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ABSTRACT: Background: Subthalamic beta oscilla-
tions are a biomarker for bradykinesia and rigidity in
Parkinson’s disease (PD), incorporated as a feedback
signal in adaptive deep brain stimulation with potential
for guiding electrode contact selection. Understanding
their longitudinal stability is essential for successful clini-
cal implementation.

Objectives: We aimed to analyze the long-term dynam-
ics of beta peak parameters and beta power distribution
along electrodes.

Methods: We recorded local field potentials from
12 channels per hemisphere of 33 PD patients at rest, in
a therapy-off state at two to four sessions (0, 3, 12, 18-
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44 months) post-surgery. We analyzed bipolar beta
power (13-35 Hz) and estimated monopolar beta power
in subgroups with consistent recordings.

Results: During the initial 3 months, beta peak power
increased (P < 0.0001). While detection of high-beta peaks
was more consistent, low- and high-beta peak frequencies
shifted substantially in some hemispheres during all
periods. Spatial distribution of beta power correlated over
time. Maximal beta power across segmented contact levels
and directions was significantly stable compared with
chance and increased in stability over time. Active contacts
for therapeutic stimulation showed consistently higher nor-
malized beta power than inactive contacts (P < 0.0001).
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Conclusions: Our findings indicate that beta power is a
stable chronic biomarker usable for beta-guided pro-
gramming. For adaptive stimulation, high-beta peaks
might be more reliable over time. Greater stability of beta
power, center frequency, and spatial distribution beyond
an initial stabilization period suggests that the micro-
lesional effect significantly impacts neuronal oscillations,
which should be considered in routine clinical practice

.
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BETA POWER DYNAMICS IN PD
when using beta activity for automated programming
algorithms. © 2025 The Author(s). Movement Disorders
published by Wiley Periodicals LLC on behalf of Interna-

tional Parkinson and Movement Disorder Society.

Key Words: Parkinson’s disease; local field potentials;
deep brain stimulation; beta band oscillations; sub-
thalamic nucleus
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Oscillatory beta band activity (13-35 Hz) in the
subthalamic nucleus (STN) of Parkinson’s disease
(PD) patients is a well-characterized biomarker, with
its intensity correlating with bradykinetic and rigid
symptoms.””> Both dopaminergic medication and
neuromodulation have been observed to suppress
beta activity, which aligns with motor improve-
ment.” Consequently, beta power has become a
feedback signal in adaptive deep brain stimulation
(aDBS) studies®” and holds potential for optimizing
DBS programming.®'* A recent study in a small PD
cohort demonstrated that beta-guided DBS program-
ming was non-inferior to clinically guided program-
ming regarding short-term motor outcomes,'’ while
taking a fraction of time, highlighting the potential of
algorithmic beta-guided optimal contact selection.

A large body of research describes beta power during
the acute postoperative period. Recent technological
advancements have enabled researchers to derive local
field potentials (LFPs) from chronically implanted leads,
permitting in-depth studies of the longitudinal behavior
of neural biomarkers.'* The long-term stability of beta
power is relevant for both advanced closed-loop stimula-
tion techniques and beta-guided DBS programming algo-
rithms. Previous studies have shown that beta activity
and Parkinsonian motor symptoms maintained a stable
correlation,"” while dopaminergic medication and DBS
have shown to consistently suppress beta activity over
time.">'® More recently, a study reported the reliable
detection of peaks in multiple frequency bands across
three clinical visits within the first 3 months post-sur-
gery."” The stability of peak parameters is particularly
relevant as current closed-loop stimulation strategies
depend on selecting a frequency range centered on the
beta peak for adapting chronic stimulation.'® Bipolar
LFPs from directional leads capture neural oscillations
from multiple distinct recording sites, offering rich spa-
tial insights. The stability of the spatial distribution of
beta oscillations along electrode contacts is particularly
important for beta-guided DBS programming.

Our study addresses two primary research questions
that are of immediate relevance for clinical application.
The first pertains to the longitudinal dynamics of beta
peak center frequency (CF) and power to determine
whether the peak remains within a frequency range of

interest for titrating adaptive stimulation over time.
Our second question delves into the stability of the spa-
tial distribution of recorded beta power over time that
forms the basis for beta-guided contact selection in PD
patients. We explored these long-term dynamics of sub-
thalamic beta oscillations in 33 PD patients, spanning
up to 44 months post-implantable pulse generator
(IPG) implantation.

Methods

Participants

This study was approved by the Charité-Uni-
versitatsmedizin Berlin ethics committees (EA2/256/20)
and adhered to the Declaration of Helsinki. All partici-
pants provided written informed consent prior to
participation.

Thirty-three PD patients (11 female) with bilateral sub-
thalamic DBS electrodes (n = 66) were included (clinical
details in Table 1; lead localizations in Fig. S4). Partici-
pants averaged 62.6 & 8.3 years (mean + SD) in age and
had a mean disease duration of 10.1 £ 4.5 years. The
preoperative International Parkinson and Movement Dis-
order Society-Unified Parkinson’s Disease Rating Scale-
Part III (Motor Examination) (MDS-UPDRS-III) score
(medication off) averaged 51.3 & 16.1. All participants
underwent implantation of B33005 “SenSight” directional
electrodes (Fig. 1B) and bidirectional Percept™ IPGs
(Medtronic, Minneapolis, MN, USA) at the Charité-Uni-
versititsmedizin Berlin as previously described."”

Stimulation Parameters

Stimulation parameters were optimized during sched-
uled visits at 3- and 12-months with adjustments as
needed between and after these visits during outpatient
consultations. Final or currently in use DBS settings
were documented for each follow-up (FU) session after
the first optimization at 3 months (Table 2).

