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Abstract 
Detecting adverse drug events (ADE) of drugs that are already available on the market 

is an essential part of the pharmacovigilance work conducted by both medical regulatory 

bodies and the pharmaceutical industry. Concerns regarding drug safety and economic 

interests serve as motivating factors for the efforts to identify ADEs. Hereby, social media 

platforms play an important role as a valuable source of reports on ADEs, particularly 

through collecting posts discussing adverse events associated with specific drugs. We 

aim with our study to assess the effectiveness of knowledge fusion approaches in combi-

nation with transformer-based NLP models to extract ADE mentions from diverse data-

sets, for instance, texts from Twitter, websites like askapatient.com, and drug labels. The 

extraction task is formulated as a named entity recognition (NER) problem. The proposed 

methodology involves applying fusion learning methods to enhance the performance of 

transformer-based language models with additional contextual knowledge from ontologies 

or knowledge graphs. Additionally, the study introduces a multi-modal architecture that 

combines transformer-based language models with graph attention networks (GAT) to 

identify ADE spans in textual data. A multi-modality model consisting of the ERNIE model 

with knowledge on drugs reached an F1-score of 71.84% on CADEC corpus. Additionally, 

a combination of a graph attention network with BERT resulted in an F1-score of 65.16% 

on SMM4H corpus. Impressively, the same model achieved an F1-score of 72.50% on the 

PsyTAR corpus, 79.54% on the ADE corpus, and 94.15% on the TAC corpus. Except for 

the CADEC corpus, the knowledge fusion models consistently outperformed the baseline 

model, BERT. Our study demonstrates the significance of context knowledge in improving 

the performance of knowledge fusion models for detecting ADEs from various types of 

textual data.

Author summary
Adverse Drug Events (ADEs) are one of the main aspects of drug safety and play an 
important role during all phases of drug development, including post-marketing phar-
macovigilance. Negative experiences with medications are frequently reported in textual 
form by individuals themselves through official reporting systems or social media posts, 
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as well as by doctors in their medical notes. Automated extraction of ADEs allows us to 
identify these in large amounts of text as they are produced every day on various plat-
forms. The text sources vary highly in structure and the type of language included which 
imposes certain challenges on extraction systems. This work investigates to which extent 
knowledge fusion models may overcome these challenges by fusing structured knowledge 
coming from ontologies with language models such as BERT. This is of great interest 
since the scientific community provides highly curated resources in the form of ontolo-
gies that can be utilized for tasks such as extracting ADEs from texts.

Introduction
An adverse drug event (ADE) can be defined as “an injury resulting from a medical interven-
tion related to a drug” [1]. ADEs as a major aspect of drug safety are objective of interest in the 
pharmacovigilance efforts done by pharmacological companies as well as medical regulatory 
bodies. Negative experiences with certain medications are frequently reported in textual form 
by individuals themselves through official reporting systems or social media posts, as well as 
by doctors in their medical notes. The mentioned ADEs are often hidden in unstructured text, 
and the process of identifying and extraction of ADE entities from such text requires a signif-
icant amount of a medical professional’s time. Performing large-scale automatic extraction 
from a variety of text sources could help domain experts in quickly identifying new ADEs. 
However, this extraction process requires robust and highly accurate text mining methods.

In recent years, the natural language processing (NLP) field has made significant advance-
ments with transformer-based language models such as BERT [2] or GPT [3]. These models 
have set new benchmarks in several NLP tasks. Furthermore, these models have been success-
fully applied to detect ADEs from textual documents [1,4–6]. There are mainly two different 
types of texts mentioning ADEs such as reports or scientific publications written by medical 
professionals and reports provided by the patient or their relatives themselves. Social media 
texts differ from medical reports as they often contain informal language, slang, abbreviations, 
and colloquialisms. Additionally, these texts predominantly consist of opinions of people 
and contain fewer factual statements. Due to the continuously growing quantity and signifi-
cance of social media texts, we place particular attention on analyzing patient-reported texts. 
Two important text corpora in the context of ADE detection in patient-reported texts are the 
CSIRO Adverse Drug Event Corpus (CADEC) [5] that contains annotated texts from https://
askapatient.com, which is a forum dedicated to collecting drug experiences, and a corpus, here 
referred to as Social Media Mining for Health Applications (SMM4H) Shared Task 2021, that 
comprises annotated Twitter postings [6]. Moreover, important to mention here, are three 
additional corpora, namely Psychiatric Treatment Adverse Reactions (PsyTAR) corpus [7], 
text annotation conference (TAC) corpus [8], and ADE corpus [9]. The CADEC, SMM4H, 
and PsyTAR were derived from sources where patients authored the texts themselves, whereas 
the ADE and TAC were composed by medical experts written in formal and scientific lan-
guage. Further details on the corpora are given in Section Datasets.

