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ABSTRACT: Background: The 17q21.31 region with
various structural forms characterized by the H1/H2 hap-
lotypes and three large copy number variations (CNVs)
represents the strongest risk locus in progressive supra-
nuclear palsy (PSP).
Objective: To investigate the association between CNVs
and structural forms on 17q.21.31 with the risk of PSP.
Methods: Utilizing whole genome sequencing data
from 1684 PSP cases and 2392 controls, the three large
CNVs (α, β, and γ) and structural forms within 17q21.31
were identified and analyzed for their association with PSP.
Results: We found that the copy number of γwas associated
with increased PSP risk (odds ratio [OR] = 1.10, P = 0.0018).
From H1β1γ1 (OR = 1.21) and H1β2γ1 (OR = 1.24) to
H1β1γ4 (OR = 1.57), structural forms of H1 with additional
copies of γ displayed a higher risk for PSP. The frequency of
the risk sub-haplotype H1c rises from 1% in individuals with

two γ copies to 88% in thosewith eight copies. Additionally, γ
duplication up-regulates expression of ARL17B, LRRC37A/
LRRC37A2, and NSFP1, while down-regulating KANSL1.
Single-nucleus RNA-seq of the dorsolateral prefrontal cortex
analysis reveals γ duplication primarily up-regulates
LRRC37A/LRRC37A2 in neuronal cells.
Conclusions: The copy number of γ is associated with
the risk of PSP after adjusting for H1/H2, indicating that
the complex structure at 17q21.31 is an important consid-
eration when evaluating the genetic risk of PSP. © 2025
The Author(s). Movement Disorders published by Wiley
Periodicals LLC on behalf of International Parkinson and
Movement Disorder Society.
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haplotypes; 17q21.31; copy number variations; single-
cell gene expression

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1Department of Pathology and Laboratory Medicine, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania,
USA; 2Penn Neurodegeneration Genomics Center, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
3Movement Disorders Programs, Department of Neurology, David
Geffen School of Medicine, University of California Los Angeles, Los
Angeles, California, USA; 4Bioinformatics Research Center, North Caro-
lina State University, Raleigh, North Carolina, USA; 5Department of
Computer and Information Sciences, College of Science and Technol-
ogy, Temple University, Philadelphia, Pennsylvania, USA; 6Department

of Pathology, Department of Artificial Intelligence & Human Health,
Nash Family, Department of Neuroscience, Ronald M. Loeb Center for
Alzheimer’s Disease, Friedman Brain Institute, Neuropathology Brain
Bank and Research CoRE, Icahn School of Medicine at Mount Sinai,
New York City, New York, USA; 7Victorian Brain Bank, The Florey Insti-
tute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
8Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology
Service, Hospital Clínic, Fundaci�o Recerca Clínic Barcelona (FRCB),
Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS),
University of Barcelona, Barcelona, Spain; 9Neurological Tissue Bank of

950 Movement Disorders, Vol. 40, No. 5, 2025

https://orcid.org/0000-0003-4043-5060
https://orcid.org/0000-0002-9225-9874
https://orcid.org/0000-0002-5334-1306
https://orcid.org/0009-0007-0046-0313
https://orcid.org/0000-0002-9968-9754
https://orcid.org/0000-0001-5703-7208
https://orcid.org/0000-0003-1949-4074
https://orcid.org/0000-0001-6955-7278
https://orcid.org/0000-0002-0302-5727
https://orcid.org/0000-0003-4068-8578
https://orcid.org/0000-0001-9656-318X
https://orcid.org/0000-0002-2228-2964
https://orcid.org/0000-0002-7981-2866
https://orcid.org/0000-0002-1959-7412
https://orcid.org/0009-0007-2436-0931
https://orcid.org/0000-0001-6278-6844
https://orcid.org/0000-0002-1842-8019
https://orcid.org/0000-0002-1790-7376
https://orcid.org/0000-0003-0452-3223
https://orcid.org/0000-0002-0239-6585
https://orcid.org/0000-0002-7582-8166
https://orcid.org/0000-0002-6851-6164
https://orcid.org/0000-0001-6524-0281
https://orcid.org/0000-0002-7493-8777
https://orcid.org/0000-0002-0941-3990
https://orcid.org/0000-0002-8921-7104
https://orcid.org/0000-0003-3296-6128
https://orcid.org/0000-0002-9527-2011
https://orcid.org/0000-0003-2715-1485
https://orcid.org/0000-0002-3485-3445
https://orcid.org/0000-0003-4813-756X
https://orcid.org/0000-0001-6195-3241
https://orcid.org/0000-0002-1215-5064
https://orcid.org/0000-0002-2152-4220
https://orcid.org/0000-0002-7400-9097
https://orcid.org/0000-0002-4589-1180
https://orcid.org/0000-0002-3870-2804
https://orcid.org/0000-0002-5473-3774
https://orcid.org/0000-0002-0556-293X
https://orcid.org/0000-0002-0576-2472
https://orcid.org/0000-0002-3047-5440
https://orcid.org/0000-0002-3684-0031
https://orcid.org/0000-0001-7189-7917
https://orcid.org/0000-0001-7587-6187
https://orcid.org/0000-0002-5505-1775
https://orcid.org/0000-0003-1115-2475
https://orcid.org/0000-0002-5305-1181
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fmds.30150&domain=pdf&date_stamp=2025-03-08


