68+ MDM. Plotted are means ± SEM (each n = 5). p-values were

determined using two-sided MWU-tests. k Production of indicated cytokines by

control- and 4 h and 16 h LPS-treated (10 ng/ml) NEO and AD MDM (each n = 3).

Plotted are means ± SEM. Significant differences were determined using one-way

ANOVA and post hoc Tukey’s multiple comparison tests. l–n NEO and ADMo were

cultivated for 24h in the presence of 300mg/dL (G-high) or 100mg/dL glucose (G-

low) or treated with DG or Oligo under G-high conditions. l Cell numbers after

cultivation (NEO n = 5, AD n = 6). Plotted are means ± SEM. p-values were deter-

mined using one-way ANOVA and post hoc Tukey’s multiple comparison tests.

m–p Proportions of apoptotic cells (NEO n = 5, AD n = 6) (m, n) and CD68+ MDM

(NEO n = 5, AD n = 4) (d3) (o, p) after cultivation in the presence of DG (m, o) or

Oligo (n, p) compared to standard G-high conditions, respectively. p-values were

determined using paired two-sided t-tests. Source data are provided as a Source

Data file.

Article https://doi.org/10.1038/s41467-025-57357-w

Nature Communications |         (2025) 16:2239 11



Methods
Study population
Study participants were enrolled between January 2021 and September

2024at theHannoverMedical School (Hannover, Germany) andbetween

January 2022 and September 2024 at the University Hospital Würzburg

(Würzburg, Germany) in the frame of the MIAI birth cohort study78 after

written informed consent was obtained from parents and AD donors,

respectively. For the transcriptomic analysis and isotope tracing studies,

cord blood of term newborn infants and peripheral blood of AD volun-

teer donors aged 24–53 years was used. For the functional metabolic

studies (SCENITH), cord blood of 10 newborn infants (NEO group) and

peripheral blood from 16 breastfed infants (1 y group), 8 toddlers and
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preschoolers (2–5 y group), and 15 ADvolunteer donors (ADgroup)were

collected (Table S1). For gene expression studies (qRT-PCRs), peripheral

blood from 11 newborns aged 3 days, 11 infants aged 8–13 months, 6

healthy toddlers aged 2–3 years, and 11 AD volunteer donors aged 28–56

years were collected. Only healthy individuals without a history of

inflammation and infection during the last 4 weeks or organ dysfunction

were included, respectively. Children from pregnancies that involved

births resulting from maternal trauma and children with major anoma-

lies, inborn errors and acute or chronic diseases were excluded from this

study. For the ketogenic diet (KD) studies, ketosis was induced in 10

healthy AD volunteers following an eucaloric high-fat KD (carbohydrates

< 30g per day) ad libitum for 1 week (Table S2). Blood sampling and

measurements of the participant’s body weights and body mass indices

(BMI) were done twodays before and at day 7 after starting KD. To verify

induction of ketosis, urine levels of ketone bodies and glucose were

analyzed daily from two days before start until end of KD using Combur

test strips (Roche).

Ethics statement
Protocols and usage of human biomaterial were approved by the

Institutional Review Boards of the Hannover Medical School (no.

8014_BO_S_2018, no. 7224-2016, ResearchObstetrics Biobankno. 1303-

2012) and the University of Würzburg (no. 13/22_z-am). Written

informed consent was obtained from all participating individuals and

the parents or legal representatives on behalf of the children enrolled

in our study.

Cell isolation and culture conditions
Humanmonocytes (Mo) andmononuclear cells (MNCs). HumanMo

