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Will adaptive deep brain stimulation for
Parkinson’s disease become a real option
soon? A Delphi consensus study

Check for updates

MatteoGuidetti1, TommasoBocci1,2,MartaDePedroDelÁlamo3, GuentherDeuschl4, AlfonsoFasano5,6,7,8,
Raul Martinez-Fernandez3,9, Carmen Gasca-Salas3,9, Clement Hamani10,11,12, Joachim K. Krauss13,
Andrea A. Kühn14,15,16,17,18, Patricia Limousin19, Simon Little20, Andres M. Lozano5,6,21, Natale V. Maiorana1,
Sara Marceglia1 , Michael S. Okun22, Serena Oliveri1,2, Jill L. Ostrem20, Emma Scelzo2,
Alfons Schnitzler23,24, Philip A. Starr25,26,27, Yasin Temel28, Lars Timmermann29, Gerd Tinkhauser30,
Veerle Visser-Vandewalle31, Jens Volkmann32 & Alberto Priori1,2

While conventional deep brain stimulation (cDBS) treatment delivers continuous electrical stimuli, new

adaptive DBS (aDBS) technology provides dynamic symptom-related stimulation. Research data are

promising, and devices are already available, but are we ready for it? We asked leading DBS experts

worldwide (n = 21) to discuss a research agenda for aDBS research in the near future to allow full

adoption. A 5-point Likert scale questionnaire, along with a Delphi method, was employed. In the next

10 years, aDBS will be clinical routine, but research is needed to define which patients would benefit

more from the treatment; second, implantation and programming procedures should be simplified to

allow actual generalized adoption; third, new adaptive algorithms, and the integration of aDBS

paradigm with new technologies, will improve control of more complex symptoms. Since the next

years will be crucial for aDBS implementation, the research should focus on improving precision and

making programming procedures more accessible.

Deep Brain Stimulation (DBS) is a standard neurosurgical therapy to treat
selected patients with neurological disorders, including essential tremor
(ET), Parkinson’s disease (PD), and dystonia1. Traditionally, DBS has been
employed using open-loop stimulation techniques, i.e., delivering con-
tinuous, uninterrupted stimulation at the same parameter setting (con-
ventional DBS, cDBS) that is independent of the real-time patient’s
functional status or of the side effects induced by intermittent stimulation2.
Despite the evident positive results, DBS of the subthalamic nucleus (STN-
DBS3) in PD has been prominently associated with stimulation-induced
speech impairments4,5, risk of falling6,7, dyskinesia8, stimulation-induced
impulsivity9, and, more importantly, only partial control of clinical
fluctuations10. Adaptive DBS (aDBS) was conceived to overcome some of
the disadvantages of cDBS by facilitating optimized current delivery to
improve symptoms and drive improved outcomes11. This technology relies
on the principle of on-demand or contingency-based stimulation, where
clinically relevant biofeedback signals (e.g., brain signals) can be used to
determine and deliver a real-time, more effective stimulation parameters in
order to address emerging symptoms or side effects12. Although the aDBS

concept is perceived as a natural evolution of current cDBS, in line with the
historical development of cardiac pacemakers, the evidence collected on its
clinical applicationneeds to be expanded, especially to betterunderstand the
emerging limitations, and to boost its adoption and understanding in
everyday clinical practice.

The challenges aDBSfield is facingmight be divided into technical (i.e.,
the technological open questions) and clinical (i.e., applications to patients).
Among the technical challenges, the reliability of the biomarker(s) used to
control stimulation (i.e., how precisely the biomarker that drives the stimuli
correlates with the patient’s clinical status) is of crucial importance to allow
optimal adaptation. Local field potentials (LFPs) recorded directly from the
DBS electrodes, while being the most used biomarkers in movement dis-
orders, still have limitations13–15, especially with patients presenting different
phenotypes (e.g., tremor dominant or akinetic-rigid PD)16. Also, aDBS
needs to be integrated with current (e.g., segmented electrodes17) or new
(e.g., artificial intelligence, AI18) technologies for a large-scale application.
Although preliminary results suggest the successful combinations of
technologies19, solid knowledge is still lacking. Similarly, the introduction of
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aDBS raises questions about the specific expertise required to program the
devices, the costs (in terms of economic and time burden) of implantation,
and the management of the programming phase with stimulation algo-
rithms thatmight change according to symptoms and clinical outcomes20–22.

Among the clinical challenges, aDBS needs to further prove its safety
and tolerability for the patients. Although growing evidence suggests that
aDBS can be used safely, with comparable effects to cDBS23,24, the aDBS
community has not defined the characteristics of patientswhomight benefit
themost from the adaptive stimulation, yet. First, it is likely that, apart from
PD, also ET and epilepsy patients25, likewise psychiatric patients25, could
benefit from an adaptive approach. Second, despite PD being the first and
most studied use case of aDBS, it is not clear which clinical manifestation
(e.g., akinetic-rigid or hyperkinetic PD) or symptoms (e.g., non-motor,
stimulation side effects) is more sensible to aDBS, as well as the exact
mechanism of interaction between adaptive stimulation and pharmacolo-
gical therapy25.

