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Abstract
Objective  Primary lateral sclerosis (PLS) is a rare neurodegenerative disorder and a model for upper motor neuron degenera-
tion, which is believed to begin in the primary motor cortex. However, clinical observation suggests that not all PLS cases 
show primary motor cortex glucose hypometabolism on 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography 
(FDG-PET). We aimed to assess the reliability of FDG-PET in identifying motor cortex hypometabolism over disease course 
in a sample of patients with PLS.
Methods  Baseline FDG-PET data from nine consecutive PLS patients were analyzed. At least one follow up assessment was 
available for five patients. We extracted the average FDG-PET signal in the primary motor cortex and other motor regions 
and calculated the covariate-corrected z scores based on data of healthy controls from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) cohort.
Results  Among the nine patients evaluated, only four demonstrated glucose hypometabolism in the primary motor cortex 
across available baseline and follow up assessments. Glucose metabolism of motor regions declined over time in some 
patients, whereas others maintained stable levels despite a worsening in symptom severity.
Interpretation  Primary motor cortex hypometabolism in PLS patients is less consistent than previously reported, and the 
absence of this hypometabolic sign should not be considered as irrefutable evidence against PLS in the diagnostic process. 
The findings of our study underline the heterogeneity of PLS, indicating that more precise diagnostic tools would be beneficial 
to confirm a PLS diagnosis at an earlier stage.
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Introduction

Primary lateral sclerosis (PLS) is a rare neurodegenerative 
bulbospinal upper motor neuron syndrome [1, 2]. Although 
most cases of clinical PLS have cortical ubiquitin and TAR 
DNA-binding protein 43 (TDP-43) pathology [3, 4] and the 
PLS phenotype may appear as part of the phenotypic spec-
trum in familiar ALS pedigrees [5], PLS is no more consid-
ered part of the ALS spectrum by the Gold Coast Criteria 
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[6]. The reasons for this are the lack of lower motor neuron 
signs and a significantly slower rate of progression when 
compared with classic ALS. Mills’ syndrome is a unilat-
eral upper motor neuron disease, which appears clinically 
in the form of a slow progressive spastic hemiparesis; it is 
a rare variant of PLS [7, 8]. Despite the upper motor neu-
ron impairment being the defining characteristic of PLS, 
radiological evidence suggests that PLS patients may also 
show widespread grey or white matter alterations beyond 
the cortical regions of motor control and the corticospinal 
tracts [9, 10]. In contrast to classic ALS, diagnosing PLS 
is challenging, especially in the first two years of the dis-
ease, as it often requires diverse and targeted investigations 
to exclude a multitude of other diseases (e.g. inflammatory 
central nervous system disorders, compressive myelopa-
thy) and to distinguish it from mimics such as upper motor 
neuron-dominant ALS, hereditary spastic paraplegia (HSP), 
and progressive supranuclear palsy (PSP) [11–13]. Sensitive 
diagnostic biomarkers of PLS are still lacking and further 
diagnostic tools would be valuable.

PLS is a disease model for upper motor neuron 
degeneration, apparently beginning in the primary motor 
cortex (M1), which is why glucose hypometabolism in 
the precentral cortex would be expected to be detectable 
on a 2-deoxy-2-[18F]fluoro-d-glucose-positron-emission 
tomography (FDG-PET) scan. Indeed, some case reports 
support this notion [14–17], encouraging the utilization 
of an FDG-PET assessment in the differential diagnosis. 
However, clinical observations have revealed this not always 
to be the case, which prompted this study to investigate 
M1 hypometabolism in a sample of nine PLS cases both 
cross-sectionally and longitudinally. The main aim of 
the current study was to examine the reliability of FDG-
PET in identifying M1 hypometablism in a consecutive 
sample of patients who fit the diagnostic criteria for PLS. 
We broadened our scope to include further motor regions, 
motivated by previous reports of structural changes in these 
wider areas [18, 19].