Recording Procedure

Neurophysiological recordings were conducted while
participants were seated at rest in a medication-off
(212 h) and stimulation-off state (=30 min).>° Each
patient attended at least two of four possible LFP
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TABLE 1  Clinical and demographic details of 33 Parkinson’s disease patients

Medication
effect pre- Stimulation effect
surgery at 12 months Therapy-off post-  Session

Disease Symptom (MDS- (MDS-UPDRS- surgery MDS- (months
Patient Age duration PD- dominant UPDRS-III III med-off, stim- UPDRS-III per post-
ID Sex (years) (years) phenotype side off/on) off/on) available session surgery)
1 f 70 11 M Right 49/30 44/16 X-44-42 3-12-44
2 f 43 2 A/R Left 36/11 19/13 25-19-33 3-12-18
3 £ 71 13 TD Right 42/7 51/29 41-51-36 3-12-18
4 m 73 15 A/R Left 67/43 56/27 61-36-56-59 0-3-12-18
5 m 69 18 A/R Right 40/25 41/30 37-42-41 0-3-12
6 m 70 5 M Right 24/13 31/23 44-18-31-59 0-3-12-36
7 m 58 15 A/R Left 69/39 38/35 47-38-45 0-12-24
8 f 65 6 M Right 68/22 30/20 34-41-30-29 0-3-12-18
9 m 55 4 A/R Right 69/29 48/33 34-43-48-50 0-3-12-24
10 f 72 12 A/R Right 43/25 X/X 36-50 0-3
1 m 45 7 A/R Right 76/33 X/X 27-64 0-3
12 m 57 6 M Right 45/13 57/24 45-57-63 3-12-18
13 f 68 10 A/R Left 32/12 X/X 38-38 0-3
14 m 57 10 A/R Right 74/42 49/32 56-43-56 3-12-24
15 m 68 8 A/R Right 44/16 54/24 42-54-64 3-12-18
16 f 71 12 M Right 31/17 31/17 14-31-34 0-12-18
17 m 57 9 A/R Left 33/19 35/31 33-35-40 0-12-18
18 m 66 4 M Left 58/32 53/31 37-53 0-12
19 f 67 7 TD Left 51/23 40/28 27-40-50 3-12-18
20 m 53 15 A/R Right 64/27 52/32 28-52-62 0-12-18
21 m 61 6 M Right 33/15 40/27 44-40-50 0-12-18
22 m 74 20 A/R Left 52/18 30/23 31-43-30-25 0-3-12-24
23 f 54 8 M Left 42/27 X/X 49-51-63 0-3-24
24 m 65 10 A/R Left 76/21 59/50 35-58-59 0-3-12
25 m 53 10 A/R Right 34/13 35/17 15-59-36 0-3-12
26 f 70 17 TD Right 52/10 49/32 36-X-49 0-3-12
27 m 52 14 A/R Left 74/16 X/X 10-19 0-3
28 m 61 13 M Right 65/24 27/12 21-36-27 0-3-12
29 f 64 4 A/R Right 31/13 38/30 25-41-38 0-3-12
30 m 70 6 M Left 73/36 49/35 44-47-49 0-3-12
31 m 59 11 A/R Equal 40/30 36/22 30-30-36 0-3-12
32 m 57 15 A/R Left 58/39 47/29 34-60-47 0-3-12
33 m 75 12 M Right 49/24 31/19 47-44-31 0-3-12

Each patient participated in at least two of four possible recording sessions: 0-mo (n = 26) in a range of 0—12 days after deep brain stimulation (DBS) lead implantation, 3-mo
follow-up (FU) (n = 27), 12-mo FU (n = 23), and/or >18-mo FU (n = 18) in a range of 18—44 months post-surgery.

Abbreviations: PD, Parkinson’s disease; MDS-UPDRS-III, International Parkinson and Movement Disorder Society-Unified Parkinson’s Disease Rating Scale-Part III (Motor
Examination); m, male; f, female; M, mixed; A/R, akinetic-rigid; TD, tremor-dominant; X, not available.
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FIG. 1. Methods (A) Representative example (patient 8, left hemisphere) of periodic power spectra (beta range in grey) recorded across four post-

surgery sessions. (B) Bipolar local field potentials (LFPs) from the same directional lead were grouped into ring, segmental-2 L and segmental-1 L LFP
channels. (C) For each group, the channel with maximal beta power at 3-mo follow-up (FU) (eg, channel 1-2 in the ring LFP group) was selected for the
peak analysis. Power spectra for these channels are shown across sessions (spectra at 3 months in color). (D) A total of 33 patients (n = 66 sub-

thalamic nucleus [STN]) participated, with subgroups defined by consistent pairs or three to four consistent recording sessions (sample sizes illus-

trated). (E) Long-term dynamics of peak parameters were analyzed using selected channels and extracted parameters (via specparam) in a large cohort
(middle panel) with two consistent recording sessions and subgroups with three consistent recording sessions (lower panel). (F) Spatial stability of beta

power was analyzed across 12 bipolar channels and positional changes of maximal beta power (eg, beta rank 1 in orange) were investigated using

pseudo-monopolar estimates. (G) Pseudo-monopolar beta power was analyzed at active and inactive contacts based on clinical stimulation settings

per session (eg, contact 3 in yellow). Corresponding figure numbers for each analysis are shown on the right.
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TABLE 2 Clinically optimal stimulation parameters and contacts with maximal pseudo-monopolar beta power