Progressive supranuclear palsy (PSP) is a neurodegen-
erative disease characterized by the accumulation of tau
in the brain along with symptoms such as postural

instability and ocular motor abnormalities.1-3 Despite a
number of other loci identified through association
studies in the last decade,4-7 the 17q21.31 of human
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genome, which presents two haplotypes H1 and H2
(distinguished by a �1 Mb inversion, Figure S1A in
Data S1), remains the most prominent genetic risk fac-
tor for PSP. The MAPT gene, which encodes the
microtubule-associated protein tau, is the most promi-
nent risk factor within the 17q21.31 region.8-10 In addi-
tion, recent functional studies using multiple parallel
reporter assays coupled to CRISPR interference
(CRISPRi) have identified other risk genes in this locus,
including KANSL1 and PLEKHM1.11

The 17q21.31 is one of the most structurally complex
regions in the human genome, featuring multiple
rearrangements throughout the evolutional history. At
least 10 structural forms within 17q21.31 can be char-
acterized by H1 and H2 along with three large duplica-
tions (ie, α, β, γ; Figure S1B in Data S1).12,13 However,
the impact of these structural forms and copy number
variations (CNVs) on PSP risk has not been systemati-
cally assessed. To assess the impact of these structural
forms and CNVs on PSP risk, the copy numbers of α, β,
and γ and structural forms of 17q21.31 were called
from whole genome sequencing (WGS) data
(Figure S1C in Data S1). Case–control analysis was per-
formed to identify CNVs significantly associated with
PSP and single nucleus RNA-seq analysis was employed
to evaluate the regulatory role of CNVs on gene
expression.

Methods
Study Subjects

All study subjects and WGS data are available on The
National Institute on Aging Genetics of Alzheimer’s Dis-
ease Data Storage Site (NIAGADS)14 under Alzheimer’s
Disease Sequencing Project (ADSP) Umbrella NG00067.
v7.15 All human subjects provided informed consent.
We inferred the ancestry of subjects by GRAF-pop (Ver-
sion 1.0, https://github.com/ncbi/graf)16 and selected
4618 subjects (1797 cases and 2821 controls) of
European ancestry for analysis. WGS were performed at
30� coverage (Table S1 in Data S2).
Among 4618 samples, we filtered 183 samples with

abnormally low reads mapped (aligned read depth <1.7�)
to α, β, or γ region (Figure S2 in Data S1) and 10 samples
with high genotyping missing rate (>0.05). Next,
244 related samples inferred by KING (Version 2.3.1,
https://www.kingrelatedness.com/)17 (duplicates, monozy-
gotic twins, parent-offsprings, full-siblings, and second-
degree relatives) were removed while retaining one sample
from each related group. We used the 238-base pair
(bp) deletion between exons 9 and 10 of MAPT18 to
determine the H1 and H2 haplotypes of each sample. The
genotype calls of the 238-bp deletion were obtained from
our previous structural variant work.19 Some 75 subjects
were removed due to missing or failed genotype of the

238-bp deletion. Given the specification of H1/H2 geno-
type, determined by the 238-bp deletion, and the copy
numbers of α, β, and γ, we can ascertain the 10 structural
forms (Figure S1B in Data S1) in each individual. We
removed 30 individuals (Figure S3 in Data S1) since their
structural forms could not be decided based on the copy
numbers of α, β, and γ. This discordance might be due to
subjects carrying undiscovered structural forms or
genotyping errors on the copy numbers of α, β, and γ.
As a result, 4076 subjects (Table 1; NPSP = 1684,

Ncontrol = 2392) remained for statistical analyses in this
study. Among them, 1684 PSP cases and 145 controls
were sourced from the PSP-NIH-CurePSP-Tau,
PSPCurePSP-Tau, PSP-UCLA, and AMPAD-MAYO
cohorts included in ADSP (NG0067.v7), while an addi-
tional 2247 controls were drawn from other ADSP
cohorts (Table S2 in Data S2). Detailed information
about each cohort is available through NIAGADS.14

Of the 1684 individuals diagnosed with PSP, 1386 were
autopsy-confirmed. Clinical diagnosis criteria are out-
lined in the Supplementary Methods in Data S1. Age
was missing for 1130 PSP cases as autopsy-confirmed
cases determined at brain banks did not always have
the age of symptom onset when brain tissue was sent
from outside the brain bank’s health system. The mean
age of onset for PSP cases was 68.03 years and the
mean age at the last visit for controls was 81.04 years
(Table 1).