were isolated and cultured as described previously79. Briefly, after

isolation of blood mononuclear cells (MNCs) by Ficoll–Paque density

gradient centrifugation, Mo were isolated using the Pan Monocyte

Isolation Kit (Miltenyi Biotec). Purity of isolated Mo was > 90 % as

controlled byflowcytometry.Mowere cultured at a concentration of 1

×106 cells/ml in Teflon bags in monocyte medium (McCoy’s modified

medium (Biochrom AG) supplemented with 1% glutamine, 1%

penicillin-streptomycin and 15% fetal bovine serum (FBS)). For SCE-

NITH, MNCs were incubated for indicated time periods with 1 µg/ml of

phenol-extracted LPS (Escherichia coli O55:B5; Sigma-Aldrich) that

highly specifically targets TLR480. For gene expression studies, Mo

were left untreated or incubated for 4 h with 10 ng/ml LPS. For cyto-

kine studies, Mo were left untreated or incubated for 16 h with 100 ng/

ml LPS. In LPS pretreatment experiments, Mo were low-dose pre-

treated with 0.1 ng/ml LPS for 16 h followed by activation with 1 µg/ml

LPS for 4 h. This strategy ensures a significant time of continuous LPS

exposure inducing Mo reprogramming79 while still allowing sub-

sequent LPS activation for 4 h within the lifespan of isolated Mo81. To

assess primary and secondary LPS responses while glycolysis or

OXPHOS were blocked, untreated and LPS-pretreated Mo were sti-

mulated for 4 h with 1 µg/ml LPS while cultivated in Teflon bags in

supplemented monocyte medium without and with the addition of

either 100mM 2-Deoxy-D-Glucose (DG) (ThermoFisher) or 1 µM oli-

gomycin A (Santa Cruz). For TF inhibition experiments, ADMNCswere

incubated for 4 h with either 10 µM HLM006474 (HLM) (MedChem-

Express, Cat# HY-16667), an inhibitor of E2F130,31, 1 µMall-trans retinoic

acid (ATRA) (Merck, Cat# R2625), an inhibitor of MYB32,33, 1 µM

fludarabine (FA) (MedChemExpress, Cat# HY-B0069), an inhibitor of

STAT134,35, or 100 nM camptothecin (CPT) (MedChemExpress, Cat#

HY-16560), an inhibitor of FLI136,37, and subjected to SCENITH studies.

Human monocyte-derived macrophages (MDM). Isolated AD and

cord blood Mo were seeded in RPMI 1640 medium (Biochrom AG) sup-

plemented with 10% of a heat-inactivated human AD blood plasma pool,

1% glutamine and 1% penicillin-streptomycin at a concentration of 2 × 106

cells/ml and cultivated up to 14 days for differentiation into MDM. In

selected experiments, the MDM medium was supplemented with 10%

FBS and 50ng/ml GM-CSF and 50ng/mlM-CSF (both Peprotech) instead

of AD blood plasma pool or pooled blood plasma from adult and new-

born (cord blood) blood donors was used in an autologous and cross-

heterologous manner for MDM differentiation. In TF inhibition experi-

ments, the AD plasma-based MDM medium was supplemented with

either 10 µM HLM, 1 µM ATRA, 1 µM FA, or 100nM CPT during the first

2 days of cultivation. Every third day 30%of themediumwas replaced by

fresh medium. After indicated time periods, MDM numbers were deter-

mined by manual microscopical counting of 4 high-power fields (HPF)

and extrapolation to the total culture well. Subsequently, cells were

harvested forflowcytometric analyses. ForMay-Grunwald-Giemsa (MGG,

Pappenheim) staining air-dried and 2% paraformaldehyde (PFA) fixed

MDMscultured in thesamemanner inLap-Tekchambers (ThermoFisher)

were used. For the analysis of cellular functions, cultured MDMs were

stimulated for 4h and 16h with 10ng/ml LPS or phosphate-buffered

saline (PBS) (controls) and culture supernatants were collected for

cytokine quantification. The effect of glycolysis and OXPHOS inhibition

onMDMdifferentiation was tested by cultivating seededMo for the first

24 h in supplemented (1%glutamine, 1%penicillin-streptomycin, 15% FBS)

DMEM standard medium (Gibco; 16.7mM glucose (G-high)), DMEM low

glucosemedium (R&D; 5.5mMglucose (G-low)), and DMEM low glucose

with either 100mMDGor 1 µMoligomycin and subsequent cultivation in

standard MDM medium. Cell counting and apoptosis measurements

were done in d1 MDM and macrophage marker expression studies

in d3 MDM.

