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1. INTRODUCTION

Neuromorphometry is a ubiquitous method for the analy-

sis of brain MRI, used, for example, for the analysis of 

longitudinal changes during healthy aging or for group 

comparisons in clinical trials. While neuroimaging pipe-

lines such as FreeSurfer ( Fischl,  2012), FSL ( Jenkinson 

 et  al.,  2012), or SPM ( Ashburner,  2009) can produce 

results for images with lesions ( Radwan  et  al.,  2021) 

(especially small ones), none of them are developed for, 

or validated on images with large lesions. In traditional 

atlas registration- based tools, such as FreeSurfer ( Fischl, 

 2012), large errors in brain segmentation or premature 

termination can occur when abnormal changes in the 

brain tissue (lesions) make a registration with standard-

ized templates challenging ( Radwan  et al.,  2021). These 
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failure modes persist in modern deep learning- based 

segmentation methods, which tend to perform poorly on 

data that have not been seen during training (out- of- 

distribution data). Even if the full brain segmentation is 

successful, the reconstruction of cortical surfaces is likely 

compromised when regions of the cortex are damaged, 

for example, due to invasive tumors or brain resection 

surgery (see Fig.  1). Meanwhile, the study of disease 

effects (e.g., glioblastoma effects on overall brain health) 

and the study of intervention (side- ) effects (e.g., impact 

of radiotherapy, chemotherapy, or surgery) require mor-

phometric analyses on brain MRIs with pathologies. 

Besides directly studying lesion effects, the blanket 

exclusion of images with abnormal structure can cause 

selection bias and decreased statistical power in down-

stream analysis of association studies. Even when the 

standard toolboxes complete without failure, the mea-

surements on images containing lesions were found to 

be biased ( Guo  et  al.,  2019). To address this gap, 

researchers require specialized tools, which can generate 

accurate morphometric measurements in the presence 

of such pathologies and cavities.

In previous work, this challenge has been broadly 

addressed by replacing lesions with healthy looking tis-

sue prior to processing. The process is commonly 

referred to as inpainting. Specifically, SynthSR ( Iglesias 

 et  al.,  2023) and Virtual Brain Grafting (VBG) ( Radwan 

 et al.,  2021) have recently been proposed for inpainting 

healthy looking tissue in lesion areas. These significant 

advances enable previously challenging analyses, for 

example, of “personalized structural connectomics for 

moderate to severe traumatic brain injury” ( Imms  et al., 

 2023), “contralateral alterations in cortical morphology in 

patients with diffuse low- grade glioma” ( Zhang  et  al., 

 2022), “structural plasticity of the contralesional hippo-

campus” ( Liu  et al.,  2023), the role of the hippocampus in 

“recovery in persons with post stroke aphasia” 

( Schevenels  et al.,  2022), and “tracking the corticospinal 

tract in patients with high- grade glioma” ( Zhylka  et  al., 

 2021). While VBG and SynthSR have unlocked volume 

and surface- based neuromorphometric analyses for 

these patient groups, we find that their application can 

sometimes be unstable, resulting in long runtimes, faulty 

segmentations, or unreliable estimates of cortical thick-

ness. Additionally, previously proposed methods can 

only be used on images with a standard resolution of 

1  mm, which requires lossy down- sampling of sub- 

millimeter MR images and results in decreased fidelity of 

segmentation, reconstruction, and subsequent analysis 

( Henschel  et al.,  2022). Other approaches, such as add-

ing training cases with lesions to deep learning segmen-

tation networks ( Weiss  et al.,  2021), are currently limited, 

since no datasets with accurate whole- brain segmenta-

tions for patients with lesions exist. To cover the whole 

range of possible brain lesions, a very large and diverse 

dataset would be required, and even then, a newly trained 

network and fitting datasets would be required for every 

application. Robust inpainting, on the other hand, offers 

a general approach as it provides a synthetically cor-

rected MRI that can be combined with various neuroim-

aging tools (e.g., also for surface reconstruction or 

registration purposes). For the FastSurfer ( Faber  et  al., 

 2022;  Henschel  et al.,  2020,  2022) and FreeSurfer ( Fischl, 

 2012) toolboxes, for example, accurate inpainting 

enables both (i) whole- brain segmentation and (ii) cortical 

surface reconstruction, despite different underlying seg-

mentation and surface reconstruction algorithms.

In this work, we propose FastSurfer- LIT a pipeline that 

performs whole- brain segmentation and surface recon-

struction in the presence of small and large lesions and 

cavities on various resolutions, scanners, and types of 

lesion (see Fig. 1). The initial step of the pipeline is the 

Fig. 1. Overview of FastSurfer- LIT— Based on the two inputs (T1w- image and lesion mask, left), the FastSurfer- LIT 

pipeline synthesizes a realistic, lesion- free image (center left) by inpainting, then segments the brain into 79 structures 

(center right) and finally, reconstructs the pial and white matter surfaces (right). The lesion is in orange in segmentations 

and projected to the surface.
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lesion inpainting (LIT) network. To enable high- quality 

inpainting for arbitrary lesion shapes at multiple desired 

resolutions, we propose a novel resolution- independent 

Denoising Diffusion Probabilistic Model (DDPM). This 

network architecture enables inpainting for any shape or 

size of mask and can operate on multiple resolutions with 

high accuracy. By transferring spatial information through 

the reverse diffusion process, we generate high- quality 

plausible image content for masked areas, even when 

substantial parts of the brain are damaged. We combine 

LIT (the lesion inpainting tool) with FastSurfer (for whole- 

brain segmentation and surface reconstruction) into the 

FastSurfer- LIT neuroimaging pipeline and furthermore 

extend it with new post- processing tools to exclude 

abnormal regions from volumetric and surface statistical 

analysis to, for example, enable seamless group analysis 

including participants with brain lesions.

The evaluation of whole- brain segmentation in the pres-

ence of abnormalities is challenging, since no publicly 

available dataset with (manual) reference segmentations 

exists. Therefore, one of our experiments employs a tumor 

growth simulation ( Subramanian  et al.,  2019) in combina-

tion with segmentations of lesion- free brains to generate a 

reference standard for our method. We deform the refer-

ence segmentations together with the image according to 

the tumor growth model to establish a dataset of 158 

cases containing synthetic glioblastoma. Additionally, we 

also generate a second synthetic dataset of multiple scle-

rosis (MS) lesions (N = 39), by transferring lesions masks 

from patient cases to lesion- free MRI, which again pro-

vides us with pairs of reference segmentations and match-

ing lesion masks. Besides these experiments on synthetic 

data, a blinded rater compared whole- brain segmenta-

tions of our method with VBG, the most promising com-

peting method. This evaluation includes 100 cases of 

hospital patients with 14 different kinds of tumors and sur-

gical cavities. Finally, we use FastSurfer- LIT to compare 

the consistency of cortical thickness estimates across 14 

patients pre-  and post- temporo- mesial resection surgery.

In summary, we contribute FastSurfer- LIT, a lesion 

inpainting, whole- brain segmentation and surface recon-

struction pipeline, that

• processes brain MRI containing surgical cavities, 

tumors, and other lesions independent of their 

appearance, shape, or size when provided with a 

corresponding mask,

• performs inpainting natively on high- resolution 

images,

• outperforms state- of- the- art methods in whole- 

brain segmentations on MRI with synthetic lesions 

(and synthetic ground truth), and on MRI from hos-

pital patients (using manual ratings),

• produces cortical thickness estimates with higher 

consistency across surgical intervention, compared 

with the state- of- the- art, and

• permits group comparisons to include cases with 

abnormalities (partially missing data).

These advancements are enabled by a resolution- 

independent DDPM with a novel slicing scheme for infer-

ence, which creates high- quality healthy looking brain 

MRI individualized for each case.

2. RELATED WORK

2.1. Lesion inpainting methods

Instead of modifying every neuroimaging tool individually 

to make it robust— considering different lesion types, 

characteristics, and appearances— previous work has 

shown that replacing lesions with healthy looking tissue 

in the input image is an effective and widely applicable 

strategy. A straightforward approach for inpainting is to 

replace lesions with intensity values from neighboring 

areas ( Battaglini  et al.,  2012;  Chard  et al.,  2010;  Griffanti 

 et al.,  2016;  Guo  et al.,  2019;  Magon  et al.,  2014;  Popescu 

 et  al.,  2014;  Prados  et  al.,  2016;  Schmidt  et  al.,  2019). 