In such a challenging scenario, it is difficult to understandwhether this
innovation will be able to reach all patients, and when. To answer this
question, we identified internationally recognized clinical and academic
DBS experts to discuss the methodological and clinical challenges of aDBS,
and we asked them to participate in a Delphi method-based study26.

Results
Specialists panel
For the Steering Committee (SC), all eight invited authors agreed to parti-
cipate (SC = 8, response rate: 100%). For the Expert Panel (EP), out of the 20
authors identified, two declined to participate and five did not reply (EP =
13, response rate: 65%). Therefore, the overall number of panelists was 21
(overall response rate: 75%, Supplementary Table 1). Demographic char-
acteristics of the panelists are displayed in Table 1. Briefly, most of them
were male (16, 76%), >50 years old (14, 66.6%) and high-experienced in
clinical routine (20, 95.5% with >10 years of clinical experience) and
research (19, 90.4% and 18, 85.7% with >10 years of experience in,
respectively, the DBS field and DBS clinical trials) settings.

Delphi Panel results: technical aspects
As for the 21 statements on the technical aspects of aDBS, the first round
led to no consensus for any of the statements (Supplementary Fig. 1); in
the second, the consensus was reached in only one statement (Supple-
mentary Fig. 2); finally, in the third round, consensus was reached in
other seven statements, for a total of eight out of 21 statements (see
Fig.1). More specifically, in the second round, the panelists agreed that
automatic programming would be safe as long as stimulation intensity is
constrained by upper and lower limits (90% agreed, median ± IQR:
4 ± 0). After the third round, panelists agreed that aDBS has

Table 1 | Demographic and academic information for the
Delphi Panel members

Steering
Committee (n = 8)

Expert
Panel (n = 13)

Gender—n

Female 1 4

Male 7 9

Prefer not to say 0 0

Age (year)—n

25–30 0 0

31–39 0 1

40–49 1 5

50–59 4 4

60–69 3 3

Prefer not to say 0 0

Highest academic degree—n

Bachelor’s Degree 0 0

Master’s Degree 0 0

Doctor of Medicine (MD) 3 5

Doctor of Philosophy (PhD) 5 8

Other 0 0

Country of residence/work—n

Italy 1 0

UK 0 1

Germany 4 3

France 0 0

Canada 2 1

The Netherlands 0 1

Spain 0 3

Switzerland 0 1

USA 1 3

Primary place of worka
—n

Private Company 0 1

Hospital 5 6

University 7 9

Research Institute (public) 1 1

Research Institute (Independent) 0 1

Experience in DBS field (year)

≤5 0 0

6–10 0 2

>10 8 11

Field(s) of research (besides neurostimulation) a
—n

Biomedical Engineering 1 2

Cognitive Science 2 2

Computational Modelling 0 1

Epidemiology 0 0

Neurology 7 8

Neuroscience 5 8

Neurosurgery 3 7

Pharmacology 1 0

Psychiatry 0 0

Psychology 0 0

Neurorehabilitation 0 0

Table 1 (continued) | Demographic and academic information
for the Delphi Panel members

Steering
Committee (n = 8)

Expert
Panel (n = 13)

Other (Systems Neuroscience,
EEG, MEG)

1 0

Experience in DBS clinical trials (year)—n

≤5 0 2

6–10 0 1

>10 8 10

Experience in treating patients (year)—n

≤5 1 0

6–10 0 0

>10 7 13

aOne or more options were accepted.
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technological limitations (Statement 1—80% agreed, median ± IQR:
4 ± 0), but that current pacemaker technology might be suitable to
implement aDBS algorithms (Statement 20—90% agreed, median ± IQR:
4 ± 0). They strongly agreed that it requires high levels of expertise
(Statement 8—80% strongly agreed, median ± IQR: 5 ± 0), but strongly
disagreed in its feasibility for patients with not well-positioned electrodes
(Statement 3—85% strongly disagreed, median ± IQR: 1 ± 0). Lastly,
panelists were undecided on the role of aDBS in spreading segmented
electrodes use (Statement 18—85% undecided, median ± IQR: 3 ± 0), or
whether fast adaptation methods are superior or inferior than slow
adaptation methods (Statement 14 and Statement 15—90% undecided,
median ± IQR: 3 ± 0 for both). The secondary analysis performed on the
third round of answers revealed an agreement on further statements
(Supplementary Fig. 3). Specifically, experts agreed that aDBS is feasible
only in centers with neurophysiological expertise (Statement 9—90%
agreed), that programming is time-consuming (Statement 11—85%
agreed) but automatic programming will allow to save time (Statement
12—90% agreed). Also, they agreed that current pacemaker technology
allows aDBS installation (Statement 20—95% agreed), and that AI will
spread its use (Statement 19—90% agreed). Lastly, common agreement
was reached on the use of signal recording from DBS electrodes as a
biomarker for electrical stimuli delivery (Statement 17—80% agreed).