It is important to highlight previous scientific initiatives that have aimed to extract ADEs 
from texts. Sboev et al. [10] elaborated on the performance of various transformer models 
evaluated on CADEC, where they reported an F1-score of 69.68% for strict matches (exact 
matching between true and predicted instances) using the XLM-Roberta-large model that 
ranked best among all considered models. Additionally, Portelli et al. [11] provided a per-
formance overview of different transformer models on CADEC and SMM4H, in which they 
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reported F1-scores of 67.95% and 62.15%, respectively. They reported that a SpanBERT-based 
approach yielded the best results. Furthermore, Ge et al. [4] offered a federated learning 
methodology for the ADE detection problem and evaluated it on both datasets. This approach 
was able to achieve for relaxed matches (partial overlap of true and predicted instances) an 
F1-score of 84.55% on CADEC and 67.8% on SMM4H corpus. For strict matches, 65.16% and 
32.69% were reported for the same corpora by the authors. Ramesh et al. [12] presented their 
solution to the 2021 SMM4H shared task 1 that adopts the roBERTa base model to extract 
ADE mentions, which reached a relaxed F1-score of 50% on the final test set. Furthermore, 
Raval et al. [13] presented an interesting strategy by tackling text classification concerning 
ADEs as well as the actual ADE span extraction with a multi-task learning approach that 
used the T5 as a pre-trained encoder-decoder transformer model. They could reach the strict 
F1-score of 69.8% on CADEC and 71.3% on SMM4H corpus as well as the relaxed F1-scores 
of 79.1% and 75.1%, respectively. Another notable work that deserves mention is of Haq et 
al. [14] as they evaluated their NLP pipeline on the ADE corpus [9] as well as on CADEC 
and SMM4H. The end-to-end system proposed by Haq et al. [14] was able to report strict 
macro-averaged F1-scores of 91.7%, 78.7%, and 76.7% on the ADE, CADEC, and SMM4H 
corpora respectively. Furthermore, Miftahutdinov and Tutubalina [15] evaluated BERT on the 
PsyTAR corpus and were able to reach an accuracy of 83.07% during the task of normalizing 
the ADE entities to a controlled vocabulary. Analogously the authors reported accuracy scores 
of 88.84% on CADEC as well as 89.64% on SMM4H during the entity normalization task. 
Finally, in the 2017 Text Analysis Conference (TAC) a team [16] from the University of Texas 
Health Science Center at Houston was able to achieve a micro-averaged F1-score of 82.48% 
over all entities of the TAC corpus including ADE mentions. The participants from Houston 
were able to reach that score by utilizing a bi-directional LSTM model.

Moreover, Stanovsky et al. [17] adopted a fusion learning approach by combining contex-
tual knowledge from DBpedia with a Bi-LSTM. By doing so the authors reported an F1-score 
of 93.4% on the CADEC corpus. Fusion model approaches are often able to increase per-
formance in comparison with standalone transformer models. Zhang et al. [18] reported a 
performance increase from 73.5% F1-score using a BERT model to 75.5% adopting ERNIE as 
a fusion learning model evaluating however on the Open Entity dataset [19]. Liu et al. [20] 
published an alternative approach that demonstrates the advantages of transformer-based lan-
guage encoding with contextual knowledge. Their K-BERT model achieved a notable increase 
of 0.04 in the F1-score on a question-answering task.

In this study, we conducted a series of experiments to assess the effectiveness of knowledge 
fusion methods in combination with transformer-based NLP models for extracting ADEs 
from unstructured texts. We performed these experiments on a total of five diverse text cor-
pora. To incorporate contextualized knowledge, we constructed a knowledge graph (KG) that 
included drug brand names and integrated a symptom ontology. This combination proved to 
be well-suited for analyzing ADE-related texts. Additionally, we utilized graph neural network 
(GNN) techniques, specifically a graph attention networks (GAT) [21], to learn representa-
tions of drug and symptom entities within the KG. These representations were subsequently 
integrated into transformer models through a fusion learning approach. We compared our 
proposed model architecture against ERNIE [18], a well-established knowledge fusion lan-
guage model, as well as two non-knowledge fusion models, namely BERT and BioBERT [22].

Materials and methodology
First, we introduce different datasets and knowledge resources used in our work and subse-
quently we present the knowledge fusion models that have been developed for the purpose of 
detecting ADEs from textual corpora.
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Datasets
CADEC.  The CSIRO Adverse Drug Event Corpus (CADEC) [5] is an annotated text 

corpus published in 2015 that consists of forum posts from askapatient.com and comes with 5 
different types of annotations: ADE, Drug, Disease, Symptom, and Finding (any other clinical 
finding).

The whole CADEC corpus includes reports on 12 drugs such as Diclofenac or Lipitor. 
Diclofenac (https://go.drugbank.com/drugs/DB00586) is a non-steroidal anti-inflammatory 
drug that is used to treat pain and inflammation from different sources while Lipitor (https://
go.drugbank.com/drugs/DB01076) lowers lipid levels and reduces the risk of cardiovascular 
diseases. The CADEC corpus is composed of 1,253 posts with 7,398 sentences in total, where 
1,107 posts contain at least one ADE mention (see Table 1). This adds up to 7,409 ADE spans 
with an average post length of six sentences. Finally, all posts were written between January 
2001 and September 2013 by patients between 17 and 84.

SMM4H.  The second dataset used in this work is the SMM4H corpus [6], which is one of 
the datasets provided to the participants of the Social Media Mining for Health Applications 
(#SMM4H) Shared Task 2021 (https://healthlanguageprocessing.org/smm4h-shared-
task-2021/). In this work, we focus on the corpus for Subtask 1b, which is about extracting 
ADE mentions from Twitter posts. We ignore Subtasks 1a which dealt with classifying Tweets 
containing an ADE and 1c which tackled the normalization of ADEs to MedDRA.

There are differences between the SMM4H Subtask 1b corpus and the CADEC, while the 
biggest difference might be that CADEC has annotations of 5 different types whereas the 
corpus of Subtask 1b of SMM4H has only adverse drug reaction mentions tagged. The corpus 
is composed of 1,300 tweets with 1,800 annotated ADE spans (see Table 1). On average each 
tweet has 21 words and two sentences.