Determine the Copy Number of α, β, and γ and
Structural Forms of 17q21.31

The genomic coordinates on HG38 for α (chr17:
46,135,415–46,289,349), β (chr17:46,087,894–46,356,
512), and γ (chr17:46,289,349–46,707,123) were
obtained from two previous studies12,13 (Figure S1A in
Data S1). Segmental duplications can introduce map-
ping challenges and thus inaccurate calling of the
number of copies.20-22 To address this, we removed
segmental duplicated regions inside the α, β, and γ
(Figure S4 in Data S1) when calculating aligned read
depth. Subsequently, the copy numbers of α, β, and
γ were obtained based on the aligned read depth
on chr17:46,135,415–46,203,287, chr17:46,106,189–
46,135,415, and chr17:46,356,512-46,489,410/chr17:
46,565,081–46,707,123, respectively. Copies of α, β,
and γ were genotyped by assessing aligned read depth
within each 1 kb bin on the specified regions using
CNVpytor (Version 1.3.1, https://github.com/
abyzovlab/CNVpytor).23 Then, we employed
K-means24 to assign an integer copy number for α, β,
and γ for the 4076 individuals. Each individual was
found to have up to six copies of α or β and up to eight
copies of γ (Figure S1 in Data S1). On the H1 back-
ground, the β region, which includes α, can duplicate
up to four copies, whereas on the H2 background, only
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the α region duplicates, with a maximum of two copies
of γ (Figure S1 in Data S1).
To validate the copy numbers of α, β, and γ called

from WGS, 65 samples were genotyped using TaqMan
CNV assay. For α and β, we utilized the same
TaqMan primer, given that β shares largely the same
region with α and has the same copy number in H1
haplotypes. To assess the accuracy of β copy number
calls from WGS, we focused on 60 of the 65 samples
with an H1/H1 genotype, as β is not duplicated in H2
haplotypes. Overall, the copy number of α, β, or γ
inferred by aligned read depth from WGS were highly
consistent (α, R = 0.87; β, R = 0.85; γ, R = 0.96) with
that from TaqMan assay (Figure S5 in Data S1). Nota-
bly, for high-confident calls from the TaqMan assay: all
γ copy numbers matched those obtained from WGS;
only two individuals showed discrepancies between
WGS and TaqMan assay in α and β copy numbers,
including one case with an improbable single copy of
both α and β detected by TaqMan. The experimental
procedure is detailed in the Supplementary Methods in
Data S1.

For approximately 60% of the samples, only one
combination of the structural forms (Figure S1B in
Data S1) was possible based on the H1 and H2 geno-
types, determined by the 238-bp deletion, and the copy
numbers of α, β, and γ. For the remainder of the
samples, multiple haplotypic combinations were possi-
ble. The expectation–maximization (EM) algorithm12

(Supplementary Methods in Data S1) were employed to
infer the two structural forms of 17q21.31 in each indi-
vidual. The allele frequency of each structural form of
17q21.31 after EM convergence are shown in Figure S1B
in Data S1. Overall, H2α2γ2 dominates the structural
forms of H2 while several structural forms of H1
(H1β1γ1, H1β1γ2, H1β1γ3, and H1β2γ1) showed an
allele frequency >10%.

Genetic Analysis of MAPT Sub-Haplotypes and
Structural Forms of 17q21.31

The six single nucleotide variants (SNVs) (rs1467967,
rs242557, rs3785883, rs2471738, rs8070723, and
rs7521)25-27 on MAPT were employed to define the

TABLE 1 Characteristics of progressive supranuclear palsy cases and controls

Characteristic Overall (N = 4076) PSP (N = 1684) Control (N = 2392)

Age, years (SD)a 78.49 (8.50) 68.03 (8.17) 81.04 (6.37)

Sex, n (%)

Female 2168 (53.19) 739 (43.88) 1429 (59.74)

Male 1908 (46.81) 945 (56.12) 963 (40.26)

H1/H2 status, n (%)b

H1H1 2958 (72.57) 1511 (89.73) 1447 (60.49)

H1H2 975 (23.92) 168 (9.98) 807 (33.74)

H2H2 143 (3.51) 5 (0.30) 138 (5.77)

Structural forms of 17q21.31, n (%)c

H1β1γ1 2446 (30.00) 1097 (32.57) 1349 (28.20)

H1β1γ2 1552 (19.04) 739 (21.94) 813 (16.99)

H1β1γ3 987 (12.11) 496 (14.73) 491 (10.26)

H1β1γ4 126 (1.55) 65 (1.93) 61 (1.28)

H1β2γ1 1716 (21.05) 774 (22.98) 942 (19.69)

H1β3γ1 64 (0.79) 19 (0.56) 45 (0.94)

H2α1γ1 7 (0.09) 1 (0.03) 6 (0.13)

H2α1γ2 99 (1.21) 14 (0.42) 85 (1.78)

H2α2γ1 33 (0.40) 2 (0.06) 31 (0.65)

H2α2γ2 1122 (13.76) 161 (4.78) 961 (20.09)