Contact with maximal

Sessions Stimulation Stimulation pseudo-monopolar
Patient (months Stimulation parameters pulse width, beta power
ID post-surgery) parameters LSTN RSTN frequency LSTN/RSTN
1 3 1C-2A—, 1.3 mA 1A— 1.2 mA 60 ps, 130 Hz 2A/72A
12 2—3—,1.05mA 2-3—,1.05 mA 40 ps, 100 Hz 1C/2C
44 3—, 0.7 mA 3—, 0.7 mA 40 ps, 130 Hz 2A/2C
2 3 1—, 1.3 mA 0—, 1.2 mA 60 ps, 130 Hz 1A/0
12 1—,1.5 0—, 1.5 mA 60 ps, 130 Hz 1A/1A
18 mA 1-2—, 0.7 mA 1—, 1.4 mA 60 ps, 130 Hz 1A/1C
3 3 1—,2.5mA 2—, 3.4 mA 60 ps, 130 Hz 1C/1A
12 0— 1B—, 1.9 mA 0—1B—, 2.1 mA 60 ps, 130 Hz 1C/1A
18 0— 1B—, 1.6 mA 0— 1B—, 2.3 mA 60 ps, 125 Hz 1C/1A
4 3 1—,3.3mA 1—,3.8 mA 40 ps, 100 Hz 1A/0
12 1—, 4.7 mA 1—, 4.3 mA 40 ps, 90 Hz 1A/2A
18 1—, 4.7 mA 1—, 43 mA 40 ps, 90 Hz 1A/2C
5 3 1A— 1B—, 2.5 mA 1—,22mA 60 ps, 130 Hz 1A/1A
12 2—,25mA 2—,23 mA 60 ps, 125 Hz 1A/2A
6 3 1A— 1B—, 3 mA 2A— 2B—, 2.9 mA 60 ps, 125 Hz 1A/1A
12 1A— 1B—, 5.1 mA 2A— 2B—, 4.5 mA 60 ps, 125 Hz 1A/1A
36 1—, 2.8 mA 1—,2.7mA 40 ps, 110 Hz 1A/1A
7 12 1C—-2C—, 25 mA 1—,2.6 mA 60 ps, 125 Hz 1A/2A
24 1C—-2C—, 25 mA 1—,2.6 mA 60 ps, 125 Hz 1A/2A
8 3 IL 1-2+/3—, IL 2A— 2B—/1A— 40 ps, 90 Hz 1A/2A
0.9 mA 2—, 1.4 mA
12 2C—, 0.9 mA 1C—-2C—, 1.4 mA 60 ps, 125 Hz 1A/1A
18 2C—, 2 mA 1A— 2A—, 1.9 mA 60 ps, 125 Hz 1C/2A
9 3 2C—, 1.9 mA 2C—, 1.9 mA 60 ps, 130 Hz 2B/2B
12 2—, 2.8 mA 2—,2.8 mA 60 ps, 130 Hz 1C/2B
24 2B— 2C—, 4 mA 2A— 2B—, 42 mA 60 ps, 130 Hz 2B/3
10 3 1—, 1.5 mA 1—, 1.4 mA 60 ps, 125 Hz 2B/1C
11 3 2B— 2C—, 1.2 mA 2—, 1.1 mA 60 ps, 130 Hz 2C/1B
12 3 1A— (40%) 1B— 2A— (120%) 2B— 60 ps, 125 Hz 2A/1B
(100%) 2A— (80%), 1.9 mA
(60%) 2B—
(100%), 2.3 mA
12 2A— 2B— 3—, 2A— 2B— 3—, 60 ps, 125 Hz 2A/2B
2.8 mA 3.1 mA
18 2A— 2B— 3—, 2A— 2B— 3—, 60 ps, 125 Hz 2A/2B
2.8 mA 3.1 mA
13 3 2—, 2.7 mA 2—, 1.6 mA 60 ps, 125 Hz 1B/2A
(Continues)
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TABLE 2 Continued
Contact with maximal
Sessions Stimulation Stimulation pseudo-monopolar

Patient (months Stimulation parameters pulse width, beta power
ID post-surgery) parameters LSTN RSTN frequency LSTN/RSTN
14 3 2—,1.7mA 2—,22mA 60 ps, 130 Hz 2C/1B

12 2—, 3,4 mA 2—,2.7 mA 60 ps, 130 Hz 2B/1B

24 2—, 3.4 mA 2—,2.7 mA 60 ps, 130 Hz 2B/2A
15 3 2—, 1.3 mA 1—, 1.3 mA 60 ps, 130 Hz 2C/2B

12 2—,2mA 1—,2mA 60 ps, 110 Hz 2C/2B

18 2—, 2.4 mA 1—, 2.5 mA 60 ps, 80 Hz 2A/2B
16 12 1-2—, 1.5 mA 1-2—, 1.2 mA 60 ps, 90 Hz 2B/2B

18 1-2—, 1.75 mA 1-2—, 1.5 mA 60 ps, 125 Hz 2B/2C
17 12 1—,2.8 mA 0—, 2.8 mA 40 ps, 130 Hz 1B/1C

18 1-, 2.8 mA 0—, 2-8 mA 40 ps, 130 Hz 1B/1C
18 12 1—, 1 mA 1—, 3 mA 60 ps, 130 Hz 2A/1A
19 3 2—, 1.7 mA 2—, 1.7 mA 60 ps, 130 Hz 1A/1A

12 2B— 2C— 3—, 2B— 2C— 3—, 60 ps, 110 Hz 1A/1B

2.3 mA 2.6 mA

18 2—, 1.5 mA 2—, 1.7 mA 60 ps, 180 Hz 1A/1A
20 12 1+ 2-34+, 2.5 mA 1B— 2B—, 5.7 mA 60 ps, 130 Hz 2C/2B

18 14+ 2— 34, 3 mA 1B— 2B—, 5.7 mA 60 ps, 130 Hz 2C/1A
21 12 1—,25 mA 1—, 2.5 mA 60 ps, 100 Hz 2C/1C

18 1—,2mA 1—, 2mA 60 ps, 130 Hz 2C/1C
22 3 1—, 1.8 mA 2—, 1.6 mA 60 ps, 125 Hz 1A/1B

12 1—,22mA 2—, 2.6 mA 60 ps, 125 Hz 1A/1B

24 1—, 2.6 mA 2—, 2.8 mA 60 ps, 125 Hz 1A/2B
23 3 2—, 1.8 mA 2—,2.1 mA 60 ps, 90 Hz 1B/2A

