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Abstract: Little is known about the dysbiosis of the gut microbiome in patients with

mild cognitive impairment (MCI) potentially at risk for the development of Alzheimer’s

disease (AD). So far, only cross-sectional differences and not longitudinal changes and

their prognostic significance have been in the scope of research in MCI. Therefore, we

investigated the ability of longitudinal taxonomic and functional gut microbiome data

from 100 healthy controls (HC) to predict the progression from normal cognition to MCI

over a 4-year follow-up period (4yFU). Logistic regression models were built with baseline

features that best discriminated between the two groups using an ANOVA-type statistical

analysis. The best model for the discrimination of MCI converters was based on functional

data using Gene Ontology (GO), which included 14 features. This model achieved an

area under the receiver operating characteristic curve (AUROC) of 0.84 at baseline, 0.78 at

the 1-year follow-up (1yFU), and 0.75 at 4yFU. This functional model outperformed the

taxonomic model, which included 38 genera features, in terms of descriptive performance

and showed comparable efficacy to combined analyses integrating functional, taxonomic,

and clinical characteristics. Thus, gut microbiome algorithms have the potential to predict

MCI conversion in HCs over a 4-year period, offering a promising innovative supplement

for early AD identification.

Keywords: Alzheimer’s disease; mild cognitive impairment; longitudinal observational

study; prediction model; gut microbiome

1. Introduction

Mild cognitive impairment (MCI) characterizes a stage of cognitive functioning with

a measurable decline in domains such as memory, attention, or language that exceeds

normal age-related loss, but does not impact daily living functioning [1]. Although the
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pathologic etiology of MCI is heterogenous, one potential cause of these symptoms relates to

degenerative changes in the brain. About 5–15% of patients with MCI develop Alzheimer’s

disease (AD) per year. Therefore, MCI is often considered a precursor stage of developing

dementia, such as AD [2].

AD, as the most common form of dementia in elderly patients, is a neurodegenera-

tive disorder of the brain. The pathology is characterized by significant cognitive decline

in various memory functions as well as other cognitive domains, including linguistic

abilities, visuo-constructive skills, and executive functions. Furthermore, the disease is

marked by a substantial loss of everyday competencies and increasing dependency on

intensive care. Thus, the early identification of underlying AD pathology is crucial for initi-

ating appropriate therapeutic interventions. In clinical practice, this is typically achieved

through a combination of clinical, neuropsychological, biochemical, and imaging-based

diagnostic approaches.

Recent research findings suggest that the composition of the gut microbiome may also

provide valuable diagnostic insights and be associated with the pathogenesis of neurode-

generative disorders, such as AD pathology or MCI. The human microbiome consists of

a complex community of trillions of micro-organisms, including bacteria, archaea, fungi,

and viruses, with approximately 95% residing in the gastrointestinal tract. Beyond their

fundamental roles in metabolic processes such as digestion and nutrient absorption, these

micro-organisms play a critical role in defending against pathogenic agents and maintain-

ing overall health [3]. The gut–brain axis (GBA), a bidirectional communication system

connecting the gastrointestinal tract and the central nervous system, has emerged as a

significant focus of research. This axis utilizes multiple signaling mechanisms, including

the vagus nerve, the enteric and autonomic nervous systems, the immune system, and bio-

chemical mediators such as neurotransmitters and microbial metabolites (e.g., short-chain

fatty acids [SCFAs] and branched-chain amino acids [BCAAs]) [4].

These pathways enable bidirectional information transfer, potentially impacting both

brain and gut functions, as well as overall health. Emerging evidence suggests that

dysbiosis—imbalances in the gut microbiota composition, and diversity—may contribute to

the pathogenesis of MCI, AD, and other neurodegenerative and psychiatric disorders [5,6].

Contributing factors include alterations in microbiota distribution, intestinal barrier dys-

function, and inflammatory changes in the intestinal epithelium, commonly referred to as a

“leaky gut” [5,6].

Altered gut microbiome compositions are well-documented in cross-sectional studies

in patients with AD [7–11], and even in patients with preclinical AD [12]. Furthermore,

findings from recent meta-analyses confirm gut microbiological abnormalities in MCI and

highlight their role as potential biomarkers for the early identification and diagnosis of AD.

However, to assess the prognostic validity of the gut microbiome composition, longitudinal

studies are needed. In a recent longitudinal study of our working group [13], we evaluated

the prognostic validity of taxonomic and functional gut microbiome models to predict the

conversion from MCI to AD over a time frame of 4 years. Taxonomic models (including

24 genera) and functional models (including 25 Gene Ontology [GO] features and 33 Kyoto

Encyclopedia of Genes and Genomes ortholog [KO] features) each demonstrated superior

prognostic value compared to a clinical-only model (which included age, gender, body

mass index [BMI], and Apolipoprotein E [ApoE] genotype), highlighting the importance

of incorporating gut microbiome data to predict AD conversion. This raises the question

of whether the development of such prediction models could also be informative at an

earlier stage of disease. Therefore, our main research question was to identify the most

stable multivariate model predicting the progression from normal cognition to MCI based

on gut microbiome composition.
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Our primary aim was to exploratorily investigate how taxonomic and functional

gut microbiome profiles, in conjunction with clinical parameters, can serve as prognostic

markers for the progression from healthy controls (HCs) to MCI. By assessing the predictive

power of these microbiome data over a 4-year follow-up (4yFU), this study may provide

insights into the potential mechanistic links between the gut microbiota, their metabolites,

and cognitive decline.

