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METHODS:We present a deep learning–based LC segmentation and feature extrac-

tion method called Ensemble-based Locus Coeruleus Segmentation Network (ELSI-

Net) and apply it to healthy aging and AD dementia datasets. Agreement to expert

raters and previously published LC atlaseswere assessed.We aimed to reproduce pre-

viously reported differences in LC integrity in aging and AD dementia and correlate

extracted features to cerebrospinal fluid (CSF) biomarkers of AD pathology.

RESULTS: ELSI-Net demonstrated high agreement to expert raters and published

atlases. Previously reported group differences in LC integrity were detected and

correlations to CSF biomarkers were found.

DISCUSSION:Althoughwe found excellent performance, further evaluations onmore

diverse datasets from clinical cohorts are required for a conclusive assessment of ELSI-

Net’s general applicability.
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Highlights

∙ Weprovide a thorough evaluation of a fully automatic locus coeruleus (LC) segmen-

tation method termed Ensemble-based Locus Coeruleus Segmentation Network

(ELSI-Net) in aging and Alzheimer’s disease (AD) dementia.

∙ ELSI-Netoutperformspreviousworkand showshighagreementwithmanual ratings

and previously published LC atlases.

∙ ELSI-Net replicates previously shown LC group differences in aging and AD.

∙ ELSI-Net’s LC mask volume correlates with cerebrospinal fluid biomarkers of AD

pathology.

1 BACKGROUND

The locus coeruleus (LC) is a small brainstem nucleus with ≈ 50.000

pigmented neurons,1 but projects to almost all major brain regions and

is the primary source of noradrenaline in the brain. It has been identi-

fied as one of the earliest brain structures to be affected in Alzheimer’s

disease (AD)2 and has been linked to cognitive decline in healthy aging

and progression of AD.3 Owing to the early tau aggregation in the LC,

assessing the integrity of the LC using structural magnetic resonance

imaging (MRI) may be a suitable tool for obtaining pathophysiologi-

cal insights in vivo.4,5 It presents an opportunity to gain insights into

cognitive and behavioral symptoms instrumental for developing effec-

tive treatments,1 improve our understanding of AD pathogenesis, and

facilitate the development of disease-modifying noradrenergic drugs.6

Specific MRI techniques permit the in vivo visualization of the LC

by exploiting among others the magnetic properties of its neurome-

lanin pigmented neurons, although the exact contrast mechanisms

remain unclear. We refer the reader to Betts et al.4 and Trujillo et al.,7

where more nuanced discussions concerning the LC MRI signal can

be found. The hyperintense regions appearing in the MRI acquisitions

were shown to correspond to LC properties observed in post mortem

studies, that is, with respect to anatomical position and dimensions

and LC cell density8 and to correspond with age-related increases in

neuromelanin.9 Furthermore, associations between LC MRI contrast

and AD biomarkers10 as well as cognitive decline in health and dis-

ease have also been observed5 suggesting these MRI techniques may

be suitable for assessing LC integrity.

A reliable extraction of in vivo LCMRI biomarkers requires a robust

segmentation approach. The small size and cylindrical shape of the LC

(≈ 2mm in diameter11) together with the comparatively coarse resolu-

tion of MRI acquisitions limits the reliability of LC integrity measures.

Although reasonable compromises can be found,4 LCMRI acquisitions

are characterized by low signal-to-noise ratios and ambiguous struc-

tural boundaries, posing challenges for segmentation approaches. This

is evident by particularly low inter-rater agreements between manual

raters of 0.499,12 0.54 to 0.64,13 and 0.67 Dice similarity coefficient

(DSC)14 as reported in the literature.

Initially, a broad majority of studies investigating the LC using

specific MRI relied on manual segmentations carried out by expert

raters.15 They require considerable amounts of manual labor and the

time of trained experts. In recent years, (semi-)automatic approaches

that reduce the need for manual intervention have become more
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common than purely manual segmentation. Many studies have used

atlas- or template-based segmentation approaches.8,12,16,17 Another

type of algorithmuses the template registration as a first step to obtain

a search space on which further operations, usually related to peak

intensity extraction of certain rostrocaudal subparts or slices of the LC,

are applied.18,19 Although only a subset of the LC voxels are obtained,

promising results using intensity-based features have been shown

with respect to reproducing known cohort effects, such as structural

degeneration,19 associations to cognition, or both.20 These methods

require manual corrections in some cases as the performance relies on

successful registration with a high precision. Through the remaining

manual steps, rater bias may still influence the segmentation of these

methods. Automatic LC segmentation algorithms, such as the approach

presented here, may facilitate using LC imaging in large-scale studies

by removing the need for multiple experts to invest time and manual

labor on LC segmentation and introduce more objectivity by removing

human bias. Our group was the first to develop a deep learning–based

LC segmentation approach.21 Its convolutional neural networks pro-

cess the MRI acquisitions inherently faster than registration-based

and manual methods and have shown higher objectivity by incorpo-

rating multiple experts’ knowledge into the training.14 Our pipeline

comprises all steps from the LC segmentation to the reference region

generation and the feature extraction.We do not manually correct the

segmentations prior to our analyses and evaluations.