Relying on the surroundings of a lesion works well to 

inpaint smaller areas, but for larger lesions, this approach 

falls short as whole structures and anatomical detail (e.g., 

cortical folds) are not recovered. Therefore, methods that 

work on larger lesions have to rely on a brain model to fill 

large areas with plausible brain structures. These models 

can either be learned or explicitly given by a healthy ref-

erence brain.

Virtual Brain Grafting (VBG) ( Radwan  et al.,  2021) is a 

method that transfers healthy looking areas from a refer-

ence “donor brain” ( Radwan  et  al.,  2021) to a lesion 

affected area. First, the lesion area is specified by the 

user, then VBG’s 33- step pipeline transfers matching tis-

sue from the healthy reference to the lesion area and 

uses FreeSurfer or FastSurfer for segmentation and sur-

face reconstruction. Finally, segmentation maps contain-

ing the lesion and other lesion- specific outputs are 

generated by the pipeline. The initial inpainting process 

contains skull stripping, non- linear registration, and 

matching of noise and sharpness levels between the 

healthy reference and the lesioned brain. In conjunction, 

these steps often result in a seamless inpainting, which 

has unlocked the use of FastSurfer and FreeSurfer- based 

morphometrics for many applications ( Imms  et al.,  2023; 

 Liu  et  al.,  2023;  Schevenels  et  al.,  2022;  Zhang  et  al., 

 2022;  Zhylka  et al.,  2021). Unfortunately, the registration- 

based transfer of healthy tissue is itself affected by the 

appearance of the lesion, which can make the inpainting 
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less accurate for larger lesions (see, e.g., Appendix Fig. 

A3). The tissue from the template brain can also not be 

adjusted arbitrarily to the target brain, leading to poten-

tially implausible inpaintings for uncommon brain struc-

tures. Some of these effects can be mitigated by 

hand- crafting templates for every population. This, how-

ever, is a time consuming process that requires new vali-

dation and quality control each time. Since competing 

methods do not need re- adjustment of templates, we 

have opted to use the standard template for all cases. 

Furthermore, in VBG, MRI are always standardized to a 

voxel resolution of 1 mm, creating interpolation artifacts 

and losing detail in sub- millimeter MRI, which is becom-

ing widely available ( Glasser  et al.,  2013;  Henschel  et al., 

 2022;  Mellerio  et al.,  2014;  Wattjes  et al.,  2006;  Zaretskaya 

 et al.,  2018). Finally, the high complexity of the pipeline 

introduces significant computational costs and adds 

more than 2.5 hours to the runtime of the FreeSurfer and 

FastSurfer pipelines, corresponding to a 64% and 192% 

increase, respectively (see Section 4.4).

SynthSR ( Iglesias  et al.,  2023), on the other hand, is a 

deep learning model, which prepares images for pro-

cessing with FreeSurfer based on the previously seen 

training data. The method invokes only a single Convo-

lutional Neural Network (CNN) inference resulting in run 

times in the order of seconds for inpainting. The training 

data consist of a combination of T1- weighted scans 

from the OASIS ( Marcus  et al.,  2007) dataset as a target 

and synthetic MRI generated to imitate the appearance 

of MRI with various resolutions and modalities as input 

scans. SynthSR standardizes the image, which includes 

the inpainting of lesions, but also a change of image 

contrast, orientation, and voxel resolution to 1 mm. This 

standardization enables use of FreeSurfer with previ-

ously unusable clinical images, such as low- resolution, 

anisotropic voxels, or CT images, as well as some 

images with lesions. In our experiments we observed 

that the inpainting of larger lesions is less reliable than 

smaller lesions (see Appendix Fig. A3). In contrast to 

other inpainting methods, SynthSR does not require a 

lesion mask. While this may seem like a significant 

advantage, it also removes the guarantee that synthetic 

intensity changes are limited to the lesion area. There-

fore, image changes can occur in unexpected areas (see 

Appendix Fig. A2.B,C). It also means that the neural net-

work input includes the lesion itself, making it dependent 

on the lesion appearance and, thus, more prone to fail-

ure for out- of- distribution data. Ultimately, a lesion mask 

is still required to exclude the synthesized region from 

downstream analysis.

In addition to SynthSR, various other deep- learning 

methods for inpainting MR images have been proposed. 

They are, however, developed for the inpainting of spe-

cific target abnormalities (e.g., removing MS- lesions 

( Clèrigues  et al.,  2023;  Tang  et al.,  2021), removing arti-

facts ( Xie  et al.,  2023), re- facing ( Xiao  et al.,  2022), atlas 

reconstruction ( Xing  et al.,  2022), and synthetic validation 

of images with atrophy ( J.  Wang  et al.,  2023)). The afore-

mentioned methods use Generative Adversarial Networks 

(GAN), which were trained by removing areas shaped like 

the target abnormality from the training images (making 

them independent of its appearance). The adversarial 

training paradigm requires a second network to assess 

the realism of images. A major limitation of GANs is that 

they are not expected to generalize well to previously 

unseen mask shapes ( Lugmayr  et al.,  2022), which means 

that lesions of unseen size or shape cannot be accurately 

replaced by these specific methods.

Recently, Denoising Diffusion Probabilistic Models 

(DDPM) have emerged as the state- of- the- art method for 

natural image inpainting ( Lugmayr  et al.,  2022). Besides 

superior performance compared with GANs ( Dhariwal  & 

 Nichol,  2021;  Lugmayr  et al.,  2022), these deep learning 

models can be trained by de- noising images (also called 

the “reverse diffusion” process), which removes the 

necessity to generate masks for inpainting during train-

ing. During inference, the reverse diffusion process can 

be leveraged to generate plausible inpainted regions for 

arbitrary masks, which was previously challenging with 

GANs ( Lugmayr  et al.,  2022). They are also independent 

of the appearance of the inpainted region. DDPMs have 

now been expanded to 2.5D for 3D inverse problems, 

such as 3D MRI and CT reconstruction ( Chung  et  al., 

 2023;  Lee  et al.,  2023) by applying two 2D diffusion mod-

els in two orientations of the volume. This process is sim-

ilar to view aggregation of 2.5D segmentation models 

( Henschel  et  al.,  2020;  Roy  et  al.,  2022) and creates 

coherent volumes during the reverse diffusion process. 

Because of their strong theoretical advantages and 

proven utility, we use a DDPM for inpainting in our 

method. Finally, no resolution- independent DDPM 

method has been introduced so far creating a gap for 

sub- millimeter MR acquisition protocols.

2.2. Evaluation of whole- brain segmentation in the 

presence of large lesions

A general challenge for the development and evaluation 

of lesion- robust segmentation is the missing ground truth 

data. While large datasets with manual lesion segmenta-

tions exist ( Aerts  &  Marinazzo,  2018;  Aerts  et al.,  2020; 

 Baid  et al.,  2021;  Bakas  et al.,  2022;  Menze  et al.,  2015), 

no database combining lesion segmentations with (man-

ual) whole- brain segmentation has been published to 

date. Therefore, the authors of VBG evaluated their 

method based on two datasets:
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 1.  Patient dataset: 10 patients with glioma.

  In the absence of ground truth labels, the quality of 

segmentations of the patient dataset was assessed 

by experts.

 2.  Synthetic dataset: 100 synthetic cases from 10 gli-

omas inserted into 10 “healthy” brain volumes.

  The mass effect was mimicked by nonlinear regis-

tration of the images. Reference segmentations 

were generated with FreeSurfer based on 

deformed images (without lesion insertion).

These two analyses give a good overview of the method 

performance with reference- based measures such as 

Dice Similarity Coefficients and expert ratings. However, 

the patient dataset was limited in size (10) and diversity 

(only glioma lesions). For the synthetic dataset, the refer-

ence standard was generated by FreeSurfer after defor-

mation by the synthetic mass effect, which could lead to 

decreased quality in the FreeSurfer outputs used as 

ground truth.

SynthSR was evaluated on three datasets containing 

lesions:

 1.  ATLAS ( Liew  et al.,  2018): 655 volumes of stroke 

patients.

 2.  BraTS ( Menze  et al.,  2015): 1251 volumes of glio-

blastoma patients.

 3.  BraTS- Registration ( Baheti  et al.,  2021): 140 vol-

umes of glioma patients.

