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Characterizing subtle cognitive changes in preclinical Alzheimer’s disease (AD) is difficult using

traditional neuropsychological assessments. Remote and unsupervised digital assessments can

improve scalability, measurement reliability, and ecological validity, enabling the capture of subtle

changes. We evaluate such tools for use in preclinical AD, or cognitively unimpaired individuals with

abnormal levels of AD pathology. We screened 1904 reports for studies remotely assessing cognition

in preclinical ADsamples. Twenty-three toolswere identified, and their usability, reliability, and validity,

including construct and criterion validity based on in-person neuropsychological and Aβ/tau

measures, was reported. We present a necessary update to a rapidly evolving field, following our

previous review (Öhman et al., 2021) and address open questions of feasibility and reliability of remote

testing in older adults. Future applications of such tools are discussed, including longitudinal

monitoring of cognition, scalable case finding, and individualized prognostics in both clinical trials and

healthcare contexts.

Subtle cognitive changes may already emerge in the preclinical stage of
Alzheimer’s disease (AD), that is, in cognitivelyunimpaired individualswith
abnormal levels of biomarkers indicative ofADpathology, such as amyloid-
β (Aβ) and tau (clinical stage 2 according to ref. 1). Determiningwhether an
individual has abnormal levels of Aβ and/or tau, and thereby establishing a
probable etiology for cognitive decline and later impairment, can now
reliably be achieved using fluid and imaging biomarkers1,2. However, the
characterization of cognitive changes has proven to be challenging using
conventional pen-and-paper neuropsychological assessments3–5. This pre-
sents a non-negligible and potentially costly hurdle, as clinical trials aim to

screen and enroll participants at risk for disease-driven cognitive decline
before the clinical symptoms of AD appear6. Indeed, Langford and
colleagues7 estimated that using sensitive cognitive measures to pre-screen
individuals before ordering PET imaging could have saved over 3.5MUSD
in the A4 study. Additionally, although there is yet no medical intervention
approved for preclinical AD, the use of anti-amyloid drugs in preclinical
samples is already being tested in studies such as AHEAD 3-45
(NCT04468659) and TRAILBLAZER-ALZ 3 (NCT05026866). Once early
treatments become available, tools that can reliably detect, predict, and
monitor cognitive decline due toADon an individual level will be essential8.
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Remote and unsupervised digital cognitive assessments have already
shownpromise as awidely accessible solution thatmay be sensitive to subtle
cognitive changes related to the initial build-up of AD pathology9, even
before clinical symptomsmanifest (i.e., preclinicalAD). So far, in the context
of preclinical AD, remote and unsupervised digital cognitive assessments
have been exclusively used in research, for example, to characterize cross-
sectional cognitive differences between healthy and AD samples (e.g.,
refs. 10–16). Studies have also thus far focused on establishing the feasibility
of remote and unsupervised data collection in samples of older adults with
varying degrees of cognitive impairment (e.g., refs. 17–22).Moving forward,
remote and unsupervised digital cognitive assessments have great potential
in future research directions as well as health-care use cases for sensitive
cognitive assessments, including in the identification of individuals with
subtle cognitive changes (e.g., as a pre-screening for biomarker testing), the
quantification of risk of later cognitive decline in individuals (e.g., prog-
nosis), and the characterization of change in cognition longitudinally using
frequent assessments (e.g., to monitor cognitive decline and/or treatment
outcomes).

Digital data collection,whether remoteor in-person, offers anumberof
advantages over pen-and-paper testing, such as improved measurement
precision (e.g., reaction time, automatic scoring)9. A wide range of existing
pen-and-paper assessments have been digitized23,24, and a growing number
of cognitive tests are being developed specifically for digital administration
(e.g., refs. 25–27). In addition to tests that capture conventional cognitive
constructs (e.g., episodic memory, processing speed), novel metrics quan-
tifying cognitive function have also been developed, for example, using
speech-based tasks (e.g., refs. 28,29) or multi-modal assessments (i.e.,
assessment of both active and passive markers of cognition
simultaneously30). Notably, many tools that use cognitive tests that may be
considered conventional canalso capturenovelmetrics (e.g., learning curves
using an episodic memory task) due to the digital nature of the tests; thus,
this is not amutually exclusive categorization. Finally, passivedata collection
can be implemented in participants’ natural environments (e.g., using
home-monitoring, wearables), increasing the ecological validity of such
metrics by allowing the collection of continuous data streams during indi-
viduals’ everyday lives31,32. See Fig. 1 for an overview of the types of digital
cognitive assessments.

The digitization of cognitive assessments enables the remote and
unsupervised collection of cognitive data using participants’ own devices,
which is associatedwith a number of benefits and challenges. Anyonewith a
smart device and a network connection can complete remote automated
testing. Indeed, data from millions of users across the globe have already
been collectedusingmobile chat- andgame-based (e.g., refs. 27,33) aswell as
web-based cognitive tests (e.g., TestMyBrain). This approach offers many
benefits, including cost-effectiveness and reduction of patient burden while
still allowing for a high volume of data to be collected, but also many
challenges. For example, remote versus in-person data collection is asso-
ciatedwith reduced costs related to travel, clinic or laboratory space, and test
administration34, though there may be other costs associated with technical
support and data servers. Remote data collection can also be less burden-
some to patients and participants, as scheduling conflicts (e.g., going into a
clinic during business hours) can typically be eliminated, and transportation
to and from testing sites is not necessary, thoughparticipant burdenwill also
depend on the remote testing schedule.

In addition to efficient data collection from more individuals, the
frequency of within-person testing can be increased with remote testing.
Participants can feasibly self-administer remote assessments once a month
for a year10, on a daily basis18,35, or even multiple times a day36–38. Mea-
surement burst designs can also be implemented (e.g., a week of daily
assessments every six months for several years)39,40. High-frequency testing
not only improves the temporal scale onwhich changes can be detected, but
also crucially increases measurement reliability and the sensitivity to intra-
individual variability in performance41–43. Notably, many remote and
unsupervised paradigms that do not explicitly test learning of specific sti-
muli use randomized stimulus pairs or parallel versions when repeatedly
administering tests to reduce retest effects13,20,37,44–47. Finally, higher fre-
quency within-person testing has opened the door for novel paradigms
measuring cognitive processes that are otherwise difficult to capture, such as
learning of repeated stimuli11,12,35, recall after several hours or days46,48,49, or
the effects of time of day13.

Another benefit to unsupervised cognitive testing is an increase in
ecological validity. One shortcoming of in-clinic tests is potentially dis-
crepant cognitive performance in clinical settings versus at-home, known as
the “white-coat effect”50,51. Performance on remote assessments may be

Fig. 1 | A non-exhaustive taxonomy of the types of digital cognitive assessments.