PsyTAR.  The third corpus considered in this work is the corpus presented by 
Zolnoori et al. [7]. The Psychiatric Treatment Adverse Reactions (PsyTAR) corpus 
contains 891 drug reviews from askapatient.com which is the same source as the 
previously mentioned CADEC corpus. The corpus contains reviews for four drugs 
(Zoloft, Lexapro, Cymbalta, and Effexor XR) and holds a total of 6009 sentences with 
4813 ADE mentions (see Table 1). On average each post contains 7 (6.7) sentences. 
Further note that the PsyTAR text corpus contains, besides ADE mentions, 6 other 
annotation types, which are Withdrawal Symptoms (WDs), Signs/Symptoms/Illness 
(SSIs), Drug Indications (DIs), Drug Effectiveness (EF), and Drug Infectiveness (INF) 
and other, not applicable, mentions.

TAC.  The TAC corpus [8] was assembled from drug labels and was used in the 2017 
text annotation conference (TAC). The corpus consists of a set of drug labels in which ADE 

Table 1.  Overview of the ADE datasets used in this study. Note that the SMM4H corpus does not contain any 
drug annotations.

Dataset Document class # Documents # Sentences # Drugs # ADEs
CADEC [5] Drug reviews 1,253 7,398 1,800 7,409
SMM4H Subtask 1b [6] Tweets 1,300 2,107 – 1,496
PsyTAR
[7]

Drug reviews 891 6,009 792 4,813

TAC Task 1
[8]

Drug labels 101 3,154 249 13,795

ADE
[9]

Medline case reports 2,972 4,272 5,063 5,776

https://doi.org/10.1371/journal.pdig.0000468.t001

https://go.drugbank.com/drugs/DB00586
https://go.drugbank.com/drugs/DB01076
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https://healthlanguageprocessing.org/smm4h-shared-task-2021/
https://doi.org/10.1371/journal.pdig.0000468.t001
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mentions among other entities are annotated. In that conference participants were provided 
with the corpus and challenged to extract adverse drug reactions from these drug labels. This 
task was referred to as Task 1 within TAC. Each drug label contains on average 79 sentences 
and hence was split into sentences to fit it into the transformer models used in this work. Each 
sentence contains on average 33 (32.69) words. Besides ADE entities the corpus comes with 
annotations for Severity, Factor (additional aspects of the ADE entity), Drug Class, Negation, 
and Animal.

ADE.  The 5th and final corpus used was published by Gurulingappa et al. [9] and 
was constructed from 3000 MEDLINE case reports. After an exhaustive annotation and 
harmonization process that involved three annotators, the corpus holds 2972 reports. The 
final corpus comprises a total of 5063 drugs and 5776 ADE annotations distributed over 4272 
sentences (see Table 1). On average each sentence contains 20 (20.09) words. Besides drug 
and ADE entities the corpus further contains annotations for Dosage. Other than some of the 
corpora previously introduced, the authors of the ADE corpus did not restrict the retrieved 
documents to a certain set of drugs but rather retrieved 30.000 documents and randomly 
selected the 3000 case reports that were further used for the annotation process.

Knowledge bases
In our work, we explored the enhancement of transformer models by incorporating contex-
tual knowledge through fusion models to improve the detection of adverse drug events. We 
utilized two knowledge resources: one for encoding knowledge about symptoms and the other 
for modeling the domain of drug space.

Symptom ontology.  The symptom ontology (SYMP) is a publicly available ontology 
developed in the context of the Gemina system [23]. The creators designed the ontology 
while understanding a symptom as a “perceived change in function, sensation or appearance 
reported by a patient indicative of a disease” [23]. The ontology consists of 860 classes as 
well as a total of 1,586 cross-references to other databases like UMLS (https://www.nlm.
nih.gov/research/umls/index.html) or ICD (https://www.who.int/standards/classifications/
classification-of-diseases). Furthermore, the ontology comprises 5,445 axioms and class 
annotations such as definitions, synonyms, and labels of symptoms. We use the symptoms 
ontology to provide context knowledge about symptoms. An example of how a model can 
enrich sentences with symptom classes is shown in Fig 1.

Drug resources.  Contextual knowledge about drugs and how they function in the human 
body can be valuable for tackling the task of ADE detection. We decided to assemble such 
knowledge in a structured way and store it in the form of an ontology. The resulting ontology 
inherits information from the ATC ontology and is further enriched with selected information 
about drugs. Fig 1 illustrates an example of how a model can enhance sentences by 
incorporating drug resource information. Fig 1 depicts the utilization of contextual knowledge 
exemplarily for CADEC and SMM4H but works equally for the other three corpora.

We used three different resources to collect various information on approved drugs. Firstly, 
the DrugBank database (version 5.1.9) [24] was used to extract drug descriptions, synonyms, 
and product names, as well as information about drug targets. Fortunately, DrugBank pro-
vides cross-references to the anatomical therapeutic chemical classification system (ATC), 
which divides active ingredients into classes based on anatomical properties like the organ 
they act on, chemical properties, as well as therapeutic properties [25]. DrugMechDB [26] is 
another drug resource, which contains information about the mechanism of action of a drug 
in the body. This mechanism is represented as a graph where each node can be of several 
types (such as disease, drug, protein, or cell). A sub-graph was taken from this graph to obtain 
information about the proteins that are involved in the drug mechanism, which we added to 

https://www.nlm.nih.gov/research/umls/index.html
https://www.nlm.nih.gov/research/umls/index.html
https://www.who.int/standards/classifications/classification-of-diseases
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our ontology. Furthermore, since this ontology is used to extract drug entities from text based 
on the drug product names it is important to add as many brand names to the ontology as 
known. To accomplish that, the website drugs.com was a highly useful resource for adding 
brand names for each drug in ATC.