In the work presented here, we show an improved fully automatic

LC segmentation pipeline that further increases the performance com-

pared to our previous approach and assess its practical usability in

various ways on subjects of aging and AD dementia.

2 METHODS

We apply an improved version of a recently proposed fully automatic

LC analysis method14 to two different datasets comprising MRI acqui-

sitions from healthy aging and AD dementia. The results are compared

tomanual expert segmentations and their features.

2.1 Datasets

The two datasets share the same acquisition protocol: They comprise

T1-weighted fast low angle shot (FLASH) 3 Tesla MRI scans (5.56 ms

echo time, 20 ms repetition time, 23◦ flip angle, 130 Hz/pixel band-

width, 7/8 partial Fourier, 13:50 minute scan time) with an isotropic

resolution of 0.75 mm. The image data were upsampled using a sinc

filter to achieve an isotropic voxel size of 0.375 mm and then bias

field–corrected as previously described.9

Our Healthy Aging Dataset (HAD)9 comprised 82 healthy subjects.

There were 25 younger (22–30 years old; 13 male) and 57 older sub-

jects (61–80 years old, 19 male). We also analyzed the T1-weighted

FLASH MRI data from the DZNE Longitudinal Cognitive Impairment

and Dementia study (DELCODE).22 This comprised 188 subjects: 68

healthy elderly adults, 22 relatives of individuals with AD, 61 sub-

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using traditional sources (e.g., PubMed, Google Scholar).

Although there are several publications introducing semi-

automatic methods for locus coeruleus (LC) segmenta-

tion, the application of deep learningmethods is underex-

plored. To the best of our knowledge, this is the first paper

using a deep learning–based approach for automated LC

segmentation in Alzheimer’s disease (AD) dementia.

2. Interpretation: Our work introduces and evaluates an

improved automatic, deep learning–based LC segmenta-

tion and analysis approach. The results suggest a very

high potential for practical applicability, for example, in

large-scale clinical studies for neurodegenerative dis-

eases.

3. Future directions: Ensemble-based Locus Coeruleus Seg-

mentation Network (ELSI-Net) can be used to assess LC

integrity on large- or small-scale studies in AD demen-

tia. To ensure robust performance, ELSI-Net should be

further evaluated in larger, more diverse datasets com-

prising varying LCmagnetic resonance imaging protocols

and clinical populations.

jects with subjective cognitive decline (SCD), 26 with mild cognitive

impairment (MCI), and 11 with AD dementia. For our experiments, we

combine the healthy elderly adults and relatives of AD subjects into

one group of healthy controls.

The age of the subjects ranges from 60 to 87 years (69 on average,

102 females). The LC MRI data have been acquired at four different

sites across Germany:Magdeburg, Rostock, Bonn, and Berlin.We refer

the reader to Betts et al.9 (for HAD) and Jessen et al.22 for further

details on the full DELCODE cohort.

2.2 Segmentation methods

2.2.1 Manual expert segmentation

Both of our trained expert raters (M. Betts, referred to as Rater 1 [R1]

andM. Sarkar, referred to as Rater 2 [R2]) manually segmented all LCs

in the HAD. For the DELCODE dataset, R1 manually segmented 108

subjects and R2 segmented the remaining 80 subjects.

The raters delineated the LC using ITK-SNAP23 as previously

described.9 Briefly, the segmentationwas performed on the axial slices

starting at the most dorsal to ventral portion of the LC while limiting

the rostrocaudal space for segmentation to slices between the inferior

boundary of the interpeduncular fossa at the level of the inferior col-

liculus and the superior cerebellar peduncle (for reference see Betts

et al.9).
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F IGURE 1 Schematic illustration of the Ensemble-based Locus Coeruleus Segmentation Network (ELSI-Net) pipeline for automated LC

analysis. The encircled red numbers indicate the threemain changes compared to previous work14: (1) ensemble networks withmajority vote, (2)

additional intensity normalization prior to the segmentation step, (3) new reference region generation based on LCmasks without requiring a pons

segmentation. CR, contrast ratio; LC, locus coeruleus; MRI, magnetic resonance imaging; ROI, region of interest.

2.2.2 Ensemble-based Locus Coeruleus
Segmentation Network

Our previously published approach14 for fully automatic LC segmen-

tation was further improved and used in this work. Figure 1 shows a

schematic overview of the method comprising two fundamental steps

that are realized using two almost identical 3DU-Net based24 convolu-

tional neural networks: initial LC localization followedby segmentation

on an extracted patch containing only the LC and its immediate vicinity.

To train and evaluate our model, we ran a 3 × 5-fold nested cross-

validation which splits the subjects of the HAD dataset just as in our

previous work14 making the results directly comparable. A final train-

ing was conducted splitting the HAD in five equally sized subsets to

obtain the five nets (each trained with one of these subsets as valida-

tion set and the combined rest as training set) that were used for the

application to DELCODE. There was no fine-tuning or retraining with

DELCODE subjects and they have not been used for either the training

or validation sets (for early stopping), so that it can be seen entirely as

a test set.