A hierarchical diagram of categories under which digital cognitive assessments may
fall in white, with subgroups and examples of these categories in gray. These

categories are not necessarily mutually exclusive. The current review focuses on
those assessments that are remotely deployed without supervision, and which use
active data collection to quantify cognitive function (i.e., the center of the diagram).
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more reflective of individuals’ everyday cognitive function, as it may be less
associated with increased anxiety during testing52. On the other hand,
unproctored testing introduces challenges related to environmental dis-
tractions, low effort, and malingering, as well as data fidelity (e.g., ref. 53).
Building attention checks into tasks and asking explicitly if participantswere
distracted while completing the tasks may limit these effects. Researchers
may also consider implementing algorithms to flag data patterns indicative
of cheating, as well as integrating reliable participant authentication pro-
cesses, data privacy policies permitting.

Another challenge relates to the level of digital literacy necessary for
individuals to complete smart device-based testing without assistance,
which can vary depending on the target population and tends to be lower in
older samples54. Additionally, access to a smart device and a dependable
network connection may be a limitation, for example, when working with
low-income populations or those in remote rural areas. According to a
report published by the International Telecommunication Union55, 67% of
the global population uses the Internet. Notably, this statistic is highly
variable across regions and income levels, and Internet access is particularly
limited in Africa compared to other continents, as well as in rural areas and
low-income countries55. These statistics should be borne in mind when
planning remote data collection and interpreting results, especially con-
sidering the strong role that both age and socioeconomic status play in
neurodegenerative disease56,57.

Finally, the underlying infrastructure and resources dedicated to data
storage and handling will impose an upper limit on the scalability of any
remote data collection, and the implementation of big data storage
technologies58 should be considered sooner rather than later. As such data
storage and transfer systems are engineered, particular thought should be
given to data privacy and protection, as individual cognitive health data is
highly sensitive59,60. Researchers should understand the risks as well as costs
associated with data transfer and storage to make informed decisions that
comply with relevant regulatory frameworks.

With these benefits and challenges inmind, as well as the current need
for sensitive cognitive testing in preclinical AD, this scoping review will
provide an overview of available remote and unsupervised digital cognitive
assessments used in individuals with no clinically identified cognitive
decline, butwithbiomarker evidence for elevated levels ofAβ, orAβ and tau.
We aim to present a necessary update of this rapidly evolving field since the
publication of our previous review9, with a particular focus on remote and
unsupervised assessments rather than digital cognitive assessments as a
whole. Open questions in 2021 included whether such remote and unsu-
pervised assessments are feasible in preclinical AD samples, as well as
whether such measurements are reliable, especially longitudinally. We
discuss progress in the field in this regard, evaluating feasibility based on
rates of consent, enrollment, adherence, and compliance, as well as user
experience reported by participants (also known as usability validity in the
industry-oriented V3+ Framework61, which was developed as a common
framework for digital health technologies measuring a wide range of
metrics; https://datacc.dimesociety.org/v3/), and report the reliability
(between- and within-person, parallel-forms) of each tool. We evaluate
construct validity (analytical validity in the V3+ Framework) based on
associations with established neuropsychological assessments. Regarding
the validity for various use cases in preclinicalAD (knownas clinical validity
in the V3+ Framework), we describe whether they can accurately classify
individuals with elevated Aβ (and tau) burden, whether they correlate with
continuous measures of Aβ and tau, and whether they can predict future
cognitive decline. To date, very few studies have used passively collected
markers to characterize cognition in preclinical AD31,32, therefore we focus
on studies using actively collected digital assessments in the current review.
Finally, since the feasibility, reliability, and validity of remote and unsu-
pervised cognitive testing for use in preclinical AD have been established
conceptually, we discuss the direction in which the field is quickly moving,
addressing important future use cases, such as scalable case-finding, long-
itudinal monitoring, and individualized risk assessment, as well as what
should be considered in the development of future cognitive tools.

Results
Literature screening
Atotal of 2688 recordswere found, 784ofwhichwere excluded as duplicates
or records in languages other than English. The remaining 1904 were
screened, and 28 relevant reports were found (see Fig. 2 for details), two of
which were previously included9. These and the 23 tools described in these
records are listed in Table 1.

Remote capture of both conventional and novel metrics of
cognition
Seventeen of the included tools capture the conventional cognitive con-
structs: Altoida14, Ambulatory Research in Cognition (ARC)13,37, Boston
Remote Assessment for Neurocognitive Health (BRANCH)62, Cambridge
Neuropsychological TestAutomatedBattery (CANTAB)63,64, Cogstate Brief
Battery (CBB)7,63,65, cCOG64, Cognitron66, the ki:elements Speech Biomarker
for Cognition (ki:e SB-C)67,68, Mayo Test Drive (MTD)69,70, MemTrax
Memory Test63, Mezurio30, Mobile Monitoring of Cognitive Change
(M2C2)71, neotiv44,46,64,66, NeuroVocalix64, NIH Mobile Toolbox63, Oxford
Cognitive Testing Portal (OCTAL)72, and theReVeReWord List Recall Test
(RWLRT)63. One of these tools (Altoida) uses an augmented reality-based
cognitive task to collect multi-modal data (i.e., simultaneous capture of
active and passivemarkers during a cognitive task), one (BRANCH) is used
to quantify learning of repeated stimuli over days to months (i.e., learning
curves)11,16, four (ki:e SB-C, Mezurio, NeuroVocalix, RWLRT) evaluate
cognitive function using speech-based metrics, and two (ARC and M2C2)
use ecological momentary assessment (EMA)-based paradigms73 (EMA is a
method of frequently sampling variables at random times of the day while
subjects are in their natural environments to capture intra-individual varia-
bility; see refs. 73,74). Two other tools are used to quantify learning curves:
Computerized Cognitive Composite (C3) Face-Name Associative Memory
Exam (FNAME)10,75, and Online Repeatable Cognitive Assessment—Lan-
guage Learning Test (ORCA-LLT)12. Finally, an additional four tools use
speech-basedmetrics: Novoic76,77, the Speech for Intelligent cognition change
tracking andDEtectionofAlzheimer’sDisease (SIDE-AD)onlineplatform78,
Winterlight Assessment (WLA)15, and TapTalk79, the last of which combines
speech andmotor function.Nineof these toolswere discussed in theprevious
review either as in-person (e.g., CANTAB, NIH Toolbox, and Cogstate) or
remote digital tools9, but had not yet been validated for remote use in pre-
clinical AD (except BRANCH and ORCA-LLT10,12).