2. Results

2.1. Patients Demographics

Of the 100 healthy elderly participants included at baseline, 14 dropped out of the

study during 4yFU. Only the participants who completed the study were included in the

analyses (n = 86). Based on clinical classification, n = 29 of these individuals developed

MCI during the 4yFU, and n = 57 remained cognitively stable HCs.

The clinical and demographic characteristics (Table 1) showed no significant differ-

ences between HCs and MCI-converted participants at baseline (ps > 0.05). As expected,

the groups differed significantly at MMSE score at 1yFU and 4yFU, with MCI converters

scoring significantly lower than HCs, respectively (ps ≤ 0.04).

Table 1. Clinical and demographic characteristics of stable healthy controls (HCs) and converters

from HC to mild cognitive impairment (MCI) after four years. * <0.05; ** <0.01.

Stable HCs
(n = 57)

HC-to-MCI
Converters

(n = 29)
p-Value

M (SD) M (SD)
Age in years 71.8 (4.5) 71.6 (3.9) 0.79
MMSE—baseline 28.9 (2.3) 28.9 (1.1) 0.24
MMSE—1yFU 28.6 (1.0) 27.9 (1.5) 0.04 *
MMSE—4yFU 28.2 (1.6) 26.5 (1.1) <0.001 **
GDS 1.8 (1.9) 2.2 (2.9) 0.49
BMI 25.6 (3.6) 26.6 (5.9) 0.44

Ratio (n:n) Ratio (n:n)
Gender (male:female) 28:29 12:17 0.65
ApoE4 (e4 carriers:single e4
carriers:non-e4-carriers)

2:11:22 1:4:11 0.90

Arterial hypertension
(yes:no)

25:32 12:17 0.83

Diabetes mellitus (yes:no) 3:54 1:28 0.71
Rheumatoid arthritis
(yes:no)

2:55 2:27 0.60

NSAIDs (yes:no) 13:44 8:21 0.79
Anticoagulants (yes:no) 2:55 2:27 0.60
Antihypertensives (yes:no) 24:33 12:17 0.95
Antidiabetics (yes:no) 3:54 1:28 0.71
Statins (yes:no) 7:50 2:27 0.71
Antidepressants (yes:no) 1:56 3:26 0.11
AChE inhibitors (yes:no) 0:57 0:29 n.a.

Note: AChE = Acetylcholinesterase; ApoE = Apolipoprotein E; BMI = Body Mass Index; GDS = Geriatric
Depression Scale; MMSE = Mini Mental State Examination; NSAIDs = Nonsteroidal antiphlogistics.

2.2. Discriminatory Ability of the Gut Microbiome Between Stable Healthy Controls and
MCI Converters

Logistic regression analyses were used to investigate the discriminatory potential of

the gut microbiome to predict the conversion from HCs to MCI using ROC analyses.
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Taxonomic model: The taxonomic model including 38 genera (Table 2) yielded an

AUROC of 0.72 at BL, 0.70 at 1yFU, and 0.58 at 4yFU. We found that 11 of the identified taxa

(28.9%) belonged to the phylum Firmicutes, 17 (44.7%) to the phylum Pseudomonadota, 3

each (7.9%) to the phyla Actinomycetota and Euryarchaeota, and 1 taxon (2.6%) each to

the remaining phyla (Bacteroidota, Fusobacteria, Elusimicrobiota, and Chloroflexota). The

genus Merdimonas, which belongs to the phylum Firmicutes, was significantly increased

(p < 0.05) in converters. Significantly decreased levels (ps < 0.05) in converters were found

for the genus Methanobrevibacter (Euryarchaeota) and the genus Thermovenabulum

(phylum Firmicutes).

Table 2. Genus and phylum of the 38 features included in the genera model for discrimination

between MCI converters and healthy persons. * <0.05; https://www.ncbi.nlm.nih.gov/Taxonomy/

Browser/wwwtax.cgi?id=2 (accessed on 9 November 2023).