Methods

Participants

Our sample consisted of nine consecutive patients recruited 
via the Department of Neurology of the Rostock University 
Medical Centre who met the consensus diagnostic criteria 
for probable or definite PLS [1]. All patients completed 
at least one clinical and FDG-PET imaging assessment. 
Furthermore, all patients underwent a routine magnetic 
resonance imaging (MRI) with fluid-attenuated inversion 
recovery, T1-weighted and T2-weighted protocols to rule out 
alternative pathologies. Six of the nine patients went through 

genetic testing of the common ALS/PLS-causing genes 
linked to ALS. One out of the nine had an ALS/PLS-causing 
mutation, five were screened negative, and no genetic data 
was available for three cases. The ALS Functional Rating 
Scale Revised (ALSFRS-r) was administered and subdomain 
scores were calculated (items 1–3 for bulbar score, items 4–6 
for upper limb score, items 8 and 9 for lower limb score).

Furthermore, the baseline FDG-PET images of 70 healthy 
controls (HCs) from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (adni.loni.usc.edu) as described 
in a previous study [20] were included in the analysis. The 
ADNI was launched in 2003 as a public–private partnership, 
led by Principal Investigator Michael W. Weiner, MD. 
The primary goal of ADNI has been to test whether serial 
magnetic resonance imaging, PET, other biological markers, 
and clinical and neuropsychological assessment can be 
combined to measure the progression of mild cognitive 
impairment and early Alzheimer’s disease. For up-to-date 
information, see www.​adni-​info.​org.

FDG‑PET acquisition and preprocessing

FDG-PET data of HC were obtained in preprocessed form 
from the ADNI database. These images were acquired 
using various scanners, following platform-specific 
protocols. To ensure consistency across different scanners, 
all original ADNI FDG-PET scans underwent standardized 
preprocessing steps. Comprehensive details about the 
acquisition and preprocessing of FDG-PET images can be 
found on the ADNI website (https://​adni.​loni.​usc.​edu/​data-​
sampl​es/​adni-​data/​neuro​imagi​ng/​pet/).

The PLS patients underwent dynamic PET imaging (4 
× 5 min) of the brain using a Gemini TF 16 scanner (Philips 
Healthcare) at 30 min after the injection of 199 ± 18 MBq 
FDG. Prior to PET imaging, an auxiliary CT scan (120 
kVp, 30 mAs) was performed. Four dynamic PET frames 
were recorded, examined for head movements and any 
conspicuous frames were excluded. A static PET data set 
was reconstructed using the manufacturer’s proprietary 
BLOB-OS reconstruction algorithm (3 iterations, 31 
subsets), which was corrected for randoms, scatter, decay, 
and attenuation using information from the auxiliary CT. 
To match the spatial resolution of 6 mm of the ADNI data, 
the FDG-PET scans of the PLS patients were filtered to the 
identical resolution using a Butterworth filter. All FDG-PET 
scans were skull-stripped, intensity normalized using the 
scan average, and registered to an FDG-PET template [21]. 
No partial volume correction was applied to the FDG-PET 
scans.

http://www.adni-info.org
https://adni.loni.usc.edu/data-samples/adni-data/neuroimaging/pet/
https://adni.loni.usc.edu/data-samples/adni-data/neuroimaging/pet/


Journal of Neurology         (2025) 272:410 	 Page 3 of 8    410 

Regions of interest (ROIs)

For all participants, ROI masks were used to extract the 
average regional FDG-PET signal. The ROIs included: the 
primary motor cortex (M1), dorsal and ventral premotor 
cortex (PMd, PMv), supplementary motor area (SMA), and 
pre-supplementary motor area (pre-SMA) from the Human 
Motor Area Template [22] and the upper limb, lower limb, 
trunk, head and face, tongue and larynx regions from the 
Brainnetome Atlas [23].

