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MEA-seqX: High-Resolution Profiling of Large-Scale
Electrophysiological and Transcriptional Network Dynamics

Brett Addison Emery, Xin Hu, Diana Klütsch, Shahrukh Khanzada, Ludvig Larsson,
Ionut Dumitru, Jonas Frisén, Joakim Lundeberg, Gerd Kempermann, and Hayder Amin*

Concepts of brain function imply congruence and mutual causal influence
between molecular events and neuronal activity. Decoding entangled
information from concurrent molecular and electrophysiological network
events demands innovative methodology bridging scales and modalities. The
MEA-seqX platform, integrating high-density microelectrode arrays, spatial
transcriptomics, optical imaging, and advanced computational strategies,
enables the simultaneous recording and analysis of molecular and electrical
network activities at mesoscale spatial resolution. Applied to a mouse
hippocampal model of experience-dependent plasticity, MEA-seqX unveils
massively enhanced nested dynamics between transcription and function.
Graph–theoretic analysis reveals an increase in densely connected bimodal
hubs, marking the first observation of coordinated hippocampal circuitry
dynamics at molecular and functional levels. This platform also identifies
different cell types based on their distinct bimodal profiles. Machine-learning
algorithms accurately predict network-wide electrophysiological activity
features from spatial gene expression, demonstrating a previously
inaccessible convergence across modalities, time, and scales.

1. Introduction

The brain evolved to process complex information robustly and
efficiently to maintain homeostasis, navigate the world, make de-
cisions, and perform higher cognitive functions.[1] Understand-
ing the complexity of the brain coherently from the molecular to
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system level requires integrating multi-
modal data from diverse spatiotemporal
contexts.[1] At the core of this ambitious
objective lies the integration of neuronal
electrophysiological and molecular pheno-
types at the network and cellular res-
olution, as these underlie physiological
functions as well as neurodevelopmen-
tal and neurodegenerative diseases.[2,3] To-
ward this aim, methodological develop-
ments like Patch-sequencing (Patch-seq)
have enabled single-cell transcriptomics
and themorphologic reconstruction of indi-
vidual neurons following electrophysiologi-
cal recordings.[4,5] While significant, Patch-
seq is limited by its very low through-
put and inability to resolve neuronal net-
works across larger spatial scales. Simi-
larly, Electro-seq, which integrates flexible
bioelectronics with in situ RNA sequenc-
ing to map electrical activity and gene
expression is restricted to in vitro neu-
ronal cultures and lacks applicability to
complex tissue environments.[6] Another

existing approach is CaRMA, which combines calcium imaging
with RNA-FISH to map gene expression and neural activity.[7]

However, like other methods, CaRMA is limited by the slow tem-
poral resolution of calcium imaging and post hoc transcriptomic
analysis, which restricts the real-time integration of molecular
and functional data. Its application is also confined to small brain
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regions, limiting its scalability for larger and more complex net-
works.
Two independent developments, however, offer a new perspec-

tive on this problem. By profiling expression patterns of thou-
sands of genes while preserving spatial tissue architecture, high-
throughput spatially resolved transcriptomics (SRT) offers unpar-
alleled insights into the molecular diversity of brain regions of
interest.[8,9] However, the temporal resolution of SRT is limited,
providing only single snapshots of the transcriptomic landscape.
Spatiotemporal transcriptomics is only resolvable using multi-
ple samples from different time points.[10,11] The functional state
to which the molecular signature relates thus has to be inferred
from circumstantial evidence. This clearly falls short of appreci-
ating the diversity of electrical andmolecular signals and their in-
terplay underlying brain function, cognition, and behavior.[12,13]

But novel brain-on-chip technologies empowered by high-density
complementary metal–oxide semiconductors (CMOS) biosens-
ing microelectrode arrays (CMOS-MEA) are now allowing the
noninvasive, multisite, long-term, and label-free simultaneous
measurements of extracellular activity capturing both local field
potentials and spiking activity from thousands of neurons at
high spatiotemporal resolution without disruption of cellular
integrity.[14–19] Merging these cutting-edge technologies would
potentiate the insight to be gained from decoding the spatiotem-
poral electrophysiological and spatial transcriptomic information
in the same tissue while retaining cell positioning. The underly-
ing fundamental hypothesis is that brain functions are executed
through the joint action of large assemblies of neurons and gene
networks that share basic organizational principles[20] and infor-
mation processing across a wide range of spatial and temporal
scales[13,21] that evolve with experience and change in disease.
To test this prediction, we developed the MEA-seqX plat-

form, which combines brain-on-chip recordings and spatial se-
quencing technologies, using optical imaging for spatial refer-
ence alignment within a cross-scale computational framework.
MEA-seqX allows the sequential acquisition of electrophysiolog-
ical recordings of simultaneous firing patterns from large cell
assemblies in acute brain slices at high spatiotemporal resolu-
tion, imaging of the entire circuit for spatial localization, and
multiplexed profiling of the cellular transcriptomics from the
same neural circuit. This reveals transcriptional dynamics as
structured variations in gene expression across different network
states, conditions, and temporally inferredmolecular trajectories,
enabling a functional link between transcriptomic states and neu-
ral activity. Using automatic machine-learning algorithms and
preserving time and topology in one high-resolution represen-
tation, MEA-seqX can specify spatial transcriptomic networks in
their real-time relation to connectivity and othermultimodal data,
quantify psueudotime-derived spatiotemporal molecular dynam-
ics based on the underlying firing information, deconvolute spa-
tially resolved cell type compositions, and predict electrophys-
iological network activity features from transcriptomic profiles
with high accuracy. The MEA-seqX platform surpasses the limi-
tations of existing technologies by providing simultaneous, high-
resolution recordings of both molecular and functional data in
real time. This enables comprehensive analysis of fast and slow
neural processes across large networks, offering novel insights
into the coordination of gene expression and neuronal activity.
The platform’s ability to integrate multiscale data makes it a pow-

erful tool for advancing both fundamental research and clin-
ical applications, including biomarker discovery and precision
medicine.
To illustrate the power of this approach, we apply it to the clas-

sical enriched environment paradigm of experience-dependent
plasticity, in which the sole experimental intervention lies in dif-
ferential housing conditions of laboratory mice. The enriched
mice live in a larger group of isogenic animals in a larger enclo-
sure compared to standard-housed animals.[17,22] This straight-
forward yet hugely influential paradigm elicits structural and
functional changes throughout the brain and hippocampus,
shaping scientific and public discourse.We have recently demon-
strated that its effects on an unexpected scale relate to changes at
the hippocampal circuit level.[17] MEA-seqX has now enabled us
to explore a once inaccessible question—how the computational
dynamics and connectome of a large-scale hippocampal network
are connected to the underlying transcriptional dynamics. Our
hypothesis posited a causal link between these two dynamics, a
connection frequently implied in biomedical contexts but previ-
ously supported by only sparse and limited data points. MEA-
seqX changes this by providing a more robust foundation.
Our study unveils the potential of identifying the molecular

identity and dynamics of large-scale neural circuits. We envision
the development of new multimodal models of high functional
validity in the contexts of health and disease. Such “biomarkers”
hold immense potential for the development of novel diagnos-
tic and screening tools, especially in but not limited to precision
medicine.

2. Results and Discussion

2.1. Interfacing Technologies and Integrating Information—from
Transcriptome to Functional Networks

MEA-seqX integrates brain-on-chip technology via network elec-
trophysiology (n-Ephys) on high-density CMOS-microelectrode
array (CMOS-MEA)[14,17,23] and spatial sequencing technology
via spatially resolved transcriptomics (SRT) and aligns them
with bioimaging via optical microscopy (Figures 1a–d and S1a,
Supporting Information). The high-resolution spatiotemporal
recordings of extracellular firing patterns were obtained from
300 μm mouse hippocampal-cortical “HC” acute slices inter-
faced with 4096-on-chip sensors. Concomitantly, optical imaging
was used for precise anatomical localization, and high-resolution
transcriptomic profiling data was obtained from the same cells
within the circuit.
Quality control of our transcriptomic datasets revealed similar

nFeature and nCount RNA statistics and tissue structure when vi-
sualized via a Uniform Manifold Approximation and Projection
(UMAP) method (Figure S2a–d, Supporting Information).[24]

Network-wide activity in the HC was assessed through principal
component analysis (PCA) and K-means clustering algorithms,
which provided distinct features of oscillatory waveforms and
their shapes in each interconnected HC layer (Figure S2e, Sup-
porting Information).[22] The multidimensional readouts were
processed through a Python-based computational pipeline to
quantitatively map the molecular dynamics of the circuit at high
spatial resolution (Figure S1b, Supporting Information). Amulti-
scale spatial rescaling and alignment procedure was developed to
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Figure 1. MEA-seqX platform overview for integrating brain dynamics across scales. a,b) The platform combines high-density CMOS-MEA, optical
microscopy, and spatial sequencing technology to examine the relationship between spatial transcriptomics and neural oscillatory dynamics. c) A high-
density CMOS-MEA equipped with 4096 sensing electrodes adeptly captures functional firing LFP patterns stemming from all HC regions with pinpoint
precision in spatial coordinates. d) Leveraging spatial barcodes, SRT with 5000 spots allows the systematic mapping of gene expression profiles, eluci-
dating the spatial nuances across HC regions. e) A Python-based pipeline processes data to map transcriptional-functional dynamics. This includes a
multifaceted spatial rescaling and alignment approach, establishing a direct association between neural activity and transcriptomic features. f) A closer
examination, exemplified by a sensing electrode coupled with the SRT spot, highlights the discernible pitch size difference between the two platforms.
g) Advanced analysis from multidimensional readouts provides insights into multiscale network features. The analysis, including topological graphs,
captures the intricate web of multimodal transcriptional-functional connectivity. Also, multiscale neural dynamics are quantified with gene pseudotime
and center of activity trajectories. Cell-type composition is inferred from spatial transcriptomic data correlated with their firing characteristics obtained
from n-Ephys. In addition, the automatic machine-learning algorithm accurately predicts electrophysiological features from transcriptomic profiles.