Delphi Panel results: clinical aspects
As for the 21 statements on the clinical aspects of aDBS, no consensus
was reached after the first round (Supplementary Fig. 4). After the sec-
ond, the panelists agreed on one statement (Supplementary Fig. 5), and
other eight after the third round, for a total of 9 out of 21 statements (see
Fig.2). In particular, in the second round the panelists agreed on the use
of aDBS technology also for tremor-dominant PD patients (Statement
28—80% agreed, median ± IQR: 4 ± 0). After the third round, an
agreement was reached on the safety of aDBS technology (Statement
25—85% agreed, median ± IQR: 4 ± 0) and that it will enter clinical

routine in 10 years (Statement 22—85% agreed, median ± IQR: 4 ± 0),
with positive long-term impact for patients (Statement 35—80% agreed,
median ± IQR: 4 ± 0), also for those with significant motor fluctuations
before surgery (Statement 30— 90% agreed, median ± IQR: 4 ± 0) and on
cDBS treatment (Statement 31—95% agreed, median ± IQR: 4 ± 0), and
for patients with significant dyskinesias on cDBS treatment (Statement
32—90% agreed, median ± IQR: 4 ± 0). Lastly, panelists agreed that aDBS
might lead to a faster stable treatment response after the definition of
stimulation settings (Statement 37—80% agreed, median ± IQR: 4 ± 0),
but were uncertain if fast adaptation technology could lead to long-term
plastic changes (Statement 38—80% undecided, median ± IQR: 3 ± 0).
The secondary analysis performed on the third round of answers
revealed an agreement on four further statements (Supplementary Fig.
6). Experts disagreed that aDBS is applicable only for PD non-tremor
patients (Statement 27—90% disagreed) and that primary clinical indi-
cation will be ET patients, more than PD patients (Statement 29—85%
disagreed). Conversely, they agreed that aDBS will reduce DBS-induced
side effects (Statement 34—95% agreed) and will easily adapt to phar-
macological changes (Statement 36—80% agreed).

Discussion
In this Delphi consensus study, 21 internationally recognized clinical and
scientific DBS experts were asked to discuss current technical and clinical
challenges related to aDBS research and technical development in the next
few years. The integration of the knowledge derived from clinical data and
fromthe experienceof leading experts provided (1)a clear scenario for aDBS
advantages and limitations at the current state-of-the-art, (2) guidance on
the near-future design of trials, and (3) highlights regarding the most pro-
mising directions for aDBS. Interestingly, out of the 42 open questions on
aDBS proposed, a consensus was reached for 17, thus underlining the
complexity and heterogeneity of the scenario and experiences: experts
agreed on a time frame of 10 years for aDBS to reach clinical practice,
whereas the time frameof 5 years didnot achieve the agreement. Sucha time
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Fig. 1 | Percentage of agreement for the 21 statements on the technical aspects of

adaptive DBS (Statements 1–21) among the Delphi Panel members, as a result of

the third round.A consensus was reached for Statement 1 (80% of the responses fell

in the response label “Agree”), Statement 3 (85% of the responses fell in the response

label “Strongly Disagree”), Statement 8 (80% of the responses fell in the response

label “Strongly Agree”), Statement 14 (90% of the responses fell in the response label

“Undecided”), Statement 15 (90% of the responses fell in the response label

“Undecided”), Statement 18 (85% of the responses fell in the response label

“Undecided”), and Statement 20 (90% of the responses fell in the response label

“Agree”). DBS Deep Brain Stimulation, S statement.
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frame should therefore be used to focus research towards the clinical and
technological gaps between experimental and clinical aDBS treatment.
(I) First, while the experience and knowledge gained so far sufficed to

reach a consensus regarding the safety of the adaptive approach and its
potential benefits, personalization (i.e., define which population of
patients and/or which clinical phenotype of pathology would benefit
more from aDBS) rose as a line of research to be explored. Experts, in
fact, agreed that aDBS may lead to faster and more stable treatment
responses thancDBS in selectedpatientpopulations, including tremor-
dominant PD patients and those with motor fluctuations and
dyskinesia on cDBS.

(II) Second, an important point highlighted with general agreement, and
possibly limiting the future widespread adoption, was the need for a
high level of expertise to manage aDBS. Automatic programming
based on data can be considered as a valuable and safe support for this
complex task, if properly developed.