Abbreviations: PSP, progressive supranuclear palsy; SD, standard deviation.
a1130 PSP cases and 111 controls have missing age. Age for PSP refers to the age at disease onset, while age for controls indicates the age at last visit.
bH1/H2 status was determined by the genotype of a 238-bp H2 tagging deletion.5
cStructural forms of 17q21.31 were inferred by the H1/H2 status and the copy numbers of α, β, and γ (see Methods).
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26 MAPT sub-haplotypes (Table S3 in Data S2). We
phased the six SNVs with other SNVs and indels in
chr17:43,000,000–48,000,000 to determine the MAPT
sub-haplotypes. The SNV genotypes for the study sub-
jects were called in our previous work.28 Variants were
removed if they were monomorphic, did not pass variant
quality score recalibration, had an average read depth
≥500, or if all calls had DP < 10 and GQ < 20. Individ-
ual calls with a DP < 10 or GQ < 20 were set to missing.
Then, common variants (MAF > 0.01) with
0.25 < ABHet < 0.75 were phased using SHAPEIT429

(Version 4.2.2) with default parameters.
To phase the structural forms of 17q21.31 together

with MAPT sub-haplotypes, we encoded the copy num-
bers of α, β, and γ as multi-allelic CNVs by a series of
surrogate bi-allelic markers with 0/1 alleles12 (Table S4
in Data S2). Then, SHAPEIT429 (Version 4.2.2, https://
odelaneau.github.io/shapeit4/) with default parameters
were used for phasing the copy numbers of α, β, and γ
together with SNVs/indels. SNVs and indels inside α, β,
and γ regions (chr17:46,087,000–46,708,000) were not
included when phasing. After phasing, we calculated the
linkage disequilibrium (LD) between structural forms of
17q21.31 and MAPT sub-haplotypes.

Association Analysis
Association analyses were performed for the 4076

individuals (NPSP = 1684, Ncontrol = 2392). For the
association of the copy numbers of α, β, and γ with
PSP, the default logistic regression model was adjusted
for sex and principal components (PCs) 1–5. We also
tested the models when the allele count of H2 was
added as an additional covariate, as the β region can
only duplicate in the H1 haplotype, the smaller α region
but not the entire β duplicates in the H2 haplotype, and
the γ region usually duplicates only once in the H2 hap-
lotype (Figure S1B in Data S1). Then, association analy-
sis was performed separately for individuals with
H1H1 and H1H2 genotypes. Individuals with the
H2H2 genotype are imbalanced and with few cases
(5 cases, 138 controls), therefore, statistical analysis for
this subgroup was not included. To evaluate the associ-
ation of the structural forms of 17q21.31 with PSP,
each structural form with allele frequency >1% was
compared with the rest of structural forms using logistic
regression model adjusting for sex and PCs 1–5.
To evaluate the association of MAPT sub-haplotypes

with PSP, each MAPT sub-haplotypes with allele fre-
quency >1% was compared with the rest of sub-
haplotypes (Table S5 in Data S2). Two logistic regres-
sion models were used: one adjusted for sex and PCs 1–
5, and the other included H2 allele count as an addi-
tional covariate. All statistical analyses were performed
using R (Version 4.2.1).30

Bulk and Single-Nucleus RNA-Seq Analysis
We used RNA-seq data from Mayo RNA-seq

study31-33 and snRNA-seq data from the Religious Order
Study and the Rush Memory and Aging Project
(ROSMAP).34 To calculate the association between
CNVs and gene expression, we only included overlapping
samples in Mayo RNS-seq data (N = 211, Table S6 in
Data S2) and ROSMAP snRNA-seq data (N = 276,
Table S7 in Data S2) that had available WGS data from
ADSP. For bulk RNA-seq, 191 individuals with RNA
extracted from cerebellum and 189 individuals with RNA
extracted from temporal cortex were used. Library prepa-
ration was performed by the TruSeq RNA Sample Prep
Kit V2 (Illumina, San Diego, CA, USA). Illumina HiSeq
4000 sequencers (Illumina) were used for 100-bp paired-
end sequencing. Read alignments were performed by
SNAPR software (https://github.com/PriceLab/snapr)35

and counts per million were calculated using edgeR.36

Detailed methods for bulk RNA-seq can be found in pre-
vious studies.31-33 For single-nucleus RNA-seq, 276 indi-
viduals with nucleus RNA from the dorsolateral
prefrontal cortex were used. Single nuclei samples were
isolated and profiled by the 10X Single Cell RNA-seq
Platform using the Chromium Single Cell 3’ Reagent Kits
Version 3 (10X Genomics, Pleasanton, CA, USA). Librar-
ies were aligned to the GRCh38 using CellRanger.37

Pseudobulk gene expression for CUX2+ neurons,
CUX2� neurons, inhibitory neurons, astrocytes,
microglia, oligodendrocytes, oligodendrocytes precursor
cells, and vascular cells were aggregated and log-
normalized by Seurat (Version 5.0.3, https://github.com/
satijalab/seurat).38 Detailed methods for single-nucleus
RNA-seq can be found in a previous study.34