Three changeswere introduced to themethod compared to our pre-

vious work.14 First, for the application of the models, we combined

the five resulting networks in an ensemble and conducted an averag-

ing and majority vote on the different outputs to determine the final

predictions for the localization and segmentation nets, respectively.

This way, the final result can profit from the information obtainable

from the entire training set despite the necessity for a validation set

for each individual network. Second, we normalized the intensities of

the extracted image patch once again prior to passing it to the seg-

mentation network aiming to reduce the variance of the intensity

range. Third, we replaced the reference region generation relying on a

sufficiently accurate pons segmentation. Instead, we determine an LC-

oriented orthonormal vector base forming a coordinate system andwe

calculate the average offset of the semi-automatically generated refer-

ence regions on the training set in relation to the respective LCs. They

are located in the pontine tegmentum—one per hemisphere. In the

application case, we determine the same coordinate system and place

the reference region according to the learned offset. This approach

does not require a reliable pons segmentation or time-consuming

registration procedures and is potentially more robust to head rota-

tions incurred during acquisitions. The vectors for this LC-oriented

coordinate system are determined as follows.

v⃗1 =
l⃗1 + r⃗1

2

v⃗2 =
(
c⃗l − c⃗r

)
× v⃗1

v⃗3 = v⃗1 × v⃗2

with v⃗1 the rostrocaudal LC direction derived from the two principal

components obtained from two principal component analyses on the

mask voxel coordinates of the LC masks of the left (⃗l1) and right hemi-

sphere (r⃗1), the second base vector v⃗2, the center of mass of the left (c⃗l)

and right LC (c⃗r), and the third base vector v⃗3.

2.3 Feature extraction

The rostral LC may be particularly vulnerable in AD.10 Hence, we

extracted not only the entire LC MRI contrast ratios (CRs), but also

subregional CRs and the LC mask’s volume and length. Note that

volume and length are estimated from the LC segmentation based

solely on the in vivo MRI. Throughout this work, all reported features

are bilateral, that is, they are the average of both LC hemispheres’

features.

The most frequently used LC feature in the literature15,25 are MRI

intensity ratios that calculate the ratio of the maximum or median

intensity value of the voxels in the LC mask (LCmax or LCmedian) to

the median value of a reference region (REFmedian), positioned in the

pontine tegmentum. For example, the maximum CR is defined as

follows:

CRmax =
LCmax − REFmedian

REFmedian

We furthermore calculate the CRs of subregions of the LC by split-

ting it along its axial dimension into two and three sections equal of

length.

The LC signal length was measured as the number of axial slices its

mask was present in, converted tomillimeters.

The volume of the LC signal was determined as the number of voxels

in themask and converted into cubic millimeters.
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2.4 Experiments

Wecarried out the following experiments to assess the performance of

Ensemble-based Locus Coeruleus Segmentation Network (ELSI-Net)

in different ways. We compared its segmentations to manual expert

ratings and published LC atlases, replicated subject group differences

described in the literature, explored correlations of the automatically

obtained LC MRI features to cerebrospinal fluid (CSF) biomarkers

of AD pathology and assess the influence of acquisition-related fac-

tors. For the statistical analyses we use Jasp26 as well as the scipy27

library.

2.4.1 Mask similarity

ELSI-Net’s performance is evaluated by determining the agreement of

its results with manual subject-wise expert segmentations. We mea-

sure the similarity of the masks with the commonly used DSC given by

DSC (X, Y) =
2|X∩Y|
|X|+|Y|

with X and Y being sets of voxels belonging to the

respectivemasks to be compared.

Furthermore, we compare the DSC agreement of the fully

automated method, ELSI-Net, to a previously published semi-

automatic approach that involves manually segmenting the LC

on a study-wise template image and transforming the result-

ing mask into the individual subject spaces. We abbreviate this

method as MT and refer the reader to Betts et al.9 for further

details.

2.4.2 Anatomical agreement

A template-based comparison of ELSI-Net’s LC masks to previously

published atlases and themasks of our expert raters allows us to assess

ELSI-Net’s results with respect to their anatomical plausibility in terms

of anatomical position and extent. To this end, we coregistered and

morphed the upsampled FLASH scans of all healthy and MCI subjects

together with their manual (R1) and ELSI-Net LC segmentations to FSL

standard 0.5 mm asymmetric Montreal Neurological Institute (MNI)

space28 usingAdvancedNormalization Tools (ANTs)29 Syn registration

with bspline interpolation. We then calculated a probabilistic mask for

the ELSI-Net and manual segmentations and binarized both using a

50% threshold. In total, eight subjects were excluded due to a failure of

the registration process.We rendered the ELSI-Net LC template along-

side the templateobtained fromthemanual ratings aswell as a recently

published LC atlas by Dahl et al. (so-called meta mask20) that com-

bines the information of several established LC atlases8,9,16,18,30,31 and

was brought into the same asymmetric MNI space of the other tem-

plates using Syn registration. We performed these steps analogously

to Dahl et al.20 The visualization was carried out using 3D Slicer.32

Additionally, we determine the DSC agreement between the resulting

template masks and calculate the agreement with the meta mask by

Dahl et al. using the accuracy metric (mean of specificity and sensitiv-

ity) as previously described by the authors.20 The resulting agreement

is compared to a number of established and publicly available LC

atlases.