24 IL 2—, 1.2/0.9 mA 2—, 1.3 mA 50 ps, 125 Hz; 1A/1A

LSTN IL
125/95 Hz

24 3 1—, 3.5 mA 2—,3.2mA 60 ps, 125 Hz 2A/2A

12 2—,2.7 mA 2—,2.7 mA 60 ps, 90 Hz
25 3 1—, 2.4 mA 1—, 2.4 mA 60 ps, 130 Hz 2C/2B

12 1—, 24 mA 1—, 23 mA 60 ps, 85 Hz
26 3 2—,23 mA 2—,2.6 mA 60 ps, 90 Hz 2A/2A

12 2-3—, 1.9 mA 2-3—, 1.7 mA 60 ps, 100 Hz
27 3 1—,2.5mA 2—,2.5mA 60 ps, 125 Hz 1C/1C
28 3 1—, 1.5 mA 1—, 1.9 mA 60 ps, 125 Hz 2C/2A

12 1—, 1.7 mA 1—, 2.0 mA 60 ps, 125 Hz 1A/1B
29 3 3—, 0.5 mA 3-14, 1.1 mA L60/R40 ps 2C/2B

12 3—, 1.4 mA 2A— 2B—, 0.9 mA 60 ps, 130 Hz 1A/2C

(Continues)
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TABLE 2 Continued

Contact with maximal

Sessions Stimulation Stimulation pseudo-monopolar

Patient (months Stimulation parameters pulse width, beta power
ID post-surgery) parameters LSTN RSTN frequency LSTN/RSTN
30 3 1—, 29 mA 1—, 2.4 mA 60 ps, 180 Hz 2C/2C

12 2—,2.8 mA 2—,2.6 mA 60 ps, 180 Hz 2C/2A
31 3 1—, 2.0 mA 1—, 1.7 mA 60 ps, 125 Hz 2A/1C

12 1—, 1.8 mA 1—, 1.8 mA 60 ps, 130 Hz 2A/1C
32 3 2—, 1.5 mA 2—, 1.5 mA 60 ps, 130 Hz 2C/1C

12 2—,1.5mA 2—, 1.5 mA 60 ps, 130 Hz 2C/2B
33 3 1—,24 mA 2—,22mA 60 ps, 130 Hz 1A/2A

12 1—, 2.6 mA 2—,2.6 mA 60 ps, 130 Hz 1C/2C

This table shows the clinically optimal stimulation parameters for each patient at each participated session as well as the segmented contacts aligning with maximal pseudo-

monopolar beta power per deep brain stimulation (DBS) lead. Since stimulation parameters were optimized at 3 months post-surgery, stimulation parameters at session O-months
are not presented. Patient 8 (bilaterally, session 3) and 23 (LSTN, session 24) used an interleaving stimulation program (IL) and patient 20 (LSTN, session 12 and 18) and 29

(RSTN, session 3) used a bipolar stimulation program.

Abbreviations: LSTN, subthalamic nucleus of the left hemisphere; RSTN, subthalamic nucleus of the right hemisphere.

sessions at 0- (0-12 days after lead implantation), 3-,
12-, and/or >18-months post-surgery (session details in
Table 1). Due to limited numbers, recordings from 18 to
44 months were grouped (>18-mo FU). Since session par-
ticipation varied between patients, analyses of subgroups
with consistent session participation were performed (see
Table S3 and Fig. 1D for details). A subgroup with four
consistent recordings (n = 10 STN) was reported but not
further analyzed due to the small size.

Data Acquisition

We recorded neural data from 12 bipolar channels
per lead using the IPG’s “BrainSense Survey” (BSSU)
mode with 250 Hz sampling rate, 1 Hz high-pass filter
and ~ 20 s duration. Each lead has eight contacts
across four levels (Fig. 1B): two ring contacts (levels
0 and 3) and six segmented contacts in the middle levels
(A, B, C). LFPs were recorded in three bipolar groups:
adjacent contact levels (ring: 0-1, 1-2, 2-3), inter-level
segments (segmental-2 L: 1A-2A, 1B-2B, 1C-2C), and
segments of the same level (segmental-1 L: 1A-1B, 1A-
1C, 1B-1C, 2A-2B, 2A-2C, 2B-2C). Recordings were
exported to the JSON format for offline analysis.

LFP Processing

Raw LFPs were visually screened for movement or elec-
trocardiogram (ECG) artifacts, which were removed using
Independent Component Analysis (ICA) (Fig. S1). Spec-
trograms were computed with short-time Fourier trans-
forms using 1s Hanning windows and 50% overlap.
Power spectral density was averaged over the full record-
ing duration. The spectral parameterization software (spe-
cparam, formerly FOOOF: parameter details in Fig. S2)*!

was used to isolate periodic components*>** and identify
peak CF and power. Analyzed features included periodic
beta band power (13-35 Hz), peak CF, peak power (area
under the curve [AUC] £+ 3 Hz of the peak CF), and
power in a fixed frequency range (AUC =+ 3 Hz of the 3-
or 12-mo FU peak CF) for beta (13-35 Hz), low-beta
(13-20 Hz), and high-beta ranges (21-35 Hz). For the
peak parameter analysis (Fig. 1E), the ring LFP channel
with highest beta band power at 3-mo FU (or 12-mo FU
in Fig. 2A) was selected, assuming greater stability after
the early postoperative period. Beta power was detected
in at least one channel per hemisphere. Pseudo-monopolar
beta power (13-35 Hz) aligning to individual contacts
was estimated by our newly developed method using
Euclidean distance weighting (see details in Fig. S3,
Tables S1 and S2) to assess the positional change of maxi-
mal beta power and the clinical relevance in contact selec-
tion (Fig. 1F,G).