High feasibility of remote and unsupervised data collection
These studies were generally highly feasible, as shown by rates of
consent in studies, enrollment, adherence, compliance, and user
experience reports. Three studies, all of which were recruited from
ongoing studies, reported the consent rate of those individuals
approached for participation: a year-long learning curves design with
monthly assessments had a consent rate of 86%10, and a week-long
measurement burst design39,40 with four daily measurements and had a
consent rate of 87%54. Finally, a longitudinal paradigm with biweekly
assessments for 12 months also reported an 86% consent rate46. How-
ever, the latter also reported that 24% of those who consented did not
enroll in the app46.

Adherence, generally measured as the average percentage of tests
completed out of the complete study protocol, ranged from 74 to 93% for
week-long protocolswithup to four dailymeasurements11,13,15,37,71,76, from63
to 94% for an 8-week study19, and from 75 to 78% in year-long studies12,75.
Compliance, defined here as the completion of measurements as intended
(e.g., acceptable data quality, successful attention checks), was generally
excellent, with only 2 to 3% of data being unusable in both cross-sectional
and longitudinal designs measuring conventional cognitive metrics as well
as learning curves15,62,72,75. However, 21% of data from the in-home aug-
mented reality tasks were unusable due to technical issues, and another 32%
of participants were unable to complete the in-home tasks either because
their smartphone was not compatible or for other unspecified reasons14.
Similarly, preliminary feasibility results from the current Alzheimer’s
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Disease Neuroimaging Initiative cohort (ADNI4) showed that only 54% of
eligible individuals completed speech-based tasks80.

Regarding user experience, in a cross-sectional paradigm, 16% of
participants reported they had technical difficulties62, and in a week-long
speech-based paradigm, 15% reported difficulties47, while in a year-long
design, 30% of participants reached out for technical support10. Tools were
generally straightforward and enjoyable to use11,13,15,37,46,47,62,71,81, with 65% of
one sample reporting that they would “definitely” complete such sessions
again38. Additionally, amajority of participants indicated that they preferred
remote testing to pen-and-paper testing (75%46 and “most”37).

Acceptable reliability of remoteandunsuperviseddatacollection
Wealso evaluated the reliability of each tool, insofar as thiswas reported (see
Table 1 for specific statistics). Between-person reliability (i.e., variability
across individuals, calculated with intraclass correlations [ICCs] according
to ref. 82) was good for ARC and across multiple M2C2 assessments, with
ICCs of 0.76 or greater13,37,83. Parallel-forms reliability (i.e., reliability across
alternate versions of the same task) was good for C3 FNAME (Cronbach’s
α > 0.85)20, as well as for Novoic on average across versions (mean
ρ = 0.73)76; no other studies reported parallel-forms reliability. Test-retest
reliability (i.e., precision of measurement within an individual) was mod-
erate to excellent for most tasks (ICCs = 0.65 to 0.95, rs = 0.57 to
0.81)21,37,46,62,84,85, poor for Altoida (ICC = 0.48)14, and varied widely across
WLA metrics (ICCs =−0.06 to 0.97)15, though most reached ICCs ≥0.50
across multiple assessments.

Construct and criterion validity of remote and unsupervised data
collection
Finally, we examined the construct validity of each tool based on associa-
tionswith in-personneuropsychological tests, aswell as criterion validity for
use in preclinical AD, based on associations with biomarkers of AD
pathology (see Table 1).

A number of tools reported cross-sectional associations with estab-
lished in-person cognitive measures. Those tools that reported associations
with measures of global cognition (e.g., Preclinical Alzheimer’s Cognitive
Composite [PACC]86,87 or similar composites) found correlations coeffi-
cients (rs and ρs) between |0.53| and |0.70| and a standardized β estimate of
0.2614,37,46,62. Two studies found associations between remote tasks and tra-
ditional neuropsychological tests measuring the same cognitive constructs
(rs = |0.59| to |0.61|; βs = |0.22| to |0.44|)83,85. Another study used speech-
based metrics to predict PACC5 and found that predicted and measured
PACC5 scores correlated (r = 0.74)76. Additionally, some studies looked at
the associations between remote task performance (cross-sectional and
learning curves) and change in a cognitive composite (PACC), with change
being retrospective, concurrent, or subsequent relative to the remote task
administration (rs = 0.54 to .69, βs = 0.27 to 0.59)11,12,75. Finally, one tool was
able to distinguish those with an annual PACC score decline greater than
0.10 SD from non-decliners (area under the curve [AUC] = 0.91)75.

Regarding associations with biomarkers of Aβ and/or tau pathology, a
number of studies reported differences in performance between biomarker-
negative and -positive groups10–16. Most group differences had medium
effect sizes (Cohen’sds = 0.49 to 0.66,Hedge’s gs = 0.43 to 0.63,βs = |0.30| to
|0.40|), with Aβ+ (or Aβ+/tau+) groups performing worse than Aβ−
groups. One study found a small effect of time of day (Cohen’s d = 0.19),
with individuals with elevated p-tau181/Aβ42 levels performing worse in
the evening13, while another found a very large effect of Aβ on learning
curves across a year, with an Aβ+ group showing dramatically slowed
learning (Cohen’s d = 2.22)12. A number of studies reported associations
between performance on remote tasks and continuousmeasures of Aβ and/
or tau10,12,37,46,62,70,72,75, with correlation coefficients ranging from |0.11| to |
0.34| and βs ranging from |0.23| to |0.38|. Finally, some studies reported that
remote task performance could distinguish between Aβ− and Aβ+
individuals14,69,71,76 or Aβ/tau− and Aβ/tau+ individuals69, with AUCs
between 0.63 and 0.83.

Fig. 2 | Preferred reporting items for systematic reviews and meta-analyses

(PRISMA) flow diagram detailing the screening of records. Number of records
identified from which sources (databases and others), pre-screening of duplicates

and records in a language other than English, screening and exclusion of records
(with reasons), and inclusion of records are detailed.
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Table 1 | Remote and unsupervised digital cognitive assessments for use in preclinical AD samples in alphabetical order

Tool Report
included

N included in
analyses or
ongoing study

Cognitive domain (task) Reliability Analytical and clinical validity according to associations with:

Neuropsychological tests Aβ/tau

Altoida Muurling
et al., 202314

56 (29 PET or CSF
Aβ−, 27 Aβ+)
+ 65b

Episodic memory (Augmented reality tasks)
High-dimensional multi-modal data

Test-retest reliability:
ICC = 0.48

Corr. with a cognitive
composite (ρ = .56)

Lower scores in Aβ+ than Aβ−
(β ≈−0.40)9i; distin. Aβ− vs. Aβ+
(AUC = 0.76)

ARC Wilks et
al., 202113

169 (81 CSF
pTau:Aβ42−, 32
pTau:Aβ42+)

Episodic memory (Prices)
Processing speed (Symbols)
Working memory (Grids)
EMA-based

Between-person
reliability: ICCs > 0.80

Sundowning in CSF p-tau:Aβ42+
group (Cohen’s d = 0.19)