Statistical analysis

The statistical analyses were completed and figures were 
created in R (https://​www.r-​proje​ct.​org/). To determine 
whether the PLS patients had extreme values of FDG uptake 
in investigated ROIs, the mean signal intensity of each ROI 
was expressed as a w-score, which represents a covariate-
adjusted z score derived from a control group distribution. 
The procedure involved two main steps. First, the FDG 
signal for each ROI in the HCs was regressed against age 
and sex, yielding regression coefficients and residuals. 
These regression coefficients were subsequently applied 
to calculate residual values for the PLS patients. Second, 
the mean and standard deviation (SD) of the residuals in 
the HC group were utilized to calculate the respective w 
scores for the patient residuals. This adjustment enabled the 
identification of disease-related alterations in FDG uptake 
while controlling for age and sex differences. W scores follow 
the z distribution and are therefore directly translatable to p 
values. A w score < − 1.65 indicates a one-tailed p value 
below 0.05 and a w score < − 1.96 indicates a one-tailed p 
value below 0.025. For a longitudinal assessment, w scores 
were also determined for available follow up (FU) visits. W 
scores of all assessed regions for all patients can be found in 
Supplementary Table 1.

Results

Demographic and clinical data

A multifaceted characterization of our sample can be found 
in Table 1. The patients (N = 9) varied greatly in their age 
(mean = 61 ± 8 years) and disease duration at baseline 
(mean = 40 ± 24 months). Five patients (44%) displayed 
pseudobulbar affect (PBA). 44% of the patients were female 
when compared with 54% of the HCs. The HCs were on 
average older than the PLS patients (mean = 72 ± 5 years).

Two patients (pat3 and pat9) initially showed slowly 
progressive unilateral upper motor neuron signs, 
corresponding to Mills’ syndrome [7, 16, 24, 25]. The 
symptoms started in the left lower limb for patient 3 and 

the right lower limb for patient 6. Over a period of 3 years, 
patient 3’s clinical signs spread from the left leg to the left 
hand, then to the right leg, right hand, and lastly to the 
bulbar region. Patient 6’s clinical signs spread over the 
course of 5 years from the right leg to the left leg, then 
the right hand and the left hand. Although both patients 
became bilaterally affected, the impairments remained 
asymmetrically more severe on the onset side of the body. 
Neither patient 3 nor patient 6 showed lower motor neuron 
signs on the clinical or electrodiagnostic assessments. 
Patient 3 showed asymmetric frontotemporal atrophy in the 
right hemisphere, whereas patient 6 showed light nonspecific 
atrophy. The cerebrospinal fluid examination and further 
investigations did not reveal other pathologies. The genetic 
analysis was negative for pat6, but a mutation in the TPK1-
gene of uncertain significance was discovered in patient 3.

At the baseline assessment, six patients of our sample 
already had a symptomatic involvement of all three regions 
(bulbar, upper limb, and lower limb). For all the following 
results, right and left pertain to respective hemispheres.

FDG‑PET data

Despite the considerable symptomatic burden, only four 
of the patients showed regional hypometabolism (w scores 
< − 1.96) in motor regions (whole M1 or a subregion of 
M1): patients 3, 4 and 6 from baseline onwards and patient 
1 only from the first FU onwards (Table 1). The patients’ 
regional w scores have been projected onto the standard nor-
mal distributions in Fig. 1.

Despite the bulbar, upper limb, and lower limb 
involvement, all regional values of patient 1 stayed above 
w = − 2 at the baseline assessment. At FU assessments, 
patient 1 showed a bilateral decrease in the FDG uptake in 
M1 (right hemisphere FU1 w = − 3.2 to FU2 w = − 3.2, and 
left hemisphere FU1 w = − 3.3 to FU2 w = − 3.5). Patient 
1 also had low w scores for the head and face region of M1 
(right FU1 w = − 3.3 to FU2 w = − 3.6, and left FU1 w = 
− 3.0 to FU2 w = − 3.8) and for the upper limb region (right 
FU2 w = − 2.6, and left FU1 w = − 2.2 to FU2 w = − 2.6). 
Furthermore, patient 1 showed low FDG uptake in the left 
SMA (FU1 w = − 2.3 to FU2 w = − 2.9), the left pre-SMA 
(FU2 w = − 2.1), and the PMv (right FU1 w = − 3.4 to FU2 
w = − 4.2, and left FU1 w = − 2.9 to FU2 w = − 4.2).