Finally, all of the collected knowledge on drugs was added to the ATC ontology at its 
respective position and stored as an OWL (web ontology language) file. The resulting ontol-
ogy, in this work referred to as DRUGO, provides knowledge about drug names, definitions, 
synonyms, drug targets, and information about proteins involved in the drug’s action mecha-
nism. The final DRUGO ontology comprises a total of 6,441 classes.

Detection of adverse drug events
Our experimental strategy to create models that can detect ADEs in texts builds upon knowl-
edge fusion models that integrate transformer-based models with knowledge graph embed-
dings. As transformer-based models, we focus on using BERT [2] and BioBERT [22]. These 
models are also used to create baseline results. Furthermore, we experiment with multiple 
fusion approaches such as ERNIE and the graph concat model, which are introduced in the 
next sections.

Knowledge fusion.  To incorporate the information from the aforementioned knowledge 
bases (DRUGO and SYMP) into the language models, a numerical representation is necessary 
that effectively captures the encoded knowledge. We experimented with two approaches, the 
first one uses the well-established TransE method [27] to embed the underlying graphs of the 
two ontologies into a vector space. Whereas, in the second approach, a GNN was incorporated 

Fig 1.  CADEC and SMM4H example phrases that are enriched with contextual knowledge about drugs and symptoms. The sentence from CADEC “Very 
drowsy and tired and no pain relief at all.” can be equipped with symptom classes such as Drowsiness and Tiredness, which are subclasses of Neurological and 
physiological symptom class, as well as Pain, which is a subclass of Nervous system symptom.

https://doi.org/10.1371/journal.pdig.0000468.g001

https://doi.org/10.1371/journal.pdig.0000468.g001
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for this task. More specifically a GAT was trained with a node classification task, which 
provided the final node-level embeddings for the integration in the language model.

A total of three GATs were trained on the DRUGO and SYMP ontologies, as well as on 
an ontology generated by combining SYMP and DRUGO. In this approach, ontologies are 
treated as graphs, without taking into account any logical axioms, similar to other ontology 
embedding approaches. All GATs have been trained identically by initially considering the 
ontologies as graphs and assembling a set of nodes (V ) from the classes of the ontology and 
a set of edges (E) from the relations between the classes. Specifically, we derived E by treating 
every ‘subClass’ property as an edge. As a result, we obtained a circle-free, fully connected, 
directed graph with 6,441 nodes and 6,440 edges for DRUGO, 860 nodes and 859 edges for 
SYMP, and, 7301 nodes and 7300 edges for the combined KG of DRUGO and SYMP.

In the following step, initial representations for all nodes were generated. This was per-
formed by using the annotation properties of each ontology class/node and embedding these 
using a pre-trained language model. For all graphs, this was done by using either BERT or 
BioBERT, depending on the exact experimental setup. This led to the representation of each 
node as a 768-dimensional real vector. Graphs derived from DRUGO and SYMP provided a 
top-level classification with 14 classes, enabling the assignment of each node to one of these 
classes based on its position in the graph. The third graph obtained from combining the two 
ontologies yielded 28 classes.

Finally, a GNN was trained to predict the assigned class of each node in the graph. In addi-
tion, we have trained a GNN on link prediction as an alternative to the previously mentioned 
node classification task. However, the results will not be presented in the main manuscript 
but rather in S1 Table. Note that in our work, we specifically favored GAT over other GNN 
architectures because of its capability for self-attention. The self-attention mechanism in GAT 
allows nodes to attend to the features of their neighboring nodes. With the usage of GAT, we 
would like to address the issue that certain classes of the ontology may lack valuable informa-
tion due to a lack of class annotations. As a result, nodes can assign lower weights to neigh-
bors without valuable information due to the attention mechanism [21]. The aforementioned 
methodology of generating knowledge graph embeddings corresponds to what Yang et al. 
refer to as cascaded model architecture. In this architecture, initial node features are generated 
using language models and then further processed by GNNs [28].

Integrating transformer-based models with GNNs.  We propose a knowledge fusion 
model to combine node embeddings learned via a graph neural network with a transformer-
based model. We begin by taking an input sentence and using a rule-based tagger to identify 
symptoms and/or drug entities depending on the given knowledge graph. The KG can be 
either SYMP, DRUGO, or a combination of both. The tagged input sequence has the same 
length as the original input sequence but holds additional information for those input tokens 
that were tagged by the rule-based annotator. Further on, the tagged input sequence is passed 
through a GNN and returns a vector that holds zeroes for tokens that do not belong to any 
tagged entity and the corresponding node embedding for tokens that were tagged by the 
previous tagger. Subsequently, the resulting vector v is aligned with the representation of the 
transformer, T, (by adding zeros wherever a padding token was added or where words were 
split into word pieces, i.e., if a word is split up into 3 word pieces, the vector v holds the node 
embedding at the position of the pivotal word piece followed by two zeros corresponding to 
the two remaining word pieces). This aligned vector �v  is then concatenated with T to create a 
final knowledge-enriched representation �T  of the input sequence. This final representation is 
further passed into a linear layer, which serves as the classification head (Fig 2).

Additionally, we set the GNN weights as fixed by default, resulting in the usage of GNN as 
a lookup table within the underlying embedding space. We refer to this architecture as a graph 
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concat model. Nevertheless, we have implemented an additional model variant called the 
graph concat adaptive weights model, in which we treat the GNN weights as trainable param-
eters that are adjusted during the training of the entire model. Fig 2 illustrates the architecture 
of the graph concat model.

