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Dear Editor,

The importance of the medial entorhinal cortex (MEC) 

for memory and spatial navigation has been shown repeat-

edly in many species, including mice and humans [1, 2]. 

It is, therefore, not surprising that the connectivity of this 

structure has been studied extensively over the past cen-

tury, mainly using a range of anterograde and retrograde 

anatomical tracers [3]. However, such approaches have lim-

ited resolution and cannot identify the inputs to specific cell 

types. More recently, patch-clamp recordings from pairs of 

MEC cells, as well as electron microscopy, are starting to 

reveal much of the local connectivity between MEC cell 

types [1]. Some non-local inputs onto specific MEC cell 

types have also been studied, revealing pathways for specific 

memory functions [2]. However, for most cell types in the 

MEC, we still do not have a whole-brain view of the inputs 

they receive. Particularly for the layer 3 (L3) pyramidal 

cells (L3Ps) that provide direct input to the hippocampal 

area CA1, which has been shown to be crucial for temporal 

association memory and other memory-related functions [2, 

4], we know little about the non-local inputs beyond the 

neighboring presubiculum and parasubiculum [3]. Thus, we 

used monosynaptic rabies tracing [5, 6] in combination with 

whole-brain serial two-photon tomography (STPT) [7] to 

label the inputs to L3Ps from throughout the brain.

In Oxr1(oxidation resistance 1)-Cre mice, previously 

shown to express Cre in MEC L3Ps [4] (Fig.  S1), we 

injected a Cre-dependent “helper” virus (AAV1-Syn-FLEX-

nGToG-WPRE3)  into the MEC, followed by a modified 

rabies virus ~3 weeks later (Fig. 1A). After another 8-11 

days, we removed the brains and used STPT to reveal rabies-

labelled cells in several brain areas (see Supplementary 

Information). These included the presubiculum (Fig. 1B), 

parasubiculum (Fig. 1C), and medial septum (Fig. 1D), all 

known to provide input to the superficial entorhinal cortex 

[1, 3]. More surprisingly, we also observed rabies-labelled 

presynaptic cells in hippocampal area CA1 (Fig. 1E), the 

subiculum (Fig.1F), and the anterodorsal nucleus (AD) of 

the thalamus (Fig. 1G), suggesting novel, direct monosyn-

aptic input pathways from these areas to L3Ps in the MEC. 

Although the number of cells varied strongly between brains 

and sparse labelling was also occasionally seen in other 

brain areas, we found rabies-labelled cells in these brain 

areas in all analyzed hemispheres (n = 5 mice).

We quantified these results by first registering the 

imaged 3D brain volumes to the Allen Mouse Brain Atlas 

using BrainReg (see Supplementary Information). Then, 

cells were counted manually. Due to the difficulty of differ-

entiating true first-order (i.e., monosynaptic) presynaptic 
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cells from second-order presynaptic cells and from starter 

cells with weak or no GFP labelling, we only counted the 

presynaptic cells located outside of the MEC injection site. 

Furthermore, since the absolute number of cells varied 

between brains, we summed all counted cells across the 

six regions and reported the proportion of cells in each 

region as the proportion index (PI) ranging from 0 to 1 

(Fig. 1H; see also Fig. S2 for additional measures). Over-

all, the presubiculum provided the major input to MEC 

L3Ps: roughly half of the counted rabies-labelled cells 

were in the presubiculum (PI range 0.23–0.70, median 

0.49). The parasubiculum provided only ~10% of the total 

input, although this number varied considerably (PI range 

0.06–0.46, median 0.08). The medial septum also pro-

vided a minor but consistent input (PI range 0.02–0.08, 

median 0.04). Among the 3 novel input areas, cells from 

CA1 formed the greatest proportion (PI range 0.07–0.31, 

median 0.16), followed by the AD (PI range 0.01-0.09, 

median 0.05) and the subiculum (PI range 0.01–0.12, 

median 0.05).

For a more detailed analysis of the spatial distribution of 

labelled cells, we used a range of Brainglobe software tools 

(see Methods) and manual curation to plot the location of 

all cells in a standardized atlas space (Fig. 2). Overall, the 

distributions were surprisingly uniform across brains, par-

ticularly along the anteroposterior axis (panels iv and v in 

Fig. 2A–F; see also Fig. S3).