Nicosia
et al., 202337

290 (212with PET;
146 with CSF)

Between-person
reliability: ICCs > 0.81;
test-retest reliability:
ICCs > 0.85

Corr. with a cognitive
composite (r =−0.53)h

Corr. with Aβ (r = 0.26) and tau PET
(0.11); CSF Aβ42 (−0.23), t-tau (0.28),
p-tau181 (0.25)h

BRANCH Papp et
al., 202162

234 (144 with PiB;
129 with FTP)

Episodic memory (Categories, Face-Name-Occupation, Groceries, Signs)
Processing Speed (Digit-Signs)
Learning curves

Test-retest
reliability: r = 0.81

Corr. with PACC (r = 0.62) Corr. with cortical Aβ (r =−0.21) and
entorhinal tau PET (−0.18)

Papp et al.,
202411

164 (128 PET Aβ
−, 36 Aβ+)

Test-retest reliability:
ICC = 0.9421

Corr. with subsequent decline
on PACC (r = 0.54)

Reduced learning curves in Aβ+
(Cohen’s d = 0.49)

Jutten et al.,
202516

167 (106 PET Aβ
−/tau−, 46 Aβ
+/tau−, 15 Aβ
+/tau+)

Reduced learning curves in Aβ+/tau+
(βs =−0.47 to −0.61), and all Aβ+
(−0.24 to −0.58)

CANTAB Weiner,
Aaronson,
et al., 202363

Brain Health
Registry

Episodic memory (Delayed Matching to Sample, Paired Associates Learningd, Pattern
Recognition Memory, Verbal Paired Associates, Verbal Recognition Memory)
Working memory (Spatial Working Memory, Digit Span, N-Back, Spatial Span)
Executive function (Cambridge Gambling Task, Digit Symbol Substitution Task, Intra-Extra
Dimensional Set Shift, Multitasking Test, One-Touch Stockings of Cambridge, Stockings of
Cambridge, Stop Signal Task, Match to Sample Visual Search, Rapid Visual Information
Processing)
Psychomotor (Motor Screening Task, Reaction Time, Adaptive Tracking Task)
Emotion and social (Emotional Bias Task, Emotion Recognition Task)

Awaiting validation in preclinical AD

Malzbender
et al., 202464

AD-RIDDLE Awaiting validation in preclinical AD

CBB Langford
et al., 20207

4486 (3163 PET
Aβ−, 1323 Aβ+)

Episodic memory (One Card Learning)
Working memory (One-Back)
Executive function (Identification)
Psychomotor (Detection)

Test-retest reliability:
ICCs = 0.90 to 0.9598

Distin. Aβ− vs. Aβ+ (AUCs = 0.60 to 0.73)

Kaye et al.,
202165

TRC-PAD Awaiting further validation in preclinical AD

Weiner,
Aaronson,
et al., 202363

Brain Health
Registry

Awaiting further validation in preclinical AD

cCOG Malzbender
et al., 202464

AD-RIDDLE Episodic memory (Learning task, Recall task, Recognition task)
Processing speed (Trail Making Tests)
Psychomotor (Reaction tests)

Awaiting validation in preclinical AD

Cognitron Leuzy et al.,
202466

REAL AD Episodic memory (Card Pairs, Mallas Memory Short, Paired Associates Learning)
Working memory (Digit Span, Reverse Digit Span, Number Location Pairs, Picture
Completion, Spatial Span)
Processing speed (Blocks, 2D Manipulations, Choice Reaction Time, Trail Making Test)
Executive function (Selective Attention, Target Detection, Switching Stroop, Stop Change
Task, Tower of London)
Fluid intelligence (Verbal Reasoning, Information Sampling, Odd One Out)
Psychomotor (Motor Control, Simple Reaction Time)
Mathematics (Balloons)

Awaiting validation in preclinical AD
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Table 1 (continued) | Remote and unsupervised digital cognitive assessments for use in preclinical AD samples in alphabetical order

Tool Report
included

N included in
analyses or
ongoing study

Cognitive domain (task) Reliability Analytical and clinical validity according to associations with:

Neuropsychological tests Aβ/tau

C3 FNAME Samaroo
et al.,
202010,a

94 (69 PET Aβ−,
25 Aβ+; 84
with FTP)

Episodic memory (Face Name Associative Memory Exam)
Learning curves

Parallel-forms reliability:
Cronbach’s α > 0.8520

Reduced learning curves in Aβ+
(Cohen’s d = 0.66), corr. with tau (r =−0.22)

Jutten et al.,
202275

114 (81 PET Aβ−,
33 Aβ+; 105
with FTP)

Corr. with concurrent PACC5
decline (r = 0.69); distin. PACC5
decliners (AUC = 0.91)

Corr. with global Aβ (r =−0.20), entorhinal tau
(−0.38), and inf.-temp. tau PET (−0.23)

ki:e SB-C Gregory
et al., 202267

SPeAk Structured speech-based tasks Test-retest reliability:
rs = 0.57 to 0.7284

Awaiting validation in preclinical AD

König et al.,
202368

PROSPECT-AD Awaiting validation in preclinical AD

MemTrax
Memory Test

Weiner,
Aaronson,
et al., 202363

Brain Health
Registry

Episodic memory Awaiting validation in preclinical AD

Mezurio Muurling
et al., 202130

RADAR-AD Episodic memory (Gallery Game)
Executive function (Tilt Task)
Structured speech-based task (Story Time)

Awaiting validation in preclinical AD

MTD Stricker
et al., 202469

353 (228 PET Aβ
−, 125 Aβ+; 250
with FTP)

Episodic memory (Stricker Learning Span)
Processing speed (Symbols)

Test-retest reliability:
ICCs > 0.7185

Corr. with in-person NPTs of
same construct (rs = |0.26| to
|0.51|)85

Distin. Aβ− vs. Aβ+ (AUCs = 0.63 to 0.77), Aβ−/tau
− vs. Aβ+/tau+ (0.67 to 0.83)

Boots et al.,
202470

684 (670 with PiB;
667 with FTP)

Corr. with PACC (r = 0.68); corr.
with in-person NPTs of same
construct (rs = |0.59| to |0.61|)

Corr. with Aβ (ρ =−0.24), entorhinal tau (−0.23),
and global tau PET (−0.21)

M2C2 Thompson
et al., 202371

69 (44 PET Aβ−,
25 Aβ+)

Episodic memory (Prices)
Processing speed (Symbol Match)
Working memory (Color Shapes)
EMA-based

Between-person
reliability: ICCs = 0.25 to
0.9783,e

Corr. with in-person NPTs of
same construct (βs = |0.22| to
|0.44|)83

Distin. Aβ− vs. Aβ+ (AUCs = 0.73 to 0.77)

neotiv Berron,
Olsson,
et al., 202446

100 (58 PET Aβ−,
42 Aβ+; 100
with FTM)