(III) Third, the expert community remained uncertain regarding specific
algorithms and theirmechanisms of action, thus suggesting that, in the
near future, research and trials need to be directed towards the col-
lection of data relevant both for understanding the neurophysiology of
the adaptive approach and for identifying better biomarkers and the
related stimulation patterns. A last line of research should consider the
integration of aDBS paradigmwith sensing technologies. For example,
the possible combined benefits of aDBS and segmented electrodes
remain unclear, while there is general agreement on the fact that aDBS
would not help in patientswith electrodes that are not well-positioned.

Thepanelists believe that, despite the technological limitations of aDBS
methodology, current hardware technology is suitable to support aDBS
optimization, thanks to the recent development of pulse generators, which
are also able to record LFPs27. One of the main limitations of aDBS appli-
cation in routine clinical care remains the uncertainty about which and how

many signals could entirely represent patients’ clinical state and whether
many of them need to be used together in multimodal algorithms11,28. Most
biomarkers have been identified with patients in “off stimulation”29, but, in
the aDBS concepts, signals should be recorded in “on stimulation”.
Therefore, the availability of devices able to record during stimulation is
crucial to shed light on how to select the optimal personalized biomarker28.
While themost used closed-loop design (i.e., STN-LFP beta band as control
signal to adjust for DBS amplitude) has been questioned30, there is growing
consensus that the beta band is a fairly reliable biomarker31. Several alter-
native approaches have been proposed (e.g., using cortical-subcortical
gamma rhythm32), but no conclusive findings have been obtained yet. The
panelist acknowledged that a high level of expertisewould be required to use
aDBS. Also, the secondary analysis added that aDBS would be feasible only
in centerswithneurophysiological expertise, and that aDBSprogramming is
currently time-consuming. Indeed, currently, the programming phase of
aDBS devices might require familiarity and high technical skills (when
compared with cDBS devices28); however, the future algorithms will likely
become more automated. A suggestion to industries would be to develop
simplified workflows or to provide adequate education to clinicians using
aDBS. Automatic programming technologies under investigation might
reduce this time burden, provided that clinicians maintain a crucial role in
assessing LFP recordings and their relationship to patients’ symptoms.
Experts agreed that automatic programming would be safe if stimulation
intensitywere constrained by combinedupper and lower limits. The answer
is in linewith theneed tobothavoidunpleasant side effects (upper limit) and
inadequate treatment of patients’ symptoms (lower limit). However, many
algorithms tested in clinical studies to date allow reduction of stimulation
amplitude to zero when beta amplitude falls below a threshold, and this
should be modified in future aDBS algorithms21,31,33,34.

From a control algorithm point of view, the experts were uncertain
about whether fast adaptation methods would be superior or inferior when
compared to slow adaptation methods. In fast adaptation algorithms, beta
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activity immediately triggers a brief increase in stimulation (threshold-
based) to shorten prolonged beta bursts31,35, while in slow algorithms, beta
activity is smoothed over many seconds to serve as a medication state
biomarker and then be used as feedback to drive stimulation21. As for
current research, both fast and slow adaptation algorithms reduced the total
electrical energy delivered (TEED) over time, but while the first seemed to
reduce adverse effects on speech20 and to achieve a better control of bra-
dykinesia and rigidity21, the latter seemed to be more effective in reducing
dyskinesias22. These effects should be interpretedwith great caution because
of the paucity of cases and lack of independent validation, especially in
chronic applications with implanted devices36. Indeed, speech was not
systematically assessed for the “slow adaptation”, nor dyskinesias for the
“fast adapting” algorithms.However, fast beta aDBSdidalso show the ability
to adjust how often aDBS was triggered according to (slower) medication
state, with stimulation becoming less frequent in the medication ON state.
This suggests that “fast” aDBS algorithms can operate on both fast and slow
timescales, and therefore could theoretically help medication-induced
dyskinesias37. Currently, the lack of data does not allow us to conclude
differential benefits of both algorithms on side effects. Also, aDBS can
possibly allow more TEED to be delivered, but only for small time frames,
with improved clinical efficacy and without inducing side effects32,38;
therefore, reduced TEED seems to be a less critical outcome for DBS
implementation, particularly with the advent of rechargeable devices39.
Panelists reached a consensus on the unfeasibility of aDBS for patients with
suboptimally positioned, meaning that it will likely not be effective. This
expert opinionwas in linewith the evidence that the peak in beta activity is a
specific feature of the motor part of the STN40, and, therefore, suboptimally
positioned electrodes will not likely detect the LFPs needed to “adapt” aDBS
to patients’ symptoms.