2.4.3 Feature-based comparison of subject groups

We conducted significance tests, such as t tests (with preceding Lev-

ene tests for equality of variances) and one-way analyses of variance

(ANOVA) as well as Cohen d as an effect size measure.

2.4.4 Relationship between LC signal volume and
CSF measures of AD pathology

Measurements of amyloid beta (A�42∕A�40) and tau proteins (total

tau [t-tau], phosphorylated tau [p-tau]181) in the CSF are established

biomarkers of AD pathology. From 85 of the 188 DELCODE subjects

CSF measures were obtained (AD dementia: 7, MCI: 21, SCD: 22,

healthy controls: 35). We correlated the automatically derived LC fea-

tures to CSF biomarkers of AD pathology using Pearson r correlations

(conditioned on variables age and sex) performed in Jasp.26

2.4.5 The influence of image quality and
acquisition site

We investigate the potential impact of motion artefacts on ELSI-

Net. To objectively assess the MRI image quality, we make use of

the convolutional neural network based approach to motion artefact

quantification as recently proposed.33 This network was trained to

estimate the structural similarity (SSIM) of a single corrupted image

slice to its (non-existent) ideal, uncorrupted version. The resulting pre-

dicted/estimated SSIM thus quantifies the amount of corruption by

motion artefacts, 1.0 encoding perfect image quality and 0.0 theworst.

We applied the network to all acquisitions from both datasets by slice-

wise processing.Wechose theminimumpredictedSSIMoutof all slices

of an acquisition as its image quality score.

Apart from reporting the overall image quality of the used datasets,

we investigate the relation of image quality to the DSC agreement

between ELSI-Net and the expert’s masks as well as to the dis-

agreement in terms of resulting features (measured as the absolute

difference between extracted features such as median and maxi-

mum CRs and LC signal volume of the two segmentation approaches).

Finally, we assess the influence of the acquisition site on the agree-

ment between ELSI-Net and the expert rating as well as on the LC CR

features per se.

3 RESULTS

ELSI-Net was applied to all subjects in the previously described fash-

ion and produced valid output, that is, segmentation masks and the

specified LC features for all subjects in both datasets.
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F IGURE 2 A, Healthy Aging Dataset (HAD). B, DZNE Longitudinal Cognitive Impairment andDementia study (DELCODE) set. Box and swarm

plots of Dice similarity coefficient (DSC) agreement values of ELSI-Net and the semiautomatic template registration-basedmethod (MT)9 on

Healthy Aging Dataset (A) as well as ELSI-Net’s DSC agreement on the DELCODE set (B) with respect to themanual expert segmentations by our

experts Rater 1 (R1) and Rater 2 (R2). They each rated all of HAD, for which we show the agreements to each rater individually (blue and orange

hue) and the inter-rater agreement (IRA, green hue). Each expert rated a complimentary subset of the DELCODE study, so that we report the

agreement to the respective available rater’s mask. AD, Alzheimer’s disease; ELSI-Net, Ensemble-based Locus Coeruleus Segmentation Network;

HC, healthy control; MCI, mild cognitive impairment; SCD, subjective cognitive decline.

3.1 Mask similarity

3.1.1 HAD

The HAD was rated by both expert raters with an inter-rater agree-

ment of 67.58% ± 8.90% (mean ± standard deviation [SD]) DSC

when averaging the left and right LC. The left plot in Figure 2 shows

that both our automatic method (73.19% ± 7.75%) as well as the

semi-automatic template registration based approach (MT;9 74.00%

± 15.56%) perform comparably to the inter-rater agreement in terms

of mask similarity when using R1’s segmentations as the reference.

However, the values derived using ELSI-Net are subject to a substan-

tially lower SD (almost half of the semi-automated method). ELSI-Net

does not show a difference in its agreement to either expert rater,

while withMT a strong decline ofmask agreementwith respect to R2’s

segmentations compared to those of R1 is apparent.

3.1.2 DELCODE dataset

Across almost all subject groups fromDELCODE, ELSI-Net shows rela-

tively high agreement with a manual expert rating (see Figure 2B). The

meanDSC consistently exceeds 70%and the SDs are in a range of 6.4%

to 10.2%, which is comparable to the inter-rater agreement measured

on HAD. The comparatively small group of AD dementia subjects how-

ever constitutes the exceptionwith lower agreement and a larger SD in

the DSC values, although themedianwith 67.86% is in the range of the

inter-rater agreement. Figure 3 provides a qualitative visualization of

two, one healthy and one AD dementia group subject.

3.2 Anatomical agreement

Figure 4 depicts a template generated from the ELSI-Net results from

DELCODEoverlaidwith a template from themanual ratings aswell as a

previously published LC atlas (metamask) fromDahl et al.20 ELSI-Net’s

agreement to the manual rating’s template is very high (92.14% DSC,

see Figure 4A). It confirms a good overall agreement to the manual

ratings of both raters that was already suggested by the subject-level

mask agreement evaluation. Only a very slight discrepancy is visi-

ble: the ELSI-Net template appears slightly shifted toward the rostral

direction compared to the manual rating’s template. There are, how-

ever, more deviations observable when comparing it to the meta mask

(see Figure 4B), which comprises information of multiple other pub-

lished atlases derived from different MRI acquisitions and modalities.

