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Abstract

Objective Primary lateral sclerosis (PLS) is a rare neurodegenerative disorder and a model for upper motor neuron degenera-
tion, which is believed to begin in the primary motor cortex. However, clinical observation suggests that not all PLS cases
show primary motor cortex glucose hypometabolism on 2-deoxy-2-['®F]fluoro-p-glucose positron emission tomography
(FDG-PET). We aimed to assess the reliability of FDG-PET in identifying motor cortex hypometabolism over disease course
in a sample of patients with PLS.

Methods Baseline FDG-PET data from nine consecutive PLS patients were analyzed. At least one follow up assessment was
available for five patients. We extracted the average FDG-PET signal in the primary motor cortex and other motor regions
and calculated the covariate-corrected z scores based on data of healthy controls from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) cohort.

Results Among the nine patients evaluated, only four demonstrated glucose hypometabolism in the primary motor cortex
across available baseline and follow up assessments. Glucose metabolism of motor regions declined over time in some
patients, whereas others maintained stable levels despite a worsening in symptom severity.

Interpretation Primary motor cortex hypometabolism in PLS patients is less consistent than previously reported, and the
absence of this hypometabolic sign should not be considered as irrefutable evidence against PLS in the diagnostic process.
The findings of our study underline the heterogeneity of PLS, indicating that more precise diagnostic tools would be beneficial
to confirm a PLS diagnosis at an earlier stage.
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[6]. The reasons for this are the lack of lower motor neuron
signs and a significantly slower rate of progression when
compared with classic ALS. Mills’ syndrome is a unilat-
eral upper motor neuron disease, which appears clinically
in the form of a slow progressive spastic hemiparesis; it is
a rare variant of PLS [7, 8]. Despite the upper motor neu-
ron impairment being the defining characteristic of PLS,
radiological evidence suggests that PLS patients may also
show widespread grey or white matter alterations beyond
the cortical regions of motor control and the corticospinal
tracts [9, 10]. In contrast to classic ALS, diagnosing PLS
is challenging, especially in the first two years of the dis-
ease, as it often requires diverse and targeted investigations
to exclude a multitude of other diseases (e.g. inflammatory
central nervous system disorders, compressive myelopa-
thy) and to distinguish it from mimics such as upper motor
neuron-dominant ALS, hereditary spastic paraplegia (HSP),
and progressive supranuclear palsy (PSP) [11-13]. Sensitive
diagnostic biomarkers of PLS are still lacking and further
diagnostic tools would be valuable.

PLS is a disease model for upper motor neuron
degeneration, apparently beginning in the primary motor
cortex (M1), which is why glucose hypometabolism in
the precentral cortex would be expected to be detectable
on a 2-deoxy-2-['®F]fluoro-p-glucose-positron-emission
tomography (FDG-PET) scan. Indeed, some case reports
support this notion [14-17], encouraging the utilization
of an FDG-PET assessment in the differential diagnosis.
However, clinical observations have revealed this not always
to be the case, which prompted this study to investigate
M1 hypometabolism in a sample of nine PLS cases both
cross-sectionally and longitudinally. The main aim of
the current study was to examine the reliability of FDG-
PET in identifying M1 hypometablism in a consecutive
sample of patients who fit the diagnostic criteria for PLS.
We broadened our scope to include further motor regions,
motivated by previous reports of structural changes in these
wider areas [18, 19].

Methods
Participants

Our sample consisted of nine consecutive patients recruited
via the Department of Neurology of the Rostock University
Medical Centre who met the consensus diagnostic criteria
for probable or definite PLS [1]. All patients completed
at least one clinical and FDG-PET imaging assessment.
Furthermore, all patients underwent a routine magnetic
resonance imaging (MRI) with fluid-attenuated inversion
recovery, T1-weighted and T2-weighted protocols to rule out
alternative pathologies. Six of the nine patients went through
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genetic testing of the common ALS/PLS-causing genes
linked to ALS. One out of the nine had an ALS/PLS-causing
mutation, five were screened negative, and no genetic data
was available for three cases. The ALS Functional Rating
Scale Revised (ALSFRS-r) was administered and subdomain
scores were calculated (items 1-3 for bulbar score, items 4—6
for upper limb score, items 8 and 9 for lower limb score).

Furthermore, the baseline FDG-PET images of 70 healthy
controls (HCs) from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu) as described
in a previous study [20] were included in the analysis. The
ADNI was launched in 2003 as a public—private partnership,
led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial
magnetic resonance imaging, PET, other biological markers,
and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive
impairment and early Alzheimer’s disease. For up-to-date
information, see www.adni-info.org.