Similarly, the panelists were doubtful about the role of aDBS in
facilitating the use of segmented electrodes, which may be used to
widen the therapeutic window between efficacy and adverse effects by
steering the field of stimulation41. The experts did concede that
segmented electrodes share with aDBS the common aim to “perso-
nalize” and shape stimulation electrical fields for individual patients.
Indeed, this technology increases spatial specificity while aDBS
improves temporal specificity through the delivery of a dynamic
stimulation that changes over time according to disease-related
feedback41. Theoretically, these two approaches could be com-
plementary. Differently, experts expressed an optimistic opinion
about the use of AI to accelerate aDBS development. Indeed, in
recent years, AI and machine learning (ML) have been applied to
neurological treatments, in a way that can be categorized into three
key areas: (I) Predicting treatment outcomes: In PD, various ML
techniques were used to distinguish between the DBS-on and DBS-off
states to predict motor performance42, classify the ON / OFF levo-
dopa states43, predict real-time state or classify behavioral tasks44–47,
improving therapy personalization and diagnostic precision. Simi-
larly, ML-based analyses of neurophysiological biomarkers have
enabled accurate tic detection in Tourette syndrome48; (II) Deter-
mining treatment parameters: In PD, personalized biomarkers have
been applied to classify the ON/OFF levodopa states, enabling precise
adjustment of parameters43. Similarly, in ET, linear classifiers49 and
linear regression models50 in implanted aDBS systems have shown to
be feasible, no energy-consuming and effective in suppressing
tremor49 or reducing stimulation times with improved therapeutic
efficacy50; (III) Dynamically optimizing treatment over time: In PD,
aDBS systems have utilized non-linear dynamical features51 and
hierarchical and multiple kernel learning approaches52 to initiate or
stop stimulation based on the onset of tremors enabling real-time
adjustments of DBS parameters. State estimates, in conjunction with
fuzzy control mechanisms, have been employed to dynamically adjust
stimulation frequencies, thereby enhancing therapeutic effects53. For
ET, aDBS devices have adeptly modulated stimulation voltages in real
time according to patient feedback, resulting in effective tremor

suppression while reducing superfluous stimulation54. All these
experiences will ground the future integration of AI/ML to aDBS.

Thepanelists shared anoptimistic opinion in termsof thedevelopment
and applications of aDBS in clinical routine, and its potential ability to allow
a faster and more stable treatment response in select patients. Indeed,
despite the initial skepticism of parts of the medical community, the
knowledge and technology in the field of aDBS have been constantly
growing55. Also, recent technological advancements (e.g., directional leads56

ormultiple stimulationmethods57,58)may limit side effects andmay serve to
optimize the response to individual symptoms11. Another important point
related to aDBS adoption is its safety, on which the panelists agreed. In
addition to the surgical risks that to date are comparable to those of cDBS59,
concernshavebeen expressed in the literature about thepotential side effects
of aDBS stimulation60. Although no significant side effects have been
reported so far25, rapid changes of amplitude or frequency induced by
neurosignals could be unpleasant or even intolerable to patients in chronic
stimulation. Therefore, algorithms limiting these rapid changes (like the
“linear adaptive” algorithm61) or others that balance ramp rates to avoid side
effects62 are preferable. One of the major potential advantages of aDBS is its
ability to provide personalized therapy. The panelists agreed that aDBS is
suitable both for PD patients experiencing motor fluctuations and dyski-
nesias before surgery or on cDBS, and for tremor-dominant PD patients.
This consensus boosts the need for gaining more insights on the “precision
medicine” potential of aDBS, i.e., investigating which patients are likely
responders to stimulation, or which technology (e.g., which biomarker) is
right for a specific patient63.More experimental studies are needed, inwhich
the efficacy of aDBS can be actually tested through different outcomes on
different, larger populations, using different biomarkers. For example, Beta
frequency correlates more with rigidity/bradykinesia than with resting
tremor64,65, while gammaactivity, particularlyfinely-tuned gamma, has been
associated with ONmedication states and dyskinesia66,67. Beta-driven aDBS
follows the dynamic of the levodopa-ON/OFF medication states29 and
hence reduces the likelihood of inducing levodopa-induced dyskinesia.
Indeed, studies on aDBS in patients with PD and dyskinesia report good
efficacy in reducing such symptoms while guaranteeing a similar or even
better control of cardinal symptoms of PD21,33,34. Tremor can be detected
from brain signals, either by the presence of lower frequency oscillations
(3–7Hz) ormore accurately by combiningmultiple features from thewhole
LFP spectrum68,69. Additionally, several computational models have been
recently developed to test the feasibility and efficacy of aDBS methods that
modulate stimulation to control different biomarkers70,71. In these cases, the
best control may be provided by selecting between multiple controllers
depending on context or patient symptoms (i.e., tremor or beta oscillations).
Recent studies suggest a similar efficacy of aDBS both for tremor and bra-
dykinesia dominant patients72,73. Additionally, peripheral sensors may also
be used for aDBS for tremor74,75. Major uncertainties remain on the
mechanisms of action of aDBS: the experts were uncertain that fast adap-
tation technology could lead to long-term plastic changes. Although one
might expect an effect close to what has been supposed for cDBS76, whether
aDBS might induce neuroplastic changes remains an open question due to
the lack of evidence to support any opinion77,78. Similarly, it is still to be
determined what impact aDBS will have on the habituation phenomenon
(i.e., the progressive loss of DBS benefit in time due to a decreased biological
response of the neuronal networks79) that may, in select cases, decrease the
effectiveness of cDBS in chronic conditions79. However, some experts
believe that habituation of DBS in the setting of PD is rare and that most of
the worsening of symptoms is driven by PD progression.