Genus Phylum
Genera Levels in MCI

Converters vs. Stable HCs
(↑ Increased, ↓ Decreased)

Merdimonas Bacillota/Firmicutes ↑ *
Butyricicoccus Bacillota/Firmicutes ↑

Sharpea Bacillota/Firmicutes ↓

Peptoanaerobacter Bacillota/Firmicutes ↑

Brevundimonas
Pseudomonadota/a-

proteobacteria
↑

Alkalibacter Bacillota/Firmicutes ↑

Acetobacter Pseudomonadota/aproteobacteria ↑

Phycicoccus Actinomycetota ↑

Tepidanaerobacter Bacillota/Firmicutes ↑

Natronincola Bacillota/Firmicutes ↓

Anoxybacillus Bacillota/Firmicutes ↓

Luteimonas Pseudomonadota ↑

Azonexus Pseudomonadota ↑

Gilvimarinus Pseudomonadota ↑

Dehalococcoides Chloroflexota ↑

Desulfovermiculus Pseudomonadota ↓

Knoellia Actinomycetota ↓

Roseisalinus Pseudomonadota ↓

Polycyclovorans Pseudomonadota ↑

Thiocystis Pseudomonadota ↓

Sulfuricella Pseudomonadota ↓

Methanococcoides Euryarchaeota ↓

Oceaniovalibus Pseudomonadota ↓

Numidum Bacillota/Firmicutes ↓

Arcticibacter Bacteroidota ↓

Agarivorans Pseudomonadota ↓

Thermovenabulum Bacillota/Firmicutes ↓ *
Herminiimonas Pseudomonadota ↓

Natrinema Euryarchaeota ↑

Oceanicoccus Pseudomonadota ↓

Bergeriella Pseudomonadota ↑

Endomicrobium Elusimicrobiota ↓

Caviibacter Fusobacteria ↑

Sagittula Pseudomonadota ↓

Dehalobacter Bacillota/Firmicutes ↓

Olegusella Actinomycetota ↓

Labrenzia Pseudomonadota ↑

Methanobrevibacter Euryarchaeota ↓ *

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=2
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=2
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Functional model: The functional model containing 14 Gene Ontology (GO) features

yielded an AUROC of 0.84 at BL, 0.78 at 1yFU, and 0.75 at 4yFU (see Figure 1). The

14 genera included in this model are listed in Table 3. Significantly elevated levels (ps < 0.01)

in MCI converters compared to HCs were found for the features GO.0015416 (ABC-type

phosphonate transporter activity) and GO.0051484 (isopentenyl diphosphate). Significantly

increased levels (ps < 0.05) developed in MCI converters for GO.0004339 (glucan 1,4-

alpha-glucosidase activity), GO.0043802 (hydrogenobyrinic acid a,c-diamide synthase),

and GO.0060567 (the negative regulation of termination of DNA-templated transcription).

A significantly decreased abundance (p < 0.05) was detected for the feature GO.0004491

(methylmalonate-semialdehyde dehydrogenase), and a strongly decreased abundance

(p < 0.01) for GO.0015667 (DNA methyltransferase).

↓
↓
↓
↑
↓

tt tt

↑ ↓

↑

Figure 1. ROC curves for discrimination between MCI converters and stable healthy controls within a

follow-up period of 4 years at baseline, 1-year follow-up (Follow Up 1), and 4-year follow-up (Follow

Up 3) based on the Gene Ontology (GO) model including 14 features.

Table 3. GO (Gene Ontology) labels, names, and pathways of 14 features included in the GO

model for discrimination between MCI converters and healthy persons. * <0.05; ** <0.01; https:

//www.informatics.jax.org/vocab/gene_ontology/ and https://amigo.geneontology.org/ (accessed

on 9 November 2023).

GO Label Name/Term Definition/Molecular Functions
Genera Levels in MCI

Converters vs. Stable HCs
(↑ Increased, ↓ Decreased)

GO.0015416
ABC-type

phosphonate
transporter activity

Enables the transfer of a solute or
solutes from one side of a membrane
to the other according to the reaction:

ATP + H2O + phosphonate(out) =
ADP + phosphate + phosphonate(in).

↑ **

GO.0051484
Isopentenyl
diphosphate

Cholesterol pathway;
mevalonate-independent pathway
involved in terpenoid biosynthetic

process.

↑ **

https://www.informatics.jax.org/vocab/gene_ontology/
https://www.informatics.jax.org/vocab/gene_ontology/
https://amigo.geneontology.org/
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Table 3. Cont.

GO Label Name/Term Definition/Molecular Functions
Genera Levels in MCI

Converters vs. Stable HCs
(↑ Increased, ↓ Decreased)

GO.0004339
Glucan

1,4-alphaglucosidase
activity

Enzyme in glycogenolysis: catalysis
of the hydrolysis of terminal

(1->4)-linked alpha-D glucose
residues successively from

non-reducing ends of the chains with
release of beta-D-glucose.

↑ *

GO.0046777
Protein autophospho-

rylation

The phosphorylation by a protein of
one or more of its own amino acid

residues (cis-autophosphorylation), or
residues on an identical protein

(trans-autophosphorylation).