Furthermore, instead of using the entire graph as in the setting presented above, we 
explored an additional GNN configuration where only a subgraph of the knowledge graph is 
used and passed through the GNN. This subgraph is constructed from the k-hop neighbor-
hood of the tagged entity. Finally, instead of concatenating the node representation to the 
transformer representation, a graph pooling layer (concatenation of global max and average 
pooling) is added and its output is concatenated to the transformer representations. The just 
presented architecture will be noted as graph concat (graph concat AW for adaptive GNN 

Fig 2.  The architecture of the graph concat model with fixed and trainable GNN weights.

https://doi.org/10.1371/journal.pdig.0000468.g002

https://doi.org/10.1371/journal.pdig.0000468.g002
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weights and graph concat AWS for graph concat with adaptive weights and subgraph modifi-
cation) from now on.

Compared method: ERNIE.  Enhanced Language Representation with Informative 
Entities (ERNIE) is a fusion model introduced by Zhang et al. [18]. However, ERNIE 
handles the knowledge injection differently than other models. Instead of calculating the 
representation of context knowledge within ERNIE itself, it is computed separately. In ERNIE, 
TransE is utilized to generate and retrieve embeddings for the knowledge. To have a fair 
comparison, we also adopted this approach in our work. For a more detailed explanation of 
the working principle of ERNIE, we refer to the original study published by Zhang et al. [18].

The implementation used in this work is obtained from the GitHub repository https://
github.com/thunlp/ERNIE, which provides a pre-trained ERNIE model.

Experimental setup and training strategy.  To perform an unbiased final evaluation on a 
completely independent test set, we randomly chose and reserved 20% from each dataset. The 
remaining 80% of each dataset was divided into a train and validation set, with a ratio of 4-to-
1. This means that 64% of the entire dataset served as a training set used to train the model, 
while the remaining 16% was used as the validation set for hyperparameter tuning. After 
hyperparameter tuning, we trained the final model by combining both training and validation 
sets, which were used to evaluate the performance of the aforementioned independent test 
set. Furthermore, to have maximum comparability along all the different model architectures, 
those splits were consistently applied throughout all experiments.

Each experiment conducted in our study was constructed from the four categories listed in 
Table 2. The categories encompass the model architecture, the pre-trained transformer- 
based language model, the ADE text corpus, and the contextual knowledge resource. The 
selected model architectures further categorize the results into ERNIE, graph concat model 
with fixed GNN weights, graph concat model with adaptive GNN weights, and graph concat 
model with adaptive GNN weights and k-hop subgraph. Additionally, baseline experiments 
are considered as a separate category that only uses the pre-trained language models BERT 
and BioBERT. It is important to note that we utilized BERT as a general language model to 
assess the performance achievable by a transformer-based encoder that was not pre-trained 
on domain-specific documents. On the other hand, BioBERT is a domain-specific model that 
was pre-trained on biomedical documents [22]. All models were evaluated on all five ADE 
text corpora. Finally, each model was equipped with either contextual knowledge about drugs, 
symptoms, or both. In addition to the 10 baseline experiments, the various options for experi-
ment configurations resulted in a total of 115 experiments.

To ensure unbiased and comparable results, the same overall strategy for training, vali-
dation, hyperparameter tuning, and testing was employed in each experiment. The optimal 
hyperparameters were deduced by performing Bayesian hyperparameter optimization [29]. To 

Table 2.  Overview of experiment categories. Their combination results in a total of 115 experiments in addition 
to 10 baseline experiments.

Experiment categories Values
Knowledge fusion model architecture ERNIE (not used in combination with pre-trained transformer),

Graph concat model with fixed GNN weights,
Graph concat model with adaptive GNN weights, and
Graph concat model with adaptive GNN weights and k-hop subgraph

Pre-trained language model BERT and BioBERT
ADE corpora SMM4H, CADEC, PsyTAR, TAC, and ADE
Knowledge resource SYMP, DRUGO, and DRUGO + SYMP

https://doi.org/10.1371/journal.pdig.0000468.t002

https://github.com/thunlp/ERNIE
https://github.com/thunlp/ERNIE
https://doi.org/10.1371/journal.pdig.0000468.t002
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determine the optimal hyperparameters for each model, multiple models with different hyper-
parameter configurations were trained on the training set. These models were then evaluated 
on the validation set, to maximize the F1-Score. The cross-entropy loss function was employed 
for all models in the context of NER. The AdamW [30] optimization algorithm was chosen to 
adjust the model’s weights during training. Finally, the optimal hyperparameters were used to 
train models on the combination of training and validation sets. These new models were then 
tested on held-out, independent test sets of each corpus.

Evaluation scheme.  We used the precision, recall, and F1 measures to assess the 
performance of models. Each dataset was labeled in the IOB scheme with which each token 
of a sequence is labeled either as outside (O) of a named entity, as the beginning (B), or as 
an inside (I) token of a named entity. Hence, the classification head of each of the models 
had three output neurons and the NER problem was formulated as a classification task with 
three classes. However, we are interested in ADE spans that can consist of multiple tokens, 
therefore, for the final evaluation the IOB labeling was discarded, and the sequences were 
aggregated into real ADE mentions. The final scores were then calculated by taking into 
account the exact overlap of the full spans of ADE mentions.

Implementation.  The experiments conducted in this study were implemented using 
PyTorch and PyTorch Lightning. An essential component are transformer-based models for 
which we used the Huggingface transformers library. To perform hyperparameter tuning 
Optuna was chosen as the library. Details on the hyperparameter search space and an 
overview of all hyperparameters is given in S2 Table. Finally, for processing and handling 
the considered datasets we used Pandas and Spacy. The baseline models as well as the 
graph concat model experiments are using BERT and BioBERT, which come in different 
sizes and configurations. We used uncased BERT, commonly known as ‘bert-base-uncased’, 
which contains a total of 110M parameters. The BioBERT model is specified as ‘dmis-lab/
biobert-v1.1’, which has the equivalent number of parameters as ‘bert-base-uncased’. The 
model training and testing was performed using Nvidia’s V100 and A100 GPUs.