Jurkat cells. Jurkat T leukemia cells (clone E6–1) were purchased from

the AmericanType CultureCollection (ATCC,Manassas, VA, USA). The

Jurkat cellswere cultured at 37 °C inRPMI 1640mediumsupplemented

with 10% FBS and 1% penicillin‐streptomycin. Cells were subcultured at

a ratio of 1:4 upon reaching a cell density of 70–80%. For FACS pro-

liferation studies cells were used at passages 3 or 4.

RNA isolation, library construction, RNA sequencing, and real-
time quantitative reverse transcription PCR (qRT-PCR)
Total RNA was isolated from human Mo with the NucleoSpin RNA Mini

kit (Macherey-Nagel) according to themanufacturer’s protocol. For bulk

RNA sequencing, cDNA libraries were prepared from 100ng total RNA

using the TruSeq® Stranded Total RNA Library Prep Globin from Illu-

mina. The final libraries were quantified using a real-time PCRwith KAPA

HiFi HotStart (Roche) and the size distribution was measured using the

Agilent high sensitivity D1000 assay on a TapeStation 4200 system

(Agilent technologies). Sequencing was performed in single-end mode

on a HiSeq1500 (Illumina) with a TruSeq SBS Kit v3-HM (50 cycles) Kit.

Base call files were converted to fastq format using bcl2fastq v.2.20. For

qRT-PCRs, cDNA was synthesized from 300ng of total RNA using the

Fig. 6 | Transcriptional regulator network of immunometabolism in Mo.

a Module heatmap of the scaled mean expression of genes within the respective

network modules for each donor. Bonferroni adjusted P (padj) of the two-sided t-

test comparing the mean expression per module in the group NEO versus AD.

b Heatmap of selected TFs identified by TFBS overrepresentation analysis as

potential regulators of the steelblue module and additionally the maroon and/or

lightgreen module. Affiliations to hCoCena modules and significant expression

differences are color-coded. cNetwork visualizationwith hub genes of themaroon,

steelblue and lightgreenmodule highlighting the top 15 hub TFs, ranks in brackets.

Color-highlighted TFs belong to the group of candidate TFs depicted in (b).

dNetwork constructionof selectedTFs shown in (b) and their target TFs coloredby

hCoCenamodule affiliationor ingrey if not includedwithin the network.Nodesizes

are scaled by the number of connections. Red and blue ring colors, respectively,

highlight the TFs significantly higher or lower expressed in NEO versus AD Mo.

Source data are provided as a Source Data file.
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RevertAid Revese Transcriptase Master Mix (ThermoFisher Scientific)

following the manufacturer´s recommendations. qRT-PCR was done as

described previously4. The human primers used for qRT-PCRs were

GAPDH (F, GCAAATTCCATGGCACCGT; R, GCCCCACTTGATTTTGGA

GG), E2F1 (F, TCGTAGCATTGCAGACCCTG; R, ACATCGATCGGGCCTT

GTTT), MYB (F, CGCAGCCATTCAGAGACACT; R, GGTAGCACCTGCTG

TCCTTT), STAT1 (F, TGTATGCCATCCTCGAGAGC; R, AGACATCCTGCC

ACCTTGTG), and FLI1 (F, GGCTGTAACCGGGTCAATGT; R, GTCAAAGA

GGGACTGGTCGT). Sampledata arepresented as target geneexpression

relative to the housekeeper GAPDH.
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Bioinformatic analysis of transcriptomic data
Pre-processing of transcriptomic data. Sequenced reads were ran-

domly downsampled to 10 million reads per sample and remaining

reads were aligned and quantified using STAR: ultrafast universal RNA-

seq aligner (v2.7.3a)82 and the human reference genome GRCh38p13

from the Genome Reference Consortium.