Episodic memory (Mnemonic Discrimination Task, Object-in-Room Recall, Complex Scene
Recognition)

Test-retest reliability:
ICCs = 0.65 to 0.83

Corr. with PACC (rs = 0.62 to
0.70); pred. concurrent PACC
decline (βs ≈ 0.41 to 0.59)i

Pred. Aβ in precuneus (βs ≈ 0.23 to 0.38) and tau in
the MTL (0.20 to 0.40)i

Berron,
Olsson,
et al., 202446

BioFINDER-2 Awaiting further validation in preclinical AD

Berron,
Glanz, et al.,
202444

DELCODE,
WRAP

Awaiting further validation in preclinical AD

Malzbender
et al., 202464

AD-RIDDLE Awaiting further validation in preclinical AD

Leuzy et al.,
202466

REAL AD Awaiting further validation in preclinical AD

NeuroVocalix Malzbender
et al., 202464

AD-RIDDLE Speech-based episodic memory Awaiting validation in preclinical AD

NIH Mobile
Toolbox

Weiner,
Aaronson,
et al., 202363

Brain Health
Registry

Episodic memory (Faces and Names with Delay, Arranging Pictures)
Working memory (Sequences)
Processing speed (Number-Symbol Match)
Executive function (Arrow Matching, Shape-Color Sorting)
Language (Spelling, Word Meaning)

Awaiting validation in preclinical AD
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Table 1 (continued) | Remote and unsupervised digital cognitive assessments for use in preclinical AD samples in alphabetical order

Tool Report
included

N included in
analyses or
ongoing study

Cognitive domain (task) Reliability Analytical and clinical validity according to associations with:

Neuropsychological tests Aβ/tau

Novoic Fristed
et al., 202276

115 (59 PET or
CSF Aβ− , 56
Aβ+)

Speech-based storytelling Parallel-forms reliability:
ρs = 0.39 to .8547,f

Predicted PACC corr. with
measured PACC (r = 0.74)

Distin. Aβ− vs. Aβ+ (AUC = 0.74)

Weiner,
Veitch,
et al., 202377

ADNI4 Awaiting further validation in preclinical AD

OCTAL Toniolo
et al., 202472

99 (99 with
plasma) + 352c

Episodic memory (Object-in-Scene Memory Task, Rey-Osterrieth Complex Figure)
Working memory (Oxford Memory Test, Freestyle Corsi Block Task)
Processing speed (Digit Symbol Substitution Test, Trail Making Test)

Corr. with plasma p-tau181 (r = 0.34); pred. plasma
p-tau181j

ORCA-LLT Lim et al.,
202012,a

80 (42 PET Aβ−,
38 Aβ+)

Learning curves Pred. baseline EM (β = 0.26);
pred. retrospective EM
change (β = 0.27)

Reduced learning curves in Aβ+ (Cohen’s
d = 2.22); pred. Aβ PET (β =−0.23)

RWLRT Weiner,
Aaronson,
et al., 202363

Brain Health
Registry

Speech-based episodic memory Awaiting validation in preclinical AD

SIDE-AD
Platform

Saunders
et al., 202478

SIDE-AD Unstructured speech-based tasks Awaiting validation in preclinical AD

TapTalk Alty et al.,
202479

Validation
studies of
TapTalk

Speech- and motor-based task Awaiting validation in preclinical AD

WLA van den
Berg et al.,
202415

50 (27 PET Aβ−,
23 Aβ+)

Structured and unstructured speech tasks Test-retest reliability:
ICCs =−0.06 to 0.97 g

More pauses in Aβ+ than Aβ− (βs ≈ 0.30 to 0.34)i

ARCAmbulatory Research in Cognition,BRANCHBoston Remote Assessment for Neurocognitive Health,C3 FNAMEComputerized Cognitive Composite Face-Name AssociativeMemory Exam,CANTABCambridge Neuropsychological Test Automated Battery,CBB

Cogstate Brief Battery, ki:e SB-C ki:elements Speech Biomarker for Cognition, M2C2Mobile Monitoring of Cognitive Change,MTDMayo Test Drive, NIH National Institutes of Health, OCTAL Oxford Cognitive Testing Portal, ORCA-LLT Online Repeatable Cognitive

Assessment—LanguageLearningTest,RWLRTReVeReWordListRecall Test,SIDE-ADSpeech for Intelligent cognition change trackingandDEtectionofAlzheimer’sdisease,WLAWinterlightAssessment;PETpositronemission tomography,CSFcerebrospinalfluid,PiB

Pittsburgh compound B, FTP flortaucipir, FTM flutemetamol, EMA ecological momentary assessment, PACC Preclinical Alzheimer’s Cognitive Composite, NPTs neuropsychological tests, corr. correlated, pred. predicted, distin. distinguished.
aIncluded in ref. 9
bn = 65 did not complete remote testing.
cn = 352 were included as an online sample with no biomarkers.
dOnly Paired Associates Learning was announced to be used in association with the Brain Health Registry.
eBetween-person reliability was greatly improved for the M2C2 when aggregating multiple measurements (≥0.76).
fNovoic tested 153 correlations across test versions, and average ρs reached 0.73.
gWLA tested 186 ICCs; reliability reached ICCs of ≥0.50 across two or more assessments.
hHigher ARC score indicates worse performance, thus the correlations reported here are in the expected direction.
iUnstandardized estimates originally reported were standardized using the standard errors or 95% confidence intervals and Ns reported.
jOnly p values were reported for the models, including individual metrics. The best model to predict p-tau181 combined remote and in-person metrics, as well as Aβ42/40, adjusted R2 = 0.50.

For samples including groups other than preclinical AD, effect sizes are reported for the findings pertaining to the preclinical AD sub-sample.
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Remote and unsupervised tools awaiting validation in
preclinical AD
Anumber of tools included in the current reviewhave yet to be validated for
use in preclinicalAD, or are undergoing further validation for additional use
cases, but their deployment in relevant samples has been announced (see
Table 1). These tools are included in moderately sized to large studies
collecting longitudinal data (e.g., ADNI4, BioFINDER-2, DELCODE,
PROSPECT-AD, RADAR-AD, REAL AD, SIDE-AD, SPeAk, WRAP), in
registries that collaboratewith such studies (e.g., BrainHealthRegistry), and
in large collaborative efforts to inform the research and treatment of AD
(e.g., AD-RIDDLE). They include tools that capture conventional cognitive
constructs as well as novel metrics of cognitive function, predominantly
speech-based markers. All of these tools are deployed in samples that
include biomarker-characterized cognitively healthy older adults, and
results regarding the validation for their use in preclinical AD are expected.