Results
We evaluated the aforementioned five different model architectures (Baseline, ERNIE, Graph 
concat, Graph concat AW, Graph concat AWS) on each of the ADE datasets. Table 3 provides 
an overview of the final evaluation results providing the F1-score obtained by applying the 
models within a certain configuration on the independent test sets. Here the configuration 
refers to the choice of context knowledge resource and underlying transformer-based model, 
where applicable. Please take note that the graph concat k-hop subgraph experiments were 
omitted from Table 1 since this architecture did not achieve the top ranking on any of the cor-
pora. For a comprehensive overview of results including this architecture as well as precision 
and recall measures for all models, we refer to S3 Table.

When examining the results on the CADEC corpus (Table 3), one may observe that the 
best baseline experiment utilizing BERT already demonstrates a strong performance in terms 
of the F1-score (71.84%). None of the other models evaluated on CADEC were able to improve 
upon this score. However, ERNIE equipped with contextual knowledge about drugs achieved 
the same score of 71.84%. Additionally, the graph concat AW model incorporated with drugs 
and symptom knowledge came quite close with a score of 71.82%.

The performance of the models on the SMM4H corpus, in general, was lower than on all 
other corpora. The difference of performance could already be observed in the results of the 
baseline experiments that showed a noticeable gap of almost 8-20% points. Furthermore, 
ERNIE, equipped with prior knowledge about drugs, was able to perform better on SMM4H 
with an F1-score of 63.23% than the best baseline experiment using BERT, which reached an 
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F1-score of 62.3%. Moreover, the graph concat AW model with contextual knowledge about 
symptoms adopting BioBERT as the underlying transformer was also able to report better 
F1-scores (64.22%) than the baseline experiments and better than the best-performing ERNIE 
model (Table 3). Finally, the graph concat model with fixed GNN weights using BERT as its 
underlying pre-trained transformer while equipped with joint prior knowledge about symp-
toms and drugs reported the overall best score on SMM4H with an F1-score of 65.16%.

On PsyTAR, the ERNIE model equipped with prior knowledge about symptoms, reached 
an F1-score of 71.40%, was able to slightly improve the performance of the BERT baseline 
experiment that was able to achieve an F1-score of 70.02%. The graph concat model using 
BioBERT and drugs and symptoms knowledge was able to improve this score to 72.32% 
F1-score. The graph concat AW model with BERT and the drug knowledge graph further 
improved this score to 72.50% F1-score.

On the ADE corpus, the ERNIE model was not able to reach the score reported by the 
best baseline model BioBERT (79.42% F1-score). However, the graph concat AW model 
using BERT and adopting prior knowledge about drugs and symptoms was able to slightly 
increase this score to 79.54% F1-score. The graph concat model with fixed GNN weights while 
also using BERT as its transformer and equipped with prior knowledge about drugs further 
improved this score to 79.79% F1-score.

Finally, on the TAC corpus, all models considered in the results were able to score F1-scores 
above 90%. The best baseline model, BioBERT, was able to reach an F1-score of 93.87%. The 
ERNIE and the graph concat AW model were not able to outperform the best baseline model. 
However, the graph concat model with fixed GNN weights using BioBERT as its transformer 
and equipped with contextual knowledge about drugs was able to increase upon the baseline 
performance achieving the highest F1-score of 94.15% on TAC corpus. Note that the results 
for the graph concat model and graph concat model with adaptive GNN weights adopting a 
link prediction task to initially train the GNN are presented in S1 Table.

Table 3.  Final evaluation results on test set from all experiments. F1 stands for F1-score. All scores are strict scores and given in %. The best score on each corpus is 
given in bold. AW=adaptive weights.

Model Knowledge resource F1 (in %) on ADE Corpora
CADEC SMM4H PsyTAR ADE TAC

BERT – 71.84 62.30 70.02 75.37 92.06
BioBERT – 70.81 61.95 68.80 79.42 93.87
ERNIE + TransE DRUG 71.84 63.23 70.63 75.44 92.57
ERNIE + TransE DRUGO_SYMP 69.32 61.76 70.95 76.04 92.55
ERNIE + TransE SYMP 68.70 61.32 71.40 76.58 92.06
Graph concat + BERT DRUG 70.45 62.65 71.38 79.79 93.80
Graph concat + BERT DRUGO_SYMP 70.70 65.16 72.32 78.84 93.49
Graph concat + BERT SYMP 71.05 62.83 72.03 78.13 93.87
Graph concat + BioBERT DRUG 70.28 61.51 68.24 76.73 94.15
Graph concat + BioBERT DRUGO_SYMP 69.57 62.75 70.05 78.90 93.88
Graph concat + BioBERT SYMP 69.40 62.48 69.32 78.59 93.31
Graph concat AW + BERT DRUG 70.55 63.96 72.50 79.03 93.02
Graph concat AW + BERT DRUGO_SYMP 71.82 63.99 71.38 79.54 93.87
Graph concat AW + BERT SYMP 70.59 64.22 72.02 78.4 93.22
Graph concat AW + BioBERT DRUG 71.23 61.05 70.08 78.11 93.75
Graph concat AW + BioBERT DRUGO_SYMP 68.87 62.12 69.62 78.62 93.78
Graph concat AW + BioBERT SYMP 70.16 57.78 69.00 76.01 93.45

https://doi.org/10.1371/journal.pdig.0000468.t003

https://doi.org/10.1371/journal.pdig.0000468.t003
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In addition, we have evaluated a GPT-based model (gpt-3.5-turbo [31],) on all five corpora. 
On CADEC, the GPT-based model reached an F1-score of 44.06%, while achieving an F1-score 
of 24.34% when evaluated on SMM4H. Evaluating the GPT-based model on PsyTAR, ADE, 
and TAC yielded an F1-score of 44.23%, 51.58%, and 48.82%, respectively. Further details on 
this experiment are given in S1 Note.