In summary, the panel of experts participating in this study
expressed measured optimism on the advancement and implementation
of aDBS in clinical practice. However, based on some concepts high-
lighted by items reaching consensus during the process and on others
that emerged from the items that did not reach consensus, it is possible to
identify some areas of research that will need to be prioritized soon for
aDBS to become a reality in the next 10 years. From a technical point
of view:
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Table 2 | Five-point Likert questionnaire with the results (median ± IQR) for each round

Statement 1st round
(n = 19; RR = 90.5%)

2nd round
(n = 20; RR = 95.2%)

3rd round
(n = 20; RR = 95.2%)

Technical aspects of adaptive DBS

S1. Adaptive DBS is at the beginning of its clinical applications, but I think that
there may still be technological limitations

4 ± 1 4 ± 0.25 4 ± 0—C.R.

S2. I think that a possible limitation of the diffusion of adaptiveDBSare high costs 3 ± 1 3 ± 1.25 3 ± 1

S3. I think adaptive DBS is applicable in patients with not well-positioned
electrodes

1 ± 1 1 ± 1 1 ± 0—C.R.

S4. I think adaptive DBS is applicable when one side only is able to record 3 ± 1 4 ± 1 4 ± 1

S5. I think that only modulating the amplitude might be a limiting factor of
adaptive DBS

3 ± 2 2 ± 2 2.5 ± 2

S6. I think an actual risk for adaptive DBS is overstimulation 3 ± 1 3 ± 1 3 ± 0

S7. I think an actual risk for adaptive DBS is under stimulation 3 ± 1.5 3 ± 1 3 ± 1

S8. I think adaptive DBS requires high level of expertise 4 ± 1 5 ± 1 5 ± 0—C.R.

S9. I think adaptive DBS is feasible only in experienced DBS centres with
neurophysiological expertise

4 ± 1.5 4 ± 0.25 4 ± 0

S10. I think adaptive DBS surgery is time-consuming 3 ± 2 4 ± 2 4 ± 2

S11. I think adaptive DBS programming is time-consuming 4 ± 3 4 ± 1 4 ± 1

S12. I think that automatic programming will reduce programming time 5 ± 1 5 ± 1 5 ± 1

S13. I think that automatic programming is safe as long as the neurologist can set
upper and lower limits for stimulation intensity

4 ± 0 4 ± 0—C.R. –

S14. I think fast adaptation adaptive DBS methods are superior to slow
adaptation adaptive DBS methods

3 ± 1 3 ± 0 3 ± 0—C.R.

S15. I think slow adaptation adaptive DBS methods are superior to fast
adaptation adaptive DBS methods

3 ± 1 3 ± 0 3 ± 0—C.R.

S16. I think adaptive DBS will be based more likely on feedback from wearables
than on signal recording from the DBS electrodes

2 ± 1 2 ± 0 2 ± 0.25

S17. I think adaptive DBS will be based more likely on signal recording from the
DBS electrodes than on feedback from wearables

4 ± 1 4 ± 1 4 ± 0

S18. I think adaptive DBS would help to diffuse DBS with segmented electrodes 3 ± 1 3 ± 0 3 ± 0—C.R.

S19. I think the rapid development of artificial intelligence (AI) will fuel the clinical
use of adaptive DBS

4 ± 1 4 ± 1 4 ± 0.25

S20. I think current pacemaker technology in principle allows to install adaptive
DBS algorithms

4 ± 0.5 4 ± 0.25 4 ± 0—C.R.

S21. I think changes in technology are still necessary to foster adaptiveDBSsoon 4 ± 1 4 ± 1 5 ± 1

Clinical aspects of adaptive DBS

S22. I think adaptive DBS will be clinical routine in 10 years from now 4 ± 0 4 ± 1 4 ± 0—C.R.

S23. I think adaptive DBS will be clinical routine in 5 years from now 3 ± 1.5 3 ± 1 3 ± 1

S24. The side effects (ramping) will lead tomany patients being unable to tolerate
adaptive DBS

2 ± 1 2.5 ± 1 2.5 ± 1

S25. I think adaptive DBS is a safe technology 4 ± 0.5 4 ± 0 4 ± 0—C.R.