Statistics

Detailed inclusion criteria for each analysis are pro-
vided in the Statistics section of the Supplementary
Material.

Peak Parameter Analysis

Paired Wilcoxon signed-rank tests were used for
subgroups with two consistent sessions (Fig. 2A).
For subgroups with three consistent sessions, either
Friedman (with post-hoc Wilcoxon signed-rank) or
repeated-measures ANOVA tests (r-m ANOVA with
post-hoc paired #-tests) were applied based on data
normality. Holm correction adjusted for multiple com-
parisons (Fig. 2C, Fig. S6B). Peak frequency shifts
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FIG. 2. Beta peak parameters over time. (A) Peak parameters of the highest beta peak (13-35 Hz) identified in both sessions 0- and 3-/12-mo follow-up
(FU) (n = 48). Left: Peak frequencies often shift between sessions (50% >5 Hz), but without a consistent directional trend. The grey horizontal line at
21 Hz marks the boundary between low- and high-beta ranges. Right: Peak power significantly increases (P < 0.0001) for both power area under the
curve (AUC) + 3 Hz around the peak center frequency (CF) (top) and AUC in a fixed frequency range + 3 Hz around the peak CF at 3-/12-mo FU (bot-
tom). (B) Examples of double peaks in the beta range (shaded grey) in patient 12 (right hemisphere, channel 2-3) showing a switch of the highest peak
from the high- to the low-beta range at 24 months (green). The dashed line marks the boundary between low- and high-beta bands. (C, D) Subgroup
analyses of one selected channel per subthalamic nucleus (STN) with consistent recording sessions: blue (0-3-12), green (3-12->18). Channels with
consistently identified peaks in all sessions (C) or at least one identified peak per session comparison (D) were included. Peak power (AUC in a fixed
frequency range defined at and normalized to 3 months) (C) and peak frequency (D) are illustrated for each session in the full beta (top), low-beta (mid-
dle) and high-beta band (bottom). Lines connect peaks from the same hemisphere. Only in D, missing peaks are marked with a red cross at the com-
pared peak CF from the other session. Red lines highlight CF shifts >5 Hz. The number of channels with significant CF shifts (>5 Hz) or peak
disappearance is shown below in red (eg, of 30 hemispheres, the largest beta peak shifted >5 Hz between sessions 0- and 3-mo FU in n = 17 hemi-
spheres). The grey line at 21 Hz in the top panel marks the border between the low- and high-beta boundary. Black crosses in boxplots indicate
the mean.
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(>2.5 or >5 Hz) or missing peaks were classified as sub-
stantial shifts and analyzed across periods using
Wilcoxon tests for binomial classifications (shift vs. no
shift) (Fig. 2D, Fig. S6A). These thresholds were chosen
due to their potential impact on aDBS performance.
Shifts >2.5 Hz could partially, and >5.0 Hz could
entirely, displace peaks from a fixed frequency range
(£2.5 Hz). Additional analyses are detailed in the Sup-
plementary Material (Fig. S5).

Spatial Distribution Analysis

Spearman’s rank correlation evaluated the longitudinal
stability of ranked bipolar beta power across 12 channels
(ring and segmental) per lead. Fisher-transformed coeffi-
cients were compared using paired z-tests (Fig. 3A). Bino-
mial tests evaluated vertical (z: levels 1 and 2) and
horizontal (xy: directions A, B, C) shifts of segmented
contacts with maximal pseudo-monopolar beta power
(beta rank 1 and 2) relative to chance for each period
(Fig. 3B,C). Mann-Whitney U-tests compared normal-
ized pseudo-monopolar beta power (relative to maxi-
mum per lead) at clinically active versus inactive
contacts (including all eight contacts, Fig. 3D).

Data normality was assessed using Shapiro—Wilk
tests. Statistical significance: ns P > 0.05, * P <0.05,
**P<0.01, ***P<0.001, ****P <0.0001. Results
were reported as mean + SD.

Software

Software details are provided in the Supplementary
Material.

Results

Consistency of Peak Identification over Time

The consistency of peak identification over time (via
specparam; see Supplementary Material) varied across
beta ranges (Fig. S7). In the “early” subgroup (n = 30
hemispheres, 0-, 3-, and 12-mo FU), consistent peaks
(identified in all three sessions) appeared in 83% of
hemispheres in the full beta range, but only 47% in
low-beta and 63% in high-beta ranges. In the “late”
subgroup (n =24 hemispheres, 3-, 12-, and >18-mo
FU), consistent peaks were identified in 96% for full
beta and high-beta ranges but only 25% in low-beta.

Modulation of Beta Peak Power over Time

Among 52 hemispheres with consistent recordings at
0-mo FU and either 3-mo (n=40) or 12-mo FU
(n = 12), 48 displayed a beta peak (13-35 Hz) in both
sessions. Beta peak power significantly increased
between 0- and 3-/12-mo FU for both power metrics:
(1) power AUC + 3 Hz around peak CF (mean
difference & SD:  —7.39 +£8.79, P <0.0001) and

(2) AUC in a fixed frequency range &+ 3 Hz around the
3-/12-mo FU peak CF (-7.29 +8.67, P <0.0001;
Fig. 2A).

In subgroups with three consistent sessions and con-
sistently identified peaks, both power metrics showed
similar results. Hence, only results from power
AUC £+ 3 Hz of the 3-mo FU peak CF are reported.
Normalized power (relative to 3-mo FU) significantly
increased from 0- to 3-mo FU and stabilized thereafter
(Friedman, Fig. 2C).

In the “early” subgroup, relative power at 0-mo FU
(eg, full-beta: 0.13 + 0.18) was significantly lower than
3-mo FU (1.00 & 0.00 P <0.0001) and 12-mo FU
(0.86 £ 0.96, n=25, P=0.0002 Holm-corrected).
Similar trends occurred in low-beta (n = 14) and high-
beta ranges (n = 19), without significant differences
between 3- and 12-mo FU (P > 0.05).