FDG-PET acquisition and preprocessing

FDG-PET data of HC were obtained in preprocessed form
from the ADNI database. These images were acquired
using various scanners, following platform-specific
protocols. To ensure consistency across different scanners,
all original ADNI FDG-PET scans underwent standardized
preprocessing steps. Comprehensive details about the
acquisition and preprocessing of FDG-PET images can be
found on the ADNI website (https://adni.loni.usc.edu/data-
samples/adni-data/neuroimaging/pet/).

The PLS patients underwent dynamic PET imaging (4
X 5 min) of the brain using a Gemini TF 16 scanner (Philips
Healthcare) at 30 min after the injection of 199 + 18 MBq
FDG. Prior to PET imaging, an auxiliary CT scan (120
kVp, 30 mAs) was performed. Four dynamic PET frames
were recorded, examined for head movements and any
conspicuous frames were excluded. A static PET data set
was reconstructed using the manufacturer’s proprietary
BLOB-OS reconstruction algorithm (3 iterations, 31
subsets), which was corrected for randoms, scatter, decay,
and attenuation using information from the auxiliary CT.
To match the spatial resolution of 6 mm of the ADNI data,
the FDG-PET scans of the PLS patients were filtered to the
identical resolution using a Butterworth filter. All FDG-PET
scans were skull-stripped, intensity normalized using the
scan average, and registered to an FDG-PET template [21].
No partial volume correction was applied to the FDG-PET
scans.
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Regions of interest (ROIs)

For all participants, ROI masks were used to extract the
average regional FDG-PET signal. The ROIs included: the
primary motor cortex (M1), dorsal and ventral premotor
cortex (PMd, PMv), supplementary motor area (SMA), and
pre-supplementary motor area (pre-SMA) from the Human
Motor Area Template [22] and the upper limb, lower limb,
trunk, head and face, tongue and larynx regions from the
Brainnetome Atlas [23].

Statistical analysis

The statistical analyses were completed and figures were
created in R (https://www.r-project.org/). To determine
whether the PLS patients had extreme values of FDG uptake
in investigated ROIs, the mean signal intensity of each ROI
was expressed as a w-score, which represents a covariate-
adjusted z score derived from a control group distribution.
The procedure involved two main steps. First, the FDG
signal for each ROI in the HCs was regressed against age
and sex, yielding regression coefficients and residuals.
These regression coefficients were subsequently applied
to calculate residual values for the PLS patients. Second,
the mean and standard deviation (SD) of the residuals in
the HC group were utilized to calculate the respective w
scores for the patient residuals. This adjustment enabled the
identification of disease-related alterations in FDG uptake
while controlling for age and sex differences. W scores follow
the z distribution and are therefore directly translatable to p
values. A w score < — 1.65 indicates a one-tailed p value
below 0.05 and a w score < — 1.96 indicates a one-tailed p
value below 0.025. For a longitudinal assessment, w scores
were also determined for available follow up (FU) visits. W
scores of all assessed regions for all patients can be found in
Supplementary Table 1.

Results
Demographic and clinical data

A multifaceted characterization of our sample can be found
in Table 1. The patients (N= 9) varied greatly in their age
(mean =61 + 8 years) and disease duration at baseline
(mean =40 +24 months). Five patients (44%) displayed
pseudobulbar affect (PBA). 44% of the patients were female
when compared with 54% of the HCs. The HCs were on
average older than the PLS patients (mean =72 +5 years).

Two patients (pat3 and pat9) initially showed slowly
progressive unilateral upper motor neuron signs,
corresponding to Mills’ syndrome [7, 16, 24, 25]. The
symptoms started in the left lower limb for patient 3 and

the right lower limb for patient 6. Over a period of 3 years,
patient 3’s clinical signs spread from the left leg to the left
hand, then to the right leg, right hand, and lastly to the
bulbar region. Patient 6’s clinical signs spread over the
course of 5 years from the right leg to the left leg, then
the right hand and the left hand. Although both patients
became bilaterally affected, the impairments remained
asymmetrically more severe on the onset side of the body.
Neither patient 3 nor patient 6 showed lower motor neuron
signs on the clinical or electrodiagnostic assessments.
Patient 3 showed asymmetric frontotemporal atrophy in the
right hemisphere, whereas patient 6 showed light nonspecific
atrophy. The cerebrospinal fluid examination and further
investigations did not reveal other pathologies. The genetic
analysis was negative for pat6, but a mutation in the TPK1-
gene of uncertain significance was discovered in patient 3.
At the baseline assessment, six patients of our sample
already had a symptomatic involvement of all three regions
(bulbar, upper limb, and lower limb). For all the following
results, right and left pertain to respective hemispheres.