Discussion
In this review, we focused on remote and unsupervised digital cognitive
assessment tools that capture both conventional cognitive constructs and
novel metrics with active data collection to characterize and detect subtle
cognitive decline in preclinical AD. We defined preclinical AD as the
absence of clinically established cognitive impairment in the presence of
markers of Aβ, and sometimes tau, pathology. We found that remote and
unsupervised cognitive assessments generally have good feasibility and
validity for use in preclinical AD, and that the field is quickly moving

forwardwith larger samples and longitudinal studies to address relevant use
cases in both clinical trials and healthcare contexts (see Fig. 3).

At the time our previous review was published9, the question of whe-
ther it is feasible to remotely deploy digital cognitive tools without super-
vision in preclinical AD samples was still open. Among the studies covered
in the current review (two that were previously included10,12) we found that
rates of consenting into studies (albeit from other ongoing studies),
adherence (i.e., how many measurements participants completed), and
compliance (i.e., how many measurements participants completed as
intended) were impressive. Across study designs ranging from one week to
one year, consent rates ranged from 86 to 87%, adherence rates from 63 to
93%, and compliance rates from 97 to 98%. This is in stark contrast to a
previous report of the median participant retention in digital health studies
being only 5.5 days out of 12 weeks88. Another indicator of usability was the
generally positive user feedback collected with user experience surveys.
However, it is important to note that many digital assessment studies
included here recruited from existing longitudinal study cohorts; partici-
pants in these studies typically agree to complete fluid biomarker acquisi-
tion, neuroimaging, and regular in-clinic assessments and therefore do not
represent the general population. Adherence reported in the studies inclu-
ded in this review may, therefore, be inflated compared to the expected
adherence to such paradigms among real-world samples.

Onepotential bottleneck to participant retentionmaybe registration in
digital apps after consenting to a study. For example, out of those who
consented to participate in a year-long study, only 64%actually registered in

Fig. 3 |Venn diagramof the tools included in the current review based on the type

of cognitive metrics they quantify. Tools identified in the current scoping review
were categorized according to their methodology and metrics that they quantified.
Tools measuring conventional cognitive constructs are shown in the teal circle; tools
using multi-modal data collection are shown in the green circle; tools capturing
speech-based metrics are shown in the red circle; tools using EMA-based protocols
are shown in the dark blue circle; and tools quantifying learning curves are shown in
the yellow circle. Some tools are considered to belong to multiple categories. EMA
ecological momentary assessment, ARC Ambulatory Research in cognition,
BRANCH Boston Remote Assessment for Neurocognitive Health, C3 FNAME

Computerized Cognitive Composite Face-Name Associative Memory Exam,
CANTAB Cambridge Neuropsychological Test Automated Battery, CBB Cogstate
Brief Battery, ki:e SB-C ki:elements Speech Biomarker for Cognition, M2C2 Mobile
Monitoring of Cognitive Change,MTDMayo Test Drive, NIHNational Institutes of
Health, OCTAL Oxford Cognitive Testing Portal, ORCA-LLT Online Repeatable
Cognitive Assessment—Language Learning Test, RWLRTReVeReWord List Recall
Test, SIDE-AD Speech for Intelligent cognition change tracking and DEtection of
Alzheimer’s disease, WLA Winterlight Assessment. *Tools awaiting validation for
use in preclinical AD samples.
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the smartphone app and completed at least one task46. Similarly, of those
individualswhometADNI4 inclusion criteria, only 54% completed speech-
based remote tasks80. One factor thatmay ameliorate participant drop-out is
the technical support available; while 15 to 16% of participants in cross-
sectional or week-long studies reported technical difficulties47,62, 30% of
participants in a year-long longitudinal study reached out to the study team
for technical support10. Additionally, as the tasks become more technolo-
gically demanding, feasibility may become limited, as was the case for the
augmented reality-based tasks, during which 21% of participants had
technical issues precluding the use of their data, and another 32% could not
complete the tasks because of smartphone incompatibility or other
unnamed reasons14. Indeed, when issues with remote technology were
quantified (from 0 to 1, 0 = no problems) for both active cognitive tools
included inRADAR-AD, the sameparticipants had fewer technology-based
problems with the app used for administering conventional cognitive tasks
(0.31) than with the augmented reality-based app (0.60)19.

As more and more large longitudinal studies implement remote data
collection, special attention should be paid to participant enrollment and
retention, especially when recruitment is done remotely and outside of
Western, Educated, Industrial, Rich, and Democratic (WEIRD) popula-
tions. One way of boosting retention, for example, is by having participants
engage with the digital tool immediately after consenting to a study89.
Having technical support available to participants, especially those with
lower digital literacy54,may also alleviate both issues of limited enrollment as
well as prohibitive technical difficulties during tasks.

Another openpoint in theprevious reviewpertained to the reliability of
remotely assessed cognitive metrics9. The reporting of reliability varied
across studies, but reported reliability was generally good. Three studies
reported between-person reliability (i.e., the ability of the test to differentiate
individuals), two using ARC and one using M2C213,37,83; between-person
reliability of ARC was high, as well as across multiple sessions of M2C2.
Parallel-forms reliability was only reported by two studies: C3 FNAME
showed good reliability across alternate versions20, while Novoic tasks had
moderate to excellent reliability across versions47. Test-retest reliability (i.e.,
the reliability of a test within an individual acrossmultiple assessments) was
more widely reported, with moderate to excellent reliability of five tools
capturing conventional cognitive constructs as well as learning
curves21,37,46,62,85. The test-retest reliability for the speech-based WLA varied
depending on the metric and the number of assessments across which
performancewas averaged15. For bothneotiv andWLA, test-retest reliability
improved when aggregating across multiple measurements15,46. Altoida was
the only tool that reported poor retest reliability14, which was acceptable for
Android users, ICC = 0.70, but very poor for iOSusers, ICC = 0.33. Authors
speculated that there may have been version effects, the sample may have
been too small to accurately capture test-retest reliability (n = 43), or par-
ticipants may have received help during some measurements but not
others14.

Overall, reliability was generally favorable, suggesting that cognitive
testing can reliably separate individuals and also precisely capture cognition
within the same individual across multiple measurements, even when done
remotely and without supervision. As longitudinal data collection and the
quantification of cognitive changes become the goal of more and more
studies, the reliability of assessment tools, especially test-retest reliability,
should be carefully assessed in all target populations, and reasons for poor
reliability should be corrected to ensure that the capture of subtle change is
not obscured by random noise.