In the “late” subgroup, relative power showed a
decreasing trend from 3-mo FU (1.00 + 0.00) to later
sessions but did not reach significance (eg, 12-mo FU
full-beta:  0.79 &£1.03, n =23, Holm-corrected
P =0.064; low-beta: 0.54 £ 0.31, n =6, Friedman
P =0.069; high-beta: 0.83 +1.03, n =23, Holm-
corrected P = 0.106). No difference occurred between
12- and >18-mo FU (P > 0.05).

Change in Peak Frequency over Time

In 52 hemispheres (n = 48 with consistent beta peaks
in two sessions), the highest beta peaks showed no sig-
nificant directional shifts (0.66 & 6.96, P = 0.461),
though 50% exceeded 5 Hz shifts and ranged between
0.05 and 15.67 Hz (Fig. 2A).

In the “early” subgroup with three consistent sessions
(Fig. 2D), 57% of the largest beta peaks shifted >5 Hz
or disappeared between 0- and 3-mo FU, significantly
more than between 3- and 12-mo FU (27%, P = 0.020,
n = 30). In the “late” subgroup, the highest beta peak
shifts occurred in 33% (3- and 12-mo FU) and 29%
(12- and >18-mo FU) without significant differences
(P = 0.05). Shifts were particularly prominent when the
highest beta peaks alternated between low- and high-
beta ranges in double peaks (see Fig. 2B). Additional
analysis comparing absolute peak frequency shifts con-
firmed these findings (Fig. S5, Table S4).

For low-beta and high-beta peaks, shifts >5 Hz or
disappearance occurred in all periods without signifi-
cant differences over time (P > 0.05, Fig. 2D). In the
“early” subgroup, substantial shifts appeared in 38% of
low-beta (from n = 26) and 43% of high-beta peaks
(from n = 30) between 0- and 3-mo FU, while slightly
less between 3- and 12-mo FU (27% and 33%, respec-
tively). In the “late” subgroup, substantial shifts
occurred in 32% of low-beta (from n = 19) and 21%
of high-beta peaks (from n =24) between 3- and
12-mo FU, while between 12- and >18-mo FU in 58%
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FIG. 3. Spatial distribution of beta oscillations over time. (A) Mean Spearman’s correlation between ranked beta power from 12 bipolar channels (ring
and segmental) at consistent sessions across hemispheres from the “early” subgroup (blue, n = 30 subthalamic nucleus [STN]) and the “late” subgroup
(green, n =24 STN) show lowest correlation between 0- and 3-mo follow-up (FU) but no significant differences across session comparisons.
(B) Positional change in level (y) and direction (x) of segmented contacts with maximal beta values (beta rank 1: orange, 2: grey) between sessions. An
exemplary lead is shown on the left. The positional changes across hemispheres are shown in a simplified coordinate system (y: change in level 1 and
2; x: change in segments A-C). N = number of STN with consistent pairs of recording sessions. 0 = no change, +1 and —1 = change in direction/level.
(C) The percentage of maximal beta contacts changing level (top) or direction (bottom) are illustrated for each pair of recording sessions. Beta rank
1 (orange) changes were significantly lower than chance level (red dashed line) for both levels and directions across all periods, while beta rank 2 con-
tacts (grey) fluctuated more in the earlier periods. (D) Pseudo-monopolar beta power from eight contacts per hemisphere, normalized to maximal beta
power within a deep brain stimulation (DBS) lead was higher in active (gold) than inactive (grey) contacts for chronic stimulation after each follow-up
visit at 3-, 12-, and >18-mo FU (session 0-mo is not shown because stimulation parameters were not yet optimized). Horizontal solid black lines indi-
cate the median. Horizontal dashed lines at the bottom show the first quartile and at the top show the third quartile. Black crosses indicate the mean.
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and 12%, respectively. Shifts >2.5 Hz were more com-
mon but followed similar trends (Fig. S6A).

Directional shifts were significant only for consis-
tently identified low-beta peaks in the “early” subgroup,
increasing from 15.65+1.70 (0-mo FU) to
16.93 4+ 1.94 (12-mo FU, Friedmann, Holm-corrected
P =0.040, n = 14; Fig. S6B). No directional shifts
occurred in the “late” subgroup (n =6, P = 0.806 r-m
ANOVA) or in other beta ranges (P > 0.05 Friedmann).

Spatial Distribution of Beta Power is Stable and
Correlates Over Time

The ranked order of bipolar beta power across 12 chan-
nels (ring and segmental LFP) showed positive correla-
tions over time. The lowest correlations were observed in
the “early” subgroup (n = 30) between 0- and 3-mo FU
(0.41 4+ 0.32), though not significantly different from 3-
and 12-mo FU correlations (0.59 & 0.30, P = 0.096).
The “late” subgroup (n = 24), maintained high correla-
tions across sessions (3-12-mo FU: 0.68 £ 0.23; 12-
>18-mo FU: 0.61 + 0.34, P = 0.69; Fig. 3A).

Beta rank 1 contacts with maximal pseudo-monopolar
beta power (Fig. 3B, orange) were increasingly stable
over time on the vertical axis (levels 1 and 2) with signif-
icantly fewer positional shifts in their level than expected
by chance (50%) across all periods (0-3-mo FU: 30%
from n =40, P=0.008; 3-12-mo FU: 20% from
n =44, P <0.0001; and 12- to >18-mo FU: 18% from
n = 34, P < 0.0001; Fig. 3C, top). Also, on the horizon-
tal plane (directions A, B, C) shifts were significantly
lower than chance (67%) across all periods (0-3-mo FU:
32%, P < 0.0001, 3-12-mo FU: 36%, P < 0.0001, 12-
>18-mo FU: 29%, P < 0.0001; Fig. 3C, bottom). Beta
rank 2 contacts were less stable, fluctuating vertically in
the earliest period (0-3-mo FU: 40%, P = 0.134), but
stabilizing later (3-12-mo FU: 23%, P = 0.0002; 12-
>18-mo FU: 21%, P = 0.0004). Horizontally, beta rank
2 contacts fluctuated up to 12-mo (0-3-mo FU: 57%,
P =0.146; 3-12-mo FU: 59%, P = 0.184), and stabi-
lized later (12- >18-mo FU: 47%, P = 0.015).