FDG-PET data

Despite the considerable symptomatic burden, only four
of the patients showed regional hypometabolism (w scores
< — 1.96) in motor regions (whole M1 or a subregion of
M1): patients 3, 4 and 6 from baseline onwards and patient
1 only from the first FU onwards (Table 1). The patients’
regional w scores have been projected onto the standard nor-
mal distributions in Fig. 1.

Despite the bulbar, upper limb, and lower limb
involvement, all regional values of patient 1 stayed above
w= — 2 at the baseline assessment. At FU assessments,
patient 1 showed a bilateral decrease in the FDG uptake in
MI (right hemisphere FUl w=—3.2to FU2 w=—3.2, and
left hemisphere FUl w= — 3.3 to FU2 w= — 3.5). Patient
1 also had low w scores for the head and face region of M1
(right FUI w= — 3.3 to FU2 w= — 3.6, and left FUl w=
—3.0to FU2 w= — 3.8) and for the upper limb region (right
FU2 w= — 2.6, and left FUl w= — 2.2 to FU2 w= — 2.6).
Furthermore, patient 1 showed low FDG uptake in the left
SMA (FU1l w= — 2.3 to FU2 w= — 2.9), the left pre-SMA
(FU2 w= —2.1), and the PMv (right FU1 w= — 3.4 to FU2
w=—4.2,and left FUl w=—2.9to FU2 w= —4.2).

Patient 3 had asymmetric lower and upper limb
involvement at baseline (Mills’ syndrome), and at FU1 the
bulbar region had also become symptomatic. At baseline,
patient 3 showed a decrease in the FDG uptake in the right
M1 (w= — 2.3). At FU1, the w scores were low for the
bilateral M1 (right w= — 3.2 and left w= — 2.6), the right
upper limb region (w= — 3.3), the right SMA (w= — 3.1),
and the right PMd (w= — 2.4).
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Fig.1 Regional w scores of PLS patients for available time points.
The w scores of PLS patients are visualized with colored lines over
a normal distribution. W scores >— 1.65 are shown in green (one-
sided p value >0.05), w scores between — 1.65 and — 1.96 are shown

At baseline, patient 4 had symptoms in the bulbar
region, lower, and upper limbs, and the FDG uptake was
low in the left M1 at both baseline (w= — 2.1) and at FU1
(w=—12.6).

The baseline scan of patient 6 with lower limb
involvement showed low w scores for the left lower limb
region (w= — 2.6) and for the right tongue and larynx
region (w= — 2.3). Furthermore, patient 6 had low FDG
uptake in the bilateral SMA (right w= — 2.1 and left w=
— 3.4), and left PMd (w= — 2.6).

The regional scores of the remaining five patients
were all > — 1.96. W scores of all assessed regions for all
patients can be found in Supplementary Table 1.

in yellow (one-sided p values between 0.05 and 0.025), and w scores
< — 1.96 are shown in red (one-sided p value <0.025). Right and left
refer to the assessed hemisphere. BL baseline, FU follow up

Discussion

We aimed to assess the reliability of FDG-PET in
identifying UMN degeneration in a consecutive sample
of PLS patients. Among the nine patients evaluated,
only four demonstrated glucose hypometabolism in
the primary motor cortex across available baseline and
follow up assessments. Of those four patients, three also
exhibited glucose hypometabolism in motor regions
beyond the primary motor cortex. Glucose metabolism
of motor regions declined over time in some patients,
whereas others maintained stable metabolic levels despite
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worsening symptom severity. No consistent relationships
were observed between glucose metabolism levels
and clinical variables such as age, disease duration, or
symptom distribution. These findings suggest that the
primary motor cortex hypometabolism in PLS patients is
less consistent than previous case reports have indicated
[14—-16]. Consequently, the absence of this hypometabolic
sign should not be considered as irrefutable evidence
against a diagnosis of PLS.

Glucose metabolism is closely linked to neural activity
and the observed interindividual variability in our findings
may have several possible explanations. One reason could
be that the cortical changes in the M1 are not conspicuous
in all patients that meet the PLS diagnostic criteria.
Although a loss of Betz cells in the primary motor cortex
is reported in many autopsy studies [4], multiple PLS cases
have also revealed corticospinal tract degeneration without
a discernible loss of Betz cells [26]. MRI studies have
revealed precentral gyrus atrophy in PLS when compared
with healthy controls on the group level [27-29] but also
clearly highlighted its progressive nature over the disease
course for individual patients [18, 30]. FDG-PET may not
be sensitive enough to identify limited neurodegeneration in
the first stages of the disease in each PLS patient.