While the comparison on these datasets did not include 

a baseline method, an analysis for the ATLAS dataset of 

the ipsi-  and contralateral volumes of hippocampus, 

amygdala, thalamus, putamen, and caudate shows 

asymmetry patterns consistent with the literature. For the 

lesion inpainting, this was the only analysis of brain seg-

mentations. Additionally, SynthSR was used to aid in the 

creation of a brain atlas for the BRaTS dataset, showing 

spatial distribution of gliomas consistent with the litera-

ture. On the BraTS- Registration dataset, the combination 

of SynthSR with NiftyReg ( Modat  et  al.,  2014) reduced 

the average landmark error.

3. MATERIALS AND METHODS

3.1. Data

For the training and evaluation of our method, we com-

pile four meta- datasets:

 1.  No- lesion dataset: To learn the anatomy of brains 

without large lesions, we combine 11 publicly 

available datasets into a heterogeneous multi- 

resolution dataset of 1750 volumes with isotropic 

resolutions of 0.7, 0.8, 0.9, and 1 mm. To prevent 

overoptimistic results by leakage of information 

from the final test set into the training procedure, 

we use the same training, validation, and test splits 

used for the development of FastSurfer ( Henschel 

 et al.,  2022), resulting in (1315, 80, 355) volumes in 

the (training, validation, test) set:

 (a)  HCP ( Glasser  et al.,  2013) (30, 20, 80)

 (b)  RS ( Breteler  et al.,  2014) (30, 20, 80)

 (c)  ABIDE- I ( Di  Martino  et al.,  2014) (68, 0, 20)

 (d)  ABIDE- II ( Di  Martino  et al.,  2017) (0, 0, 25)

 (e)  ADNI ( Jack  et al.,  2008) (215, 8, 40)

 (f)  IXI ( “IXI  –   Information  eXtraction  from  Images”, 

 n.d. (400, 0, 43)

 (g)  LA5C ( Poldrack  et al.,  2016) (203, 9, 15)

 (h)  MBB ( Babayan  et al.,  2019) (195, 0, 0)

 (i)  MIRIAD ( Malone  et al.,  2013) (30, 7, 0)

 (j)  OASIS1 ( Marcus  et al.,  2007) (79, 11, 35)

 (k)  OASIS2 ( Marcus  et al.,  2010) (65, 5, 17)

To reduce redundancy, details on these data sets 

can be found in the FastSurferVINN paper 

( Henschel  et  al.,  2022), where this meta- dataset 

was first introduced.

 2.  Synthetic glioblastoma dataset: We use a tumor 

growth simulation ( Subramanian  et  al.,  2019) to 

generate tumor areas and plausible deformations 

for 58 randomly selected cases from the healthy 

validation dataset and 100 from the healthy test set. 

We detail the simulation process in Section 3.2.

 3.  Synthetic MS lesion dataset: We use a publicly 

available dataset of multiple sclerosis (MS) lesions 

( Commowick  et al.,  2018,  2021)* and transfer the 

lesion masks from the original MRI to 39 cases of 

the healthy test set.

 4.  Patient dataset: We obtain three datasets with 

lesion- afflicted images and lesion masks to evalu-

ate our method on clinical cases.

 (a)  UPENN- GBM ( Bakas  et al.,  2021,  2022;  Clark 

 et  al.,  2013): 630 MRI from glioblastoma 

patients “acquired during routine clinical prac-

tice, at the University of Pennsylvania Health 

System” ( Bakas  et  al.,  2022). Images are 

acquired with multiple scanners, MR 

sequences, field strengths, and voxel sizes 

from 0.9 to 5 mm anisotropic. For our analysis, 

we randomly select 150 isotropic images.

* Data of the 2016 MSSEG challenge dataset were generated by neurologists 

in OFSEP, the French MS registry ( Vukusic  et al.,  2020). They collect clinical 

data prospectively in the European Database for MS (EDMUS) software 

( Confavreux  et  al.,  1992). MRI of patients were provided as part of a care 

protocol. Nominative data are deleted from MRI before transfer and storage 

on the Shanoir platform ( “SHANOIR  SharingNeurOImagingResources”,  n.d.).
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 (b)  BTC ( Aerts  &  Marinazzo,  2018;  Aerts  et  al., 

 2018,  2020): Overall 44 MRI acquired at the 

Ghent University Hospital, Belgium. The data-

set includes volumes of 11 patients with gli-

oma and 14 patients with meningioma before 

surgery and 7 and 12 follow- up post- operative 

scans respectively, all with a voxel size of 

1 mm.

 (c)  UKB: 76 MRI of patients acquired at the Uni-

versity Clinic of Bonn, Germany with 11 differ-

ent types of lesions including hippocampal 

resections, porencephaly, and Rasmussen’s 

encephalitis acquired at 0.8 mm voxel size.

 5.  Temporo- mesial resection surgery dataset: 15 

pairs of pre-  and post- operative scans of patients 

with mesial temporal lobe epilepsy undergoing 

temporo- mesial resection surgery acquired at the 

University Clinic of Bonn, Germany with 0.8 mm 

voxel size.

Participants of the individual studies gave informed con-

sent in accordance with the Institutional Review Board at 

each of the participating sites. Complete ethic state-

ments are available at the respective study web pages 

and cited publications.

3.2. Tumor growth simulation

The lack of manual whole- brain segmentations for 

images with lesions creates a significant obstacle for 

quantitative evaluation. To overcome this, we generate 

MRI with synthetic glioblastoma and accurate segmen-

tation labels by augmenting the validation and test sets 

of the no- lesion dataset with a tumor growth simulation 

model ( Subramanian  et al.,  2019).

The simulation by Subramanian et al. was shown to 

create large, realistic deformations mimicking those of 

real glioblastoma closely ( Subramanian  et al.,  2019). Its 

inputs are segmentations for gray matter, white matter, 

cerebrospinal fluid, and ventricles as well as an initial 

starting point for tumor growth. Required segmentations 

are generated by FastSurfer based on the no- lesion MRI. 

The starting point is chosen randomly within the brain 

mask. For implausible locations, tumor growth is typically 

minimal and such cases are subsequently excluded. The 

growth model provides a tumor mask and a deformation 

warp field mimicking the tumors mass effect. We use the 

deformations to propagate the reliable whole- brain seg-

mentations created from images without lesions to the 

images with tumor mask and mass effect. Due to the high 

computational cost of growth simulation, we limit the 

synthetic dataset to a subset of (58, 100) of the no- lesion 

(validation, test) sets. Importantly, we ensure there is no 

overlap between data used for method development (i.e., 

training and validation) and the test of FastSurfer, our LIT 

network, and the FastSurfer- LIT pipeline.

3.3. Synthetic MS lesion

Similar to synthetic glioblastoma, we also generate a 

dataset with synthetic MS lesions for the validation of our 

method. In this case, the mass effect of lesions is negligi-

ble, however, the pattern and distribution of lesions in the 

brain are unique for each individual. Therefore, we map 

existing lesion masks onto the no- lesion test set via non- 

linear registration (ANTsPy version 0.5.4 SyN ( Avants 

 et  al.,  2008)). With this strategy, we follow evaluations 

previously performed for MS- specific inpainting tools 

( Clèrigues  et  al.,  2023;  Tang  et  al.,  2021). We use the 

resulting 39 cases with synthetic MS lesion masks only 

for the final evaluation of our method and not during 

development.

3.4. Diffusion model for inpainting

At the core of our method is the LIT inpainting module 

which follows the established approach of replacing 

anomalous areas with healthy looking tissue prior to seg-

mentation and surface reconstruction. Contrary to com-

peting methods ( Iglesias  et  al.,  2023;  Radwan  et  al., 

 2021), we aim to leave regions outside of the marked 

lesion area completely unmodified. Therefore, we keep 

image intensities outside of the tumor mask unchanged 

and also do not alter the image resolution.

We propose a resolution- independent DDPM architec-

ture that can accurately generate images on multiple reso-

lutions (isotropic) via the reverse diffusion process. We 

base our approach on latent diffusion models (LDM) 

( Pinaya  et al.,  2022,  2023;  Rombach  et al.,  2022) compe-

tent in generating high- resolution natural images ( Rombach 

 et al.,  2022) and brain MRI ( Pinaya  et al.,  2023) (for an over-

view of the general data flow in DDPM inpainting, see 

Appendix A: Appendix Fig. A1). Contrary to the usual 

U- Net- like architecture, with only fixed up-  and down- 

sampling by factor 2, we replace one set of up-  and down- 

sampling with VINN (Voxel- size Independent Neural 

Network) layers. These neural network layers adapt the 

up-  and down- sampling based on the input resolution to 

standardize the size of feature maps in the latent space. 