For bioinformatics analyses, raw counts were imported into R

using the R docker image jss/jss_R412_S41. Genes with less than 10

reads in 3 or more samples, as well as the mitochondrial genes MT-

RNR1 andMT-RNR2, were excluded. The R/DESeq2 package (v1.34.0)83

was used for gene count normalization and rlog transformation. Batch

correctionwasperformedusing surrogate variable analysis (SVA) from

the R/sva package (v3.42.0)84. The R/limma package (v3.50.1)85 was

used for the calculation of batch-corrected counts by correcting for

SV1-3. Differentially expressed genes were calculated following the

DESeq2 pipeline with multiple-testing correction by independent

hypothesis weighting from the R/IHW package (v1.22.0)86, an adjusted

p-value cutoff of 0.05 and a fold-change (FC) cutoff of 2. FC shrinkage

using apeglm (v1.16.0)87 was applied.

hCoCena - Horizontal Construction of Co-expression network

analysis. To elucidate similarities and differences within the gene

expression patterns of NEO and AD Mo at baseline and following LPS

activation, co-expression network analysis was performed using the R/

hCoCenapackage (v1.0.0)88 and theRdocker imagemo126/hcocena. To

identify genes with similar expression patterns across samples, pairwise

Pearson correlations were calculated on the batch-corrected and log-

transformed expression values of the 8535 most variable genes, selec-

tedbasedon the result of the suggest_topvar function. Datawerefiltered

for correlation values >0.963 to maintain a network with scale-free

topology (R² = 0.854) consisting of 6517 nodes and 184361 edges. The

group fold change (GFC) was calculated for each gene and each con-

dition on the inverse logarithmic count data. Unbiased clustering was

performed using the Leiden algorithm. Network visualization was per-

formed using the Organic Layout in Cytoscape (v3.8.2). Clusters with

less than 40 genes are not shown.

Gene set enrichment analysis (GSEA) was performed on the age-

and treatment group-related modules using the built-in functions.

Information on hallmark terms was obtained from the gene set file

“h.all.v7.4.symbols.gmt” downloaded from the Molecular Signatures

Database (MSigDB).

Hub gene detection based on weighted degree centrality, weigh-

ted closeness centrality and weighted betweenness centrality was

performed for selected modules. Results were filtered for the 15

highest-ranked transcription factors.

Transcription factor binding site (TFBS) motif enrichment analysis.

TFBS motif enrichment analysis was performed using the R/RCisTarget

package (v1.14.0)89 based on the gene-motif rankings database with a

search space of 10 kb up- and downstream of the transcriptional start

site (“hg38__refseq-r80__10kb_up_and_down_tss.mc9nr_.feather”) and the

human motif annotation database “motifAnnotations_hgnc” integrated

in RCisTarget. Results were filtered for transcription factors annotated

with high confidence and a normalized enrichment score (NES) > 3.

Networks of selected transcription factors, as well as their target

transcription factors, also showing enriched bindingmotifs among the

gene lists of interest, were constructed using the R/network package

(v1.18.0)90 and the R/ggnetwork package (v0.5.10)91 with the “fruch-

termanreingold” layout.

Human variation analysis (HUVA). The R/huva package (v0.1.5)28 was

used based on the “FG500_whole_blood” dataset from the R/huva.db

package (v0.1.5) using the R docker image bonaguro/huva_docker:015.

Individuals were ranked based on their expression of the gene of

interest, and individuals within the top and bottom 0.1 quantiles were

selected for further analyses (n = 10 per group). GSEA was performed

using default settings based on the ranked gene lists in the comparison

of high versus (vs) low groups. Results were filtered for an absolute

normalized enrichment score (NES) > 2.

Stable isotope tracing, GC–MS measurement and data analysis
The tracer medium was prepared in SILAC RPMI 1640 Flex Media

without glucose and glutamine (Thermo Fisher Scientific) plus L-argi-

nine, L-lysine, non-labelled glutamine (2mM; BiochromAG) and either

d-glucose-13C6 (11.1mM; Sigma-Aldrich) or non-labelled d-glucose-12C

(11.1mM; Roth). Isolated Mo were cultured in Teflon bags in tracer

medium for 24 h to reach isotopic steady state. Metabolite extraction

was performed as previously described (Bambouskova et al., 2021;