Regarding construct validity, the cross-sectional associations between
remotely administered digital cognitive tools and in-person neuropsycho-
logical batteries indicate that these remote tools generally map onto cog-
nitive constructs that are important in the clinical quantificationof cognitive
decline. Additionally, three studies found associations between remote task
performance (including learning curves) and change in PACC score, indi-
cating remote task performancemaybe useful as a prognostic tool to predict
cognitive decline. In general, associationsweremoderate to strong, however
no correlations greater than 0.70 were found. As a benchmark, we looked at

digital tests that had been administered remotely as well as in-person:
Altoida performance was correlated across at-home and in-clinic admin-
istrationwith a Spearman’s ρ of 0.5714, as was C3 (composite score across all
tasks including FNAME) with an r of 0.7020, while a remote version of the
neotivMnemonic Discrimination Task correlated with a similar in-scanner
version with an r of 0.6646. This suggests that remote and in-clinic assess-
ments, evenwhenusingnearly identicalmeasures,mayonly be correlated to
a limited degree.

Regarding these moderate correlations, Stricker and colleagues69 argue
that correlating novel measures of cognition with established measures is
also not a foolproof method of validation, since the existing measures of
cognition, although extensively validated, are themselves imperfect90. Many
existing neuropsychological tests were developed to quantify cognitive
impairment in symptomatic individuals years or even decades before the
emergence of reliable in vivo biomarkers of AD and neuroimaging90–92. The
constructs that traditional neuropsychological assessments capture may,
therefore,be (1) insensitive to changes innon-symptomatic individuals (e.g.,
cognitively healthy individuals may reach a ceiling) and (2) outdated in
terms of our current understanding of the biological progression of AD. In
comparison, the development of novel tests of cognition in AD can be
tailored to capture subtle changes as well as be neuroanatomically informed
(e.g., neotiv46).Additionally, the target population should againbe taken into
account here; for example, there may be reduced digital familiarity among
older adults54, further limiting correlations between in-person and remote
tests. Focusing on other ways of establishing clinical validity, such as using
known groups (e.g., cognitively unimpaired Aβ− and Aβ+ groups69), may
lead to greater precision in measuring behaviors that are meaningful for
preclinical AD.

Necessarily, all tools included in this review were used to find asso-
ciations between cognition and markers of Aβ and/or tau pathology. Most
studies used positron emission tomography (PET)-characterized Aβ and
tau burden10–12,14–16,37,46,62,69,71,75,76, while some used cerebrospinal fluid (CSF)
markers, either as the main markers of interest or as a substitute in the case
of missing PET scans37,76. Most studies reported known-group validity,
comparingAβ− toAβ+ groups andfinding poorer performanceon remote
cognitive tests among cognitively healthy individuals with elevated Aβ
burden, showing that many of these assessments are sensitive to the subtle
cognitive changes in preclinical AD. Associations between continuous
measures of Aβ and/or tau and remotely assessed cognitive were also found,
suggesting that cognitive performance as captured by these remote and
unsupervised tests progressively worsens as AD pathology accumulates in
the brain. Altogether, these findings support the claim that remote and
unsupervised cognitive assessments can be used to quantify cognitive
functions that are affected by AD pathology, even before clinical symptoms
emerge.

So far, one study has looked at the associations between blood plasma
markers, specifically p-tau181 and Aβ42/40, and cognitive performance on
remote digital tasks72, which included both cognitively unimpaired indivi-
duals as well as those with clinically characterized AD. They found that
plasma p-tau181 correlated moderately with a number of digital cognitive
markers, while plasmaAβ42/40 only showedweak correlations (correlation
coefficients for the whole sample were not reported in ref. 72). Within
cognitivelyunimpaired individuals, a correlationwas foundbetweenplasma
p-tau181 and the localization timemetric on a “What is where?” task (i.e.,
associative memory; r = 0.34), and no correlations with plasma Aβ42/40
were observed72. Another study combined performance on a remote task
with plasma p-tau217 to predict a future decline in PACC score in a mostly
cognitively unimpaired sample (βs ≈ 0.41 to 0.59)46. Notably, compared to a
model including only demographic factors and plasma p-tau217, a model
also including digital cognitivemarkers explained 7%more variance, with a
significant improvement in model fit (difference in Akaike information
criteria =−26.430)46. These initial findings suggest that blood plasma
markers, particularly p-tau markers, and digital cognitive markers may be
used in conjunction as scalable and accessible tools to screen for AD in its
earliest stages, reducing theneed for expensive and invasive procedures such
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as PET scans, lumbar punctures, and extensive in-person cognitive batteries
for individuals with minimal cognitive complaints.

Moving forward, many remote and unsupervised tools are currently
undergoing validation for use in longitudinal contexts related to preclinical
AD, some with the explicit goal of recruiting more diverse samples (e.g.,
ADNI4).Once this is achieved, themonitoring of cognitive decline for other
use cases, such as safetymonitoring andneurocognitive endpoints in clinical
trials8, will be greatly facilitated. These efforts are especially timely given the
recent update to the US Food and Drug Administration’s guidelines
regarding drug trials in preclinical AD, inwhich cognitive endpointsmay be
sufficient in trials including participants with no detectable cognitive or
functional impairment6.

Other use cases where remote and unsupervised cognitive assessment
may play an integral role in the future include the detection of meaningful
cognitive changes within individuals, with the goals of at-scale case finding
for both clinical trials (e.g., inclusion into studies) as well as healthcare
contexts (e.g., diagnostic support), and individualized prognoses (i.e., who is
at risk for cognitive decline in the future), in addition to the longitudinal
monitoring of cognition already discussed.

The use of remote tools for case finding has already been established in
small samples. Four studies included here showed that cognitive function
captured by remote tools could distinguish between cognitively healthy
individuals with and without elevated Aβ burden: two tasks that used
conventional cognitive tests, the MTD Stricker Learning Span (verbal
learning, which also distinguished between Aβ/tau− and Aβ/tau+)69 and
the M2C2 tasks (the associative memory task performed best)71, Altoida,
which used an augmented reality-based task14, andNovoic, which employed
speech-based tasks76. The best-performing task achieved an AUC of 0.77
(0.83 for Aβ/tau− vs. Aβ/tau+), and while this may not be considered
sensitive enough for use as a stand-alone diagnostic instrument, it may be
sufficient for use in screening for further confirmatory diagnostic testing, for
example, with CSF or PET, or even blood-based biomarkers. Indeed,
screening and recruitment for ADNI4 is already facilitated by the use of
remote digital cognitive assessments77, showing their value as a screening
tool for inclusion in AD research.