This reduces the voxel- size variance— leading to more 

effective learning for multi- resolution data.

The vast image size of high- resolution images beyond 

256
3 voxels makes the use of fully 3D neural networks 

impractical ( Roy  et al.,  2022). However, inpainting large 

abnormalities likely benefits from context information of 

the whole brain. The intact contralateral hemisphere, for 



7

C. Pollak, D. Kügler, T. Bauer et al. Imaging Neuroscience, Volume 3, 2025

example, may contain important priors for matching 

healthy tissue ( Xing  et al.,  2022). In fact, even the back-

ground noise may provide important information about 

the brain’s appearance in the MRI ( Pollak,  Kügler,  Breteler, 

 et  al.,  2023;  Pollak,  Kügler,  &  Reuter,  2023). To use an 

extended context, while keeping the network and its 

memory requirements manageable, we combine two 

strategies: (1) Using three separately trained 2D models 

for each of the anatomical planes (multi- view) and  

(2) choosing shifted slabs during each call of the 2D infer-

ence with different offsets orthogonal to the current view 

(varying spatial context). The central idea for both of 

these strategies is to propagate spatial information via 

the iterative diffusion process by providing changing 

information during each network inference. More specifi-

cally, our LIT method rotates between using axial, coro-

nal, and sagittal views, similar to  Lee  et  al.  (2023). In 

contrast to  Lee  et al.  (2023), we use slabs of seven neigh-

boring image slices (with full image height and width) as 

network input, instead of only a single slice. Then we 

select slabs with different offsets to provide new context 

for every inference step. While still compatible with the 

2D networks, slabs provide additional information in the 

direction orthogonal to the current view.

Our modifications to the standard DDPM inference 

scheme and architecture do not require additional com-

putational resources during inference. Furthermore, we 

only perform inference for slabs containing the lesion 

area ( Lugmayr  et al.,  2022), which linearly reduces infer-

ence cost with lesion size. Overall, the LIT DDPM is an 

accurate, efficient inpainting method, which natively 

supports multiple resolutions, uses high spatial context, 

and is completely independent of the target region’s 

shape or appearance.

3.5. Whole- brain segmentation and surface 

reconstruction

For the segmentation and surface reconstruction after 

inpainting, we employ two popular toolboxes: FastSurfer 

and FreeSurfer. FastSurfer (version 2.2.0) uses a voxel 

size independent neural network (VINN) ( Henschel  et al., 

 2022) for whole- brain segmentation, while FreeSurfer 

( Fischl,  2012) (version 7.4.1) is based on a probabilistic 

atlas segmentation. Both tools provide subsequent white 

matter and pial surface reconstructions. We further 

extend FastSurfer and FreeSurfer with functionality to 

handle lesion areas during statistical analysis of morpho-

metric estimates. Segmentations of the inpainted images 

are modified retrospectively by replacing them within the 

inpainted area with a specific lesion mask label. This seg-

mentation is then mapped to the vertices of the pial and 

white surfaces, by (i) dilating the lesion mask, (ii) marking 

the vertices that are intersecting with the surface, and  

(iii) smoothing the mask border and filling holes on the sur-

face (mode filter). The vertices labeled as lesion mask can 

then be ignored in downstream statistical group analyses 

on the participant level (as demonstrated in Section 4.8). 

This permits statistical analysis even for areas, where 

lesions are present for some cases in a dataset. While we 

directly implement LIT into the FastSurfer pipeline, it can 

additionally be used as a standalone, general inpainting 

tool and combined with other neuroimaging software.

3.6. Evaluation metrics

We extensively validate FastSurfer- LIT using a variety of 

metrics for inpainting, segmentation, surface reconstruc-

tion, and computational efficiency.

3.6.1. Perceptual similarity

To compare the effect of our modifications to the stan-

dard DDPM model, we perform inpainting on the no- 

lesion dataset using simulated masks and use common 

perceptual quality metrics to test whether our approach 

can re- generate the masked areas. First, the Structural 

Similarity Index Measure (SSIM) ( Z.  Wang  et al.,  2004)

 

SSIM x, y( ) =
2µ xµ y + c1( ) 2 xy + c2( )

µ x
2 + µ y

2 + c1( ) x
2 + y

2 + c2( )  

(1)

“compares local patterns of pixel intensities that have 

been normalized for luminance and contrast” ( Z.  Wang 

 et al.,  2004). Here µ x and µ y are the mean of x and y, x

2 

and y
2  are the variance of x and y, xy is the covariance 

of x and y, finally c1 = 0.01* L( )2, c2 = 0.03 * L( )2, where L 

is the dynamic range. To calculate the SSIM, we use 

PyTorch’s ignite framework ( Fomin  et  al.,  2020) with a 

Gaussian kernel of size 11 and standard deviation of 1.5. 

The SSIM quantifies the similarity of two image areas 

between - 1 and 1, where 1 is a perfect match, 0 indicates 

no similarity, and - 1 would refer to inverse correlation.

As a second metric, we choose the peak- signal- to- 

noise ratio (PSNR)

 

PSNR x, y( ) = 10 log10
M

MSE x, y( ) ,

 

(2)

where M is the maximum value in the image representa-

tion (255 in our case) and MSE is the mean squared 

error. We also use the ignite framework to calculate this 

metric. PSNR quantifies the similarity of two image 

areas x, y in decibel (dB), where higher values indicate 

a higher similarity.
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3.6.2. Segmentation quality

To compare segmentations of the tested method with a 

reference standard, we use the Dice Similarity Coefficient 

(DSC) and the Hausdorff Distance (HD). The DSC is 

defined as

 
DSC X,Y( ) = 2 X Y

X + Y
.
 

(3)

This metrics show the agreement of two binary masks 

X  and Y . In our case, these masks indicate the location 

and extent of brain structures. The DSC is zero when 

there is no overlap between prediction and reference 

standard. A perfect agreement is indicated by a DSC of 1. 

The HD is defined as

 
HD X,Y( ) =max sup

x X

d x,Y( ),sup
y Y

d X, y( ){ }.
 

(4)

For the same binary masks X  and Y , the HD describes 

whether the edges of the two structures are close to each 

other. To get a more robust metric, we do not choose the 

furthest possible distance, but the 95th percentile. We 

always indicate the HD in millimeters, where 0 mm means 

that there is a perfect match of structures up to the 95th 

percentile. To show whether one method outperforms 

another significantly, we use the Wilcoxon rank- sum sta-

tistic implemented in the SciPy ( Virtanen  et  al.,  2020) 

library. The null hypothesis for this test is that the method 

ranking is random.

3.6.3. Method failures, runtime, and topological 

defects

In addition to the reference- based evaluations from pre-

vious sections, we analyze three per- run meta- data met-

rics: success rate, overall runtime, and the surface defect 

count. Large lesions can cause whole- brain segmenta-

tion or surface reconstruction pipelines to crash or fail to 

produce meaningful outputs. While unsuccessful runs do 

not affect analysis directly, they can introduce selection 

biases into downstream analysis. Therefore, we always 

exclude cases with any failures for any methods (except 

otherwise stated).

To determine the success rate, we track the runtime of 

pipelines and terminate instances that do not generate all 

required outputs within 24 hours. We run this benchmark 

for a subset of 10 cases of the patient dataset on a dedi-

cated desktop workstation (Intel Xeon W- 2245, 64GB 

RAM, Nvidia Quadro RTX 4000 8GB, solid state drive). 

We do not use parallel processing or use the machine for 

other tasks, to avoid interaction effects. Additionally, we 

report the overall runtime and runtime of successful 

cases, since the runtime itself is a valuable criteria due to 

the associated wait times and energy costs.

Finally, we noticed that faulty or low- quality surface 

reconstruction is a typical failure mode for all compared 

pipelines. Such surface errors lead to topological surface 

defects, pipeline crashes, and long pipeline run times. 

The number of surface defects is also a common quality 

measure for quality control of FastSurfer and FreeSurfer 

runs ( Esteban  et al.,  2017;  Rosen  et al.,  2018). Therefore, 

we also report the average surface defects on the larger 

synthetic lesion dataset.