S26. I think adaptive DBS is applicable on a large scale 3 ± 1 3 ± 1 3 ± 1

S27. I think adaptive DBS is applicable only for non-tremor patients with
Parkinson’s disease

2 ± 1 2 ± 0.25 2 ± 1

S28. I think adaptive DBS is applicable also for tremor-dominant patients with
Parkinson’s disease

4 ± 0.5 4 ± 0—C.R. –

S29. I think the primary clinical indication for adaptive DBS will rather be tremor
then Parkinson’s disease

2 ± 1 2 ± 1 2 ± 0

S30. I think the patient profile who will likely benefit from adaptive DBS is the
patient with significant motor fluctuations before DBS

4 ± 1.5 4 ± 1.25 4 ± 0—C.R.

S31. I think the patient profile who will likely benefit from adaptive DBS is the
patient with significant motor fluctuations on conventional DBS

4 ± 0 4 ± 0 4 ± 0—C.R.

S32. I think the patient profile who will likely benefit from adaptive DBS is the
patient with significant dyskinesias on conventional DBS

4 ± 1.5 4 ± 1 4 ± 0—C.R.

S33. I think that adaptive DBS will improve non-motor aspects of Parkinson’s
disease

3 ± 1 3 ± 1 3.5 ± 1

S34. I think that adaptive DBS will reduce stimulation induced side effects 4 ± 1 4 ± 0.25 4 ± 0

S35. I think the long-term impact of adaptive DBS might be positive for the
patients

4 ± 0.5 4 ± 1 4 ± 0—C.R.
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1. Integration with technologies: future research should focus on opti-
mizing existing technologies. A key area of investigation will be the
improvement of the device in terms of reliable sensing technologies,
refining current methods, and exploring new approaches to enhance
the overall performance of aDBS systems. Also, given the promises of
integrating AI and ML technologies in the biomarker discovery pipe-
line, research should focus on developing robust AI/MLmodels aimed
to provide a solid foundation for the aDBS paradigm. This also
underscores the need for ongoing collaboration between researchers
and AI/ML companies.

2. Device management and costs: future research should focus on
improving the aDBS devicemanagement and addressing its associated
costs. Studies should develop automated programming algorithms
assisting the clinicians, simplified workflows, and comprehensive
training programs. Also, unlike DBS80, health economics studies on
aDBS cost-effectiveness are not available because of the lack of long-
term data on large populations of patients. On the one hand, aDBS is
expected to decrease health costs per capita for patients because it
should improve patients’ condition and autonomy; on the other hand,
it could increase costs related to the production of technology, time
consumed by physicians to be trained, and to review the patient’s state.
From a clinical point of view:

3. More solid clinical research: large-scale, multicentric RCTs to evaluate
the widespread applicability of aDBS are necessary before moving to
routine clinical practice. These studies should assess the long-
term safety and efficacy of aDBS across different populations,
using different feedback biomarkers to monitor various out-
comes. For example, it is to be determined whether aDBS could
improve non-motor symptoms in PD. Clinical studies should
explore the interaction between aDBS and medication, investi-
gating whether aDBS can adjust stimulation automatically if
patients miss or take incorrect doses, or the potential risk due to
incorrect stimulation (over- or under-stimulation).

4. Treatment personalization: future research and clinical trials should
contemplate the collection and storage of recorded data to both deepen
the understanding of aDBS on neurological tissues and to facilitate the
identification of personalized biomarkers and stimulation patterns.
Indeed, a fundamental characteristic of aDBS is the ability to increase
treatment personalization, i.e., identifyingpatient subgroups or specific
clinical phenotypes that are likely responders to aDBS, and deter-
mining which technologies (e.g., personalized biomarkers) and ther-
apeutic strategies are best suited for individual patients. This research
will be critical in refining the application of aDBS and enhancing its
clinical efficacy.

However, although consensus achieved through Delphi methods can
offer valuable insights, it neither replaces clinical judgment nor original
research, and it is not intended to define standards of practice. Also, the
feasibility of the consensus reached shouldbe furtherdebatedand scientifically
demonstrated—even more when considering stimulation targets commonly
used for DBS (e.g., globus pallidus internus) not explored for aDBS. Rather,
since our results aggregate the opinion of experts who could count on both
personal expertise andscientificknowledge, theyappear tobe relevant in terms
of the current state of knowledge and future directions for research, evenmore
for a field which is still at its infancy. Therefore, although we might expect
aDBS to reach clinical adoption in the next 10 years, several uncertainties
remain that need to be addressed through solid experimental studies, parti-
cularly regarding economic barriers, accessibility, and patient-specific factors.

Methods
TheDelphi studymethodology is amultistage process designed to combine
opinions into group consensus81, where a series of structured questionnaires
(rounds) are anonymously completed by experts (panelists) and the
responses from each questionnaire are fed back in summarized form to the
participants82,83. This allows the panelists to reassess their initial judgments,
considering the positive aspects of interacting groups (e.g., inclusion of
different backgrounds) without the negative ones (e.g., influence of domi-
nant members)84. For the purpose of our study, a modified Delphi
process85–87was designed in three rounds, which are considered as sufficient
to collect the needed information and to reach a consensus84,88. The Delphi
consensus process does not involve human research participants, and
therefore, ethics approval is not required. However, data gathering from the
experts and analysis occurred, guaranteeing the compliance with the
Declaration of Helsinki and the current legislation on the collection and
processing of personal data.