Stimulation Settings Reflect Differences in the
Beta Distribution Across Contacts

After excluding hemispheres with bipolar or interleav-
ing stimulation programs (n = 6), remaining hemispheres
(3-mo FU: n=51, 12-mo FU: n=1355, >18-mo FU:
n = 34) showed the following distribution of active ver-
sus inactive contacts used for chronic stimulation: 3-mo
FU: respectively, n=138 vs. n=270, 12-mo FU:
n =159 vs.n =281 and >18-mo FU: n = 96 vs. n = 176
(Fig. 3D). Normalized pseudo-monopolar beta power
(to the maximum within a lead) was significantly higher
at active (3-mo FU: 0.76 + 0.20, 12-mo FU: 0.76 + 0.23,
>18-mo FU: 0.78 4 0.21) compared with inactive con-
tacts across all sessions (3-mo FU: 0.53 £ 0.33; 12-mo

FU: 0.51 4+ 0.31; >18-mo FU: 0.53 + 0.30, P < 0.0001).
Contacts with maximal beta power were active in 45%
of hemispheres (23/51) at 3-mo FU, 53% (29/55) at 12-
mo FU and 50% (17/34) at >18-mo FU. When consider-
ing at least one of the two contacts with maximal beta
power, these percentages increased to 58%, 69% and
68% of hemispheres, respectively.

Discussion

This study examined the stability of the spatial distri-
bution and peak parameters of subthalamic beta oscil-
lations in 33 PD patients over a maximum of up to
44 months post-surgery. Our findings indicate signifi-
cant fluctuations primarily during the early postopera-
tive period with increasing stability observed in the
long term.

Stability of Beta Peak Parameters After Surgery

and its Relevance for aDBS

In line with the microlesional/stun effect,***® substan-

tial fluctuations in beta peak parameters occurred mainly
in the early postoperative period. Beta power signifi-
cantly increased between 0- and 3-mo FU and stabilized
thereafter (Fig. 2A,C). Similarly, beta peak CF fluctuated
more in early compared with later periods, particularly
for the largest peak in the full beta range (13-35 Hz;
Fig. 2D). These fluctuations, including alternations
between low-beta and high-beta peaks in cases of double
beta peaks (Fig. 2A,B,D), emphasize the importance of
distinguishing these sub-beta bands for precise aDBS set-
tings. These early fluctuations are likely related to an
acute tissue response (microlesional/stun effect) after lead
placement, temporarily improving Parkinsonian symp-
toms even without stimulation in some patients.***® An
impedance mismatch, occurring between the tissue and
recording electrode, can impact the amplitude and fre-
quency characteristics of LFP signals, especially at higher
frequencies.”” Given our results, this effect influences the
spectral power in the first session. However, in line with
clinical observations and previous findings** our results
corroborate the idea that the microlesional effect seems
to no longer affect LFPs after an initial period of maxi-
mally 3 months post-implant.

Consistent with previous studies reporting no pro-
gression of beta oscillations for up to 3 years,”*>" we
observed no substantial beta power increases beyond
stabilization over 44 months. A slight non-significant
decrease in power was observed when defining a fixed
frequency range based on the 3-mo FU recording
(Fig. 2C). This effect may be attributed to minor fluctu-
ations in the peak frequency, which led to decreased
power AUC within the specified frequency range. Peak
power AUC =+ 3 Hz around its own peak CF showed a
similar but less strong decreasing trend. In line with
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previous findings, only mild absolute CF shifts
were observed on average for both low-beta (<2 Hz)
and high-beta peaks (2-3 Hz) over time, regardless of
peak disappearance (Fig. S5, Table S4).

Together, these findings suggest setting power thresh-
olds for aDBS after a stabilization period of up to
3 months. However, the exact timing of stabilization
after surgery remains unclear, as intermediate measure-
ments were not assessed. Long-term adjustments to the
power thresholds, peak frequency, and contact selection
may be required to optimize aDBS outcomes. Here, it is
interesting to note that in our study high-beta peaks
were more consistently detected (96%) than low-beta
peaks (25%) during long-term follow-up (Fig. S7),
suggesting that high-beta peaks may be more reliable
for defining optimal aDBS frequency ranges. High-beta
peaks showed no significant directional CF shifts over
time, while low-beta peaks demonstrated a significant
CF increase from session 0- to 12-mo FU in a subgroup
of patients (n = 14). However, low-beta peak analysis
in late sessions was limited by low numbers (n = 6;
Fig. S6B). A key consideration for aDBS is the potential
for peaks shifting out of the selected frequency range
(£ 2.5 Hz). Notably, shifts >5.0 Hz or peak disappear-
ance occurred in 58% of low-beta peaks and only 12%
of high-beta peaks between sessions 12- and >18-mo
FU (Fig. 2D), highlighting the greater stability of high-
beta peaks. However, it remains unclear whether the
higher variability or disappearance of low-beta peaks
might be related to fluctuations in patients’ medication
(eg, residual effects of dopamine agonists with longer
half-lives after 12 h of withdrawal) or to long-term
DBS effects (eg, neuroplastic changes). Further research
in larger patient cohorts and more experience with
adaptive stimulation will be essential to better under-
stand these factors and develop more precise and
informed recommendations for effective therapy.