In area CA1, the distribution was also heavily skewed, 

with a preference for the more anterior and dorsal parts of 

the hippocampus (Figs 2C and S4) The injection sites in the 

MEC extended across a much smaller extent of the anter-

oposterior axis (Fig. S5), although the boundaries of the 

injection area were somewhat imprecise, particularly since 

the GFP expression from the AAV starter cells could not 

always be reliably detected.

Along the radial axis of the hippocampus (i.e., orthogo-

nal to the stratum pyramidale), the vast majority of neurons 

were located within the pyramidal cell layer (Fig. 2G–I), 

with no clear bias for a particular sublayer. The presence of 

cells almost exclusively in the stratum pyramidale suggests 

that the majority of rabies-labelled cells in CA1 consists of 

pyramidal cells. However, the stratum pyramidale is also 

known to contain GABAergic interneurons, which could, in 

principle, project extrahippocampally. Therefore, we applied 

immunohistochemical reactions with an antibody against 

GABA to sections from an additional rabies-injected Oxr1 

mouse. We found that except for rare cells outside of stra-

tum pyramidale, labelled cells did not express GABA (Fig. 

S6), strongly suggesting that they are indeed glutamatergic 

pyramidal cells.

We did not see labelled cells in the adjacent dentate gyrus 

(DG) or CA3. Since we could not reliably delineate the bor-

der of CA2 and CA1 without additional labeling, we use the 

term CA1 to indicate both CA1 and CA2. In general, some 

imprecision is inherent in the atlas registration process, and 

the locations of labelled cells in the standardized atlas are 

expected to deviate up to ~100 µm from their actual location 

[8]. Note that despite this limitation, we found a good overall 

match between region boundaries and clusters of labelled 

cells; even for the AD, a very small structure (Fig. 2B), we 

consistently found that the great majority of rabies-labelled 

cells in the thalamus fell within the registered borders (e.g., 

Fig. 1G).

The projection from CA1 to MEC L3Ps suggested by our 

rabies results was confirmed by additional AAV injections 

into CA1 of WT mice. We observed mScarlet expression 

in axons in the superficial MEC (Fig. S7), suggesting that, 

indeed, a subset of pyramidal cells project directly to the 

superficial MEC, likely making synaptic connections there 

with L3Ps.

In summary, our results suggest a limited but highly sur-

prising set of inputs to MEC L3Ps, including not only inputs 

from the presubiculum, parasubiculum, and medial septum 

but also novel inputs from CA1, the subiculum, and the AD.

Inputs from the presubiculum to the MEC have been 

known for a long time [3, 9], and particularly, the previously 

described band of axons in L3 is consistent with the strong 

input we see onto L3Ps. Given the previously described 

band of axons from the parasubiculum in L2 and the fact 

that the apical dendrites of L3Ps extend from L3 down to 

L1, the generally much less abundant input from the par-

asubiculum was somewhat unexpected. The input from the 

medial septum is also consistent with several reports [1], 

although we are not aware of any direct demonstration of 

input from the medial septum specifically onto MEC L3Ps. 

In our case, the identity of the presynaptic cells could not 

be tested, but future work should aim to identify whether 

the medial septum cells are glutamatergic, GABAergic, or 

Fig. 1  Global brain inputs to excitatory neurons in MEC L3 verified 

by Cre-dependent monosynaptic rabies virus (RV) tracing.  A  Sche-

matic showing the injection strategy. The sagittal profile of the 

mouse brain showing the MEC in green together with neighboring 

structures: the lateral entorhinal cortex (LEC), presubiculum (PrS), 

parasubiculum (PaS), subiculum (Sub), and hippocampal areas CA1 

and CA3. The MEC of an OXR1-Cre mouse is injected with pAAV-

Syn-FLEX-nGToG-WPRE3 on Day 1, leading to nucleus-localized 

green fluorescence in infected cells at the injection site, followed by 

the rabies virus N2C dsRed/SAD mCherry on Day 22, leading to red 

fluorescence in rabies-infected cells throughout the brain. B–G Two-

photon coronal images overlaid with registered boundaries (grey) 

from the Allen Brain Atlas, showing rabies-infected cells (red) in the 

PrS (B), PaS (C), medial septum (D) comprising the medial septum 

proper (MS) and the nucleus of the diagonal band (NDB), hippocam-

pus (E), subiculum (F), and the anterodorsal nucleus (AD) of the 

thalamus (G).  H  Detected inputs from all 7 analyzed hemispheres, 

quantified as the proportion index (PI) following RV tracing in all 

brain regions with consistent labelling, except for the MEC. See Sup-

plementary Table 1 for more information on the injection parameters.