establish a direct correspondence between the n-Ephys electrode-
SRT spot interface and their respective network-wide functional
electrical activity and transcriptomic feature readouts with their
localization in the tissue. This was implemented with automatic
scaling algorithms, employing image resizing and rotation based
on optical imaging, n-Ephys electrode-SRT spot interface phys-
ical size, and two anatomical landmarks in the dentate gyrus
(Figure 1e; for details, see the Experimental Section). The result-
ing overlay allowed the identification of network features from
the transcriptomics readouts in alignment with readouts of neu-
ral activity (Figure 1g). MEA-seqX generated precise topological
graphs of multimodal data connectivity, presenting both the lo-
cal and global relationships of SRT spots and the underlying fir-
ing electrodes (Figure 1g). From the wealth of high-dimensional
data, transcriptional pseudotime dynamics underlying firing in-
formation flow were derived (Figure 1g). By integrating a de-
convolution method, we inferred cell-type resolution from the
spatial transcriptomic data and correlated the neuronal hetero-
geneity to their firing features (Figure 1g). Finally, MEA-seqX
provided an automatic machine-learning algorithm to predict
high-accuracy network electrophysiological activity features from
spatial transcriptomic profiles (Figure 1g). This integration of
electrophysiological recordings and transcriptomic data provides
an unprecedented depth of insight into network-wide molecular
and functional activity. Importantly, independent data collection
approaches—such as using separate slices for each modality—

would be suboptimal and fundamentally limited in their capacity
to capture precise, spatially resolved interactions between neu-
ronal function and gene expression. Without preserving the ex-
act cellular and network topology in which transcriptional pro-
grams unfold, inferred relationships would remain speculative
rather than directly measurable. Thus, simultaneously captured
electrophysiological and transcriptomic data within the same tis-
sue sample ensure that observed functional-transcriptional rela-
tionships reflect genuine interactions rather than variations aris-
ing from separate samples. Building upon this integrative ap-
proach, the following sections extend these findings by linking
the spatial transcriptome to functional dynamics, revealing how
transcriptional networks align with electrophysiological features
across the hippocampus.

2.2. Linking Spatial Transcriptome to Network-Wide Neural
Functional Dynamics

To apply the pipeline to a concrete, previously unsolvable re-
search question, we used the MEA-seqX framework to uncover
the impact of experience-dependent plasticity[17] on the coordi-
nated activity of neuronal ensembles and their interaction with
orchestrated transcriptional activity. HC slices frommice housed
in standard (SD) and enriched environment (ENR) conditions
were prepared for recording oscillatory patterns of local field
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potentials (LFPs), optical imaging, and SRT sequencing. To as-
sess how spatial patterns of gene expression (SRT) correspond
to the functional network electrophysiological activity features
(n-Ephys) of the same brain tissue, we measured Spearman’s
correlation[25] to quantify the transcriptional similarity of gene ex-
pression profiles from SRT spots and examine their relationship
to functional network activity features (i.e., amplitude, LFP event
delay, energy, LFP rate, negative peak count, and positive peak
count). We found a significant enhancement in the gene expres-
sion pattern corresponding to the functionally coupled dentate
gyrus (DG) and CA3 hippocampal subregions in ENR compared
to SD (Figure 2a). In particular, the LFP rate showed a 2.2-, 2.5-
, and 0.6-fold increase of correlated transcripts in the DG, CA3,
and CA1 subregions, respectively, in the ENR compared to the
SD (Figure 2b). We next sought to identify which specific genes
would drive a stronger causal link between correlated molecu-
lar and functional networks. Based on gene ontology clusters,
we categorized correlated genes into six targeted gene families,
including immediate early genes (IEGs), hippocampal neuroge-
nesis, hippocampal signaling pathway, receptors and channels,
synaptic plasticity, synaptic vesicles, and adhesion.[26,27] Examin-
ing transcripts from these families illustrated enhanced expres-
sion of IEGs, ion channel activity, synaptic function, and neuro-
genesis in ENR compared to SD. Genes essential for hippocam-
pal activity and function, such as Bdnf, Egr1, Homer1, Npas4,
Gria2, and Campk2a, had higher expression levels in the hip-
pocampal transcriptome of ENR compared to SD (Figure S3, Sup-
porting Information).
Next, to identify distinct spatiotemporal patterns across the

combined SRT and n-Ephys modalities, we implemented an
unsupervised machine-learning algorithm using a sparsity-
constrained non-negativematrix factorization (NMF).[28] This ap-
proach allowed decomposingmodalities into sets of differentially
expressed subnetworks of genes, spatial locations, and network
electrophysiological features to provide dimensionality reduction
and interpretability (Figure 2c). IEGs exhibited a significant con-
tribution to linking spatial transcription patterns to LFP activity
(Figure S3, Supporting Information). To determine the optimal
number of components (i.e., factors p) to be discerned by the di-
mensionality reduction model within the NMF decomposition,
we evaluated the efficacy of reconstructing the V-matrix across
a spectrum of model complexities. A distinct “elbow” was iden-
tified as situated between two linear regimes of the reconstruc-
tion error[29] at p = 12. At this point, incorporating additional pat-
terns into the model resulted in marginal enhancements in the
fit quality (Figure 2d). The input expression V-matrix, which con-
tains the combined information from SRT and n-Ephys (i.e., LFP
rate) data, with each entry representing the expression level of a
gene correlated to network function feature at a specific spatial
location (Figure 2e), was decomposed into two non-negative ma-
trices. The basisW-matrix contains the factorized spatial gene ex-
pression patterns and their locations reflecting the functional fea-
ture contribution across spatial locations (Figure 2f). and the coef-
ficient H-matrix represents the inferred contribution of gene ex-
pression patterns to each spatial location and n-Ephys functional
feature profiles (Figure 2g). This analysis unveiled increased nor-
malized gene expression and network feature values in the ENR
network, along with higher spatially resolved components driv-
ing the strength in gene expression. In addition, we found spa-

tially specific subnetworks in the SD and ENR networks, high-
lighting dominantly contributing genes such as Bdnf, Egr1, Fosb,
and Npas4.
MEA-seqX suggests a computational role of the experience-

dependent dynamics in the coordinated interaction of neuronal
ensemble activity and their corresponding transcription patterns.
Having established a strong correlation between spatial gene
expression and functional network activity, the next section ex-
plores how these interactions are organizedwithin the hippocam-
pal network. Here, we investigate the topological structure of the
multimodal network, uncovering the coordinated organization of
molecular and electrophysiological subnetworks.

2.3. Coordinated Topological Network Organization of Spatially
Resolved Transcriptome and Activity Patterns

We employed quantitative measures to comprehensively exam-
ine the interconnections between HC subnetworks derived from
SRT data and neural n-Ephys recordings under SD and ENR con-
ditions. We calculated “mutual information,”[30] i.e., the mea-
sure of the mutual dependence between two variables, to as-
sess the extent of the interdependence of gene expression within
specific gene families (Figure S4a, Supporting Information) and
Pearson’s correlation coefficient (PCC)[14,17] to gauge the cross-
covariance among pairs of firing electrodes (Figure S4b, Sup-
porting Information). These computations allowed us to estab-
lish connectivity matrices on multiple scales. Next, we com-
puted mutual information distance scores for each target gene
family in every spot to gauge the dissimilarities in interaction
within the different spots. These scores were then compared be-
tween spots and organized into clusters (Figure S5a–f, Support-
ing Information).[30] Simultaneously, we quantified differences
in the correlation matrices by analyzing the PCC of concurrent
LFP activity across interconnected HC layers (Figure S5g, Sup-
porting Information).[14,17]