Patient 3 had asymmetric lower and upper limb 
involvement at baseline (Mills’ syndrome), and at FU1 the 
bulbar region had also become symptomatic. At baseline, 
patient 3 showed a decrease in the FDG uptake in the right 
M1 (w = − 2.3). At FU1, the w scores were low for the 
bilateral M1 (right w = − 3.2 and left w = − 2.6), the right 
upper limb region (w = − 3.3), the right SMA (w = − 3.1), 
and the right PMd (w = − 2.4).

https://www.r-project.org/
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At baseline, patient 4 had symptoms in the bulbar 
region, lower, and upper limbs, and the FDG uptake was 
low in the left M1 at both baseline (w = − 2.1) and at FU1 
(w = − 2.6).

The baseline scan of patient 6 with lower limb 
involvement showed low w scores for the left lower limb 
region (w = − 2.6) and for the right tongue and larynx 
region (w = − 2.3). Furthermore, patient 6 had low FDG 
uptake in the bilateral SMA (right w = − 2.1 and left w = 
− 3.4), and left PMd (w = − 2.6).

The regional scores of the remaining five patients 
were all > − 1.96. W scores of all assessed regions for all 
patients can be found in Supplementary Table 1.

Discussion

We aimed to assess the reliability of FDG-PET in 
identifying UMN degeneration in a consecutive sample 
of PLS patients. Among the nine patients evaluated, 
only four demonstrated glucose hypometabolism in 
the primary motor cortex across available baseline and 
follow up assessments. Of those four patients, three also 
exhibited glucose hypometabolism in motor regions 
beyond the primary motor cortex. Glucose metabolism 
of motor regions declined over time in some patients, 
whereas others maintained stable metabolic levels despite 

Fig. 1   Regional w scores of PLS patients for available time points. 
The w scores of PLS patients are visualized with colored lines over 
a normal distribution. W scores > − 1.65 are shown in green (one-
sided p value > 0.05), w scores between − 1.65 and − 1.96 are shown 

in yellow (one-sided p values between 0.05 and 0.025), and w scores 
< − 1.96 are shown in red (one-sided p value < 0.025). Right and left 
refer to the assessed hemisphere. BL baseline, FU follow up
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worsening symptom severity. No consistent relationships 
were observed between glucose metabolism levels 
and clinical variables such as age, disease duration, or 
symptom distribution. These findings suggest that the 
primary motor cortex hypometabolism in PLS patients is 
less consistent than previous case reports have indicated 
[14–16]. Consequently, the absence of this hypometabolic 
sign should not be considered as irrefutable evidence 
against a diagnosis of PLS.

Glucose metabolism is closely linked to neural activity 
and the observed interindividual variability in our findings 
may have several possible explanations. One reason could 
be that the cortical changes in the M1 are not conspicuous 
in all patients that meet the PLS diagnostic criteria. 
Although a loss of Betz cells in the primary motor cortex 
is reported in many autopsy studies [4], multiple PLS cases 
have also revealed corticospinal tract degeneration without 
a discernible loss of Betz cells [26]. MRI studies have 
revealed precentral gyrus atrophy in PLS when compared 
with healthy controls on the group level [27–29] but also 
clearly highlighted its progressive nature over the disease 
course for individual patients [18, 30]. FDG-PET may not 
be sensitive enough to identify limited neurodegeneration in 
the first stages of the disease in each PLS patient.