3.6.4. Manual comparison of whole- brain 

segmentation

In a visual validation, a domain expert compares seg-

mentations derived from the two best- performing inpaint-

ing methods: VBG and LIT. This analysis is performed 

separately when using FreeSurfer or FastSurfer as the 

segmentation tool. The expert selects the superior seg-

mentation map based on subcortical regions and gray/

white matter (GM/WM) boundary for each shown case, 

while ordering of cases and methods in the viewer is ran-

domized. Additionally, the rater also marks cases as “fail-

ure” if multiple major errors occurred, such as missing 

entire sulci or gyri, mislabeling of the cerebellum as cor-

tex, or completely misplaced corpus callosum.

We randomly draw 50 cases from the patient dataset, 

choosing from a “random” subset and a “high difference” 

subset of cases. The high difference cases are selected 

based on large differences between VBG and LIT- based 

segmentation maps, which are expected to be more 

challenging and thus suitable for method comparison 

( Isensee  et  al.,  2024). More specifically, the cases are 

selected according to the highest peak value on the 

Gaussian smoothed segmentation difference map. Since 

all cases are specific to the used method, these sets dif-

fer between FastSurfer and FreeSurfer, and can, there-

fore, only be used for a direct comparison across 

inpainting approaches within each segmentation method.

To support the visual inspection during these tasks, 

we develop a custom rating tool, which guides raters 

through the process, collects inputs, selects and high-

lights an area of interest, highlights differences of seg-

mentation maps, etc. (see Appendix C, Appendix Fig. 

A5). During all rating, a free text field for comments cap-

tures the reasoning and supports retrospective analysis 

of rating decisions. To assess the statistical significance 

of binary rater decisions (e.g., “Which of two methods is 

better?”, “Did a method fail?”), we use Fishers exact test 

( Fisher,  1992), implemented in the SciPy software library 

( Virtanen  et al.,  2020).



9

C. Pollak, D. Kügler, T. Bauer et al. Imaging Neuroscience, Volume 3, 2025

3.6.5. Consistency of cortical thickness estimates 

pre-  and post- surgery

Finally, we test the consistency of cortical thickness esti-

mates pre-  and post- temporo- mesial resection surgery 

for MRI of patients with epilepsy. Pre- surgery segmenta-

tions and surfaces can be generated by the standard 

neuroimaging pipelines, as existing pipelines are suffi-

ciently robust to temporal lobe atrophy, while post- 

surgery images require lesion inpainting.

For this test, we smooth all cortical thickness maps (full 

width at half maximum 15) and map the surfaces onto a 

common template (fsaverage). Then, we calculate the 

intraclass correlation coefficient (ICC) ( McGraw  &  Wong, 

 1996) to determine thickness similarity in the paired sam-

ples of pre-  and post- surgery images on a vertex level. In 

this case, ICC indicates the similarity of the thickness val-

ues on the surface, where 1 indicates perfect reproduc-

ibility. Note, that we use the degree of absolute agreement 

among measurements (criterion- referenced reliability), 

which compares equality, not only correlation.

4. RESULTS

In the following section, we first present the effect of our 

modifications to the standard DDPM inference and archi-

tecture. Then, we jointly evaluate our LIT DDPM in two sce-

narios: (a) inpainting with the FastSurfer pipeline for 

inpainting (FastSurfer- LIT) and (b) inpainting combined with 

FreeSurfer for segmentation and surface reconstruction on 

the same set of experiments. In each scenario, the relevant 

reference is generated based on lesion- free images by 

FastSurfer or FreeSurfer, respectively. Additionally, we eval-

uate multiple method combinations with real- world images, 

where no reference segmentations are available.

4.1. Method ablation

Initially, we evaluate the effect of our modifications to the 

baseline 2D DDPM architecture and inference scheme, 

iteratively removing components of our method and  

re- evaluating— until only the baseline method remains 

(ablation study). While we change the network architec-

ture and inference scheme, the number of network 

parameters and the required inference steps and input 

sizes (slabs) are the same across variants. This experi-

ment is performed on the validation split of the synthetic 

lesion dataset used for method development. First, we 

run the DDPM- based inpainting in conjunction with the 

FastSurfer segmentation ( Henschel  et  al.,  2022). Then, 

we calculate SSIM and PSNR to judge the inpainting 

quality, as well as DSC and HD95 for segmentation per-

formance. Note that the segmentation method is fixed 

and only the inpainting changes, resulting in different 

segmentation accuracy. To reduce computational cost 

during method development, we omit surface recon-

struction and generate segmentation maps with the  

FastSurferVINN neural network only.

The results are shown in Table 1, where the LIT inpaint-

ing outperforms other DDPM variants. Since the syn-

thetic lesion only affects the FastSurferVINN inference on 

volume slices intersecting the lesion, segmentations are 

identical in most of the volume. In consequence, most 

structures of the segmentation are not affected and dif-

ferences of average DSC and HD appear small. Implausi-

ble inpainting can, however, have strong impact on the 

affected slices, and also cause compounding effects fur-

ther downsteam in the processing of FastSurfer and 

FreeSurfer.

4.2. Synthetic glioblastoma data

We evaluate the accuracy of cortical and sub- cortical 

segmentations on the synthetic glioblastoma dataset, 

which contains deformed FreeSurfer and FastSurfer 

segmentations as a reference standard (see Section 3.2). 

In the first scenario (using FastSurfer), we compare seg-

mentation performance for (i) no inpainting (baseline) 

and the two inpainting methods (ii) VBG, and (iii) LIT 

(ours) (see Fig. 2, left). Both LIT and VBG are developed 

for compatibility with both FreeSurfer and FastSurfer. We 

exclude SynthSR, since it has only been evaluated with 

Table 1. Method ablation results.

Method configuration PSNR [dB] SSIM DICE HD95 [mm]

LIT (VINN- DDPM with VA & VSC) (proposed method) 

VINN- DDPM with VA 

DDPM with VA 

Baseline (2D DDPM)

29.64 

29.30 

29.52 

27.91

0.72 

0.70 

0.72 

0.66

0.9492 

0.9491 

0.9484 

0.9482

0.6217 

0.6236 

0.6595 

0.6640

All scores are calculated on the validation set with synthetic lesions and mass effects. Segmentation differences based on FastSurfer 
appear small, since segmentations perfectly match on slices unaffected by the lesion. Bold values identify the best performing method. 
LIT is bold to highlight the “final method”.

LIT = Lesion Inpainting Tool (proposed method), VA = view aggregation, VSC = varying spatial context, DDPM = Denoising Diffusion 
Probabilistic Model, VINN = Voxel Size Independent Neural Network, PSNR = Peak Signal- to- Noise Ratio, SSIM = Structural Similarity 
Metric, DICE = Dice similarity coefficient, HD95 = 95th percentile Hausdorff distance.
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FreeSurfer previously and often fails in conjunction with 

FastSurfer (see Section  4.4). LIT significantly outper-

forms the state- of- the- art methods on subcortical,  

cortical, and average DSC. VBG consistently leads to 

lower scores on cortical DSC, when used together with  

FastSurfer even performing worse than the unmodified 

FastSurfer. Mean Hausdorff Distances (HD) of segmen-

tations show the same trends as DSC (no inpainting: 

2.16 mm, VBG: 2.69 mm, LIT: 1.34 mm) with all differ-

ences of LIT to the second best method significant 

(p < 0.0005). Additionally, we show the segmentation 

accuracy on volumes with resolution 0.7 mm, 0.8 mm, 

and 0.9 mm. Here, the only available baseline to com-

pare our FastSurfer- LIT pipeline with is the no inpainting 

baseline, since the competing methods can only pro-

duce segmentations at 1 mm voxel resolution. Our 

method provides consistent results on sub- millimeter 

resolution for both DSC and HD (no inpainting: 1.98 mm, 

LIT: 1.14 mm), indicating robust generalization to high- 

resolution inpainting and segmentation.

The second scenario illustrated in Figure 2b swaps 

the FastSurfer pipeline for reference generation and 

segmentation with FreeSurfer to show the segmentation 

performance of LIT in a different setting. Here, we com-

pare the effect of (i) no inpainting (baseline), (ii) SynthSR, 

(iii) VBG, and (iv) LIT (ours) with FreeSurfer segmenta-

tions on the same images with synthetic glioblastoma. 