Upon analyzing various gene families, it became evident that
the ENR transcriptome, in contrast to SD, exhibited higher mu-
tual information both within individual HC subregions and be-
tween different HC subregions. This suggests a more robust
statistical relationship in coordinated activity and communica-
tion among gene expression patterns within theHC subnetworks
(Figure S5a–f, Supporting Information). Importantly, as evident
from the LFP cross-correlogram[17] (Figure S5g, Supporting In-
formation), this finding strongly aligned with the significant en-
hancement in both the local and global strength of spatiotem-
poral interactions in ENR versus SD networks.[17] The local and
global interconnectivity within the hippocampal network reflects
the coordinated dynamics between transcriptomic expression
and neural activity. Locally, this coordination manifests within
specific subregions such as DG, CA1, and CA3, where tran-
scriptional patterns and LFP activities are tightly linked within
these smaller-scale networks. Globally, the long-range coordi-
nation across these subregions strengthens, revealing a more
interconnected and cohesive network that spans multiple hip-
pocampal to cortical areas. This enhanced coordination, driven by
experience-dependent plasticity in ENR, results in more robust
functional and molecular-level communication within the hip-
pocampus. These findings demonstrate that ENR independently
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Figure 2. Integration of spatial gene expression patterns and network electrophysiological features. a) Comparative analysis of SRT expression patterns
and functional n-Ephys activity features illustrate enhanced gene expression patterns in ENR corresponding to the DG and CA3 regions compared to SD.
The statistical significance of SRT and n-Ephys features correlation is quantified using Benjamini-Hochberg false-discovery rate (FDR)-adjusted p-values
(padj). b) Quantitative profiling of correlated genes based on network-wide LFP rate reveals a 2.2-fold increase in correlated genes in the DG and 2.5-
and 0.6-fold increases in CA3 and CA1 subregions, respectively, in ENR compared to SD. The significance of SRT and LFP correlation is measured using
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enhances both transcriptional and electrophysiological network
coherence, resulting in parallel, functionally aligned adaptations
at the molecular and functional levels.
Subsequently, to describe and quantify the topological orga-

nization, flow of information, and communication properties
within themultimodal transcriptional-functional readouts,MEA-
seqX used a graph–theoretic approach to assess multiscale net-
work topological metrics (Figure 3a). This involved construct-
ing detailed wiring diagrams depicting both local and global in-
terconnections between transcriptomics and neural activity pat-
terns. The transcriptomic graph was formed using mutual infor-
mation scores, while the functional graph was generated from
the connectivity patterns among co-firing neuronal ensembles, as
captured by the LFPs under SD and ENR conditions. The resul-
tant connectivity maps between transcriptomics and neural func-
tion revealed the spatial arrangement of interconnected subnet-
works derived from spatial IEGs and spatiotemporal functional
neural activity. Remarkably, these maps demonstrated analogous
spatial distributions and connectivity patterns across different
scales and modes (Figure 3b,c). Comparing HC networks be-
tween SD and ENR further emphasized a heightened level of
across-scale causal coordination. The transcriptional-functional
connectome was enhanced in ENR compared to SD.
We also conducted analyses on the constructed graphs to

identify highly interconnected nodes termed “hub complexes”
and densely connected hubs referred to as “rich-club organiza-
tion” within the transcriptional-functional connectomes.[31] ENR
subnetworks, derived from both SRT and n-Ephys data, exhib-
ited greater interconnected hub complexes and rich-club or-
ganization (Figure 3d,e; blue) compared to their SD counter-
parts (Figure 3d,e; gray). This indicates that enriched experi-
ence leads to enhanced specialization in coordination interac-
tions, heightened resilience, and an increased capacity for global
communication[32] across transcriptional-functional scales. Such
specialization is evident from increased modularity, pronounced
hub formation, and enhanced rich-club connectivity, collectively
reflecting a more hierarchically organized and functionally op-
timized hippocampal network under ENR conditions. These re-
sults shed new light on the dynamic interactions and mutual in-
fluences between molecular and functional hub complexes, con-
tributing significantly to the overall coordination of multiscale
topological network organization.
Many biological networks are characterized by a small-world

topology[33] defined by a scale-free architecture consisting of
highly connected hub nodes and a degree distribution that de-
cays with a power-law tail.[34] By analyzing cumulative degree
distributions of interconnected links in the transcriptomics and
functional connectome from SD and ENR networks, we found

that these multiscale distributions indeed followed a power-law
function, which we have previously also postulated for a tran-
scriptomic network of adult hippocampal neurogenesis[35] and
network-wide activity in ENR.[17] Both SRT and n-Ephys distribu-
tions in ENR networks displayed a heavier tail than SD, indicat-
ing a more significant number of densely linked hubs (Figure 3f
and insets). This finding is supported by sparsity-constrained
NMF analysis of multiscale degree distributions (i.e., similar to
those implemented in Figure 2c–g). We quantifiedmultiscale de-
composed sets of variably expressed subnetworks of genes, spa-
tial locations, and the network’s connectivity node degree fea-
tures to identify the variation in network topological metrics con-
comitant with the expression of spatially resolved IEGs and the
degree of network connectivity (Figure S6, Supporting Informa-
tion).
By revealing experience-induced hippocampal connectomics

across scales and its intricate multilayer dynamic characteristics
within a single experiment, our results demonstrate the capac-
ity of MEA-seqX to integratively capture coordinated transcrip-
tomics and functional data. This integration allows novel insights
into neural communication, resilience levels, hierarchical organi-
zation, and specialization across multiple scales that previously
could only be studied independently and usually based on limited
data.[32,36,37]

The enhanced topological organization of hippocampal net-
works in enriched conditions highlights the strength of mul-
tiscale coordination between transcriptional and functional dy-
namics. In the next section, we assess the temporal dynamics of
these interactions, focusing on howmolecular and functional in-
formation unfolds over time to drive coordinated neural activity.

2.4. Assessing Multiscale Dynamics of Multimodal Information

To address the challenge of unraveling the synchronous dy-
namics across scales and modalities, we combined two cutting-
edge computational methods—Diffusion Pseudotime (DPT)[38]

for SRT and Center of Activity Trajectories (CAT)[14,17,39,40] for
n-Ephys. This integrative approach is aimed at unraveling the
temporal progression of gene expression and network-wide neu-
ral activity in hippocampal circuitry. We applied DPT to the
static snapshot SRT data to achieve pseudotemporal ordering
by assembling the spots according to expression similarity. This
allowed us to construct a network representation of SRT de-
velopmental trajectories. The probability of differentiation was
computed through Euclidian distances from vector-based ran-
domized distances in the diffusion map space, which facili-
tated the identification of low-dimensional changes from high-
dimensional observations. We here focused on IEG’s expression

Benjamini-Hochberg FDR-adjusted p-values (padj). c) Application of unsupervised machine-learning through sparsity-constrained NMF. The algorithm
enables the joint analysis of SRT and n-Ephys data, revealing diverse subnetworks of genes, spatial locations, and electrophysiological features. d) The
reconstruction error of V, considering various quantities of shared spatiotemporal patterns in H. An evident “elbow” is observed at p = 12, where the
enhancement of the model diminishes. e) The combined input expression matrix (V) captures the collective information from SRT and n-Ephys (LFP
rate) datasets. Each entry signifies the gene expression level correlated to functional network activity features at a specific spatial location. f) The basis
matrix (W) illustrating the spatiotemporal distribution of factor weight contributions (LFP rate). Each factor is colored according to the dominant gene
contribution to illustrate how gene expression patterns are distributed across spatial locations and linked to the observed functional features patterns.
A subset of 4 out of 12 extracted factors is shown. g) Coefficient matrix (H) representing the factor weight contributions (gene expression) to the spatial
locations and n-Ephys feature profiles identified in (f). Each factor is colored according to the dominant gene contributions to illustrate the inferred
relative influence of each gene across spatiotemporal features, revealing distinct transcriptional-functional network interactions.
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Figure 3. Multiscale network topological analysis of spatially sequenced connectome and neural functional connectivity. a) Illustration of key multiscale
graphmeasures depict the characteristic Hub and Rich-club nodes defined based on their degree of interconnectedness in an acute hippocampal-cortical
slice. Node degree corresponds to the number of attached links at a given node. b) Connectivity maps of spatial IEGs in HC-interconnected layers in
ENR and SD. The networks are visualized with Gephi to illustrate total connections from complete sequenced SD data (node = 546, and links = 5166)
and ENR data (node = 877, and links = 50974). c) Connectivity maps of spatiotemporal functional neural activity in HC-interconnected layers under
ENR and SD conditions. The networks are visualized with Gephi to illustrate 2% of total connection in SD (node = 1057, and links = 24217) and ENR
large-scale recorded data (node = 2003, and links = 36312). Graph nodes in (b) and (c) are scaled according to degree strength and colored according
to HC module association and indicated in colored circles legends. Colored links identify the intra- and inter-cluster connections. d) The percent of
quantified hubs and rich-club nodes in different hippocampal transcriptomic networks in SD and ENR. e) The percent of quantified hubs and rich-club
nodes in different hippocampal functional networks in SD and ENR. f) The power-law distributions indicate scale-free transcriptomic (SRT)-functional
(n-Ephys) network topologies with small-world properties in SD and ENR networks. The log-log plot of the cumulative connection distribution for ENR
(SRT and n-Ephys; blue) networks exhibits a significantly heavier tail than SD networks (SRT and n-Ephys; gray), indicating low-degree nodes coexist with
a few densely connected hubs, yet higher than SD networks, which reach a cut (*p < 0.05, Kolmogorov–Smirnov test). This is also supported at the linear
scale (insets) for all conditions, and their compliance to power law is assessed with Pareto fits (*p < 0.05, Kolmogorov–Smirnov test). The lognormal
function fitted the power-law distributions with goodness of fit in a log-log plot [with a coefficient of determination R2 = 0.95, 0.98, 0.96, and 0.97 for
SRT, n-Ephys (SD), SRT, and n-Ephys (ENR), respectively]. The probability density function of Pareto fitted the power-law distributions with goodness of
fit in the linear plots [with R2 = 0.96, 0.97, 0.95, and 0.97 for SRT, n-Ephys (SD), SRT, and n-Ephys (ENR), respectively].