We performed an additional analysis to determine the different attributes of each of the 5 
corpora that could shed some light on explaining the modeling performance. Table 4 depicts 
the results of this corpus analysis comprising three measures. Firstly, the wordpiece diver-
sity, which was assembled by counting how many unique wordpieces could be found in each 
sentence of a corpus normalized by the total amount of wordpieces in a sentence. The second 
measure calculates the sentence length on wordpiece level and the number of hits in the 
DRUGO_SYMP knowledge graph. A hit is defined as an entity in the sentence corresponding 
to a node in the knowledge graph. All values presented in Table 4 are averaged over all sen-
tences in the corresponding corpus. The CADEC corpus is a clear outlier in terms of the mean 
number of KG hits, the mean sentence length, and wordpiece diversity. CADEC is the only 
corpus where we did not observe any advantage of using a knowledge fusion model in terms 
of F1-score.

Discussion
Extracting meaningful insights about ADEs from unstructured text offers the chance to 
enhance our knowledge of ADEs and in the long run contributes to drug safety. Specifically, 
the extraction of ADEs from patient-reported texts allows for gathering great amounts of neg-
ative drug experiences since vast amounts of data are published every day on social media. In 
our work, we evaluate various knowledge fusion modeling approaches on the ADE extraction 
task using five relevant text corpora, namely CADEC, SMM4H, PsyTAR, TAC, and ADE. 
Additionally, we utilized a rich knowledge base in terms of drugs and symptoms, which pro-
vided valuable contextual knowledge to these models. Knowledge graph embeddings derived 
from GNNs have ensured a knowledge representation well suited for the fusion with linguistic 
representations obtained using transformer-based large language models. The final results on 
independent test sets showed that using models with contextual knowledge can help to gain 
performance on ADE corpora.

We observed a significant variation in performance scores and model behavior across 
different datasets. There was no clear advantage of adopting a knowledge fusion methodology 

Table 4.  Corpora characterization in terms of average wordpiece diversity, average sentence length, and average number of knowledge graph hits.

Corpus Vocabulary/
Model

Mean word-
piece diversity

Mean sentence length 
(in wordpieces)

Mean number 
of KG hits

Difference of best model 
to baseline (in F1% points)

CADEC BERT 0.74 113.87 4.81 -0.02↓
CADEC BioBERT 0.75 121.42 4.81 -0.02↓
ADE BERT 0.94 33.21 1.45 0.12↑
ADE BioBERT 0.94 35.56 1.45 0.12↑
PsyTAR BERT 0.93 22.74 1.13 2.48↑
PsyTAR BioBERT 0.93 23.75 1.13 2.48↑
TAC BERT 0.81 47.36 1.85 0.28↑
TAC BioBERT 0.82 52.93 1.85 0.28↑
SMM4H BERT 0.91 30.46 1.30 2.86↑
SMM4H BioBERT 0.91 31.81 1.30 2.86↑

https://doi.org/10.1371/journal.pdig.0000468.t004

https://doi.org/10.1371/journal.pdig.0000468.t004
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over the baseline model BERT on the CADEC dataset. Using graph concat adaptive weights 
model resulted in an F1-score quite similar to the BERT and ERNIE model. However, on the 
SMM4H corpus, we observed a performance increase from top-scoring baseline (BERT) to 
ERNIE to the graph concat model. BERT reached an F1-score of 62.30% and equipping it with 
contextual knowledge about drugs and symptoms raised this score to 65.16%. When examin-
ing the results for PsyTAR, the top-performing baseline model (BERT) achieved an F1-score 
of 70.02% for extracting ADE entities. ERNIE was able to improve this score by approximately 
1.5%. By enabling BERT to utilize contextual knowledge about drugs through the graph concat 
architecture, the score further increased to 72.5%. When considering the ADE corpus, there 
was a notable difference in scores between baseline models (75.37% for BERT and 79.42% 
for BioBERT). None of the ERNIE models were able to match the baseline score achieved by 
BioBERT. However, the graph concat model with fixed GNN weights that utilizes BERT and 
contextual knowledge about drugs was able to slightly increase the baseline performance to a 
79.79% F1-score. Similarly, in the case of the TAC dataset, BioBERT was able to reach a high F1-
score of 93.87% that was not surpassed by any ERNIE model. The graph concat model was able 
to slightly increase the baseline performance on TAC to an F1-score of 94.15%.

There was no clear indication of whether the graph concat models work better with BERT 
or BioBERT as the underlying transformer model. However, we observed that on CADEC, 
utilizing BioBERT in knowledge fusion could improve the baseline BioBERT performance 
(BioBERT: 70.81% F1 and 71.23% F1 graph concat with adaptive GNN weights and contextual 
knowledge about drugs), whereas this could not be observed for BERT (71.84% F1 is best score 
on CADEC). When considering the usefulness of knowledge resources, it is noteworthy to 
mention that all models that outperformed the baseline experiments relied either on DRUGO 
or DRUGO_SYMP contextual knowledge. Based on this observation, it suggests that contex-
tual knowledge about drugs may hold greater importance for the knowledge fusion models 
compared to knowledge about symptoms. The trend was apparent in both the graph concat 
model and ERNIE. Generally, the experiments show that the type of context knowledge given 
to the models largely influences the final performance. Hence, it is important to consider and 
compare different variants in a practical application.