Our method outperforms the state- of- the- art methods 

with statistical significance across the different struc-

tures and resolutions. VBG reaches good performance 

on subcortical DSC and on cortical DSC. SynthSR 

under- performs FreeSurfer without any modifications on 

sub- cortical and cortical regions, which might stem 

from SynthSR modifying and standardizing the contrast 

of the whole image. The evaluation of Hausdorff Dis-

tances (HD) paints a similar picture (no inpainting: 

3.27  mm, SynthSR: 4.47  mm, VBG: 1.42  mm, LIT: 

1.33 mm). Differences of LIT to the second best method 

are also statistically significant (p < 0.0005). For volumes 

with sub- millimeter resolution, our method also outper-

forms the FreeSurfer- only baseline in DSC and HD (no 

inpainting: 1.93 mm, LIT: 1.13 mm).

4.3. Synthetic multiple sclerosis data

We repeat the analysis of the previous section with a 

new dataset of MRI with synthetically generated multi-

ple sclerosis lesions. A notable difference between the 

two datasets is that the synthetic glioblastoma cases 

include a simulated mass effect, which jointly perturbs 

images and reference segmentations. This is absent for 

the synthetic MS lesions, making it a more direct mea-

sure of inpainting accuracy, and should yield to higher 

scores across the board. Additionally, MS lesions are 

Fig. 2. Method comparison on volumes with simulated glioblastoma. Reference segmentations are generated from 

lesion- free images by FastSurfer (left) and FreeSurfer (right), respectively (see Section 3.2). Our LIT inpainting significantly 

outperforms the state- of- the- art on all tests, measured by the Wilcoxon rank- sum statistic. p- Values are indicated for 

comparison with the second best method. (*p < 0.05, **p < 0.005, ***p < 0.0005).
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typically smaller than the simulated glioblastoma, but 

can be challenging since many lesions can be present 

in an image and they may be distributed throughout 

multiple brain regions. In the first scenario (Fig. 3, left), 

using FastSurfer, with (i) no inpainting, (ii) VBG, and  

(iii) LIT, our method (LIT) significantly outperforms the two 

others on 1.0  mm. The same is true for sub- millimeter 

data, where the (i) no inpainting baseline is the only avail-

able comparison. Independent of resolution, our method 

achieves DSC close to 1 for subcortical structures, indi-

cating supreme inpainting performance. Mean Hausdorff 

Distances (HD) of segmentations show the same trends 

as DSC of 1  mm resolution volumes (no inpainting: 

0.85  mm, VBG: 2.42  mm, LIT: 0.61  mm) and sub- 

millimeter volumes (no inpainting: 0.74 mm, LIT: 0.49 mm) 

with all differences of LIT to the second best method sig-

nificant (p < 0.0005).

For the second scenario, using FreeSurfer, LIT also 

significantly outperforms the (i) no- inpainting baseline 

and the competing methods (ii) SynthSR and (iii) VBG, on 

both 1.0  mm and sub- millimeter MRI. Mean Hausdorff 

Distances (HD) of segmentations show the same trends 

for both 1.0 mm resolution (no inpainting: 1.25 mm, VBG: 

1.28  mm, SynthSR: 3.02  mm, LIT: 1.14  mm) and sub- 

millimeter resolution (no inpainting: 1.04  mm, LIT: 

0.91 mm). The difference in HD of LIT to the second best 

method (FreeSurfer) is significant for 1.0 mm resolution 

Fig. 3. Method comparison on images with synthetic multiple sclerosis lesions. Reference segmentations are generated 

from lesion- free images by FastSurfer (left) and FreeSurfer (right), respectively (see Section 3.3). Our LIT inpainting 

significantly outperforms the state- of- the- art on all tests, measured by the Wilcoxon rank- sum statistic. p- Values are 

indicated for comparison with the second best method. (*p < 0.05, **p < 0.005, ***p < 0.0005).

volumes (p < 0.05), but not quite for sub- millimeter reso-

lution volumes (p = 0.057). We note that inpainting with 

VBG does not improve segmentation, compared with the 

no- inpainting baseline, except for cortical regions on 

1.0 mm MRI processed with FreeSurfer. VBG has previ-

ously only been evaluated on glioma and gliomatous 

lesions. Our results on synthetic MS lesions indicate that 

inpainting multiple disconnected regions may be outside 

of VBGs area of application.

4.4. Processing speed and failures

We evaluate success rate and overall method runtime on 

a subset of 10 cases of the patient dataset. Here, we test 

all combinations of the inpainting tools (SynthSR, VBG, 

LIT) with FastSurfer and FreeSurfer. We show the suc-

cess rates in Figure 4A. In the first evaluation scenario 

(using FastSurfer), only the SynthSR variant fails (4/15 

cases). We hypothesize that the segmentation failures of 

SynthSR + FastSurfer stem from an atypical intensity dis-

tribution incompatible with FastSurfer (see Appendix Fig. 

A2). We conclude that the two methods are incompatible 

and exclude this combination from other evaluations. For 

the second scenario (using FreeSurfer), failures occur 

when using vanilla FreeSurfer (no inpainting) (4/15) and 

SynthSR for inpainting (1/15). For later comparisons 

(Section 4.6), we additionally run the two most promising 
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methods VBG and LIT on the whole patient dataset, 

where none of them fails for any of the 270 cases.

We also show the average time to fully process an 

image including inpainting, segmentation, and surface 

creation in Figure 4B. For the FastSurfer combinations, 

LIT is fastest, followed by vanilla FastSurfer (no inpaint-

ing), VBG, and SynthSR. The long processing time of 

SynthSR is driven by the failure cases, but even when 

looking only at the 11 successful cases, it is still only 

slightly faster than LIT (average runtime on all 15 cases). 

VBG has an overall runtime of 5 hours, taking more than 

twice as long as LIT. Especially for the FastSurfer tool-

box, the overhead of the slow template- based VBG 

inpainting is disproportionate to its fast segmentation 

and surface reconstruction. For methods run in conjunc-

tion with FreeSurfer, SynthSR generates outputs the fast-

est, followed by LIT, VBG, and vanilla FreeSurfer (no 

inpainting). In this case, crashes decrease the runtime for 

SynthSR, as these crashes seem to have happened early 

in FreeSurfer processing. Vanilla FreeSurfer has a slightly 

longer runtime on successful cases than LIT (on all 

cases)— showing that additional inpainting time is largely 

compensated in LIT by faster downstream processing, 

for example, during surface creation.

4.5. Surface defects

We assess the quality of surfaces by counting the defects 

prior to topology fixing in FastSurfer and FreeSurfer on 

the synthetic glioblastoma dataset and show the results 

in Figure 4C. For the FastSurfer scenario, LIT inpainting 

results in the fewest surface defects, followed by VBG 

and the vanilla FastSurfer baseline (no inpainting). For 

method combinations with FreeSurfer, SynthSR pro-

duces the least surface defects, followed by LIT and VBG 

with similar number of defects. The FreeSurfer baseline 

produces the most defects overall. The reduction in sur-

face defects as a result of the inpainting as a prepossess-

ing step causes FreeSurfer and FastSurfer to run faster 

(shown in Section  4.4)— fewer surface defects require 

less computationally expensive topology fixing.

4.6. Comparison on patient data

We choose the two previously best performing methods 

VBG and LIT and let a domain expert compare both 

methods with FreeSurfer and FastSurfer segmentations 

using the previously discussed protocol (see Sec-

tion 3.6.4).

For the FastSurfer processing, LIT inpainting pro-

duces better whole- brain segmentations in 93% of 

decidable cases (in 18% of all cases no decision was 

possible, see Table 2). The same trend holds true for the 

FreeSurfer segmentations, where LIT is chosen better in 

91% of decidable cases (10% no decision). A review of 

the comments reveals that if no method was decided to 

be superior, this was most often due to low image qual-

ity, high similarity between segmentations, or inaccurate 

lesion masks.

On the second, failure rating task, FastSurfer in com-

bination with LIT, shows only one failed segmentation for 

random samples (4%) and no failure (0%) on the high 

difference set. VBG on the other hand fails 4 times (17%) 

on random samples and 10 times (37%) on the more 

challenging high difference cases. For the FreeSurfer- 

based comparison, LIT fails for no cases (0%) on the ran-

dom set and for one case on the high difference set (4%), 

while VBG fails for 4 (15%) and 16 cases (70%), respec-

tively. Overall LIT inpainting is superior combined with 

both FreeSurfer and FastSurfer methods, providing more 

accurate segmentations maps in direct comparison and 

also producing less failures. This is especially true for the 

high difference set, where low agreement is likely caused 

by frequent VBG failures and its downstream effects.