Sapcariu et al., 2014). Briefly,Mowerewashedwith 0.9%NaCl and then

quenched with pre-cooled HPLC-grade methanol ( − 20 °C, 0.2ml per

bag). After adding an equal volume of 4 °C deionized water containing

1 µg/ml D6-pentanedioic acid (C/D/N isotopes) as internal standard,

cellswere transferred tomicrocentrifuge tubes pre-addedwith0.25ml

of pre-cooled ( − 20 °C) HPLC-grade chloroform. The extracts were

vortexed at 1400 r.p.m. for 20min at 4 °Cand centrifuged at 17,000 x g

for 5min at 4 °C. Next, 0.3ml of the upper aqueous phase was trans-

ferred into glass vials compatible with gas chromatography and then

dried under vacuum at 4 °C in the CentriVap Concentration System

(Labconco). Gas chromatography–mass spectrometry (GC–MS) mea-

surement of relative metabolite levels and isotopic enrichment was

performed as described (Sapcariu et al., 2014), using an Agilent 7890B

gas chromatograph equipped with a 30-m DB-35ms and a 5-m Dur-

aguard capillary column (Agilent) for separation of derivatized meta-

bolites, and an Agilent 5977B MSD system (Agilent) for measurement

ofmetabolites. Briefly, driedmetabolite extracts were derivatizedwith

equal amounts of methoxylamine (20mg/ml in pyridine) and

MTBSTFA before injection into the GC–MS system. Measurements

were carried out in either full scan mode or selected ion mode. Pro-

cessing of chromatograms and the calculation of mass isotopomer

distributions as well as relative quantification of metabolites were

performed using theMetabolite Detector software (Hiller et al., 2009).

SCENITH
Human MNCs were cultivated at 37 °C, 5% CO2 in supplemented RPMI

medium without streptomycin and treated for 15min with DG

(100mM), oligomycin A (1 µM) or both (DGO setting) or left untreated

(control). Then, puromycin (10 µg/ml; Roth) was added for 15min at

37 °C. Cells were stained with eBioscience Fixable Viability Dye eFluor

Fig. 7 | Population-based transcriptional analysis of E2F1,MYB, STAT1, and FLI1

functions. a Expression of E2F1,MYB, STAT1 and FLI1 inMo isolated from3days old

healthy newborns (n = 11), 8–13 months old infants (n = 11), 2–3 years old toddlers

(n = 6), and adults (AD, n = 11) plotted as means ± SEM. p-values were determined

using one-way ANOVA and post hoc Tukey’s multiple comparison tests. b Concept

of human variation analysis using transcriptomedata of donors of the FG500whole

blood dataset. c, f, i, l Donors are binned by gene expression and the top and

bottom 10% of donors represent groups with high and low expression of indicated

genes of interest. d, g, j, m Box plots showing the variance stabilized mean

expression (central line) and interquartile ranges (box edges) of E2F1, MYB, STAT1

and FLI1 in respective E2F1 (d),MYB (g), STAT1 (j) and FLI1 (m) high and low groups

(each n = 10). Whiskers extend to the smallest and largest data points within 1.5

times the interquartile ranges. Points outside the whiskers are outliers. p-values

were determined using unpaired two-sided t-tests. e, h, k, n GSEA using Hallmark

terms based on the ranked gene list of the comparison of E2F1 (e),MYB (h), STAT1

(k) and FLI1 (n) high versus low individuals. Results are filtered for an absolute

normalized enrichment score (NES) > 2. Bars are colored by main functional cate-

gories. Source data are provided as a Source Data file.
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Fig. 8 | E2F1,MYB, STAT1 and FLI1 are central transcriptional regulators of the

cell metabolism andmyeloid differentiation in Mo. a, b Isolated ADMNCs were

left untreated or pretreated for 4 h with the inhibitors of E2F1 (HLM),MYB (ATRA),

STAT1 (FA) and FLI1 (CPT) and subjected to SCENITH studies formetabolic profiling

of Mo. a OXPHOS dependence (MD) and (b) glycolytic dependence (GD) of pre-

treated compared to untreated Mo (Ctrl) (each n = 12), respectively. c–e AD Mo

were differentiated for 7 days into MDM without (Ctrl) or in the presence of HLM,

ATRA, FA or CPT during the first 2 days of cultivation. c Numbers of Ctrl MDM and

inhibitor-treated MDM at harvest on d7 (each n = 12). d Proportion of apoptotic

cells (Annexin V+7-AAD-) in Ctrl MDM and inhibitor-treated MDM (each n = 10).

eProportionofCD68+MDM inCtrlMDMand inhibitor-treatedMDM(eachn = 9).p-

values were determined using paired one-sided t-tests. Source data are provided as

a Source Data file.
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506 (1:1000; Invitrogen) in FACS buffer (PBS with 2mM EDTA and 2%

BSA) for 30minutes at 4 °C and subsequently fixed with 2% PFA.