↑

GO.0009018
Sucrose

phosphorylase
activity

Catalysis of the reaction: sucrose +
phosphate = D-fructose +

alpha-D-glucose 1-phosphate.
↑

GO.0043802

Hydrogenobyrinic
acid a,c-diamide

synthase (glutamine-
hydrolysing) activity,

CopB

Part of the biosynthetic pathway to
cobalamin in aerobic bacteria.

Catalysis of the reaction: 2
L-glutamine + 2 ATP + 2 H2O +

hydrogenobyrinate = 2 L-glutamate +
2 ADP + 4 H+ + hydrogenobyrinate

a,c-diamide + 2 phosphate.

↑ *

GO.0004415
Hyalurononglucosam

inidase activity

Catalysis of the random hydrolysis of
(1->4) linkages between

N-Acetyl-beta-D-glucosamine and
D-Dlucuronate residues in

hyaluronate.

↑

GO.0004631
Phosphomevalonate

kinase activity

Catalysis of the reaction:
(R)-5-phosphomevalonate + ATP =

(R)-5-diphosphomevalonate + ADP +
H+.

↑

GO.0060567

Negative regulation
of termination of
DNA-templated

transcription

Any process that decreases the rate,
frequency, or extent of

DNA-dependent transcription
termination, the process in which

transcription is completed.

↑ *

GO.0004328
Formamidase

activity
Catalysis of the reaction: formamide +

H2O = formate + NH4.
↓

GO.0018710
Acetone carboxylase

activity

Catalysis of the reaction: acetone +
ATP + CO2 + 2 H2O = acetoacetate +

AMP + 4 H+ + 2 phosphate.
↑

GO.0004491

Methylmalonate-
semialdehyde

dehydrogenase
(acylating, NAD)

activity

Synthesis of branched-chain amino
acids, pyrimidine catabolic pathway

catalysis of the reaction:
2-methyl-3-oxopropanoate + CoA +
NAD+ = propanoyl-CoA + CO2 +

NADH + H+.

↓ *
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Table 3. Cont.

GO Label Name/Term Definition/Molecular Functions
Genera Levels in MCI

Converters vs. Stable HCs
(↑ Increased, ↓ Decreased)

GO.0016730
Oxidoreductase

activity

Catalysis of an oxidation–reduction
reaction in which an iron-sulfur

protein acts as a hydrogen or electron
donor and reduces a hydrogen or

electron acceptor.

↓

GO.0015667

DNA
methyltransferase

(cytosine-N4-
specific) activity

DNA-modification, catalysis of the
reaction: S-adenosyl-L-methionine +

DNA cytosine =
S-adenosyl-L-homocysteine + DNA

N4-methylcytosine.

↓ **

Clinical model: As clinical characteristics like age, gender, BMI, and ApoE4 status are

well-established risk factors for late-onset AD [14,15] and also influence the gut microbiome

composition [16–18], the prognostic value of a model only including these clinical charac-

teristics was also investigated. This model yielded an area under the receiver operating

characteristic curve (AUROC) of 0.57 at BL, 0.54 at 1yFU, and 0.55 at 4yFU (see Table 4).

Table 4. Gut microbiome models predicting the progression from normal cognition to mild cognitive

impairment (confidence intervals in brackets).

Models
Included
Features

AUROC

Baseline (CI, %) 1yFU (CI, %) 4yFU (CI, %)

Taxonomic (Genera) 38 72% (60–84) 70% (59–82) 58% (45–71)
Functional (Gene
Ontology [GO])

14 84% (75–93) 78% (68–88) 75% (63–87)

Clinical
characteristics
(Age, BMI, gender,
and ApoE4)

4 57% (44–71) 54% (40–68) 55% (41–68)

Ensemble learning
model

84% (75–93) 78% (68–88) 75% (63–87)

Combined analysis: Using an ensemble learning model including the above men-

tioned taxonomic, functional, and clinical features yielded an AUROC of 0.84 at BL, 0.78 at

1yFU, and 0.75 at 4yFU (see Table 4).

3. Discussion

In this study, we analyzed the prognostic value of the gut microbiome in predicting

the conversion from healthy individuals to MCI over a four-year period. In our analyses,

we used the taxonomic and functional profiling of the gut microbiome, along with well-

established clinical characteristics (BMI, age, ApoE4 status, and gender) to identify the

model with the most temporally stable features. We identified a taxonomic model with

38 features and a functional model based on GO with 14 features, both of which were

able to accurately predicted MCI conversion after four years. Our findings suggest that

changes in bacterial taxa at the community level rather than individual alterations may

be associated with the development of MCI. Furthermore, both microbiome models de-

scriptively outperformed the clinical model with the four well-established clinical features
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(BMI, age, gender, and ApoE4 status), thus highlighting the utility of gut microbiome data

in predicting cognitive decline over time.