To analyze the effect of γ on gene expression on
17q21.31 (42 genes, chr17:44,800,000–47,000,000),
linear regression model adjusting for the allele count of
H2, sex, and PCs 1–5 were employed and a Bonferroni-
corrected P cutoff of 0.001 (0.05/42) was applied. The
rs1766006512 was used to tag H2 when the genotype
for the 238-bp deletion18 was unavailable. All statistical
analyses were performed using R (Version 4.2.1).30

Results
Copy Number of γ and PSP Risk

Our initial analysis focused on whether the copies of
α, β, or γ are associated to the risk of PSP and if these
associations are due to correlation with the H1 and H2
haplotypes. Adjusting for sex, PCs 1–5, and allele count
(0, 1, or 2) of the H2 haplotype, we observed that copy
number of γ was associated with 1.10-fold of increased
risk of PSP (95% CI 1.04–1.17; P = 0.0018; Table 2).
As H2α2γ2 is predominant in H2, the observed
increased risk of γ was mainly due to variations in H1.
Without adjusting for H2, the higher risk of PSP
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conferred by γ would be obscured (OR = 0.98; 95% CI
0.93–1.04; P = 0.60; Table 2) because H2 haplotype
usually has two copies of γ and is protective against PSP
(OR = 0.19; 95% CI, 0.16–0.22; P = 3.00 � 10�79)
while the most common structural forms of H1
(H1β1γ1, allele frequency = 30%) has only one copy of
γ. Another way to eliminate the confounding effects of
H1 and H2 is to conduct the association separately on
individuals with H1H1, H1H2, or H2H2 genotypes.
We found that each additional copy of γ was associated
with 1.08-fold (95% CI 1.02–1.15; P = 0.014) of
increased risk of PSP in H1H1 individuals and 1.29-fold
(95% CI 1.06–1.56; P = 0.0096) of increased risk of
PSP in H1H2 individuals (Table 2; Figure S6 in
Data S1). Among H2H2 individuals, who could have
two, three, or four copies of γ, all five PSP cases in our
data had four copies of γ. Therefore, association analysis
was not possible due to insufficient samples in this
group.
For α and β, only under the regression model with-

out adjusting H1 and H2, we observed statistically
significant association with PSP (Table 2). However,
the observed significance mainly arises from their cor-
relation with the H1 and H2 haplotypes, ie, the
increased copies (usually two copies) of α and the
absence of β duplication in the H2 haplotype. The
association, adjusting for sex, PCs 1–5, and allele
count (0, 1, or 2) of the H2 haplotype, shows no sig-
nificant association for the copy numbers of α
(OR = 0.9; 95% CI 0.81–1.00; P = 0.061) and β
(OR = 0.9; 95% CI 0.81–1.01; P = 0.064) with PSP
(Table 2). Although individuals with more copies of α
and β showed slightly lower odds ratio (OR) for PSP
(Table 2).

Structural Forms of 17q21.31 and PSP Risk
For a further analysis, we investigated the structural

forms of 17q21.31, characterized by the α, β, and γ
duplications along with H1/H2, and their impact on
PSP risk. We tested seven structural forms of 17q21.31
with allele frequency >0.01 (Table 3). On the H1 back-
ground, the OR for PSP increases from 1.21 (95% CI
1.10–1.33; P = 5.47 � 10�5) for H1β1γ1 to 1.57 (95%
CI 1.10–2.26; P = 1.35 � 10�2) for H1β1γ4 as the
copy number of γ increases from one copy to four cop-
ies (Table 3). With an additional copy of β, H1β2γ1
(OR = 1.24; 95% CI 1.11–1.38; Pc 1.87 � 10�4) dis-
played similar risk of PSP compared with H1β1γ1
(OR = 1.21; 95% CI 1.10–1.33; P = 5.47 � 10�5).
This finding reaffirmed that the copy number of γ was
associated with increased risk of PSP, and β was not
associated with the risk of PSP (Table 2; Figure S6 in
Data S1). On the H2 background, it was not practical
to evaluate the effect of γ as H2α2γ2 dominates
(Figure S1B in Data S1).

Copy Number of γ and MAPT Sub-Haplotypes
Besides the 10 structural forms, there are 26 MAPT

sub-haplotypes (Table S3 in Data S2) based on six tag-
ging SNVs25-27 representing the smaller LD structure in
MAPT gene (�150 kb). We observed the association
with the risk of PSP in H1c (OR = 1.79; 95% CI 1.58–
2.04; P = 1.84 � 10�19), H1d (OR = 1.52; 95% CI
1.29–1.79; P = 3.89 � 10�7), and H1o (OR = 2.88;
95% CI 2.15–3.89; P = 2.77 � 10�12) (Table S5 in
Data S2). H1g (OR = 1.46; 95% CI 1.07–1.98;
P = 0.016) and H1h (OR = 1.36; 95% CI 1.10–1.69;
P = 0.0053) were nominal significant in our analysis

TABLE 2 Association between the copy numbers of α, β, γ and risk of progressive supranuclear palsy

CNV

N = 4076 (PSP = 1684; Control = 2392)

Default model (sex and five PCs) +H2 in the model (sex, five PCs, and H2)