in SD and ENR, revealing significant regional differences in DPT
based on IEG’s expression (Figure 4a,b). Concurrently, we quan-
tified the intra-hippocampal spatiotemporal propagation path-
way by constructing CATs for all n-Ephys circuit-wide oscilla-
tory activity and thereby calculated the rate of spatiotemporal dis-
placement of those firing patterns (Figure 4c,d). The analysis of
CAT duration demonstrated faster propagation (i.e., shorter du-
ration) of firing events in ENR compared to SD, as previously
reported.[17] Remarkably, the comparison of SD and ENR tran-

scriptomes indicated a faster DPT in all four hippocampal re-
gions of ENR transcriptome compared to SD as well, thus mir-
roring the faster spatiotemporal propagation patterns observed
in the ENR obtained from n-Ephys CATs (Figure 4c–e).[17] By in-
tegrating the DPT spatial maps with the temporal progression of
neural activity trajectories, modulated by the impact of rich expe-
rience, allowed us to instantiate a multiscale perspective of how
molecular and electrical processes unfold simultaneously and in-
teract within a biological system. Diving deeper into experience-

Adv. Sci. 2025, 12, 2412373 2412373 (7 of 18) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 4. Analysis of multiscale hippocampal dynamics. a) Differential progression of DPT in the expression of IEGs from SRT SD data showcases
the developmental trajectory of cells within the hippocampal spatial regions. b) Same as in (a) but in ENR. c) Correspondence between DPT and CAT
analyses in SD to infer colocalization, spatial-temporal alignment, and functional insights. d) Same as in (c) but in ENR. e) Quantifying differential DPT
progression in interconnected hippocampal regions in SD and ENR (*p < 0.001, ANOVA test).

Adv. Sci. 2025, 12, 2412373 2412373 (8 of 18) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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dependent activity dynamics, the comparison between SD and
ENR becomes particularly enlightening, as these differential en-
gagement patterns highlight distinct subregional recruitment re-
flective of underlying functional andmolecular adaptations. Such
a comparison potentially unravels the causal link between dy-
namic changes at the molecular level and those on functional
scales.
Different experiential environments, as represented by SD and

ENR, induce distinct responses at the transcriptome level, which
are reciprocally and indivisibly linked to the neural activity in
the same cells. These findings present direct evidence of differ-
ential activity of multiscale coordination between transcriptomic
and functional neuronal activity, while preserving spatial infor-
mation across different environments (SD and ENR). This align-
ment betweenmolecular and functional processes is significantly
enhanced under ENR, as shown by the faster DPT and reduced
spatiotemporal displacement of neuronal firing (CAT). Our find-
ings reveal how environmental enrichment fosters more syn-
chronized coordination between gene expression and neuronal
activity, reinforcing network integration and plasticity. These re-
sults build upon prior work showing how synaptic and intrinsic
plasticity are modulated by experience[41] and extend this under-
standing by revealing how gene expression directly impacts net-
work synchronization and functional dynamics.[27,42] Moreover,
our study supports the role of multiscale coordination in mem-
ory trace formation and cognitive resilience.[43]

With the temporal dynamics ofmolecular and functional activ-
ities now mapped, the next section probes the cellular diversity
within the hippocampal circuit. By identifying specific cell types
and linking them to their functional and transcriptomic profiles,
we gain a deeper understanding of the cellular heterogeneity driv-
ing hippocampal network dynamics.

2.5. Spatiotemporal Cell-Type Identification

Next, to understand the transcriptional diversity of neural cell
types and their roles in the firing patterns of the hippocam-
pal circuits,[44] we used the conditional autoregressive-based
deconvolution (CARD) method using a single-cell sequencing
reference.[45,46] This allowed us to determine cell types and lo-
cal tissue composition from the deconvolved gene expression
patterns to construct multiscale spatial maps of the hetero-
geneity of neural types and their firing characteristics in the
same HC tissue. The initial application of CARD yielded a
broad group classification of hippocampal cell types. This di-
verse group encompassed astrocytes, endothelial cells, ependy-
mal cells, macrophages, microglial cells, neurogenic cells, neu-
rons, oligodendrocytes, and NG2 cells. Prior to any filtering, we
identified 85 different cell types, a finding that underscored the
experimental validity of our slice acquisition technique. Follow-
ing the removal of low-count cell types, we were left with a robust
group of 76 cell types.
Interestingly, when these cell types were exposed to two dif-

ferent transcriptomic inputs from SD and ENR, we observed a
consistent distribution of prominent cell types across both tran-
scriptomes (Figure S7, Supporting Information). This result un-
derscores the robustness of our approach and the reproducibil-
ity of our findings. Furthermore, integrating the CARD method

into MEA-seqX proved instrumental in achieving spatially re-
solved cell-type composition and linking it to large-scale oscilla-
tory electrophysiological features (Figure 5a). We identified spe-
cific high-proportionate cell types within the DG and CA3 re-
gions based on their unique marker genes. In the DG, gran-
ule cells (GCs) were characterized by Cck and Penk expressions,
while CA3 pyramidal cells displayed Nos1 and Inhba markers.
In accordance with prior studies,[47] we have observed the pres-
ence of both common Cck-expressing and less frequent Penk-
expressing GCs within the molecular layers of the DG and
suprapyramidal blade (Figure 5b). Notably, the expression of both
marker genes was significantly higher in ENR compared to SD
(Figure 5d). When these markers were superimposed onto the
DG-functional network data, the ENR samples showed enhanced
firing patterns and signal amplitude, especially within the DG’s
suprapyramidal blade (Figure 5b,d). Prior research has associ-
ated Penk with enrichment in DG engram cells and its involve-
ment in hippocampal-associated behaviors,[47] while Cck is im-
plicated in the dynamic selection and control of cell assemblies
in DG.[48] Our data align with existing reports and highlight
a marked increase in DG excitability and temporal dynamics
in ENR, suggesting a potential avenue for exploring how en-
riched experiences might affect the transcriptional-functional in-
terplay in hippocampal circuitry, aiding in understanding the
cellular and molecular basis of memory.[49] Conducting a simi-
lar analysis, focusing on the spatial distribution of the pyrami-
dal cell layer in CA3 (Figure 5c), we identified Nos1 and Inhba
marker genes exhibiting significantly higher expression in ENR
than SD (Figure 5e). This transcriptomic readout matches the in-
creased LFP rate and distinctive waveform characteristics identi-
fied within the CA3 region (Figure 5c,e).Nos1 has established as-
sociations with pivotal neural mechanisms, encompassing long-
term potentiation (LTP), synaptic plasticity, and regulating neu-
ral circuit dynamics,[50,51] while Inhba is linked to neuroprotec-
tion and neuronal survival.[52] These reports provide robust sub-
stantiation for our enhanced transcriptional-functional findings
within the framework of the experience-dependent paradigm ev-
ident in the ENR group. This, in turn, paves the way for a more
profound exploration of the specific role played by these marker
genes within CA3 pyramidal neurons, along with its potential
implications for comprehending neural function and dysregula-
tion across scales. Moving beyond single-cell methods and focus-
ing onmultiscale network-level dynamics, our findings provide a
more comprehensive and nuanced understanding of hippocam-
pal cell types and their interactive sequential electrophysiological
properties across multiple scales.
Finally, we leverage machine-learning models in the follow-

ing section to predict how gene expression profiles can influ-
ence network-wide electrophysiological features. This approach
offers a powerful tool to further elucidate the causal links between
molecular and functional scales.