15,31

Maximal Beta Power is a Stable Chronic
Biomarker Usable for Beta-Guided Contact
Selection

For beta-guided DBS programming the spatial stabil-
ity of maximal beta power is crucial, particularly along
the z-axis for ring stimulation. Our findings show a
positive correlation of the ranked order of beta power
across all bipolar channels over time (Fig. 3A). Here,
the lowest correlation was observed in the early postop-
erative period between sessions 0- and 3-mo FU,
pointing to a higher variability in the early postopera-
tive phase, which is in line with observations in non-
human primates that showed fluctuations in the first
2 weeks post-implant and subsequent stabilization.**

We further observed that segmented contacts with
maximal pseudo-monopolar beta power showed increas-
ing stability along the z-axis over 44 months (up to 82%

r LONG-TERM

BETA POWER DYNAMICS IN PD
of contacts remaining in their level, Fig. 3B,C). This find-
ing extends recent studies, which described constant
bipolar contact pairs with LFP peaks along the z-axis
(ring LFP) at multiple visits during the first 3 months'”
and within the same session.”” Our result supports the
long-lasting stability of beta-guided contact selection for
ring stimulation, especially over the long term.

For directional stimulation, the stability of maximal
beta power along the horizontal plane is relevant. We
found that the segmented contact with highest beta
power remains stable in its directionality in most hemi-
spheres (64-71% remaining in the same direction,
Fig. 3B,C). However, contacts with second highest beta
power showed more fluctuation in their directional posi-
tion over time. These findings suggest that selecting
directional contacts (especially more than one segmented
contact) based on beta power may be less reliable and
may require longer or repeated LFP recordings. The
implications of these horizontal long-term fluctuations
on the therapeutic efficacy of segmented contacts remain
unclear and require further investigation.

Potential Use of Beta Power for Active Contact
Selection

We have shown that active contacts selected for thera-
peutic stimulation correspond to higher normalized beta
power than inactive contacts at every follow-up session
(Fig. 3D). Inactive contacts, not used for chronic stimula-
tion, showed mostly low, but also high beta values. These
contacts might have not consistently been tested for clini-
cal use or the decision not to use certain contacts may
have been driven by other factors that are not reflected in
beta power, for example, tremor or stimulation-induced
side effects. Between 45% and 69% of contacts with
maximal beta power were chosen for therapeutic
use. Our findings support the utility of beta power as a
relevant but not exclusive tool for DBS programming.
This highlights one of the many complexities in introduc-
ing a fully automatized DBS programming algorithm, a
goal that has become increasingly important
as stimulation parameters grow more complex. An exam-
ple of a data-driven algorithm is “StimFit”, providing
personalized stimulation parameters based on the
electrode-location and neuroimaging-derived metrics,
while considering motor outcome and stimulation-
induced side effects.*>** Neuroimaging-guided tech-
niques form a good basis for initial DBS programming.
However, chronically derived LFPs could complement
these automated techniques well by adjusting for long-
term fluctuations. As shown in our study, fluctuations of
the spatial distribution of beta oscillations might be espe-
cially relevant for directional stimulation. Despite poten-
tial benefits of directional stimulation such as higher side
effect thresholds and larger therapeutic windows,* our
patient cohort demonstrates its underuse with only 21%
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of hemispheres using directional stimulation at the 12-mo
FU. This underuse is likely due to the time-consuming
programming process. Multimodal DBS programming
combining the use of biomarkers both from LFPs as well
as imaging and their proportion of valuable information

might be an efficient approach in the future.’®>”

Limitations

Several limitations of this study should be considered.
Five patients participated in only two sessions, though
most patients (n = 28) participated in at least three ses-
sions and in most main analyses participants with consis-
tent recording sessions were used. Recordings in the
BSSU mode are limited to 20 s approximately, which
captures only a short window of beta oscillations. Indi-
vidual short-term fluctuations of beta activity during the
day and from day to day must be considered. Neverthe-
less, we found a significant stability of beta band param-
eters over time that was most likely more compromised
by the stun effect than short recording durations. Long-
term recordings might also be influenced by impedance
changes®**%3” as higher electrode impedances might
contribute to noise in the recordings.*® However, it has
been repeatedly reported that fluctuations of DBS lead
impedances did not correlate with long-term beta activity
dynamics, which suggests other chronic processes being
involved in longitudinal beta fluctuations.”**!

Furthermore, IPG devices used in this study only
allowed for bipolar LFPs. Hence, estimations of
monopolar beta power in our analyses were based on
weighting methods (Fig. S3, Tables S1 and S2) with
limitations especially for the ring contacts 0 and 3, for
example, due to different impedances compared with
segmented contacts. Therefore, in some analyses if rea-
sonable, we used pseudo-monopolar beta power only
for directional contacts and excluded the ring contacts
0 and 3 (Fig. 3C,D). Future technological advancement
may overcome this limitation by enabling monopolar
power derivation.

Conclusions

This study is the first to demonstrate in a large PD
patient cohort the long-term stability of beta activity
parameters using a chronic sensing IPG available in
routine clinical care. During the initial postoperative
period up to 3 months, beta power increased, and the
spatial distribution showed variability most likely due
to the stun effect after electrode implantation. Beyond
the early postoperative period, the spatial distribution
and peak parameters of subthalamic beta band oscilla-
tions showed higher stability, supporting their usability
for biomarker-guided programming and adaptive DBS.
Programming of aDBS parameters would thus be rec-
ommended only after the stun effect resolves and beta

power parameters stabilize as needed for aDBS thresh-
old settings. While peak frequency fluctuations can
occur during all periods, high-beta peaks demonstrate
greater consistency and stability than low-beta peaks,
making them a potentially more reliable target for
defining aDBS frequency ranges. In the long term, beta
power was higher at clinically active contacts as com-
pared with inactive contacts, which further supports
the potential for beta-guided DBS contact selection.
Taken together, our findings are relevant information
for both future beta-guided contact selection algorithms
and aDBS approaches. ®
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