Fig. 4. From left to right: The success rate of method (fraction of segmentations and surfaces generated within 24 hours), 

runtime on a desktop workstation, number of surface defects before fixing of surface topology. Subfigures A+B are based 

on 15 cases of the patient dataset, while Subfigure C is based on 100 cases of the synthetic lesion dataset.
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4.7. Qualitative results

In Figure 5 we show a representative case, where a cav-

ity was caused by a transsylvian hippocampal resection. 

On the top left we show the original image (no inpaint-

ing). The inpainting of SynthSR fills the lesion area with 

plausible tissue, however, we can see that the image 

contrast is changed everywhere, leading to gray matter, 

that appears thicker than in the original and a general 

loss of detail in the image. VBG fills parts of the cortical 

Table 2. Results of manual quality rating on patient data.

Method N VBG+FastSurfer LIT+FastSurfer

Winning Method 50 3 38

Failures (random) 23 17% 4%

Failures (high diff.) 27 37% 0%

Method N VBG+FreeSurfer LIT+FreeSurfer

Winning Method 50 4 41

Failures (random) 27 15% 0%

Failures (high diff.) 23 70% 4%

In the first row, we compare VBG and our method (LIT) on 
randomly selected cases and cases selected according to large 
difference in segmentation maps (high diff.). A blinded rater 
selected the method with better segmentation maps as “Winning 
Method.” The rater also annotates segmentation failures shown 
separately for high diff. cases and others (random). Ratings for 
VBG and LIT differ significantly in direct method comparison and 
failures on high difference cases (p < 0.005), but not for failures on 
the random cases.

Fig. 5. Qualitative comparison of whole- brain segmentations for all method combinations on a representative case from 

the UKB dataset. For randomly selected and difficult cases, see Appendix Figures A2 and A3, respectively. The shown 

slices are located at the center of the lesion. Red arrows indicate inpainting and segmentation flaws.

area with plausible tissue, but produces sharp edges 

and cavities in the subcortical structures (red arrow). Our 

LIT inpainting fills the area with plausible tissue and 

continues structures outside of the mask.

In the resulting FastSurfer segmentations, we observe 

that FastSurfer without inpainting generates visually plau-

sible results. SynthSRs contrast adjustment, however, 

leads to generally enlarged gray matter volume for this 

case. Additionally, a fold with strong over- segmentation 

was introduced (posterior red arrow). At the front of the 

gray matter is also over- segmented (anterior red arrow). 

The FastSurfer segmentation based on VBG inpainting 

causes gray matter under- segmentation in the posterior 

regions (e.g., red arrow) and over- segmentation in the 

anterior region (red arrow). For our LIT inpainting, the pos-

terior regions are segmented as accurate as with the 

vanilla FastSurfer. In the anterior region, previously chal-

lenging for other methods, our method performs as 

expected, resulting in more accurate segmentation.

For FreeSurfer, the baseline without inpainting con-

tains extremely under- segmented gray matter (posterior 

red arrow) and erroneous hypointensities. It also contains 

extreme over- segmentation in the challenging anterior 

region (red arrow). SynthSR slightly improves the seg-

mentation in the anterior region, but causes the same 

over- segmentation in the posterior region, as previously 

seen with FastSurfer. The FreeSurfer segmentation map 

based on VBG inpainting shows the same issues as the 
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Fig. 6. Comparisons of intraclass correlation coefficient (ICC) values for the cortical thickness of patients before and after 

temporomesial resection. Each column has different views of the semi- inflated template brain surface, where lighter shades 

of blue indicate a higher ICC and higher reproducibility of thickness estimates, when using inpainting for lesion filling.

FreeSurfer segmentation without inpainting. Our LIT 

inpainting results in accurate segmentation of the poste-

rior regions, and only slight over- segmentation in the 

anterior region (red arrow).

We show further qualitative results in the Appendix B: 

Figures A2 (randomly selected cases) and A3 (challeng-

ing cases). These cases outline that our method is the 

only method to modify only the given replacement area 

(Appendix Fig. A2.A), accurately inpaints non- brain tissue 

and skull (Appendix Figs. A2.D and A3.B), and handles 

very large abnormalities well (Appendix Fig. A3.A).

4.8. Cortical thickness estimates before  

and after surgery

We evaluate the consistency of cortical thickness esti-

mates on MRI from patients before and after undergoing 

temporomesial resection surgery for VBG and LIT. We 

show the intraclass correlation coefficients on the sur-

face of a template brain for all methods in Figure 6. As it 

is reasonable to assume that the cortical thickness does 

not change between pre-  and post- operative scans, the 

ICC of cortical thickness reflects how robust the cortical 

thickness analysis is when introducing lesion inpainting. 

In a best- case scenario, the only difference between cor-

tical thickness estimates are test– retest effects.

For the FastSurfer scenario, we observe generally 

higher ICC values with LIT than with VBG specifically in 

frontal and postcentral regions. For the FreeSurfer sce-

nario, we observe the same trend, with the LIT variant 

also having ICC values close to 1 in several regions (e.g., 

superior frontal, postcentral, parietal, and occipital). VBG 

has large areas with very low numbers below 0.3 though. 

When comparing FastSurfer with FreeSurfer, we see gen-

erally higher ICC for FastSurfer, which is consistent with 

previously reported test– retest results ( Henschel  et  al., 

 2020).

5. DISCUSSION

In this work, we introduce FastSurfer- LIT, a whole- brain 

segmentation and surface reconstruction pipeline for 

structural MRI with lesions and cavities. As shown in the 

ablation study, our extension to the latent DDPM archi-

tecture and inference improves segmentation quality. We 

leverage this inpainting quality to improve whole- brain 

segmentation and surface reconstruction in the presence 

of lesions. Our pipeline outperforms state- of- the- art 

methods in four evaluations ranging from experiments on 

MRI with synthetic lesions, expert ratings on our highly 

heterogeneous, real- world patient dataset with 14 differ-

ent types of lesions, and to a consistency of cortical 
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thickness analysis of patient MRI. The variety of lesions 

and their size in our datasets highlights the robustness 

and breadth of application of our method (see Appendix 

Fig. A3 for challenging cases). While competing methods 

were previously limited to 1 mm voxel resolution, our method 

can natively inpaint sub- millimeter MRI, which enables 

ana lysis for images with higher level of detail. Finally, with 

2.5 hours of runtime on average for joint segmentation 

and cortical reconstruction, or approximately 30 minutes 

for whole- brain segmentation only, FastSurfer- LIT is an 

efficient tool for morphometric analysis. While generally 

much faster than the previous template- based approach 

(VBG), its speed does not stem from fast inpainting alone 

(as the iterative reverse diffusion is slower than, for exam-

ple, the single shot SynthSR), but also from robust and 

accurate inpainting that enables the segmentation and 

surface reconstruction to be faster, for example, because 

of fewer topological surface defects.

The superior performance on challenging cases with 

either large or unusual lesions is unique to our method, 

because it is the only one that is designed to be unaf-

fected by the shape or appearance of the lesion. Fur-

thermore, our method guarantees to leave the image 

outside of the mask completely unchanged during the 

inpainting process, which is reflected in higher quality 

segmentations in areas outside of the lesion mask. 

Finally, our learned brain model allows LIT to generate 

tissue that is completely individualized to the target 

brain, leading to more plausible inpaintings than 

template- based approaches (see Appendix Fig. A2). A 

disadvantage of individualized inpainting is that when 

masks do not cover a whole cavity, the unmasked part 

might be expanded into the lesion mask to create a 

plausible inpainting— for such cases we recommend 

dilating the lesion mask. Fortunately, the expansion of 

tumors or other distinct pathologies is unlikely, since 

these cases are not seen during training and are, there-

fore, not part of the learned brain model.

By integrating FastSurfer- LIT into the FastSurfer proj-

ect (https://github.com/Deep-MI/FastSurfer), we hope to 

accelerate research on the impact of interventions and 

disease (e.g., radiotherapy, surgery, glioblastoma) on 

overall brain health. FastSurfer- LIT could grant new 

insights into cortical reorganization ( Zhang  et al.,  2022), 

with higher resolution data, more accurate cortical recon-

struction, and the ability to exclude only the lesion area, 

instead of limiting the analysis to areas where all patients 

are lesion free. Besides accelerating and improving 

research, this work can also contribute to fairness and 

accessibility of personalized medicine (e.g., personalized 

structural connectomics ( Imms  et al.,  2023)), which can 

be made available for individuals with abnormal brain 

structures.