OR (95% CI) P OR (95% CI) P

γ 0.98 (0.93–1.04) 0.60 1.10 (1.04–1.17) 0.0018*

β 1.14 (1.03–1.27) 0.011* 0.90 (0.81–1.01) 0.064

α 0.57 (0.52–0.63) <2 � 10�16* 0.90 (0.81–1.00) 0.061

CNV

H1H1 carriers, N = 2958 (PSP = 1511; Control = 1447) H1H2 carriers, N = 975 (PSP = 168; Control = 807)

OR (95% CI) P OR (95% CI) P

γ 1.08 (1.02–1.15) 0.014* 1.29 (1.06–1.56) 0.0096*

β 0.91 (0.81–1.02) 0.11 0.79 (0.53–1.15) 0.23

α 0.91 (0.81–1.02) 0.11 0.81 (0.58–1.11) 0.20

Note: Association was not analyzed in H2H2 individuals as there were only five H2H2 PSP cases.
Abbreviations: CNV, copy number variation; CPM, counts per million PSP, progressive supranuclear palsy; PC, principal component; OR, odds ratio; CI, confidence interval.
*Represents statistical significance (P<0.05).
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(Table S5 in Data S2). As the observed increased risk of
those H1 sub-haplotypes could be due to the protective
effect of H2, we performed additional tests adjusting
for the allele count of H2. Despite the observed
lower OR, H1c (OR = 1.40; 95% CI 1.22–1.59;
P = 6.78 � 10�7) and H1o (OR = 2.37; 95% CI 1.75–
3.24; P = 4.32 � 10�8) remained significant (Table S5
in Data S2). This confirmed the previous genome-wide
association study (GWAS) findings that the H1c tag-
ging SNV rs242557 still contributes to the risk of PSP
after controlling for H1/H2.4,25 Moreover, individuals
with H1b showed a lower risk of PSP compared with
other H1 sub-haplotypes when the allele count of H2
was adjusted in the regression model (OR = 0.79; 95%
CI 0.70–0.90; P = 4.10 � 10�4) (Table S5 in Data S2).
These results further refined the association between
H1 and PSP through the H1 sub-haplotypes.
In line with the increased risk of PSP in individuals

carrying H1c and extra copies of γ, we observed an
association between γ and H1c. The proportion of H1c
increased from 1% in individuals with two copies of γ
to 88% in individuals with eight copies of γ (Fig. 1).
Furthermore, 96% of H1c sub-haplotypes corresponded
to structural forms of 17q21.31 with more than one
copy of γ (H1β1γ2, H1β1γ3, and H1β1γ4) (Figure S7 in
Data S1). When compared with structural forms of
17q21.31 with exactly one copy of γ (H1β1γ1 and
H1β2γ1), structural forms with additional copies of γ
(H1β1γ2, H1β1γ3, and H1β1γ4) were more likely to be
H1c or other MAPT sub-haplotypes associated with
increased risk of PSP (ie, H1o, H1d, H1g, and H1g)
(Figure S7 in Data S1). We then phased the CNVs
(Table S4 in Data S2; Methods) together with SNVs to
examine the LD between structural forms of 17q21.31
and MAPT sub-haplotypes. Two structural forms were
in LD (R2 > 0.1) with MAPT sub-haplotypes (Table S8
in Data S2): H1β1γ3 was in LD with H1c (R2 = 0.31)
with 70% of H1β1γ3 being H1c and H1β2γ1 was in

LD with H1b (R2 = 0.29) with 56% of H1β2γ1 being
H1b (Figure S7 in Data S1).

Copy Number of γ and Gene Expression
on 17q21.31

Finally, we examined the function impact of γ dupli-
cation on gene expression (Fig. 2A). Based on RNA-seq
of the cerebellum, we observed that the expression of
three genes located on γ region, ie, ARL17B (β = 0.63;
P = 1.16 � 10�20), LRRC37A (β = 0.48; P = 4.21 �
10�14), and NSFP1 (β = 0.81; P = 4.31 � 10�47)
showed the strongest correlation with the copy number
of γ (Fig. 2B; Figure S8A in Data S1; Table S9 in
Data S2). This increased expression with higher γ copy
numbers was also observed from RNA-seq of the tem-
poral cortex (Fig. 2C; Figure S8B in Data S1; Table S9
in Data S2). We also found higher expression of
LRRC37A2 accompanying γ duplication in the tempo-
ral cortex (β = 0.30; P = 1.56 � 10–9) but not the cer-
ebellum (β = 0.07; P = 0.16). Further analysis of
single-nucleus RNA-seq (snRNA) of cells from the
dorsolateral prefrontal cortex revealed that the associa-
tion between the higher expression of LRRC37A/
LRRC37A2 and the increased copy number of γ was
mainly driven by neuronal cells (Fig. 2D,E; Table S10
in Data S2). Specifically, the association between
LRRC37A expression and the copy number γ was not
significant (P > 0.001) in astrocytes, microglia, oligo-
dendroglia, and vascular cells while it was strongly
presented in CUX2+ (β = 0.70; P = 1.67 � 10�54),
CUX2� (β = 0.60; P = 5.25 � 10�40), and inhibitory
neurons (β = 0.63; P = 2.77 � 10�47) (Table S10 in
Data S2). For LRRC37A2, the increased copy of γ not
only strongly up-regulated its expression in CUX2+
(β = 0.56; P = 2.72 � 10�50), CUX2� (β = 0.46;
P = 2.96 � 10�40), and inhibitory neurons (β = 0.58;
P = 1.52 � 10�54) but also down-regulated its