Further between-patient variability in glucose metabolism 
in our sample may be related to differences in the underlying 
pathology. Because no autopsy data are available for the 
patients in our sample, the pathologies leading to the clinical 
phenotypes meeting the PLS criteria cannot be determined. 
A renowned autopsy report on patients with PLS phenotype 
describes a degeneration of the M1 and corticospinal tracts, 
numerous TDP-43 inclusions in the M1, limited or no 
inclusions in the lower motor neurons and further inclusions 
in extramotor neocortex [3, 4]. Nevertheless, also other 
pathologies, such as tau can lead to the clinical phenotype 
of PLS [12, 31]. A recent clinico-pathological case series of 
patients that filled the PLS diagnostic criteria highlighted 
both the pathological variability that may lead to this 
phenotype and the difficulties of differential diagnosis [32].

One further reason for the variability in our sample could 
be a heterogeneous spread of PLS pathology: it may be that 
the pathological spread is not only anterograde or “dying 
forward” (whereby degeneration spreads from the soma of 
the Betz cell to the distal axonal parts of the upper motor 
neuron) [33, 34] but also retrograde or “dying back” (in 
which degeneration spreads from the distal axonal parts of 
the upper motor neuron to the soma of the Betz cell) [35]. 
For instance, about 50% of PLS patients exhibit a symmetric 
ascending pattern of paralysis (from the lower limbs to the 
upper limbs to the bulbar regions), which supports the 
hypothesis of length-dependent dying back of corticospinal 
axons, whereas other patients show a more asymmetric or 
“patchy” spread of symptoms [36].

Finally, the precise cellular source of the FDG-PET signal 
remains undefined. Beyond neuronal glucose consumption, 
FDG uptake in cerebral tissue is dependent on astrocytes 
[37] and microglia [38]. A comprehensive overview of the 
relative contributions of these cell types to the FDG signal 
has yet to be provided. Previous PET studies in PLS have 
shown that both neuronal death [39] and glial activation, 
which co-localizes with grey matter atrophy [40, 41], 
exert opposing effects on the FDG-PET signal. Therefore, 
further investigations are required to clarify the cellular and 
molecular mechanisms underlying FDG signal changes in 
individual patients, providing a deeper understanding of 
disease pathology and its heterogeneity.

The diagnosis of PLS remains challenging, particularly 
its differentiation from UMN-dominant ALS, PSP and HSP 
[11, 13]. So far, no specific diagnostic biomarkers exist to 
enhance the diagnostic accuracy of PLS, necessitating a 
broad array of assessments including magnetic resonance 
imaging and transcranial magnetic stimulation [13, 32]. 
FDG-PET has been proposed as a potentially sensitive 
diagnostic tool; however, our findings suggest that its utility 
in clinical practice for diagnosing PLS may be limited and 
unreliable.

Our study is not without limitations. Like many other 
PLS studies, our sample size was small due to the rarity 
of this disease. Furthermore, in our sample, the HCs were 
older than the patients. Previous publications have reported 
primary motor cortex FDG-PET signal to remain relatively 
unaffected by age-related change [42] and found only a 
moderate decrease over the span of 40–85 years [43]. To 
minimize the possible age effect on the FDG-PET signal 
in our sample, we utilized covariate-adjusted w scores. 
In addition, the subregions of the primary motor cortex 
included in our analysis were relatively small and the spatial 
resolution of the imaging data (6 mm) introduced potential 
partial volume effects. Such effects may have led to spill-in 
signals from neighboring regions, potentially confounding 
the true FDG uptake in smaller areas and hindering the 
detection of localized metabolic changes. To identify subtle, 
small-scale changes, PET cameras with higher spatial 
resolution should be considered in future investigations.

In conclusion, FDG-PET does not appear to be a reliable 
diagnostic tool for PLS, particularly in the early disease 
stages when a sensitive and reliable biomarker would be 
most beneficial. Therefore, caution should be exercised 
when using FDG-PET as an additional diagnostic tool in 
suspected cases of PLS. Despite the challenges, there is an 
increasing interest in the delineation of the clinical entity of 
PLS. The findings of our study underline the heterogeneity 
within the patients that meet the diagnostic criteria of PLS. 
Future studies with larger cohorts are needed to validate the 
present findings and to investigate the clinical and biological 
features underlying this individual variability in PLS.
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