Further between-patient variability in glucose metabolism
in our sample may be related to differences in the underlying
pathology. Because no autopsy data are available for the
patients in our sample, the pathologies leading to the clinical
phenotypes meeting the PLS criteria cannot be determined.
A renowned autopsy report on patients with PLS phenotype
describes a degeneration of the M1 and corticospinal tracts,
numerous TDP-43 inclusions in the M1, limited or no
inclusions in the lower motor neurons and further inclusions
in extramotor neocortex [3, 4]. Nevertheless, also other
pathologies, such as tau can lead to the clinical phenotype
of PLS [12, 31]. A recent clinico-pathological case series of
patients that filled the PLS diagnostic criteria highlighted
both the pathological variability that may lead to this
phenotype and the difficulties of differential diagnosis [32].

One further reason for the variability in our sample could
be a heterogeneous spread of PLS pathology: it may be that
the pathological spread is not only anterograde or “dying
forward” (whereby degeneration spreads from the soma of
the Betz cell to the distal axonal parts of the upper motor
neuron) [33, 34] but also retrograde or “dying back” (in
which degeneration spreads from the distal axonal parts of
the upper motor neuron to the soma of the Betz cell) [35].
For instance, about 50% of PLS patients exhibit a symmetric
ascending pattern of paralysis (from the lower limbs to the
upper limbs to the bulbar regions), which supports the
hypothesis of length-dependent dying back of corticospinal
axons, whereas other patients show a more asymmetric or
“patchy” spread of symptoms [36].

@ Springer

Finally, the precise cellular source of the FDG-PET signal
remains undefined. Beyond neuronal glucose consumption,
FDG uptake in cerebral tissue is dependent on astrocytes
[37] and microglia [38]. A comprehensive overview of the
relative contributions of these cell types to the FDG signal
has yet to be provided. Previous PET studies in PLS have
shown that both neuronal death [39] and glial activation,
which co-localizes with grey matter atrophy [40, 41],
exert opposing effects on the FDG-PET signal. Therefore,
further investigations are required to clarify the cellular and
molecular mechanisms underlying FDG signal changes in
individual patients, providing a deeper understanding of
disease pathology and its heterogeneity.

The diagnosis of PLS remains challenging, particularly
its differentiation from UMN-dominant ALS, PSP and HSP
[11, 13]. So far, no specific diagnostic biomarkers exist to
enhance the diagnostic accuracy of PLS, necessitating a
broad array of assessments including magnetic resonance
imaging and transcranial magnetic stimulation [13, 32].
FDG-PET has been proposed as a potentially sensitive
diagnostic tool; however, our findings suggest that its utility
in clinical practice for diagnosing PLS may be limited and
unreliable.

Our study is not without limitations. Like many other
PLS studies, our sample size was small due to the rarity
of this disease. Furthermore, in our sample, the HCs were
older than the patients. Previous publications have reported
primary motor cortex FDG-PET signal to remain relatively
unaffected by age-related change [42] and found only a
moderate decrease over the span of 40-85 years [43]. To
minimize the possible age effect on the FDG-PET signal
in our sample, we utilized covariate-adjusted w scores.
In addition, the subregions of the primary motor cortex
included in our analysis were relatively small and the spatial
resolution of the imaging data (6 mm) introduced potential
partial volume effects. Such effects may have led to spill-in
signals from neighboring regions, potentially confounding
the true FDG uptake in smaller areas and hindering the
detection of localized metabolic changes. To identify subtle,
small-scale changes, PET cameras with higher spatial
resolution should be considered in future investigations.

In conclusion, FDG-PET does not appear to be a reliable
diagnostic tool for PLS, particularly in the early disease
stages when a sensitive and reliable biomarker would be
most beneficial. Therefore, caution should be exercised
when using FDG-PET as an additional diagnostic tool in
suspected cases of PLS. Despite the challenges, there is an
increasing interest in the delineation of the clinical entity of
PLS. The findings of our study underline the heterogeneity
within the patients that meet the diagnostic criteria of PLS.
Future studies with larger cohorts are needed to validate the
present findings and to investigate the clinical and biological
features underlying this individual variability in PLS.
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Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00415-025-13089-x.
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