The meta mask is located more rostral than the ELSI-Net template

and therefore the template of the manual ratings as well. ELSI-Net’s

agreement with respect to the meta mask (64.33% DSC) exceeds the

agreementof themanual rating’s template (60.09%DSC)with themeta

mask by> 4%DSC.

Other established LC atlases show agreements ranging from63% to

47% to themetamask asmeasured by the accuracymetric specified by

the authors20 (mean of sensitivity and specificity). We calculated the

same metric and found ELSI-Net’s template to achieve 66.62% using
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F IGURE 3 Examplary coronal slices of subjects with higher LC contrast (upper row: healthy subject, predicted SSIM (our image quality metric)

is 0.8288) and low LC contrast (lower row: AD dementia subject, predicted SSIM is 0.7596). On the right, the segmentations of ELSI-Net (red) are

compared to the expert rating (blue). Overlap between both is indicated in green. On the high LC contrast sample (upper row) a DSC of 74.87%was

achieved, while on the low LC contrast sample 61.32%weremeasured. AD, Alzheimer’s disease; DSC, Dice similarity coefficient; ELSI-Net,

Ensemble-based Locus Coeruleus Segmentation Network; LC, locus coeruleus; SSIM, structural similarity.

this measure, which demonstrates a comparatively high agreement

with themetamask. It also exceeds themanual rating’s template score,

which amounts to 63.86%.

3.3 Feature-based comparison of subject groups

We obtained the previously described LC features (see section 2.3)

from HAD and DELCODE using ELSI-Net and report the resulting

distributions here.

3.3.1 HAD

We identified significant differences in LC features between young and

older subject groups. The maximum CR and particularly the rostral

maximumsubregional CRhalves and thirds showage-related increases

in LC intensity on HAD. Figure 5 visualizes the resulting distributions

for these features and groups. We determined Cohen d for estimating

the effect size of the difference between young and older subjects and

found that with maximum CRs R1, R2, and ELSI-Net resulted in 0.489,

0.596, and 0.662, respectively. Furthermore, all of these differences in

the maximum CR were found to be statistically significant (e.g., ELSI-

Net maximum CR: Student t test [2.759, p = 0.007], Levene test for

equality of variances [1.857, P = 0.177]).

When inspecting the subregional LC CRs, it becomes evident that

the age-related effect appears to be stronger in the medial and rostral

LC parts. We find an increasing effect size measured by Cohen d from

0.374 (caudal) to 0.489 (medial) and 0.705 (rostral) for the maximum

subregional CRs (splitting LC in thirds of equal length) determined by

ELSI-Net.

3.3.2 DELCODE set

Figure 6 visualizes the subject group distributions of four LC features

obtained with ELSI-Net and compares them to the manual rating’s

distributions.

A trend of decreasing LC signal volume and length as determined

by ELSI-Net appears with increasing clinical severity of the subject

groups, which is not present in the expert’s LC signal volume and length

measurements. The visible decrease in signal volume in the ADdemen-

tia group (see Figure 6C) bears resemblance to the trend measured

by the median CR with the expert ratings. A one-way ANOVA con-

firmed the statistical significance of this decrease (healthy controls

vs. AD dementia: F = 5.258, P = 0.002 and post hoc PTukey = 0.006).

We found Cohen d for the difference in signal volume between the

healthy group and the AD dementia subjects to be 1.089 with ELSI-

Net, which is comparable to the effect size found with the manual

rating and the median CR group difference (Cohen d: 0.993, one-way
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8 of 14 DÜNNWALD ET AL.

F IGURE 4 A, ELSI-Net (red) andmanual ratings (green), 92.14%DSC. B, ELSI-Net (red) and themetamask fromDahl et al.20 (green), 64.33%

DSC. Overlay of the ELSI-Net template fromDELCODEwith a template generated frommanual ratings (A) and a published LC atlas, metamask,

that combines information from several other previously published LC atlases (B) inMNI space (0.5mm). On the left, a 3D rendering of themasks

from an example coronal slice overlaid on theMNI template is shown. On the right, the respective axial (top), coronal (middle), and sagittal

(bottom) 2D slices are visualized. Red color indicates the ELSI-Net templatemask, green the respective other template, and the overlapping

volumes are colored in yellow. The corresponding slices are indicated by red (axial), green (coronal), and yellow (sagittal) lines on the right sides,

respectively. Mask agreements are provided (DSC). Note that the agreement between themanual template (green in A) and themetamask (green

in B) is 60.09%DSC. DELCODE, DZNE Longitudinal Cognitive Impairment andDementia study; DSC, Dice similarity coefficient; ELSI-Net,

Ensemble-based Locus Coeruleus Segmentation Network; LC, locus coeruleus; MNI, Montreal Neurological Institute.