Looking at both gut microbiome models more specifically, the functional model (using

GO features) proved to be more accurate and stable over time in identifying MCI converters

with an AUROC of 0.84 at BL, 0.78 at 1yFU, and 0.75 at 4yFU, compared to the taxonomic

model (using genera features) with an AUROC of 0.72 at BL, 0.70 at 1yFU, and 0.58 at

4yFU. This means, for example, that persons with MCI could be correctly identified with

an accuracy of 75% after four years by using the GO model trained with microbiome data

from the baseline.

Furthermore, the combined model (taxonomic, functional, and clinical features) did

not achieve a higher accuracy than the GO model alone, implying that the effect of the

combined analysis seems to be driven by functional gut microbiome data. The relative

stability of the identified GO model over time—with a decline from 84% at baseline to

75% at 4yFU—should be highlighted as a strength of the present study. From a clinical

perspective, it might be useful to focus on a limited but time-stable set of features, as these

results could be more easily used for diagnostic and therapeutic interventions at an earlier

stage of disease development. Such stable gut microbiome patterns have also already been

identified in our research group predicting the conversion from MCI to AD [13], but also in

other diseases, e.g., Parkinson disease [19].

Furthermore, and in comparison to our previous published work [13], the prognostic

power of the best-fitting model in this study (GO model) was still good but descriptively

lower than in our previous study. Additionally, the prognostic power slightly decreased

over time in the present study and the identified taxonomic and functional features differed

from the identified features in our previous study. A potential explanation for these findings

might be attributed to the heterogeneity of MCI pathology in comparison to AD pathology.

Given the diverse etiological origins of MCI [20], which, not consequently, leads to AD,

but may also be identified in patients with other psychiatric disorders or other types of

dementia [21], it is plausible that gut microbiomes influence disease progression through

distinct pathways. More specifically, in our studies, we used completely different study

samples; thus, the cohort of MCI converters in the present study did not correspond to

the population of MCI patients who progressed to AD in the previous study. However, as

different features have been identified, a model predicting the conversion from HCs to AD

would be valuable.

Focusing on the identified microbiome features, our most effective analytical ap-

proach, the GO model, revealed a significant upregulation of ABC transporters (ABC-type

phosphonate transporter, GO.0015416) and the glycogen-degrading enzyme glucan 1,4-

alpha-glucosidase (GO.0004339) in individuals with MCI. Previous evidence indicates

that an increased ABC transporter expression plays a contributory role in neurodegenera-

tive processes [22]. Furthermore, an impaired glucose metabolism and reduced neuronal

glucose uptake are well-documented in AD [23]. The observed elevation of glucan 1,4-

alpha-glucosidase, an enzyme responsible for glycogen hydrolysis and glucose release, may

represent a compensatory response to glucose deficiency, a hallmark of AD and potentially

a feature of MCI converters.

Two additional features associated with DNA modification merit further discussion.

An enzyme associated with the negative regulation of DNA-templated transcription ter-

mination (GO.0060567) exhibited increased expression, which may lead to premature

transcriptional termination, potentially altering gene expression patterns by modulating

transcript diversity and abundance. Given the established role of epigenetic mechanisms in

the pathogenesis of MCI and AD [24], this alteration, although nonspecific, may contribute
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to MCI progression. However, further investigation is necessary in order to elucidate its

precise impact.

A second epigenetic regulator displaying dysregulation in MCI was DNA methyltrans-

ferase (cytosine-N4-specific), an enzyme critical for DNA methylation during epigenetic

modifications. Recent studies have highlighted the pivotal role of epigenetic mechanisms

in memory formation and cognitive processes [24]. Hypomethylation, frequently observed

in the context of reduced S-adenosylmethionine (SAM) levels, has been associated with

diminished folate availability and elevated homocysteine concentrations—both recognized

as risk factors for AD [25]. Additionally, DNA hypomethylation has been shown to enhance

amyloid beta (Aβ) production through the upregulation of genes involved in plaque for-

mation (APP, PSEN1, and BACE1) [26]. The observed reduction in DNA methyltransferase

levels in MCI converters suggests that aberrant epigenetic regulation may contribute to

cognitive decline.

We also observed an increase in hydrogenobyrinic acid a,c-diamide synthase (CopB,

GO.0043802) in MCI converters. This enzyme participates in the biosynthesis of cobalamin

(vitamin B12) and facilitates a reaction that generates glutamate as a byproduct. Excess

glutamate accumulation in the brain has been implicated in AD pathogenesis, with studies

in transgenic mouse models demonstrating that elevated glutamate levels potentiate Aβ-

mediated excitotoxic neuronal activity, a key feature of AD [27]. These findings suggest that

excessive glutamate production may exacerbate neurodegenerative processes, potentially

accelerating the progression from MCI to AD.