2.6. Prediction across Scales and Modalities

To investigate whether the expression profile of individual
spatially-resolved genes can predict hippocampal network-wide
electrophysiological activity features, we employed the Gradi-
ent Boosting (XGBoost) Algorithm, known for its strong inter-
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Figure 5. Analysis of spatial cell-type and their firing pattern fingerprints. a) Integrating the CARD methodology into the MEA-seqX platform yields a
spatially resolved composition of cell types accompanied by underlying oscillatory firing characteristics. This presentation includes the top 20 cell types
with the highest proportions, as determined by SRT readouts, LFP Rate, and oscillatory waveforms derived from n-Ephys readouts across the entire
hippocampal network. b) Examination focusing on the DG region offers an in-depth view of the spatially resolved composition of cell types alongside the
corresponding oscillatory firing features. c) Similarly, a regional assessment within the CA3 pyramidal cell (PC) network provides insight into the spatial
composition of cell types and their corresponding oscillatory firing features. d) The ENR transcriptome exhibits higher proportions of spatially localized
marker genes-Cck and Penk- associated with granule cell types in the DG. These proportions are notably elevated compared to the SD transcriptome.
Similarly, ENR exhibits a higher LFP rate and amplitude than SD (***p < 0.001, **p < 0.01, ANOVA, **p < 0.05, ANOVA). e) Analysis in the CA3 region
reveals increased proportions of spatially localized marker genes Nos1 and Inhba, linked to pyramidal cell types, in the ENR transcriptome compared to
the SD transcriptome, which correlates with the higher LFP rate and amplitude on the functional network scale (***p < 0.001, ANOVA).

pretability by integrating multiple tree models.[53] While previ-
ous methods have focused on gene properties correlated with
electrophysiological andmorphological diversity across cell types
using low-resolution transcriptomics and electrophysiology (e.g.,
single-cell RNA sequencing and Patch-clamp),[4,5,44] our study
aimed at assessing whether specific functional network activity
features could be predicted using spatially resolved transcrip-
tomic data. The XGBoost model was trained for each quanti-
tative n-Ephys feature using 70% of spatial transcriptomic data
points in the detected SRT spots (i.e., 333 genes across the spatial
context of HC tissue and six gene families as input). Three spa-
tiotemporal n-Ephys activity features (LFP rate, amplitude, and
LFP event delay) were successfully predicted based on the dif-
ferential spatial gene expression. The XGBoost model operates
automatically once trained, meaning that it requires no further
manual input to predict network-wide electrophysiological activ-
ity features from spatially resolved gene expression data, provided
they remain consistent. However, introducing new gene lists or
n-Ephys activity features would necessitate model re-training (for
details, see the Experimental Section) to accurately capture the
novel predictive relationships. This automation allows for effi-
cient processing of new datasets, ensuring scalability and consis-
tent performance across multiple experimental conditions. The

relationship between cross-validated predictions and the ground
truth was evaluated with the Pearson correlation coefficient (r)
for SRT-spot-n-Ephys electrodes (Figure 6a and Figure S8, Sup-
porting Information). By implementing the XGBoost on spe-
cific gene families that exhibited higher expression in ENR com-
pared to SD circuits, we observed significantly higher prediction
accuracy for the ENR dataset. The XGBoost classifier achieved
≈93% accuracy for the ENR dataset and ≈70% for the SD dataset
(Figure 6b). Such predictive interplay between individual genes
or gene families at the transcriptomic level and network-level
functionality might support the idea that brain functions are
orchestrated via multiscale networks that follow fundamental
organizational tenets.[20] These results underscore a multiscale
causative association between neural activity, plasticity, and dis-
tinct spatial gene expressions within specific gene families. This
aligns with the predictions of network-level functionality modu-
lated by prior experience.[17] Specific genes predicted to influence
particular n-Ephys activity featuresmay be targeted formanipula-
tion to validate their functional role.[54] This approach could shed
light on critical genes and cellular pathways shaping neuronal re-
sponses and overall brain function while revealing the regulatory
mechanisms governing neural dynamics, plasticity, and disease
pathogenesis. By leveraging data-driven learning, our model im-
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Figure 6. Machine-learning prediction for multiscale transcriptional-functional data. a) Application of the XGBoost algorithm to predict network elec-
trophysiological metrics (LFP rate, amplitude, and LFP event delay) from transcriptomic data of each specified gene family in SD and ENR data. The
prediction of n-Ephysmetrics from the transcriptomics data is evaluated with Pearson correlation coefficient (r) in SD and ENR. The significant difference
between the predicted SD and ENR values in all gene families is indicated (***p < 0.001, ANOVA). b) Performance of the XGBoost indicated by mean
accuracy value comparison from final data output iterations of all gene families exhibiting higher prediction accuracy for the ENR than SD data. The
values computed over the mean, and three standard deviations are determined to be within the threshold of chance.
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plementation identifies predictive links between transcriptomic
states and functional network dynamics without imposing strict
mechanistic assumptions. While key effectors such as ion chan-
nels and synaptic modulators naturally emerge as influential
predictors, the model autonomously ranks transcriptomic fea-
tures based on network-wide integration. Moving forward, MEA-
seqX provides a scalable framework for mechanistic exploration
and the experimental validation of causal gene-function interac-
tions. Our integrated approach will massively reduce experimen-
tal complexity, thus enhancing result interpretability and offering
guidance for subsequent investigations.

3. Conclusions and Outlook

In this study, we introduced the MEA-seqX platform, which pro-
vides the unprecedented capability to simultaneously capture and
integrate molecular and functional information across multiple
scales within intact brain tissues. MEA-seqX pushes the bound-
aries beyond existing technologies such as Patch-seq, Electro-seq,
CaRMA, and spatial transcriptomics by combining the advan-
tages of various techniques while overcoming their individual
limitations. MEA-seqX presents a distinctive solution to limited
spatiotemporal resolution by harnessing the high-density capa-
bilities of CMOS-MEA technology combined with spatial tran-
scriptomics, optical imaging, and computational tools, offering
exceptional temporal resolution within spatial contexts. The plat-
form fills a crucial gap in our understanding of the molecular in-
frastructure supporting and resolving the integrity of large-scale
neural interactions in physiological and experience-dependent
plasticity paradigms.[20,55] Through our integrative approach, we
identified spatially resolved causal regulation across molecular-
functional features, which uncovered the impact of environmen-
tal factors on coordinated neural activity and gene expression—a
suspected but previously essentially inaccessible link.
The platform’s graph-theoretic analysis revealed a small-world

topology with densely connected hub complexes, indicating
molecular-functional specialization and increased global com-
munication capacity across scales.[32,35,56] Furthermore, by com-
bining DPT and CAT analyses, MEA-seqX traced the pseudotem-
poral ordering along the developmental trajectory of cells within
their spatial contexts and the progression of large-scale neural
activity, providing unique insights into coordinated spatiotem-
poral dynamics in the hippocampal circuitry. MEA-seqX also
demonstrated the potential for cell-type identification and high-
lighted the heterogeneity of neural cell types and their network-
wide spectral fingerprints in the hippocampal circuit. The plat-
form’s predictive capabilities usingmachine-learning algorithms
allowed accurate forecasting of network-wide electrophysiologi-
cal activity features based on spatial gene expression, showing
a multiscale causal relationship between specific gene expres-
sions and neural activity to offer a deeper understanding of neu-
ral dynamics, which could open new avenues for research in
machine-learning and artificial intelligence. Combining MEA-
seqX with intelligent neural networks may enhance our under-
standing of complex data, decision-making processes, and learn-
ing mechanisms.[57,58]

Furthermore, MEA-seqX offers a versatile solution and sub-
stantial potential for advancing personalized medicine by in-

tegrating molecular and functional data at high resolution.
While not intended for direct patient monitoring, MEA-seqX
establishes patient-specific molecular and functional signatures
that inform precision therapeutic strategies. This multiscale ap-
proach may provide a detailed view of patient-specific biomark-
ers, allowing for early diagnosis and the development of tai-
lored treatments for complex neurological diseases such as
Alzheimer’s, Parkinson’s, and epilepsy. MEA-seqX’s capacity
for big data integration positions it as a critical tool for preci-
sion medicine, enabling the identification of multiscale patterns
across different tissue types. By incorporating machine-learning
and predictive modeling, the platform can forecast disease pro-
gression and treatment responses, enabling dynamic, person-
alized therapeutic interventions. This capability aligns with re-
cent advancements in personalized medicine that emphasize
the need for integrating diverse datasets to optimize individu-
alized patient care.[59] Moreover, MEA-seqX holds great poten-
tial in drug development, offering a comprehensive system for
screening and evaluating the efficacy of new drugs by assess-
ing both molecular and network-wide effects. This dual capabil-
ity ensures that the platform can be applied to a wide range of
diseases and patient-specific conditions, driving forward person-
alized healthcare solutions. While ex vivo slice preparations in-
herently disrupt long-range brain-wide connectivity, MEA-seqX
effectively captures local and mesoscale circuit interactions, en-
abling functional-transcriptional integration at high resolution.
The hippocampal slice model retains essential synaptic path-
ways, and compensatory organization, allowing the study of net-
work dynamics and adaptive plasticity. Despite the loss of dis-
tant projections, the platform reveals how local circuits reor-
ganize functionally and transcriptionally, offering valuable in-
sights into neural computation and disease mechanisms. Here,
MEA-seqX examines intrinsic, network-wide adaptations follow-
ing prolonged ENR; however, the platform’s ability to preserve
tight temporal data alignmentmakes it readily extendable to stud-
ies involving acute perturbations, pharmacological interventions,
or transient neural states.
Looking ahead, several opportunities exist to enhance the ca-

pabilities of MEA-seqX. Continued advancements in technol-
ogy and data analysis algorithms could further improve the plat-
form’s resolution and predictive accuracy. As MEA-seqX contin-
ues to evolve alongside technological advancements, its ability
to integrate frequency-resolved analyses ensures that both local
and global functional relationships can be distinguished with
high precision. In this study,MEA-seqX integrates functional and
molecular data at mesoscale by aligning spatially organized LFP
activity (1–100 Hz) with transcriptomic features across defined
hippocampal subregions. LFPs serve as a robust functional read-
out, providing frequency-specific insight into microcircuit activ-
ity whilemaintaining sensitivity to large-scale network dynamics.
While this broad frequency range reflects population-level activ-
ity, it also offers sufficient spatial granularity to support robust
multimodal correspondence without requiring single-cell reso-
lution. However, future implementations can refine local activ-
ity mapping through frequency-band isolation to better distin-
guish between local and global functional relationships and can
incorporate spike-resolved analyses as sorting algorithmsmature
and improve single-cell discrimination and fidelity. This posi-
tions MEA-seqX as an adaptable platform for integrating emerg-
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ing high-density electrode technologies and single-cell resolution
transcriptomics.
Integrating additional modalities, such as proteomic and

epigenomic data, could provide even more comprehensive in-
sights into neural information processing.[57] The MEA-seqX
platform’s adaptability goes beyond neural tissues, extending to
electrogenic tissues like the olfactory bulb and cardiac tissues.
This enables studying gene expression and electrophysiology in-
teractions in diverse contexts. Its application in cardiac tissue
offers insights into heart function, aiding cardiology advance-
ments.
While the current implementation of MEA-seqX exploits the