Steering Committee and Delphi Panel selection
An SC of experts (n = 8) based on the collaborative network of the leading
authorswas selected to define the questionnaire. Then, togetherwith the SC,
a larger EP (n = 13) was involved in the Delphi consensus process. There-
fore, a total of 21 panelists took part in the consensus, which is a number of
experts within the recommended range84,89. Since no exact criterion is cur-
rently available on the definition of “expert”90, we considered positional
leaders91 in the field according to the number of peer-reviewed
publications92,93, as suggested by previous works26.

Questionnaire definition
TheSCwas inchargeofoutliningthescopeof theresearch,discussingthe topic,
defining the questions, and developing the structured questionnaire, including

Table 2 (continued) | Five-point Likert questionnaire with the results (median ± IQR) for each round

Statement 1st round
(n = 19; RR = 90.5%)

2nd round
(n = 20; RR = 95.2%)

3rd round
(n = 20; RR = 95.2%)

S36. I think adaptive DBS might more easily adapt to pharmacological changes 4 ± 1 4 ± 1 4 ± 0

S37. I think adaptive DBS leads to faster stable treatment response after DBS
surgery once a setting is defined

4 ± 1 4 ± 1 4 ± 0—C.R.

S38. I think fast adaptation adaptive DBS leads to long term plastic changes 3 ± 1 3 ± 0.25 3 ± 0—C.R.

S39. I think adaptive DBS will improve patient’s well-being because adaptive
DBS automatically increases stimulation if patient forgets to take
medication

3 ± 1.5 4 ± 1 4 ± 1

S40. I think adaptive DBS will improve patient’s well-being because adaptive
DBS automatically decreases stimulation if patient accidentally takes too
high a dose of medication

4 ± 1 4 ± 1 4 ± 1

S41. I think adaptiveDBSdecrease thenumberof patient visits toneurologists for
programming

3 ± 1.5 3 ± 2 3 ± 0.25

S42. I think adaptive DBSmakes medication titration easier –with less precision
required

3 ± 1 3 ± 0.25 3 ± 0.25

DelphiPanelmemberswereasked to rate their agreementwith eachstatement (1 = stronglydisagree; 2 = disagree; 3 = undecided; 4 = agree; 5 = strongly agree). RR response rate,C.R. consensus reached,

PD Parkinson’s disease, DBS deep brain stimulation.

Bold represents consensus reached.
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keyitemspertinenttoaDBSusingfive-pointLikertscales(1 = stronglydisagree;
2 = disagree; 3 = undecided; 4 = agree; 5 = strongly agree)26.

Delphi process
In rounds one, two, and three, quantitative assessments to reach the con-
sensus were performed by SC and EPmembers. The panelists were asked to
rate 42 statements on several technical (21 statements) and clinical
(21 statements) aspects of aDBS (Table 2). In order to maintain the rigor of
thismethod, we considered a response rate of >70% for each round94 to be a
minimum, with missing or incomplete responses excluded from the ana-
lysis. Electronic questionnaires were used in all steps of the process. In case
one item reached a consensus during the first or second round, it was
excluded from the following round to avoid confirmation bias; otherwise
(i.e., if no consensus was reached), it was included in the following round90.
Although no guidelines are available90, consensus was achieved when ≥80%
of the responses fell in the same response label26,95.

Data analysis
Data were analyzed and reported by descriptive statistics using JASP (Version
0.19.3) [Computer software]. We opted for median and interquartile range
(IQR), as suggested by the literature84,96. We report the results of each round
separately in both textual (i.e., with median ± IQR) and graphical representa-
tion, to better illustrate the strength of support for each round90. As an addi-
tional analysis,we chose to convert the5-pointLikert scale into a3-pointLikert
scale, considering themiddlepoint (undecided)andonly twopoints (agreeand
disagree) as union of the two highest (4 = agree; 5 = strongly agree) and lowest
(1 = strongly disagree; 2 = disagree) points, respectively. Only the outcomes of
the third round were subjected to this secondary analysis.

Preprint
This work was published as a preprint in the online archive medRxiv97.

Data availability
The datasets used and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Abbreviations
DBS Deep Brain Stimulation
ET Essential Tremor
PD Parkinson’s disease
cDBS conventional DBS
STN-DBS Deep Brain Stimulation of the Subthalamic Nucleus
aDBS Adaptive Deep Brain Stimulation
LFPS Local Field Potentials
SC Steering Committee
EP Expert Panel
STN-LFP Local Field Potentials of the Subthalamic Nucleus
TEED total electrical energy delivered
AI Artificial Intelligence
ML Machine Learning
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