ANOVA: F = 3.575, P = 0.015 and post hoc PTukey = 0.016). Similar to

LC signal volume, the LC signal length feature measured by ELSI-Net

was also significantly decreased in AD dementia (one-way ANOVA:

4.084, P = 0.008 and post hoc PTukey = 0.009, Cohen d: 1.036; see

Figure 6D).

The group differences in the CRs using ELSI-Net were not

impacted by the choice of the reference region generation approach.

Significant group differences were neither identified with the

semi-automatically nor with the automatically generated reference

regions.

3.4 Relationship between LC signal volume and

CSF measures of AD pathology

Motivated by the observed decreases in LC signal volume in MCI and

ADdementia subjectsmeasured by ELSI-Net, we correlate this feature

to all available CSF measures of AD pathology. Several significant cor-

relation resultswere found. Theyare reported inFigure7.Although the

correlations areweak, they show decreased LC signal volume is associ-

ated with higher tau and amyloid pathology. We found similar correla-

tions between LC signal length and amyloid pathology (LC signal length
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DÜNNWALD ET AL. 9 of 14

F IGURE 5 A,MaximumCRs. B, Maximum subregional CRs. Box and swarm plots of maximum LCCRs (A) and subregional maximum LCCRs (B)

in young (blue) and older (orange) subject groups fromHealthy Aging Dataset. For (A) the values of the expert raters R1 and R2 are reported as

well as those of the fully automatic ELSI-Net. In plot (B) only the ELSI-Net results are shown. Significant differences are indicated by *p< 0.05 and

**p< 0.01 using a two-tailed t test. CR, contrast ratio; ELSI-Net, Ensemble-based Locus Coeruleus Segmentation Network; LC, locus coeruleus.

and A�42∕A�40: r = 0.217, P = 0.049; LC signal length and A�42∕p −

tau181: r = 0.296, P = 0.007), but no correlation with LC CR features.

3.5 The influence of image quality and acquisition

site

Using a recently proposed method for the quantification of motion

artefacts,33 we conducted the previously described experiments to

estimate the influence of acquisition artefacts on the LCmetrics.

3.5.1 Image quality of the datasets

When comparing the image quality of the two datasets, it becomes

apparent that the DELCODE dataset (SSIM mean: 0.794, SD: 0.058)

shows lower quality than HAD (SSIM mean: 0.827, SD: 0.035; Welch

t test: –5.874, P = 1.394E − 8, Levene test for equality of variances

(11.505, P = 7.987E − 4)).

A one-wayANOVA showed no significant differences betweenDEL-

CODE subject groups (1.629, P = 0.184). Nonetheless, a coincidence

of slightly decreasing image quality with increasing clinical severity is

imminent in our particular dataset. The SSIMmeans of the healthy con-

trol, SCD, MCI, and AD dementia groups are 0.795, 0.802, 0.784, and

0.764, respectively. This motivates further investigation of a potential

influence of image quality on subject group differences.

3.5.2 Correlation of image quality with
segmentation performance and feature deviation

We computed several image quality–related Pearson r correlations

(see Table 1). One of them is between ELSI-Net’s mask similarity

to the manual expert rating on DELCODE quantified in terms of

DSC and the measured image quality (predicted SSIM) of the sam-

ples. Although the correlation is significant it does not appear strong

(r = 0.239, P < 0.001). However, a modest correlation between image

quality and absolute differences in maximum CR between the two

segmentation approaches was observed (r = −0.401, P < 0.001). It

indicates a correlation between image quality and agreement between

the CRs of ELSI-Net and manual ratings so that with increasing image

quality, there is greater agreement between the two segmentation

approaches. This correlation is much weaker for median LC CRs (r =

−0.255, P < 0.001) and was not observed for LC signal volume feature

extraction indicating LC signal volumemay be influenced less by image

quality.

3.5.3 Assessment of acquisition site effects

Several one-way ANOVAs were carried out on DELCODE to gain

insights into the potential influence of the acquisition sites. We

found significant image quality (measured by predicted SSIM) differ-

ences between sites (one-way ANOVA: 13.274, P = 4.121E − 6; one

of the four sites was excluded since it contributed only one of the

subjects).

By means of further one-way ANOVAs, we found no significant

site effects on mask agreement between ELSI-Net and the expert

rating (measured by DSC) as well as agreement on median and

maximum CRs. This indicates that the agreement between ELSI-

Net and manual expert ratings is not affected by the acquisition

site. However, site-related differences could be identified in all of

the CR and subregional CR features themselves (e.g., median CR,

one-way ANOVA 26.809, P = 6.057E − 11). In contrast, ELSI-Net

estimates of LC signal volume and length are not subject to site

effects.
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10 of 14 DÜNNWALD ET AL.