TABLE 3 Structural forms of 17q21.31 and the risk of progressive supranuclear palsy

Structural form

Frequency (%)

OR (95% CI) PPSP (N = 1684) Control (N = 2392)

H1β1γ1 32.57 28.20 1.21 (1.10–1.33) 5.47 � 10�5

H1β1γ2 21.94 16.99 1.29 (1.16–1.43) 1.35 � 10�6

H1β1γ3 14.73 10.26 1.45 (1.27–1.65) 3.94 � 10�8

H1β1γ4 1.93 1.28 1.57 (1.10–2.26) 1.35 � 10�2

H1β2γ1 22.98 19.69 1.24 (1.11–1.38) 1.87 � 10�4

H2α1γ2 0.42 1.78 0.23 (0.12–0.40) 5.94 � 10�7

H2α2γ2 4.78 20.09 0.19 (0.16–0.23) <2 � 10�16

Note: Haplotypes in less than 1% of individuals were excluded.
OR and P value were from logistic regression adjusting for PCs 1–5 and sex.
Abbreviations: OR, odds ratio; CI, confidence interval; PSP, progressive supranuclear palsy; PC, principal component.
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expression in astrocytes (β = �0.17; P = 3.54 � 10�4)
and oligodendroglia (β = �0.21; P = 2.37 � 10�4)
(Table S10 in Data S2). The over-expression of LRRC37A
in HeLa cells could cause deformation of plasma mem-
brane shape and the generation of filopodia-like protru-
sions, followed by apoptosis.39 This suggests that the cell
type-specific up-regulation of LRRC37A/LRRC37A2 by γ
duplication might contribute to the neurodegeneration in
PSP. In addition to genes on the γ region, we also
observed decreased expression of KANSL1 associated
with increased γ duplications in both bulk RNA-seq and
snRNA-seq data (Fig. 2B,C; Tables S7 and S8 in Data S2).

Discussion

In summary, we evaluated the association of the
structural forms of 17q21.31, characterized by large
duplications α, β, and γ along with H1/H2 haplotype
with the risk PSP. We found that the copy number of γ
was associated with increased risk of PSP and structural
forms with additional γ copies (ie, H1β1γ2, H1β1γ3,
and H1β1γ4) exhibited a higher OR for PSP compared
with H1β1γ1. This aligns with the observation that
individuals with additional copies of γ tended to carry
MAPT sub-haplotypes with a higher risk of PSP, such
as H1c.
We assessed the association between H1c, γ, and PSP

risk, adjusting for sex, PCs 1–5, and H2 allele count.

Individuals with more γ copies, such as >5 copies
(OR = 1.58; 95% CI 1.13–2.22; P = 7.45 � 10�3), >6
copies (OR = 2.61; 95% CI 1.07–7.34; P = 4.7 �
10�2), and >7 copies (4 individuals, 3 with PSP),
showed a higher risk for PSP compared with H1c
(OR = 1.40). Notably, individuals carrying at least one
H1c allele and more than five copies of γ (N = 141;
72 of whom are H1c heterozygotes) demonstrated
a PSP risk (OR = 1.88; 95% CI 1.30–2.74;
P = 8.85 � 10�4) equivalent to that of H1c homozy-
gotes (N = 104; OR = 1.88; 95% CI 1.24–2.92;
P = 3.74 � 10�3). However, due to their strong corre-
lation, H1c remained significant (OR = 1.43; 95% CI
1.19–1.71; P = 1.04 � 10�4) and γ did not reach sig-
nificance (OR = 0.99; 95% CI 0.91–1.07; P = 0.74)
under the same regression model. This suggests several
possible scenarios: (1) the increased risk associated
with H1c is due to γ combined with other unknown
factors; (2) H1c is a causal factor, and γ is irrelevant;
or (3) another hidden collider variable may be driving
the association. The first scenario is more plausible
from a genomic perspective, as H1c is inferred by LD
structure using SNVs, which likely capture structural
changes in 17q21.31, including the additional γ cop-
ies. Further studies with larger sample sizes are needed
to clarify the causal relationship between γ and H1c,
as well as to explore the impact of extreme γ values
and the co-occurrence of H1c with elevated γ copy
numbers.