The abovementioned longitudinal studies will also be a valuable
resource in validating the use of remote and unsupervised cognitive
assessments for individualized prognostics. Three studies included in this
review reported associations between cross-sectional performance on
remote tasks or learning curves and concurrent and/or subsequent change
in traditional neuropsychological test scores on the group level: perfor-
mance on the neotivMnemonic Discrimination Task and Object-in-Room
Recall, especially in combination with plasma p-tau217 and demographic
factors, predicted PACC5 decline over up to 5 years46, while learning curves
captured with C3 FNAME and BRANCH showed associations with PACC
change over one year11,75. This suggests that remote cognitive assessments,
perhaps in combination with less invasive blood-based biomarkers, may be
informative for prognoses in terms of expected future cognitive decline in
AD. Future research may seek to validate remote cognitive assessments in
terms of how well they can discriminate between individuals who will
decline in the future and those whose cognition will remain relatively stable
(i.e., individual risk assessment).

The clinical validation of remote and unsupervised cognitive assess-
ment tools for individualized prognostics would be a meaningful milestone
for patients and caregivers in particular. The expected onset of clinical and
functional decline or the average time until noticeable cognitive symptoms
typically emerge or until independent living may become difficult can be
valuable information for those affected by neurodegenerative diseases93.

Regarding thepractical useof current tools, aswell as thedevelopmentof
future tools, we found a total of 23 tools that are used for remote and
unsupervised data collection in preclinical AD, some of which measured
overlapping constructs. Researchers looking to develop new tools to detect
early changes in cognition due to AD pathology should review existing tools
and their validated use cases to determine whether the development of a new
tool is necessary, given the associatedmonetary costs aswell as researcher and

participant/patient burden. As a reference for existing digital health tech-
nologies used for cognitive assessment as well as other clinically meaningful
outcomes and predictors, such as sleep and physical activity, the Digital
Health Measurement Collaborative Community (DATAcc) by the Digital
Medicine Society (DiMe)has compileda list of validateddigital health tools in
the Library of Digital Measurement Products94 (https://datacc.dimesociety.
org/digital-measurement-library/). As of January 20, 2025, all the tools in
Table 1, exceptOCTALandORCA-LLTcanbe found in the library, andnew
digital tools are added regularly. The question of which tool is the “best”will
depend heavily on the research question and/or use case. While a head-to-
head comparisonof existing tools is outside of the scopeof the current review,
it is an important goal to empirically establishwhich specific tools researchers
and clinicians should use, depending on the respective use case, and indeed
studies in this direction are already underway (e.g., ref. 64).

Any novel tools, especially those developing new markers of cognitive
function, should also be subject to rigorous testing of feasibility, reliability,
and validity (e.g., following established psychometric procedures and/or the
V3+ Framework61). In general, tools for the remote and unsupervised
assessment of cognitive function shouldhavehigh compliance andusability,
especially within the target population. They should reliably measure cog-
nitive function acrossmultiple administrationswithin the same person and,
for use cases requiring longitudinal data collection, be relatively resilient to
retest effects (unless they specifically aim to quantify practice effects). And
finally, they should show associations, cross-sectional and/or longitudinal
depending on the use case, with establishedmeasures of the same construct,
as well as relevant validity for the use case of interest (e.g., case-finding,
prognosis, monitoring).

The current scoping review has some limitations that should be
acknowledged. Due to the large volume of records found upon the first
search, the search process was not continued iteratively95. This may have
resulted in missed reports, though given the large amount of records
screened and the nascency of the field, this is unlikely. Additionally, only
reports in English were included, excluding reports in French, Chinese,
German, Portuguese, and Spanish. Future reviews may consider screening
reports in all languages for better inclusion of international findings.

In summary, this scoping review identified 28 papers reporting on 23
digital tools for the remote and unsupervised assessment of cognition in
preclinicalAD.Weprovidedupdates to openquestionsposedbyÖhmanand
colleagues9, determining that remote studies of cognition in healthy older
adults are largely feasible, with certain restrictions to usability, and that the
data collected with such tools are generally reliable, opening the door for the
use of such tools longitudinally. Finally, validity has been conceptually
established for these tools with respect to their use in preclinical AD and
should continue to be evaluated as these tools are implemented in new
contexts of use. Currently, studies deploying remote cognitive assessment
tools are focused on acquiring larger, more diverse samples over longer
periods of time to validate the use of such tools for longitudinalmonitoring of
cognition. Future goals include exploring how remote and unsupervised
digital tools can be used for case-finding on a scalable level—efforts in this
regard are already beingmade (e.g., ADNI4), individualized prognostics and
risk assessment—especially as it pertains to those affected by AD, and
longitudinalmonitoringof subtle changes in the earliest stages ofAD. (Fig. 3).

Methods
Search strategy and selection criteria
An initial literature search was performed on September 12, 2023, using
PubMed,Webof Science, andAPAPsycINFOusing terms includingdigital,
remote, unsupervised, smartphone, cognition, Alzheimer’s, and dementia
(see Supplementary Methods for exact search terms) with no limitation
according to date. Publications already known to the authors were also
included. Literature searches were repeated onMarch 8, 2024, September 9,
2024, and January 14, 2025. All records were uploaded onto Rayyan, a web-
based literature screening tool96. Duplicates were algorithmically identified,
then manually checked and excluded, as were records in languages other
than English. The remaining titles and abstracts were screened by SEP and
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FÖ; ambiguously relevant reports were flagged and reviewed by both
authors. For each paper that was excluded, primary reasons for exclusion
were recorded.

Peer-reviewed research articles and planned study reports as well as
preprints were included if they used self-administered and remote assess-
ments (e.g., no supervision via phone or video call) and if they reported
findings related to preclinical AD (i.e., included measures of Aβ and/or tau
pathology in cognitively healthy older adults).We included active cognitive
tests (i.e., actively completed by participants), excluding those that only
measured passive biomarkers (e.g., gait, keystrokes). Studies including other
diseases (e.g., cancers, cardiovascular or other neurodegenerative diseases,
psychiatric conditions) were excluded, as were studies using the cognitive
assessment tool as an intervention.

Data extraction
Author(s), year of publication, sample size and group allocation (if applic-
able), name of cohort or ongoing study, names and types of cognitive tasks
available, adherence and compliance metrics, usability metrics, and relia-
bility metrics were extracted from each of the selected papers. If certain
feasibility or psychometric information about the tools was not reported in
the included articles, this was gathered from other papers using the same
tools, sometimes in separate samples, found using Google Scholar. Asso-
ciations with in-person neuropsychiatric assessments and measures of AD
biomarkers were also charted. Additionally, if unstandardized estimates
were reported in the original papers, these estimates were standardized
using standard errors or 95% confidence intervals and Ns to be able to
compare effect sizes; these calculations were not done with the original data
and are considered approximations.

This manuscript was prepared according to the Preferred Reporting
Items for Systematic reviews and Meta-Analyses extension for Scoping
Reviews (PRISMA-ScR) Checklist97, which can be found in the Supple-
mentary Information.

Data availability
Data sharing is not applicable to this article as no datasets were generated or
analyzed during the current study. Literature search results can be made
available upon request.
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