Isopentenyl diphosphate (GO.0051484), an enzyme involved in cholesterol biosynthe-

sis, exhibited increased levels in MCI converters, suggesting an upregulated cholesterol

metabolism. Elevated cholesterol levels have been involved in multiple pathways asso-

ciated with AD pathogenesis and prevalence [28]. Evidence indicates that cholesterol

metabolism is dysregulated in AD [29], and Aβ accumulation in the brain appears to

be modulated by cholesterol [30]. Although the precise role of cholesterol in MCI and

AD progression remains incompletely understood, these findings underscore a potential

mechanistic link between cholesterol dysregulation and neurodegenerative processes.

Finally, we identified a significant downregulation of methylmalonate-semialdehyde

dehydrogenase (MMSDH; GO.004491), a mitochondrial matrix enzyme involved in the

terminal steps of BCAA metabolism, specifically isoleucine, valine, and leucine. A dys-

regulated BCAA metabolism has been reported in AD, with studies documenting both

increased and decreased BCAA levels in affected individuals [31]. The altered expression

of MMSDH in MCI converters suggests a potential role in cognitive decline and early AD

pathology, highlighting the need for further research to elucidate the mechanistic interplay

between BCAA metabolism and neurodegenerative progression.

In the taxonomic genera model, 8 of 17 genera (47.07%) from the Gram-negative

phylum Pseudomonadota showed an increased abundance in MCI converters. Previous

studies have established a correlation between Gram-negative bacteria and AD pathology.

Lipopolysaccharides (LPSs), key components of the outer membranes of Gram-negative

bacteria, have been suggested as potential pathogenic factors in AD, with elevated levels

contributing to disease progression. LPS is associated with exacerbated neuroinflammation

and neurodegeneration, as well as increased tau hyperphosphorylation and gut microbiota

dysbiosis [32].

Overall, a reduction was observed in 21 of 38 (55%) analyzed bacterial taxa. An altered

gut microbiota composition, particularly a decline in bacterial diversity, has been previously

linked to neurodegenerative diseases [33] and has been specifically documented in AD [7].

This suggests that gut microbiota dysregulation may also contribute to the onset of MCI in
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the studied cohort. The three genera that exhibited the most significant alterations in MCI

converters were Thermovenabulum, Merdimonas, and Methanobrevibacter.

The genus Thermovenabulum, which was significantly reduced in MCI converters, be-

longs to the phylum Firmicutes. Firmicutes are known fermentative bacteria involved in the

synthesis of SCFAs, organic acids, and gases. Recent research has identified abnormal SCFA

concentrations in AD patients, with SCFAs postulated to exert anti-inflammatory effects,

inhibit tau protein aggregation, and contribute to the maintenance of blood–brain barrier in-

tegrity [34]. Additionally, molecular hydrogen (H2), a byproduct of SCFA metabolism, has

been proposed as an anti-inflammatory metabolite, with reduced levels being associated

with an increased risk of MCI [35]. Given that SCFAs have been shown to exert protective

effects against AD pathogenesis, their depletion in MCI converters suggests a potential loss

of neuroprotective mechanisms, which may contribute to disease progression.

The genus Methanobrevibacter, classified within the phylum Archaea, also exhibited

a significant reduction in MCI converters. Methanobrevibacter species are methanogenic

archaea that primarily metabolize CO2 and H2 and are hypothesized to promote the growth

of Firmicutes and Bacillota bacteria, both of which are key H2 producers [36]. According to

Hatayama et al., a decline in Firmicutes leads to a subsequent reduction in H2 production,

thereby diminishing anti-inflammatory responses and impairing gut barrier integrity,

ultimately facilitating MCI development [35]. If Methanobrevibacter depletion leads to a

cascade effect, resulting in a further decline in Firmicutes and Bacillota, it may contribute to

the pathophysiological mechanisms underlying MCI. Further investigation is warranted in

order to elucidate the precise mechanistic interplay.

Merdimonas, the third significantly altered genus, also exhibited a marked decline

in MCI converters. This finding aligns with the aforementioned Japanese study, which

similarly documented a reduction in Merdimonas populations in individuals with MCI [35].

The consistency of this observation across different cohorts suggests that Merdimonas

depletion may be a relevant microbial signature associated with early cognitive decline,

meriting further functional and mechanistic exploration.

Despite the promising results, a few limitations of the study need to be addressed.

One of our main limitations is our exploratory study design and the lack of a priori power

calculation, which is especially critical concerning the large number of possible features

for statistical selection which might result in a serious risk of overfitting. Therefore, larger,

more diverse, multi-center studies are needed to validate these findings in an independent

sample, thereby increasing statistical power. Additionally, it is important to note that

the analyzed models were only compared descriptively rather than statistically, meaning

the superiority of the identified model is not definitively established. Furthermore, as

we conducted a longitudinal observational study, we had to deal with the challenge

of an imbalanced sample (more stable healthy controls compared to MCI converters),

which might have influenced our results. Regarding our statistical methods in more

detail, ANOVA-type statistics for feature selection might be a valid but rather arbitrary

statistical option with several limitations. Therefore, future studies should use more

complex, data-driven statistical methods for variable selection (e.g., LASSO and Boruta)

instead. Additionally, the use of AUROCs in the statistical analyses does not distinguish

between high sensitivity and specificity, which could be important for clinical applications.