◂
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cholinergic since all three neurotransmitters have previously 

been shown to project to the MEC [1].

Although, as a proportion of total inputs, the input from 

AD was relatively modest, the density of cells providing 

input was quite high (Fig. 1G; see also Fig. S1D, E). This 

suggests that a large proportion of AD cells provide output 

to MEC L3Ps, in contrast to previous reports (e.g. [10]). If 

these cells have a high rate of divergence, even this relatively 

modest number of AD neurons may provide an important 

and previously undetected input to the MEC. AD is consid-

ered a core part of the so-called medial diencephalic-cortical 

memory stream underlying episodic memory [11]. The AD 

is also known to contain a large proportion of head-direction 

cells, which encode the direction an animal’s head is facing 

[12]. Clearly, input from the AD is likely to have important 

implications for the spatial coding and memory functions 

performed in the MEC, such as grid cells in MEC L3 [1].

Similarly, the inputs from CA1 and the subiculum to 

MEC L3Ps are also likely to impact spatial coding and mem-

ory function. Classically, inputs from these areas have been 

considered to be limited to the deep layers of the MEC, with 

only a few reports describing sparse axons extending more 

superficially in rats [3]. In contrast to the AD results, the 

density of labelling in CA1 was quite low (even more so in 

the subiculum; Fig. S2D, E), suggesting that only a specific 

subpopulation provides output to the MEC L3. What might 

this subpopulation be? While future studies are required 

to elucidate the functional properties of the hippocampal 

input cells, based on our data, we can say they include both 

CA1 and CA2 (but not CA3 or the DG; Fig. 1), are not 

restricted to any particular sublayer of the stratum pyrami-

dale (Fig. 2G–I), and are mostly found in anterior CA1 (Figs 

2C, S3, and S4). The latter observation suggests that the 

input may be spatial since the anterior dorsal (“septal”) pole 

of the hippocampus is known to contain more spatial coding 

cells than the ventral pole.

We therefore speculate that pyramidal cells in L3 of 

the MEC may receive both head-directional information 

from the AD and spatial information from CA1 (and CA2). 

In principle, such dual inputs could support the firing of 

grid cells, head direction cells, and conjunctive cells, all of 

which have been reported in L3 of the MEC (albeit mostly 

based on extracellular recordings with somewhat limited 

anatomical precision) [1]. It will be of particular interest to 

investigate the functional roles of the novel CA1 and AD 

inputs and their interplay vis-à-vis the previously described 

indirect inputs (e.g., from CA1 via MEC L5 or from the AD 

via the presubiculum) during memory and spatial naviga-

tion tasks.

Such investigation could apply novel rabies strains with 

lower toxicity to drive the expression of  Ca2+ indicators or 

channelrhodopsins in presynaptic cells on the timescale 

needed for behavioral experiments [13, 14]. This would 

enable the identification of the presynaptic cell population 

coding and its effects on MEC coding. In a subset of injec-

tions, we have already confirmed that the novel rabies virus 

CVS-N2C strain [13, 14] shows results similar to the more 

classic SAD strain (see Supplemental Table 1). This not only 

paves the way for future experiments but also provides an 

extra control against potential tropism effects (see Supple-

mentary Discussion for further methodological caveats).

We did not quantify local labelling in the MEC because 

of the difficulty of unambiguously identifying starter cells: 

it has been shown that even in the absence of fluorophore 

expression, the TVA receptor and glycoprotein expression 

can be sufficient for rabies tracing to work [15]. Further-

more, there is no way to distinguish “true” presynaptic 

cells if the rabies virus travels from the initial starter cell 

to another AAV-infected cell (as is likely to occur at the 

densely-labelled injection site (Figs S5B and S8C–E)); 

in such a case, the secondary AAV-infected cell will pro-

vide glycoprotein that will make the spread of rabies virus 

multisynaptic.

Overall, the robust presence of labelled cells in several pre-

viously-undescribed areas suggests that there are direct syn-

aptic inputs from these areas onto MEC L3Ps, in contrast to 

the classical framework that has been textbook knowledge for 

decades. Such connectivity is likely to have important implica-

tions for the circuits underlying memory and navigation, which 

are involved in a host of diseases ranging from Alzheimer’s to 

epilepsy. At the very least, our work suggests novel targets that 

should be physiologically tested in future studies.
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