Intracellular staining of puromycin was performed by incubation with

the Alexa Fluor 647-conjugated anti-puro monoclonal antibody

(1:1000, Clone MABE343-AF647, Sigma-Aldrich) in intracellular stain-

ing buffer (FACS buffer with 0.5% saponin and 0.2% Tween20) for

30min at 4 °C. This protocol was adapted from the original SCENITH

kit (http://www.scenith.com) andprotocols developed byR. Argüello11.

Cells were washed twice with FACS buffer and analyzed using a FACS

Canto II flow cytometer (BD Biosciences). Data were analyzed using

DIVA software v8.0.1 (BD Biosciences) and Kaluza software v2.1

(Beckman Coulter).

Flow cytometry
Apoptosis and necrosis rates were measured in day 7 MDMs by flow

cytometric staining using the APC Annexin V Apoptosis Detection Kit

with 7-AAD (Biolegend) according to the manufacturer’s protocol.

Proliferation activity of humanMo after 24 h of ex vivo cultivation was

determined flow cytometrically after intracellular staining with PE

mouse anti-human Ki-67 mAb (clone Ki-67, Biolegend). Jurkat cells

served as positive controls in this assay. For flow cytometric study of

MDMdifferentiation, marker staining was performedwith FITCmouse

anti-human CD68 mAb (clone Y1/82A, Biolegend), PE mouse anti-

human CD80 mAb (clone 2D10, Biolegend) and APC mouse anti-

human CCR7 mAb (CD197; clone G043H7, Biolegend).

Cytokine quantification
For measurements of indicated cytokines in cell culture supernatants,

we used human LEGENDplex assays (BioLegend). FACS Canto II flow

cytometer was used for measurements and the cloud-based LEGEN-

Dplex Data Analysis Software Suite Version 2022-07-15 (BioLegend,

Qognit) was used for data analysis.

Statistics
Statistical tests applied for RNA-sequencing data analysis are descri-

bed above. The statistical significance of two-group comparisons was

calculated using Mann-Whitney U (MWU) tests. ANOVA analyses were

performed across age and treatment groups. Post hocTukey’smultiple

comparison tests were applied between subgroups. To assess the lin-

ear relationship between metabolic parameters and cytokine levels,

Pearson’s correlation coefficient r was computed and the trend line

was visualized by linear regression.

A generalized linear model (glm; R stats package v4.2.2) with a

Poisson distributionwas generated to assess how the variance in energy

metabolism, OXPHOS, and glycolytic activity could be explained by

selected meta data variables. We tested the interaction effect between

the respective metabolic parameters and plotted the standardized esti-

mates (effect sizes) of our model using the plot_model function of the R

package sjplot (v2.8.3; URL:https://CRAN.R-project.org/package=sjPlot)

with default parameters with transform = NULL,active sorting of esti-

mates and p.adjust = “BH”. Statistically significant p-values are indicated

in thefigures, the statistical tests used are specified in thefigure legends.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
The raw RNA-seq files are deposited in the EGA database under the

accession number EGAS00001007555. The mass spectrometry raw

data are deposited on LeoPARD, a repository of the Technical Uni-

versity Braunschweig, under https://doi.org/10.24355/dbbs.084-

202312071717-0. All other data are available in the article and its Sup-

plementary files or from the corresponding author upon

request. Source data are provided with this paper.

Code availability
The code necessary to reproduce the analysis is deposited on

GitHub under https://github.com/LisaHolsten/Neonatal_monocyte_

immunometabolism and Zenodo under https://doi.org/10.5281/

zenodo.14886497.
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