Contrary to our expectations, the clinical model including well-established risk factors

(age, gender, BMI, and ApoE4) yielded only a poor prognostic value at all time points

(AUROC ranging from 0.55 to 0.57), compared to the results of our previous study [13]. This

might be attributed to different sample characteristics, as these risk factors might be more

relevant in the prediction of AD compared to MCI. This, on the other hand, strengthens our

result of the predictive value of the gut microbiome model in this earlier stage of disease.
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On the other hand, this might also question our statistical approach and the validity of

our results and should, therefore, be incorporated in future studies. In comparison to our

previous work, the different sample populations (conversion of HC to MCI vs. MCI to

AD) may explain the variations in models identified in this analysis. Future studies should

also focus on investigating the conversion from HCs to AD. Lastly, it is important to note

that the results of our analyses postulate a direct pathway between microbiome changes

and cognitive decline. However, there might also be other relevant factors mediating this

association, like depression, cardiovascular disease, and metabolic disorders [37].

Our study supports the prognostic value of the functional gut microbiome in predicting

the conversion from healthy controls to MCI. A key strength is its longitudinal design,

which enhances previous cross-sectional findings [11,12], suggesting a causal link between

gut microbiome dysbiosis and cognitive decline. This evidence could inspire future studies

focusing on the specific clinical implications of our results (e.g., the identification of specific

gut microbiome profile alterations in healthy controls at risk for MCI or potential early

interventions targeting the gut microbiome to reduce cognitive decline).

In conclusion, we identified stable gut microbiome algorithms that predict the pro-

gression from HCs to MCI over a 4-year follow-up. The present findings highlight the

prognostic value of the gut microbiome for the early identification of patients at an in-

creased risk for MCI, which might supplement existing diagnostic assessment methods.

To our knowledge, this is the first study investigating gut microbiome features in healthy

individuals as prognostic markers for MCI, confirming a link between gut microbiome

dysbiosis and cognitive decline. Thus far, previous research established the composition of

the gut microbiome as a potential contributing factor to the development of neurodegener-

ative diseases such as AD. By focusing specifically on the transitional stage of MCI, our

research extends the field of neurodegenerative disease studies at a much earlier point in

the disease’s progression and complement the results of our previous study. Our findings

might be informative for designing future studies focusing on concrete diagnostic tools

in clinical practice, having the potential to enhance the early, non-invasive detection of

these conditions by using gut microbiome data. Notably, microbiome signatures may

be detectable in cognitively asymptomatic individuals, potentially indicating future MCI

progression. Especially relevant to clinical practice might be the identification of gut micro-

biome signatures that are unique to MCI with an underlying AD compared to MCI due

to other etiologic causes. Thus, research in that field could, overall, provide a critical time

advantage for early diagnosis and targeted therapeutic interventions. Future studies should

build on these findings to explore the causal relationship between microbiome dysbiosis

and MCI development, in order to improve diagnostic accuracy and supplement existing

diagnostic assessment methods, thereby facilitating the development of early interventions

for MCI, preclinical dementia, and other neurodegenerative diseases.

4. Materials and Methods

4.1. Participants

The subjects participating in the AlzBiom study were recruited at the Section of

Dementia Research at the Department of Psychiatry and Psychotherapy in Tübingen

(Germany) starting from 2016 to end of 2018. All participants were clinically examined at

BL by means of routine diagnostic work-up for dementia including physical, neurological,

and psychiatric examinations as well as brain imaging. At BL, inclusion criteria were

(1) normal cognition assessed via Mini-Mental State Examination ([38]; MMSE ≥ 27) and

the Clinical Dementia Rating scale [39,40] CDR = 0), (2) no subjective cognitive decline

(SCD), and (3) no history of neurological or psychiatric disorders. For MCI detection, we

used the amnestic MCI criteria proposed by Petersen et al. [41]. Furthermore, MMSE and
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CDR were repeated at 1yFU and 4yFU. Of the 100 participants, 57 participants remained

stable over 4 years, 29 participants developed mild cognitive impairment, and 14 dropped

out of the study. No a priori power analysis was conducted to assess the sample size. The

local ethical committee approved the study and written informed consent was obtained

from each individual.

4.2. Determination of the ApoE4 Genotype

The procedure for determining the ApoE4 genotype was performed as previously

described [8,13]. DNA was isolated from the cellular fraction of the blood using a proteinase

K digestion and subsequent alcohol precipitation. APOE genotyping was performed using

the Applied Biosystems Assay-on-demand TaqMan® SNP (Thermo Fisher Scientific, Pitts-

burgh, PA, USA) Genotyping Assays C_3084793_20 and C_904973_10, which correspond to

the APOE SNPs rs429358 and rs7412, and was carried out on a StepOne Real-Time PCR

Systems instrument (Thermo Fisher Scientific, Pittsburgh, PA, USA). The ApoE ε4-positive

genotype was assigned if at least one ε4 allele was identified.