CMOS-MEA (4096 electrodes)[14,17] built upon active-pixel sensor
technology,[60] the platform’s scalability transcends reliance on a
singular technology. It is adaptable to accommodate a spectrum
of high-density technologies, such as those offered by switch-
matrix technology (26400 electrodes),[61] among others. Impor-
tantly, MEA-seqX’s purview could extend beyond ex vivo appli-
cations, encompassing expansive in vivo investigations. Integra-
tion with state-of-the-art in vivo probes, such as Neuropixels,[62]

SiNAPS,[63] or other emerging modalities, offers the potential to
study functional neural dynamics and gene expression patterns
within living organisms, bridging the gap between laboratory
findings and real-world biological contexts.

4. Experimental Section

Multiscale Data Acquisition and Analysis Workflow: To pro-
vide a comprehensive overview of the multiscale data acquisi-
tion and analysis processes, a detailed workflow is included in
Figure S1 (Supporting Information). This workflow outlines the
key steps involved, starting with the acquisition of data from n-
Ephys recordings and SRT within the same tissue. The multi-
scale analysis pipeline is then depicted in a stepwise fashion, il-
lustrating the preprocessing, analysis, and feature extraction pro-
cesses for both n-Ephys and SRT data. The workflow highlights
how these steps culminate in the integration of molecular and
functional data to reveal a dynamic, multiscale view of the causal
relationships between spatial transcriptome and network activity.
Animals and Acute Brain Slice Preparation: All experiments

were performed on 12-week-old C57BL/6J mice (Charles River
Laboratories, Germany) in accordance with the applicable Eu-
ropean and national regulations (Tierschutzgesetz) and were
approved by the local authority (Landesdirektion Sachsen; 25-
5131/476/14). Female C57BL/6Jmicewere obtained at fiveweeks
of age and randomly distributed into two experimental groups—
standard housed (SD) and enriched environment (ENR) housed
as previously described.[17] ENR-housed mice lived in a specially
designed cage containing rearrangeable toys, maze-like plastic
tubes, tunnels, housing, and additional nesting material. This
ENR cage environment was shown to promote the enhancement
of experience-dependent plasticity through increased stimuli and
differentiated social interactions. Mice stayed in the assigned en-
vironment for six weeks before the experiments began and re-
mained until their experimental date. Acute brain slices were
prepared according to previous studies.[14,17] Briefly, mice were
anesthetized with isoflurane before decapitation. The brain was
carefully removed from the skull and placed in a chilled cutting
sucrose solution prior to slicing. The brain was placed into a

custom-made agarose container and fixed onto the cutting plate.
Dorsal, horizontal, and hippocampal-cortical (HC) slices (300 μm
thick) were prepared using Leica Vibratome VT1200S (Leica Mi-
crosystems, Germany). Slices were cut at 0–2 °C in an aCSF so-
lution saturated with 95% O2 and 5% CO2 (pH = 7.2–7.4) of a
high sucrose solution containing in mm: 250 sucrose, 10 glu-
cose, 1.25 NaH2PO4, 24 NaHCO3, 2.5 KCl, 0.5 ascorbic acid, 4
MgCl2, 1.2 MgSO4, and 0.5 CaCl2. Next, HC slices were incu-
bated for 45 min at 34 °C and then allowed to recover for at least
1 h at room temperature before being used for network electro-
physiology (n-Ephys) recordings with a high-density neurochip.
A perfusate solution used during recordings contained in mm:
127 NaCl, 2.5 KCl, 1.25 NaH2PO4, 24 NaHCO3, 25 glucose, 1.25
MgSO4, 2.5 CaCl2, and was aerated with 95% O2 and 5% CO2.
Extracellular n-Ephys Recordings in Hippocampal-Cortical Slices:

All electrical recordings were performed using high-density
CMOS-based biosensing MEA chips (CMOS-MEA) and an ac-
quisition system (3Brain AG, Switzerland) customized to the
recording setup. Specifically, the CorePlate 1 W 27/42 CMOS-
MEA was used, which features 4096 21 × 21 μm2 recording mi-
croelectrodes arranged in a 64 × 64 array with a 42 μm pitch,
composing an active sensing area of ≈7 mm2. The on-chip am-
plification circuit allows for 0.1–5 kHz band-pass filtering con-
ferred by a global gain of 60 dB sufficient to record slow and fast
oscillations.[14] For extracellular recordings, slices were moved
and coupled onto the chip using a custom-made platinum harp
placed above the tissue. To minimize experimental variation and
maintain slice longevity, a heat-stabilized perfusion system de-
livered oxygenated recording perfusate to the neurochip with a
flow rate of 4.5 mL min−1 and was temperature controlled at
37 °C throughout the experiment and recordings. 10 min of ex-
tracellular recordings at 14 kHz/electrode sampling frequency
and 1 Hz recording frequency were collected from spontaneous
network-wide activity through pharmacological-induced evoked
responses using 100 × 10−6 m 4-aminopyridine (4AP) (Sigma-
Aldrich, Germany).[17] All solutions were freshly prepared, and
pharmacological compounds were dissolved into the recording
perfusate for the experiment. A custom-designed modular Stere-
omicroscope (Leica Microsystems, Germany) was incorporated
into the system to capture the acute slice light imaging concomi-
tantly with the extracellular HC n-Ephys recordings. During of-
fline analysis, these images were used to maintain the spatial or-
ganization of the brain slice tissue relative to the n-Ephys CMOS-
MEA electrode layout.
Spatially Resolved Transcriptomics in Hippocampal-Cortical

Slices: Spatially resolved HC sequencing and transcriptomic
analysis were performed using the Visium Spatial Gene Expres-
sion v1 assay (10X Genomics, USA). These SRT slides feature
four distinct capture areas each containing 5000 spatially bar-
coded spots with a 55 μm diameter, composing a capture area of
≈6.5 mm × 6.5 mm, sufficient for placement of the entire mouse
HC slice. The implemented n-Ephys and SRT technologies were
chosen specifically due to their compatible electrode and spatial
spot size configurations, optimizing spatial correspondence for
multimodal integration. Immediately following n-Ephys record-
ings (10 min) and optical imaging (2 min), slices were embedded
in ≈6.5 mm × 6.5 mm Tissue-TEK Cryomold containing opti-
mal cutting temperature (OCT) solution (1 min), frozen over dry
ice (1 min), placed in a WHEATON CryoELITE tissue vial, and
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stored at−80 °C tomaintain tissue stability and viability until the
SRT experimental date. Here, to optimize the number of cells per
spot and provide a clear transcriptomic profile, slices were hori-
zontally cryosectioned to 18 μm using Thermo Fisher Cryostar
NX70 (Thermo Fisher Scientific, USA). Tissue was mounted on
the SRT gene expression slide, and methanol-fixed at −20 °C
for 30 min. Slices were hematoxylin and eosin (H&E) stained,
and bright-field imaged to obtain morphological slice images.
Following imaging, the slices were enzymatically permeabilized
for 22 min on a thermocycler, and the resultant released mRNA
was bound to the thousands of spatially barcodedmRNA-binding
oligonucleotides within each spot. To generate cDNA from the
oligonucleotide-bound mRNA, an enzymatic reverse transcrip-
tion mixture (10X Genomics, USA) was applied and incubated
in a thermocycler at 53 °C for 45 min. To generate cDNA second-
strand synthesis, an enzymatic second-strand mixture (10X Ge-
nomics, USA) was applied and incubated in a thermocycler at
65 °C for 15 min. To denature enzymes, a basic elution buffer
(EB) (Qiagen, Germany) with a pH of 8.7 was applied, and the
final sample was stored in a corresponding tube per capture area
containing Tris-HCl. Finally, the spatially barcoded, full-length
cDNA was prepared for library sequencing through PCR ampli-
fication. To determine the optimal cycle number (Cq) via qPCR,
a qPCR mix using KAPA SYBR FAST (Kapa Biosystems, USA)
and a 1 μL sample from each cDNA sample was added to a clean
qPCR plate. Following the incubation protocol, a Cq value of 15.7
was determined for the cDNA sample, which corresponded to 16
amplification cycles. An amplification mixture (10X Genomics,
USA) was added to the cDNA sample tubes, and the qPCR am-
plification protocol was completed according to the obtained Cq
value. Samples were stored at 4 °C overnight before proceeding
to sequencing. Library construction and sequencing were carried
out at the Dresden Concept Genome Center (DcGC) using the
HiSeq 2000 Next Generation Sequencer (Illumina, Inc., USA).
Sequenced data were processed with the Space Ranger (10X Ge-
nomics, USA) pipeline to recreate the spatial arrangement, which
aligns the H&E stained bright-field image with the spatially bar-
coded gene expression data based on the fiducial spots in the slide
capture area border. The pipeline performs alignment, tissue de-
tection, fiducial detection, and barcode/UMI counting.
Data Analysis: All basic and advanced algorithms used in

this work were developed and implemented with custom-written
Python scripts. To facilitate the application of the MEA-seqX
platform, the complete script, along with example datasets,
is available on the GitHub repository (https://github.com/
HayderAminLab/MEA-seqX). Any package add-ons are cited ac-
cordingly.
SRT Quality Control and Gene Expression Normalization:

Prior to data analysis, technical batch effects, and experi-
mental variation were ruled out using a single-cell analysis
toolkit, Seurat,[64] and an add-on package STutility (https://
ludvigla.github.io/STUtility_web_site/). These packages statisti-
cally quantified the number of unique genes (nFeature RNA)
and the number of UMIs (nCount RNA) across all samples and
conditions. To further delineate and find shared hippocampal
structures between the two conditions, a further add-on pack-
age, Harmony, recomputed the UMAP embedding and cluster-
ing to return an integrated low-dimensional representation of
the data.[65] As each dataset was found to have ≈5500 median

genes per spot, SRT spots in each dataset with fewer than 1000
unique genes were filtered out of the analysis. Next, to downsize
the total number of genes for analysis, mitochondrial and ribo-
somal protein-coding genes were filtered out of analysis. Finally,
to account for technical batch variation and detect highly variable
genes, overall gene expression per SRT spot was normalized by
total counts of each gene over all SRT spots so that each spot has
the same count after normalization. This was implemented using
the scanpy.pp.normalize_total python package and is available on
GitHub (https://github.com/theislab/scanpy).[66]

Oscillatory Pattern Detection and Waveform Classification:
Prior to data analysis, oscillatory patterns of LFPs were detected
in each recording with hard threshold algorithms.[17] Further-
more, detected events were further processed and filtered with
a low-pass fourth-order Butterworth filter (1–100 Hz). Finally,
quantile thresholding was used in a custom-written Python script
to remove spuriously firing electrodes or non-physiologically de-
tected events.[17] To characterize and allocate the distinct fea-
tures and shapes of the recorded LFP oscillatory waveforms to
specific interconnected HC layers, PCA and K-means cluster-
ing algorithms were implemented in a procedure as previously
described.[14]

Structural Clusters: To characterize local and global hip-
pocampal subnetwork behavior, the functional firing n-Ephys
electrodes were structurally related to a specific HC region
through an overlay of light microscope hippocampal images on
the CMOS-MEA layout. Electrodes were then grouped into clus-
ters based on structural markers on the HC slice – DG, Hilus,
CA1, CA3, EC, and PC.[17] To characterize the transcriptomic pro-
file in these sixmajor regions, SRT spots were structurally related
to a specific HC region through an overlay of H&E-stained bright
fieldmicroscope images on SRT spot layout using Loupe Browser
(10X Genomics, USA).
Multiscale Spatial Alignment: To infer a correspondence be-

tween the n-Ephys electrode-SRT spot interface and their re-
spective network-wide functional electrical activity and transcrip-
tomic feature readouts with spatial localization, MEA-seqX im-
plemented a multiscale spatial alignment procedure. To provide
the transcriptomic and electrophysiologic profiles of the same
network with spatial context, automatic slice alignment was per-
formed using image resizing and rotation. This alignment is
based on optical imaging, n-Ephys electrode-SRT spot interface
physical size, and related hippocampal-cortical structural inputs
to put the multiscale data in the same dimension. First, MEA-
seqX implements an automatic scaling algorithm based on n-
Ephys electrode-SRT spot sizes to resize the light H&E-stained
bright field microscope slice image from SRT to the respective
lightmicroscope hippocampal image fromn-Ephys. Importantly,
the n-Ephys electrode-SRT spot matching is not one-to-one due
to the difference in technology resolution; instead, it is a frac-
tional matching based on related hippocampal-cortical structural
inputs. As such, each SRT spot has related n-Ephys electrodes
with averaged electrophysiological features from the related elec-
trodes. Next, slice spatial alignment and rotation are computed
between the two slice images with the following procedure: i)
hippocampal-cortical structural reference points {i, j} and {k, l}
are assigned for each scale, SRT, and n-Ephys, respectively, where
{i, k} are midpoints in the DG crest and {j, l} are on the DG supra
blade edges. ii) SRT reference point i is aligned with n-Ephys ref-
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erence point k to place both scales in one dimension. ii) Follow-
ing the alignment of reference points {i, k}, a final alignment for
reference points {j, l} is based on the difference between 𝜃n − Ephys
and 𝜃SRT. iv) Given that the coordinates of both arrays are known,
the distance of x, x′, y, and y′ was used to calculate the angle of
𝜃SRT and 𝜃n − Ephys. v) To determine 𝜃SRT, the horizontal intersec-
tion line between aligned reference points {i, k} was used to de-
fine x while a vertical intersection line between reference point j
and the horizontal intersection line was used to define y. vi) To de-
termine 𝜃n − Ephys, the horizontal intersection line between aligned
reference points {i, k} was used to define x′ while a vertical in-
tersection line between reference point l and the horizontal inter-
section line was used to define y′. vii) The final angle of rotation is
defined as 𝜃iNeuromics = 𝜃n − Ephys − 𝜃SRT, which, when applied, align
reference points {i, k} as the final multiscale reference point m
and align reference points {j, l} as the final multiscale reference
point n.
Functional Network Mean Activity Features: To determine how

spatial gene expression patterns are related to a functional n-
Ephys feature, filtered genes were correlated with one of the
network features using Spearman’s correlation[25] and sorted ac-
cording to significance using Benjamini-Hochberg false discov-
ery rate adjusted p-value.[67] Functional network activity features
of large-scale spatiotemporal LFP oscillations included LFP rate,
amplitude, energy, LFP event delay, and positive and negative
peak count.[14,17]

Targeted Gene Lists: Specific gene lists were formulated based
on functional gene ontologies. Genes related to families of im-
mediate early genes, signaling pathways, hippocampal function,
and neurogenesis were compiled into six lists: IEGs, hippocam-
pal neurogenesis, hippocampal signaling pathway, receptors and
channels, synaptic plasticity, synaptic vesicles, and adhesion.[26,27]

Non-Negative Matrix Factorization: An unsupervised
machine-learning algorithm using a sparsity-constrained
non-negative matrix factorization was implemented to iden-
tify individual spatiotemporal patterns emerging from SRT
and n-Ephys networks.[28] NMF factorization was described
and adapted from the Scikit-learn 1.2.2 python package
(sklearn.decomposition.NMF).[68] First, the input V-matrix
contains the collective information from SRT gene expression
values (i.e., IEG family) correlated to a n-Ephys activity feature
(i.e., LFP rate) or topological metric (i.e., Degree). Each data
entry comprises the expression value of each gene related to
network activity feature or topological metric value (n) with
spatial localization (m).

V ≈ WH, V = n x m, W = n x p, H = m x p (1)

where n is the spatially localized spots, m is the related gene ex-
pression to network feature or metric, and p is the number of
factors.
The resultant decomposed basis W-matrix contains the spa-

tiotemporal distribution of factor weight contributions (n-Ephys
feature or metric). The coefficient H-matrix represents the in-
ferred contribution of gene expression patters to each spatial lo-
cation and n-Ephys feature or metric profile. To optimize the
distance between V and the product matrices H and W, the
widely used distance optimizing function squared Frobenius

norm (F) was implemented, which added sparsity constraints for
the factors.[68]

min
W, H

{‖V −WH‖2F + 𝛼 ‖W‖2F + 𝛽

y∑
j = 1

‖‖‖H (
:, j
)‖‖‖2F

}
(2)

whereWij and Hij are nonnegative value (1 ≤ i ≤ x, 1 ≤ j ≤ y). 𝛼
and 𝛽 are the corresponding regularization parameters forH and
W.
Mutual Information: To present the collectivity of spots in a

multilayered network based on gene expression, gene expression
distribution was calculated for each target gene list. Next, mutual
information distance scores were calculated for the gene infor-
mation from each target gene list in each spot, compared between
spots, and sorted by cluster.[30] Themutual information was com-
puted using adapted functions from Scikit-learn 1.2.2 python
package (sklearn.metrics.normalized_mutual_info_score).[68]

Functional Connectivity: To infer large-scale statistically de-
pendent connectivity for functional firing activity over a multi-
layered hippocampal network, cross-covariance was calculated
between pairs of firing n-Ephys electrodes using Pearson’s cor-
relation coefficient (PCC) followed by directed transfer func-
tion (DTF) and multivariate Granger causality as previously
described.[14,17]