F IGURE 6 A,Median CRs. B,MaximumCRs. C, LC signal volume inmm3. D, LC signal length inmm. Box and swarm plots of selected features of

themanual rating (left) and ELSI-Net (right) on the healthy (blue), SCD (orange), MCI (green), and AD dementia (red) subject groups of the

DELCODE set. Significant differences are indicated by *p< 0.05 and **p< 0.01 encoding the Tukey post hoc test result of the respective one-way

ANOVA (with p< 0.05). AD, Alzheimer’s disease; CR, contrast ratio; DELCODE, DZNE Longitudinal Cognitive Impairment andDementia study;

ELSI-Net, Ensemble-based Locus Coeruleus Segmentation Network; HC, healthy control; LC, locus coeruleus; MCI, mild cognitive impairment;

SCD, subjective cognitive decline.

4 DISCUSSION

Here, we report an improved fully automatic segmentation and fea-

ture extraction method for in vivo assessment of the LC. This method

comprises an ensemble approach to applying the neural networks for

LC localization and segmentation. After the initial localization, an addi-

tional intensity normalization step using a local patch surrounding

the LC is applied. We propose a method for the generation of a ref-

erence region removing the need for an additional segmentation of

the pons region. This approach is validated on datasets with a con-

sistent FLASH LC MRI protocol comprising healthy young and older

adults as well as in adults on the AD dementia spectrum to assess

its correspondence with previously published LC atlases and clinical

observations.

The proposed changes, most notably the addition of the ensemble-

based inferences, led to performance improvements in terms of DSC

agreement compared toour previouswork,14 inwhich the samenested

cross-validation evaluation scheme, data splits, and dataset (HAD)

were used.

In healthy aging, ELSI-Net was able to segment the LC with very

high accuracy performing equal or better than an expert manual rater.

In contrast to a previously published semi-automatic approach,9 ELSI-

Net exceeds the inter-rater agreement in terms of DSC with respect

to both raters (compare ‘ELSI’ and ‘MT’ in Figure 2A). It is therefore

arguably more objective than both the semi-automatic segmentation

method and a single expert rater. A higher Cohen d value with respect

to age-related differences between young and older adults shows that

ELSI-Net could detect these differences reliably and with increased

sensitivity compared to a manual segmentation approach. ELSI-Net

was also able to replicate previously observed age-related increases

in rostral and middle LC contrast using the same dataset.9 ELSI-Net

may potentially be deployed across sites to further reduce rater bias

of LC analyses and increase comparability of studies using similar sub-

jects and coherent FLASH MRI protocols, for example, to determine
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F IGURE 7 A, TTau, p= 0.041. B, PTau181, p= 0.027. C, Aβ42/Aβ40, p= 0.018. D, Aβ42/PTau181, p= 0.002. Pearson r correlations

(conditioned on variables age and sex) between LC signal volume obtained with ELSI-Net and cerebrospinal fluid (CSF) measures of AD pathology.

Scatterplots and value distributions are visualized. Correlation coefficient (r) and p value are reported. Aβ, amyloid beta; AD, Alzheimer’s disease;

ELSI-Net, Ensemble-based Locus Coeruleus Segmentation Network; LC, locus coeruleus; PTau, phosphorylated tau; TTau, total tau.

normative feature ranges of a healthy LC given a specific age. Indeed,

acquisition site–related influences on the LC featureswere found inde-

pendently of the segmentation approach and have to be considered.

In a clinical cohort of individuals with AD dementia fromDELCODE,

ELSI-Net could effectively segment the LC without any fine-tuning,

solely being trained on the healthy aging dataset. For the most part

(including the MCI subject group) a satisfactory agreement measured

by DSC compared to the experts’ rating was achieved. The AD demen-

tia group was a noticeable exception, although it was the smallest

group with only 11 participants and further analyses are required in

larger cohorts of individuals with AD dementia to comprehensively

determine its segmentation accuracy.

The overall anatomical plausibility of the automatically obtained LC

masks and a performance comparable to those of experts is indicated

by the very high agreement between the LC template of the ELSI-Net

DELCODE masks and the template generated from the manual rat-

ings, but also ametamask comprising a number of previously published

atlases.20 ELSI-Net’s template shows the highest agreement with the
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12 of 14 DÜNNWALD ET AL.

TABLE 1 Pearson r correlation of the image quality measured as

predicted structural similarity (SSIM) of DELCODE and the specified

other values: The DSC agreement of the ELSI-Net and expert’s masks

and the absolute differences of several extracted LC signal features.

Value name r p

DSC(ELSI-Net, experts) 0.239*** 9.546E-4

|(medianCRELSI-Net—medianCRexperts)| −0.255*** 4.098E-4

|(maximumCRELSI-Net—maximumCRexperts)| −0.401*** 1.132E-8

|(VOLELSI-Net—VOLexperts)| −0.084 0.249

|(LENELSI-Net—LENexperts)| −0.008 0.908

Abbreviations: CR, contrast ratio; DELCODE, DZNE Longitudinal Cognitive

Impairment and Dementia study; DSC, Dice similarity coefficient; ELSI-

Net, Ensemble-based Locus Coeruleus Segmentation Network; LC, locus

coeruleus; LEN, length; VOL, volume.