4.3. Stool Collection, DNA Extraction, and Shotgun Metagenome Sequencing

As previously described [8,13], the stool samples were collected in a sterile plastic

device (Commode Specimen Collection System, Thermo Fisher Scientific, Pittsburgh, PA,

USA) and were usually collected by the participants at home using the DNA/RNA Shield

Fecal Collection Tube R1101 (Zymo Research, Irvine, CA, USA) and sent to our laboratory

immediately. In our laboratory, the samples were stored at −20 ◦C and DNA extraction

was performed on the same day with the ZymoBiomics DNA Miniprep Kit D4300 (Zymo

Research, Irvine, CA, USA). At GATC Biotech AG (Constance, Germany), DNA extraction

was performed in batches of 12 to 18 samples at the end of the sample collection period.

Shotgun metagenome sequencing was then conducted at the same facility using the NEB-

Next Ultra DNA Library Kit (New England Biolabs, Ipswich, MA, USA) for DNA library

preparation. Sequencing was carried out on an Illumina HiSeq platform (Illumina, San

Diego, CA, USA), employing a paired-end sequencing approach with a targeted read length

of 150 bp and an insert size of 550 bp. The objective was to achieve an average sequencing

depth of 40 to 50 million reads per sample.

4.4. Metagenomic Assembly

As previously described [8,13], we used Trimmomatic (version 0.35) to acquire high-

quality reads by means of adapter removing and a sliding window trimming with a

minimum length of 100 bp [42]. For quality control of trimmed reads, we used FastQC

version 0.11.5 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on

6 March 2023). Metagenomic scaffolds were assembled using SPAdes (version 3.9.0) with a

minimum length of 1000 bp to ensure high-quality profiling [43].

4.5. Taxonomic Classification

Kraken [44] was used for host removal and taxonomic profiling was performed with

MetaPhlAn (Metagenomic Phylogenetic Analysis) [45]. After collection, read counts of

input samples observed at taxa levels were normalized using the rarefy function im-

plemented in the vegan bioconductor package (version 2.6-4) [46] in order to compare

species richness.

4.6. Functional Classification

Functional profiles were analyzed using HUMAnN 2.0 (the HMP unified Metabolic

Analysis Network; version 0.11.2) [47]. In accordance with OUT and PICRUSt (Phylogenetic

Investigation of Communities by Reconstruction of Unobserved States) [48], the functional

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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categories were identified based on a comparison of the Gene Ontology (GO) Resource

(http://geneontology.org/, accessed on 6 March 2023).

4.7. Statistical Analysis

We used the statistical software package SPSS (version 23) to analyze demographic

and clinical data. For all tests, significance level was set at a priori for α = 0.05. Levene’s test

was used to prove the homogeneity of variances. For continuous variables (BMI, age, etc.),

t-tests for independent samples were used in case of continuous variables. If assumption of

normal distribution was not met, we used the nonparametric Mann–Whitney U-test (e.g.,

MMSE and GDS). For categorical variables (e.g., gender distribution and ApoE status), the

Pearson chi-square test was used.

A more complete analysis of our observational cohort study was used to identify

our prediction models for conversion from HCs to MCI. In these models, we investigated

taxonomic data (genera), functional data (GO), and clinical data (age, gender, BMI, and

ApoE) as features separately, as well as in an ensemble learning model. Our aim was to

find the most stable predictive model over time for the clinical outcome (MCI-converter),

based on feature abundances. After normalization, our first aim was to reduce the number

of included features. Following the approach by Brunner et al., a pre-selection of features

was carried out by means of ANOVA-type statistics (ATS) [49]. The calculation was

performed in R using the nparLD package (version 2.2) [50] with data from all three time

instances. This approach resulted in the identification of an appropriate number of about

30 features per model using ATS, thus yielding longitudinal information. After suitable

renormalization of the identified features, balances of the feature compositions at baseline

were calculated and were used to train logistic regression models. Best baseline models for

the different methods each (Genera, GO, and clinical meta data) were then applied to the

data from 1yFU and 4yFU by means of a logistic regression approach. The discriminatory

ability of the microbiome among both groups was investigated using receiver operating

characteristic (ROC) analysis. In a last step, an ensemble learning model including the

described models was investigated.

Customized R scripts and HeidiSQL (1.3) in connection with RMariaDB (1.1.1) were

used for data analysis. R scripts relying on mlr (2.18.0) package were used for model

training and feature selection [51]. For calculating the ROC curves, we employed Optimal-

Cutpoints (1.1-4).
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