Graph Map Visualization: To visualize large-scale network
connectivity in both SRT and n-Ephys datasets, the mutual in-
formation distance scores and functional connectivity data ar-
chitecture, respectively, were constructed to contain nodes and
edges as described previously.[17] The data were converted into
(.gexf) file format and were directly read and visualized in the
Gephi program 9.2 version (https://gephi.org). To study the func-
tional interactions of selected genes over the spatial network ar-
ray, the mutual information scores between all paired spots were
filtered to include those over the mean and two standard devi-
ations. Therefore, the threshold value was set to include genes
with r ≥ 0.8 for each target gene list. To examine the functional
connections of n-Ephys electrodes, the top 2% of the total func-
tional links were included. Both SRT and n-Ephys connectivity
maps were plotted with similar edge weights and degree range
queries.
Network Topological Metrics: Graph theory was used to charac-

terize overall network topology and interconnectedness based on
functional connectivity from n-Ephys detected LFP events or mu-
tual information scores from SRT gene expression. The topolog-
ical metrics was filtered in custom-written Python code, as previ-
ously reported.[14,17] Briefly, the network connectivity topological
metrics were described by considering the node n as the central
component of the graph that may or may not be connected to
one another. In this case, a node n corresponds to a specific n-
Ephys electrode or SRT capture spot in the sensing arrays, where
the edges e are the functional links or connections between each
node n. To present overall network topology and features, the fol-
lowing graph theory topological parameters were selected:
Degree: To characterize the different representations of net-

work connectivity, the degree k of a node n was characterized to
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describe the number of edges connected to a node as previously
described.[17]

ki =
∑
j∈N

aji (3)

where 𝑘𝑖 denotes the degree of a node i. 𝑎ij denotes the connection
between nodes i and j. N is the set of all computed nodes in the
network.
Hub Nodes and Rich Club Nodes: To determine centralized,

important nodes in a network and reveal network topology, hub
nodes and rich club nodes were analyzed. Hub nodes were de-
tected based on three nodal metrics—node strength, clustering
coefficient, and network efficiency. The metric value for each
node was calculated and compared to determine whether the
node value was in the top 20% of all nodes.[17] To restrict the defi-
nition of the hub node, limits were set with a hub score. The hub
score was valued between 0 and 3, where nodes either satisfied
the top 20% in none, 1, 2, or all 3 nodal metrics, with hubs de-
fined as those meeting at least two out of three criteria. Within
the hub node group is a subgroup of nodes with dense connec-
tions that conferred the rich-club nodes and are described as hub
nodes with a higher degree than the average and provided by the
rich club coefficient ϕ(k)[17]

𝜙 (k) =
2E>k

n>k
(
n>k − 1

) (4)

where k denotes the degree, n>k represents the number of nodes
whose degree is larger than a given value k, and E>k denotes the
number of connections in a subnetwork comprising n>k.
Network Topology Characterization: To determine the poten-

tial impact of hub nodes on the network function and the orga-
nizational processes shaping network topology, the degree dis-
tributions P(k) of detected nodes were characterized in n-Ephys
and SRT datasets, which resulted in decayed distribution with a
power-law tail.[34]

P
(
degree = k

)
∼ k−𝛼 (5)

To estimate the power-low degree distribution P(k) to describe
the scale-free topology with a small-world attribute, the lognor-
mal model fit was used.

P (k) = 1

𝜎
√
2𝜋

e−
(k−𝜇)2

2𝜎2 (6)

where 𝜇 and 𝜎 are the mean and standard deviation of the distri-
bution, respectively. To visualize the best-fit network characteriza-
tion, a complementary cumulative distribution function (cCDF)
was used instead of the probability density of the node degree
and plotted on logarithmic axes for a more robust visualization
of the high-k regime. Goodness-of-fit tests were performed be-
tween actual data and fitted models and were estimated by the
coefficient of determination R2. Finally, Pareto linear binning
(scipy.stats.pareto)[69] was applied to discretize the power law dis-
tribution.
Diffusion Pseudotime: To pinpoint dynamic transcriptional

changes from static, spatially resolved sequencing data and to de-
termine the impact of intrinsic and extrinsic influences on the

distinct dynamic process under examination, diffusion pseudo-
time (DPT) was used.[38] DPT uncovers the underlying dynam-
ics of biological processes and, in this case, the temporal tra-
jectories of specific gene expression from spatially resolved hip-
pocampal transcriptomes. Briefly, DPT reconstructs pseudotem-
poral trajectories by modeling transitions between transcrip-
tional states as diffusion processes in a reduced-dimensional dif-
fusion map space, ordering each spatial transcriptomic spot ac-
cording to its probabilistic progression toward distinct molecular
states. This pseudotemporal inference reconstructs latent tran-
scriptional progression based on similarity in gene expression
states across space, rather than real-time observation. While tra-
ditional diffusion maps effectively denoise data while maintain-
ing the local and global structure, the resultant maps usually
encode the information in higher dimensions, limiting the vi-
sualization. To overcome this prior to the employment of DPT
analysis, the potential of heat diffusion for affinity-based transi-
tion embedding (PHATE) on spatial transcriptomic data was im-
plemented, which presents information at lower dimensionality
(https://github.com/KrishnaswamyLab/PHATE).[70] PHATE en-
codes both local data and global data in a manifold structure.
Local data relationship similarities were encoded by applying a
kernel function on Euclidean distances. Global data relationships
were encoded via potential distances where the local similarities
are transformed into probabilities. These diffusion probabilities
were determined by transforming the local information into the
probability of transitioning from one data point to another in a
single step of a random walk. This can be powered to t-steps to
give t-step walk probabilities for both local and global distances.
In the dataset, each spatial spot has a determined relationship
to each nearest neighbor or distant spot in a weighted graph.[70]

DPT analysis then orders the transcriptomic spots according to
the probability of differentiation toward a different spot.[38]

Cell-Type Deconvolution: To determine cell-type colocalization
and examine differences between two hippocampal transcrip-
tomes, CARD was performed using a single-cell sequencing
reference.[45,46] The CARD-based analysis is found on GitHub
(https://github.com/YingMa0107/CARD) and was adapted for
spatial transcriptomic data in Python. Within the reference was
a broad group classification of hippocampal cell types, including
astrocytes, endothelial cells, ependymal cells, macrophages, mi-
croglial cells, neurogenic cells, neurons, oligodendrocytes, and
polydendrocytes with the accompanying subgroups. Low-count
cell type filtering downsized 85 to 76 hippocampal cell types.
Prediction with XGBoost Algorithm: To determine whether

specific gene expression values could predict related HC
network feature parameters per SRT spot, such as LFP
rate, amplitude, and LFP event delay, the Gradient Boost-
ing (XGBoost) Algorithm, which integrates multiple tree mod-
els and has a strong interpretability, was implemented.[53]

The implementation utilized Scikit-learn 1.2.2 Python pack-
age functions (sklearn.ensemble.GradientBoostingClassifier and
sklearn.model_selection.train_test_split).[68] Input datasets com-
prised spatially resolved gene expression values from the prede-
fined gene lists and the related network features from functional
n-Ephys data. To equalize input representation between the SD
and ENR datasets for comparison, half of the ENR dataset was
randomly subsampled due to its inherent twofold difference in
network feature parameters, as previously described.[17]
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Datasets were partitioned into training and
testing subsets (70% training, 30% testing;
sklearn.model_selection.train_test_split), and the model was
trained over 100 iterations. The predicted outputs were then com-
pared with real data points to evaluate the predictability, accuracy,
and significance of network feature prediction from transcrip-
tomic data.[71] Packages implemented for statistical analysis
included Scikit-learn 1.2.2 Python packages to calculate the pre-
diction accuracy (sklearn.metrics.explained_variance_score)[68]

and Scipy 1.10.1 to calculate the Pearson correlation coefficient
(scipy.stats.pearsonr) and (scipy.stats.ttest_ind).[69] Prediction ac-
curacy was validated across multiple final data outputs, defining
values exceeding the mean by three standard deviations were
determined to be within the threshold of chance. Once trained,
the XGBoost model autonomously predicts electrophysiological
features from spatial transcriptomic data without additional
manual input, provided the same gene lists (or individual
genes within these lists) and electrophysiological features are
maintained. However, introducing new gene lists, different
electrophysiological measures, or altering the experimental
paradigm (e.g., different brain regions, conditions, or disease
states) necessitates automatic retraining, performed by the
model’s built-in partitioning approach (70% training, 30% test-
ing). This adaptability ensures optimal and accurate predictions
when handling new or modified inputs.
Statistical Analysis: All statistical analysis was performed

with Originlab 2020 or as described in package add-ons. Data
in this work were expressed as the mean ± standard error of
the mean (SEM) unless otherwise denoted as standard deviation.
Box charts were determined by the 25th–75th percentiles and
the whiskers by the 5th–95th percentiles with lengths within the
interquartile range (1.5 IQR). Also, the lines depict the median
and the squares for themean values. Differences between groups
were examined for statistical significance, where appropriate, us-
ing the Kolmogorov–Smirnov test, one-way analysis of variance
(ANOVA), or two-way ANOVA followed by Tukey’s posthoc test-
ing. P < 0.05 was considered significant.
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