In addition to the baseline and knowledge fusion experiments, we have reported per-
formance scores adopting a GPT-based model to perform the task of adverse drug event 
detection in our results. Since we could not evaluate this approach in the same manner as the 
experiments before, we emphasize that these scores are not directly comparable. Moreover, 
since this experiment does not include any knowledge fusion aspects and cannot be used as 
a baseline performance, it lies outside of the main scope of this work, and we refrain from 
interpreting the reported scores any further. However, we view the reported scores of this 
zero-shot experiment as an indication of how a GPT-based model might perform on the given 
task of detecting adverse drug reactions. Further details on the GPT-based experiments are 
given in S1 Note.

As mentioned, our observations indicate that the effectiveness of knowledge fusion models 
varies across different corpora. We did not observe any performance improvement using 
knowledge fusion models on the CADEC corpus. This aligns with the findings in Table 4, 
which highlights CADEC being an outlier in the textual analysis in terms of wordpiece diver-
sity, sentence length, and KG hits. Further investigation is necessary to determine the causal 
relationship between these metrics and the potential improvement of pure linguistic models 
with knowledge fusion. However, based on our interpretation of the results, it can be reasoned 
that knowledge fusion models are most beneficial for relatively short text, such as postings 
found in SMM4H and PsyTAR (<24 wordpieces on average in PsyTAR and <32 in SMM4H). 
Notably, the CADEC corpus stands out in terms of the number of hits in the knowledge 
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graph. This suggests that an excessive amount of contextual knowledge may not contribute 
positively to the model’s accuracy. Liu et al. (2019b) introduced the concept of knowledge 
noise (KN), which refers to the phenomenon that an excess of context can disrupt the original 
meaning of the sentence. However, further investigation is needed to find whether during 
knowledge fusion KN played a role in the lack of performance improvement on CADEC. 
Additionally, since PsyTAR and SMM4H are derived from Twitter, it is reasonable to assume 
that these corpora deviate from formal, scientific English. In this context, knowledge fusion 
can potentially compensate for the informality in language and for the lack of linguistic con-
text by providing valuable information on specific ADEs.

The current workflow infuses context knowledge into models for the words that are 
identified as drugs or symptoms by a rule-based NER tagger. For this purpose, we preferred 
a rule-based system to avoid false positives in terms of context knowledge. However, a more 
advanced machine learning-based tagger with a better performance may produce even higher 
results. One possible machine learning-based model for such an approach would be Med7 
[32], which reports good results in terms of F1-score on the task of extracting drug entities 
from text. Although the used knowledge resources have shown performance gains while 
using the knowledge fusion approach, they are far from being complete and perfect. Encoding 
even more knowledge about drugs and symptoms could improve the current models of ADE 
detection.

Although this study performed a comprehensive analysis, it is important to note existing 
limitations. Further knowledge fusion approaches such as K-BERT, K-Adapters, or SKILL 
[20,33,34] are worth exploring in future experiments for evaluating knowledge fusion models 
on the ADE extraction task. Some of the training datasets used in this work comprise only a 
relatively small number of postings, around 1,000 for both the SMM4H and CADEC corpora. 
It is well-known that deep learning-based NLP models generally tend to perform better when 
trained on larger datasets. Therefore, to further enhance the performance of the knowledge 
fusion models employed in this study, having access to large and diverse corpora of patient- 
reported texts that include annotated ADE entities, particularly in the style of CADEC, would 
be beneficial. Consequently, future efforts should be directed toward creating, collecting, 
and annotating a comprehensive ADE corpus of diverse texts, which could contribute to the 
advancement of this research.

Conclusion
The presented work elaborates on the approach to enriching transformer models such as 
BERT and its relative, BioBERT, with contextual knowledge about the texts fed into them. 
Two types of prior knowledge on drugs and symptoms were considered in this work. The 
drug knowledge resource provides rich, structured knowledge about drugs and their working 
principles and was especially created for this work. We conducted a great number of experi-
ments and reported the combinations of transformer models, knowledge fusion architectures, 
and context knowledge that yielded the highest F1-scores. The presented results allow the 
conclusion that contextual knowledge encoded suitably and provided to a transformer model 
is a valid approach to improve performance in an NER task scenario. Also, observable is that 
this prior knowledge is especially of great use when the data at hand is rather unstructured 
and composed of short texts as is the case in the SMM4H and PsyTAR corpus. Finally, one 
can conclude that knowledge resources that provide well-structured domain knowledge, 
encoded as knowledge graphs respectively ontologies can provide valuable context for trans-
former models. Graph neural networks have shown to be a well-suited method to derive a 
numerical representation of the ontologies used in this work capable of being concatenated 
with the linguistic representation created by a transformer model. The architecture of the 
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graph concat model with and without adaptive GNN weights implemented in this work has 
shown to be advantageous compared to pure transformers (BERT and BioBERT) as well as to 
another, well-established, knowledge fusion model, ERNIE. Hence, that architecture deserves 
additional development to further improve its performance on tasks such as ADE extraction 
in structured and unstructured texts. Huge potential lies in the idea of fusing large language 
models with appropriate domain knowledge and definitively deserves further research that 
includes whether the presented approach generalizes on tasks further than detecting adverse 
drug events in texts.
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