FIG. 1. The association between the copy number of γ and MAPT sub-haplotypes. The number of haplotypes (2 � the number of individuals) are
showed on each bar. The percentage of H1c is showed in brackets. The MAPT sub-haplotypes on H1 that were associated with the risk of progressive
supranuclear palsy or have an allele frequency >0.05 were color coded. All the other MAPT sub-haplotypes were included in the ‘Other’ category. The
color information: H1c (#45526C), H1b (#2B8CBE), H1d (#4EB3D3), H1e (#5AB4AC), H1g (#C7EAE5), H1h (#DFC27D), H1o (#8C510A), and Other
(#D6DCE5). [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 2. The association between the copy number of γ and gene expression. (A) Schematic plot of gene locations at 17q.21.31. (B) Gene expression
values for three genes on the γ duplication. Total RNA was isolated from the cerebellum of 191 samples. (C) Gene expression values for three genes
on the γ duplication. Total RNA was isolated from the temporal cortex of 189 samples. (D–E) LRRC37A/LRRC37A2 pseudobulk expression for different
cell types in dorsolateral prefrontal cortex stratified by the number of γ duplication. Pseudobulk counts were log-normalized using AggregateExpression
function from Seurat.38 CPM, counts per million. [Color figure can be viewed at wileyonlinelibrary.com]
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Bulk RNA-seq of the cerebellum and temporal cortex
revealed higher expression of ARL17B, LRRC37A,
LRRC37A2, and NSFP1 and lower expression of
KANSL1 in individuals with more copies of γ (Table S9
in Data S2). Notably, LRRC37A2 and KANSL1 are
located outside the γ region, suggesting that their
altered expression is likely driven by the gain of
enhancers or three-dimensional chromatin structure
changes accompanying the γ duplication.11,40 snRNA-
seq of the dorsolateral prefrontal cortex analysis rev-
ealed γ duplication primarily up-regulates LRRC37A/
LRRC37A2 in neuronal cells, down-regulates KANSL1
across all cell types, and upregulates ARL17B in
microglia (Table S10 in Data S2). For ARL17B, a nom-
inally significant (P < 0.05) association with γ duplica-
tion was observed in neuronal cells using snRNA-seq
(Table S10 in Data S2). In snRNA-seq, CellRanger37

was employed for read alignment and used an abridged
version of Ensembl annotations. Therefore, most
pseudogenes, including NSFP1, were removed, which
might shift counts towards the normal genes and explain
the observed increased NSF expression associated with γ
duplication in inhibitory/CUX2+ neurons and oligoden-
drocyte precursor cells (Table S10 in Data S2).
From bulk RNA-seq, we also observed significantly

lower expression of ARL17A and higher expression of
FAM215B accompanying increased copy number of γ
(Table S9 in Data S2). However, similar expression
changes were not observed across different cell types in
snRNA-seq (Table S10 in Data S2), potentially reflecting
differences in gene expression profiles between the cere-
bellum and temporal cortex (bulk RNA-seq) versus the
dorsolateral prefrontal cortex (snRNA-seq). It is also
important to note that both bulk and single-cell RNA-
seq in this study utilized poly(A) selection, which targets
mRNA with polyadenylation and may not fully capture
expression changes of lncRNAs and pseudogenes (such
as FAM215B and NSFP1 on γ duplication).41,42 To
more accurately assess the expression of these genes,
future studies based on rRNA depletion methods with-
out poly(A) selection are necessary.
Age is a recognized risk factor for PSP, with the con-

dition typically affecting individuals in their 60s.43

However, age was not included as a covariate in the
regression model due to missing data for more than half
of the PSP cases (Table 1). To evaluate the potential
impact of age on our analysis, we used 2835 individ-
uals with available age data and found no significant
associations between age and the copy number of α, β,
or γ (P > 0.05) after adjusting for H2 allele count, sex,
and the first five PCs. Nonetheless, as more PSP cases
with available age data become accessible, it will be
important to reassess the influence of age on our find-
ings to ensure the robustness of our conclusions.
Variants within the H1/H2 haplotypes likely contrib-

ute to PSP risk by interacting with MAPT, the gene that

encodes tau and is directly linked to PSP pathology.
Consequently, it is essential to understand how struc-
tural forms of 17q21.31, including changes in γ dupli-
cations, might alter the regulatory landscape in this
region and impact MAPT function and PSP risk. There
is already evidence suggesting that genes on the γ region
play a significant role in regulating MAPT function.
For instance, Radford and colleagues44 identified NSF
as a p-Tau interactor using a proteomic approach that
combines antibody-mediated biotinylation and mass
spectrometry. Rogers and colleagues40 reported multi-
ple regulatory elements on genes at 17q21.31, including
those on γ (LRRC37A, ARL17B, and NSFP1),
supported by ATAC-seq, H3K27ac, and CTCF ChIP-
seq data. CRISPR interference experiments further dem-
onstrated that these regulatory elements could influence
multiple genes within the H1 and H2 haplotypes, such
as MAPT.40 In addition, Hi-C analyses have revealed
that FMNL1, located more than 650 kb upstream of
the MAPT promoter, may interact with MAPT as
well.40 Together, these findings suggest a complex net-
work of gene interactions within the 17q21.31 region.
In future studies, it is important to perform additional
functional studies to explore how these structural forms
of 17q21.31 affect the complex regulatory dynamics
and MAPT function, thereby influencing PSP risk.
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