*p< 0.05, **p< 0.01, ***p< 0.001.

meta mask among all published atlases that were used for the meta

mask creation. This indicates that ELSI-Net can generate anatomically

precise LC segmentations in the context of the described FLASH MRI

protocol removing the need for semi-automatic or manual segmenta-

tion. With ELSI-Net we found significant differences between healthy

controls and subjects with AD dementia with respect to LC signal vol-

ume and length but not median LC contrast, as observed with the

expert ratings. This could indicate a deviation of segmentation style

between ELSI-Net and manual LC segmentation. It is conceivable that

ELSI-Net is differentially influenced by a reduction in LC MRI contrast

present in AD dementia subjects compared to expert raters that rely

more on anatomical prior knowledge. ELSI-Net was only trained on

LC segmentations from healthy young and older adults. Because it has

never seen the variance introduced by AD dementia during training,

the lower LC contrast or additional data characteristics unknown to

us may yield smaller LCs in ELSI-Net’s assessment in AD. This would

explain the lowerDSCagreement betweenELSI-Net andmanual raters

observed in the AD dementia group as well as the deviations seen in

LC CRs between ELSI-Net and manual rating on DELCODE. There-

fore LC signal volume and length estimates using ELSI-Net might be

more accurate in clinical cohorts due to reduced human bias that man-

ual raters may be prone to. The examples shown in Figure 3 indicate

the shape and size variance in ELSI-Net’s segmentation, which appears

to be more directly influenced by local image properties. Hence we

presume ELSI-Net is unlikely to merely produce a learned average LC

mask. It should be noted that ELSI-Net may not only rely on intensity,

but on additional characteristics such as the surrounding anatomy and

shape of the LC during the segmentation procedure.

We further investigated the influence of image quality on our (auto-

matic) LC analysis in multiple ways. We found significant correlations

between image quality and agreement on CR-based features (as quan-

tified by absolute difference between ELSI-Net and the experts’ rating

in particular formaximum intensity CRs). However, no such correlation

was observed with respect to ELSI-Net’s LC signal volume measure,

where we observed most pronounced differences between healthy

controls and AD dementia.

We found significant acquisition site–related effects on the image

quality and CR features in general. No influence of site could be

found on the agreement between ELSI-Net and the experts’ rating

with respect to mask and CR feature agreement as well as ELSI-Net’s

measurements of LC signal volume and length indicating a robust

performance across multiple sites.

As an additional validation step, we further assessed how LC seg-

mentations generated by ELSI-Net are related to previously reported

associations with AD pathology. In a subset of subjects with known

CSF status from DELCODE, we found reduced LC signal volume was

significantly associated with increased tau and amyloid pathology in

agreement with previous findings.10,34,35,36

4.1 Limitations

An important caveat in our analyses is the rather small number of AD

dementia subjects (n = 11) in our clinical cohort of 188 participants.

Further evaluations onmore datasetswith larger groups of ADdemen-

tia subjects, ideally with amyloid and tau pathology biomarkers, are

required toascertain theperformanceofELSI-Netmore conclusively in

this population. Another interesting aspect that was left unexplored is

the robustness of ELSI-Net with respect to acquisition parameters and

differing MRI protocols. To this end, more extensive evaluation work

on a variety of datasets comprising diverse anisotropic resolutions,

differing LC MRI sequences such as turbo spin echo and magnetiza-

tion transfer–based acquisitions need to be carried out, and ELSI-Net’s

performance on slab acquisitions needs to be investigated. We aim to

conduct these experiments, publish them, and release ELSI-Net as an

easy-to-use Docker in the near future. Of course, a necessary require-

ment for the application of ELSI-Net is the acquisition of specific

sequences with LC contrast in general. Recently, automatic methods

were applied to LC segmentation in acquisitions without LC contrast

as an alternative to atlas-based approaches.37 While inherently lack-

ing precision and the possibility to extract LC contrast, signal volume,

or length features, they may allow functional MRI or diffusion MRI

analyses in datasets in which LCMRI was not acquired.

Finally, the image quality assessed here was based on the quality

of the whole-brain acquisition and was not LC specific, which may not

reflect the quality of the visualization of the LC and its immediate

vicinity.

5 CONCLUSION

In thiswork,weevaluate an improved versionof a previously proposed,

fully automatic approach to LC segmentation and feature extraction

termed ELSI-Net. Evaluation on LC imaging data acquired from young

and older adults but also from subjects across the AD dementia con-

tinuum show that ELSI-Net reliably generates anatomically plausible

results with excellent agreement to established LC atlases given a

consistent FLASH LC MRI protocol. We found increased objectivity

with ELSI-Net compared to single expert raters and a semi-automatic
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LC segmentation method. LC features by ELSI-Net demonstrate high

sensitivity replicating previously shown subject group differences in

healthy aging and AD dementia. We saw correlations of LC signal vol-

ume measured by ELSI-Net to tau and amyloid pathology and robust

performance with respect to data acquired across multiple sites.

ELSI-Net provides a means to automatically segment the LC with

high accuracy particularly in aging cohorts in the context of the FLASH

LC MRI protocol. Further analyses are required to determine its

effectiveness in segmenting the LC in different LCMRI contrasts; longi-

tudinal datasets; and additional clinical cohorts, for example including

subjects with Parkinson’s disease, depression, and further neurological

disorders.
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