As segmentation of abnormal areas is out of the scope 

of this work, masks have to be generated manually or by 

one of the many available segmentation methods for 

lesions (as done previously by  Zhang  et al.  (2022)). In the 

future, FastSurfer- LIT may be extended with more gen-

eral anomaly detection ( Wolleb  et al.,  2022) to make the 

pipeline fully automatic. Alternatively researchers could 

also generously mask tissue that is not of interest (e.g., 

one entire hemisphere, similar to Appendix Fig. A3.A) to 

make sure lesion tissue is excluded, which removes the 

requirement for accurate segmentation. Since LIT can 

run independently from the downstream segmentation or 

surface reconstruction steps of the pipeline, it can easily 

be combined with other neuroimaging tools. In our eval-

uation, we focus on segmentation and surface recon-

struction with challenging data. We expect LIT to also 

enable use of other neuroimage analysis software with 

lesions, such as structural sub- segmentation ( Estrada 

 et al.,  2023;  Faber  et al.,  2022) or subject- to- subject and 

subject- to- atlas registration (previously demonstrated by 

SynthSR ( Baheti  et al.,  2021;  Iglesias  et al.,  2023)). There-

fore, we release both, a standalone version of the tool 

(https://github.com/Deep-MI/LIT/) and also an integra-

tion into the FastSurfer toolbox (https://github.com 

/Deep-MI/FastSurfer/).

Overall, we introduce FastSurfer- LIT, an accurate 

pipeline for automated neuroimage analysis of brains 

with cavities, tumors, and other lesions of any size. The 

pipeline works on multiple resolutions, enabling sub- 

millimeter analyses for the first time and outperforms pre-

vious approaches shown by rigorous analysis.

DATA AND CODE AVAILABILITY

The source code for FastSurfer- LIT will be integrated into 

the FastSurfer pipeline at https://github.com/Deep-MI 

/FastSurfer and available as standalone inpainting tool at 

https://github.com/Deep-MI/LIT. The rating tool used for 

the user study is available at https://github.com/Deep-MI 

/segmentation_labeling.

All MRI datasets of the no- lesion dataset are publicly 

available and references to the open- source repositories 

are provided in Appendix Figure A3 of the FastSurferVINN 

paper ( Henschel  et  al.,  2022). The BTC dataset ( Aerts  & 

 Marinazzo,  2018;  Aerts  et al.,  2018,  2020) is available at 

https://openneuro.org/datasets/ds001226/versions 

/00001, the UPENN- GBM dataset ( Bakas et  al.,  2021, 

 2022;  Clark  et al.,  2013) is available at the Cancer Imaging 

Archive https://wiki.cancerimagingarchive.net/pages 

/viewpage.action?pageId=70225642 and the MSSEG 

dataset ( Commowick  et  al.,  2018,  2021) is available at 

SHANOIR https://shanoir.irisa.fr/shanoir-ng/welcome. The 

UKB data are not publicly available due to their containing 
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information that could compromise the privacy of research 

participants. Data of the Rhineland Study are not publicly 

available because of data protection regulations. However, 

access can be provided to scientists in accordance with 

the Rhineland Study’s Data Use and Access Policy. 

Requests to access the data should be directed to Dr. 

Monique Breteler at RS-DUAC@dzne.de.
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APPENDIX A

A. INPAINTING DATA FLOW

In this work, we train the DDPM U- Net ( Pinaya  et  al., 

 2022,  2023;  Rombach  et al.,  2022) on lesion- free images. 

During the inference, we condition the network by contin-

uously replacing the area outside of the lesion mask with 

a noised portion of the original image. We visualize this 

process in Appendix Figure A1 and also point to previous 

publications in the field of computer vision for in- depth 

background ( Dhariwal  &  Nichol,  2021;  Lugmayr  et  al., 

 2022). The implementation details for the neural network 

and its training can be found in the Open Source reposi-

tory: https://github.com/Deep-MI/LIT.

APPENDIX B

B. QUALITATIVE INPAINTING RESULTS
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position of the inpainted region, and also on the appear-

ance of the rest of the brain. For a qualitative comparison, 

we show additional inpainted images with segmentation 

maps in Appendix Figures A2– A4. First we show a ran-

domly selected case from each of the clinical dataset in 

Appendix Figure A2. In the inpainted images on the top 

rows, we observe that the competing methods can mod-

ify the image outside of the inpainting mask, which is 

undesirable and avoided by LIT. SynthSR struggles 

especially with large lesions (A.2.A) and VBG with com-

plex shapes (A.2.B) and non- brain tissue (A.2.D). In 

Appendix Figure A3, we show extremely challenging 

cases, where the competing methods do not produce 

(meaningful) inpaintings. Meanwhile our method per-

forms as expected. Finally, in Appendix Figure A4, we 

show that our inpainting network also works in the pres-

ence of motion artifacts and low signal- to- noise ratio. 

While the inpainting can enable use of certain tools, we 

recommend excluding cases with extreme motion arti-

facts from analysis with FreeSurfer and FastSurfer, since 

artifacts are known to bias downstream analysis tasks 

( Reuter  et al.,  2015).

APPENDIX C

C. RATING PROCEDURE

Judging and comparing the quality of whole- brain 

 segmentation can be a very time consuming process. 

To compare two methods that are giving segmentation 

of similar quality, raters would typically go through the 

whole- brain volume and inspect all the different areas. 

Then they would often identify one or more areas, which 

show large differences and finally base their judgment 

on these areas of interest. Based on these observations, 

we develop an open- source tool and streamline the rat-

ing process for the comparison of segmentation maps 

(shown in Appendix Fig. A5, available on GitHub  (https://

github.com/Deep-MI/segmentation_labeling). The goal 

is to create reliable labels while reducing the required 

inspection time. This allows us to include more images 

into this analysis than previous methods ( Radwan  et al., 

 2021). We aim to (i) provide a responsive user interface 

and (ii) focus the attention of raters. Our rating tool is 

based on FreeSurfer’s freeview, which is an MR image 

viewer well known in the community and often does not 

require additional training of raters. We open and close 

it from a software package that manages the rating pro-

cess. To speed up waiting times, all cases are pre- 

processed and pre- loaded. In addition to the original 

MRI and the two to- be- compared segmentations maps, 

we also show a focus area and a difference map, which 

can aid the blinded raters by drawing their attention to 

differences between methods. The focus area highlights 

a suggested area for inspection and decision making. 

The difference map can be switched on to indicate 

where the segmentation maps disagree, and even spot 

subtle differences.

Appendix Fig. A1. Overview of the DDPM inpainting process. The architecture for the axial, coronal, and sagittal 

networks is shared, but weights differ. Mask recombination is used to guide the inpainting process. Denoising per step is 

exaggerated in the figure for better viewability. Not shown are slab selection and slab- wise denoising.
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Appendix Fig. A2. Qualitative comparison of whole- brain segmentations for all method combinations on cases randomly 

selected from the UPENN (A), UKB (B), preoperative BTC (C), and postoperative BTC (D) dataset. Empty spots for 

SynthSR + FastSurfer represent method failures. The shown slices are located at the center of the inpainting mask. Red 

arrows point at obvious inpainting and segmentation flaws.
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Appendix Fig. A3. Qualitative comparison of two very challenging cases. Shown are whole- brain segmentations for all 

method combinations. Empty spots for SynthSR + FastSurfer represent method failures. The shown slices are located at 

the center of the inpainting mask. Red arrows point at obvious inpainting and segmentation flaws.
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Appendix Fig. A4. Qualitative comparison of cases with reduced image quality due to motion artifacts. Shown are the 

original images and inpainted images produced by SynthSR, VBG, and LIT. The shown slices are located at the center of 

the inpainting mask.
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Appendix Fig. A5. Screenshot from the window for the comparison of whole- brain segmentations. The green numbers 

denote (1) the area in Freeview to manage loading volumes, showing segmentations as 1/2, (2) an overview over some of 

the segmentation in the label map, (3) the focus area, which is an area of low inter- method agreement pointed out to the 

rater.


