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Charting γ-secretase substrates by
explainable AI

Stephan Breimann 1,2,3,9, Frits Kamp 1,9, Gabriele Basset1,
Claudia Abou-Ajram1, Gökhan Güner2,4, Kanta Yanagida5,6, Masayasu Okochi6,
Stephan A. Müller 2,4, Stefan F. Lichtenthaler 2,4,7, Dieter Langosch 8,
Dmitrij Frishman3 & Harald Steiner 1,2

Proteases recognize substrates by decoding sequence information—an
essential cellular process elusive when recognitionmotifs are absent. Here, we
unravel this problem for γ-secretase, an intramembrane-cleaving protease
associated with Alzheimer’s disease and cancer, by developing Comparative
Physicochemical Profiling (CPP), a sequence-based algorithm for identifying
interpretable physicochemical features. We show that CPP deciphers a
γ-secretase substrate signature with single-residue resolution, which can
explain the conformational transitions observed in substrates upon γ-
secretase binding. Using machine learning, we predict the entire human γ-
secretase substrate scope, revealing numerous previously unknown sub-
strates. Our approach outperforms state-of-the-art protein language models,
improving prediction accuracy from 60% to 90%, and achieves an 88% success
rate in experimental validation. Building on these advancements, we identify
pathways and diseases not linked before to γ-secretase. Generally, CPP
decodes physicochemical signatures—a concept that extends beyond
sequencemotifs.We anticipate that our approachwill be broadly applicable to
diverse molecular recognition processes.

Intramembrane proteases are an important class of proteases, dis-
tinctive for their membrane-embedded catalytic residues1. Although
their substrate cleavage occurs in a relatively site-specific manner1,
consensus cleavage site motifs have not been conclusively
identified2–5. One of the best-studied intramembrane proteases is γ-
secretase, which cleaves about 150 type I single-span membrane pro-
teins within their transmembrane domain (TMD)6, including the
NOTCH receptors, which are implicated in cancer, and the Alzheimer’s
disease-associated amyloid precursor protein (APP). As shown for APP,

γ-secretase cleaves the TMD initially close to the cytoplasmic border
and then trims it progressively7. γ-Secretase is critically involved in
many important cellular processes, including intracellular signaling
andmembrane protein homeostasis8. However, γ-secretase is thought
to cleave only a fraction of the N-out proteome9 (i.e., all single-span
membrane proteins with an extracellular N-terminal ectodomain), and
its complete substrate repertoire is not known.

Substrates of γ-secretase must have a short N-terminal ectodo-
main, typically generated by cleavage of the full-length protein by
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shedding enzymes (“sheddases”), such as α- and β-secretase (Fig. 1a).
Additional factors for γ-secretase substrate recognition and cleavage
include TMD backbone flexibility10–12 (e.g., mediated by glycine- or
alanine-based hinges11,13) and cooperating N- and C-terminal TMD
segments14, as well as local interactions with γ-secretase exosites15,
tight binding of theTMD to the enzyme16, andfitting into the active site
of the enzyme17. However, the relative contributions of these factors
for different substrates are still unclear, and they are not all obvious
from a substrate sequence. Thus, the molecular principles defining
how γ-secretase discriminates substrates from non-substrates (i.e.,
single-span N-out proteins that are not cleaved) in recruitment and
cleavage remain largely unresolved18–20.

While substrates ofmany soluble proteases canbe reasonablywell
predicted based on structural properties or sequence patterns21–24,
conserved cleavage motifs have not been identified for γ-secretase
substrates (Fig. 1b–d). Considering the substantial number of known γ-
secretase substrates, the application of machine learning approaches
for substrate prediction is becoming increasingly feasible. Moreover,
alignment-free deep learning-based protein language models25,26, pre-
trained on billions of sequences, can also be utilized for prediction
tasks withmuch smaller datasets by transfer learning27. However, a key
obstacle in applying machine learning to γ-secretase substrate pre-
diction is the lack of negative training data, with only about 15
experimentally validated non-substrates (Supplementary Data 2,
Methods “Datasets”).

Here, we address the long-standing problem of how γ-secretase
recognizes its substrates using a computational workflow (Fig. 2a)
based on Comparative Physicochemical Profiling (CPP). This new
algorithm was used to identify common physicochemical features of
γ-secretase substrates, which were utilized for machine learning-
based classification of substrates and non-substrates. To tackle the
issue of an imbalanced dataset containing more substrates than non-
substrates, we also developed a novel deterministic positive-
unlabeled (PU)28,29 learning approach (dPULearn). The lack of inter-
pretability inherent to machine learning models30,31 was solved by
combining CPP with the artificial intelligence (AI) framework SHapley
Additive exPlanations (SHAP)32, thereby explaining the residue-
specific impact of substrate-defining features beyond mere
sequence motifs. We achieved a high prediction accuracy for pro-
teins with known substrate status, supported by a similar accuracy in
the experimental validation of several substrate and non-
substrate candidates.

Results
Feature engineering using CPP
CPP is an interpretable feature engineering algorithm that compares
two sets of protein sequences to delineate their most discriminative
physicochemical features. The core idea of CPP is its feature concept
(“CPP feature”), defined as a combination of a “part”, a “split”, and a
“scale” (Supplementary Fig. 1a, Methods “Idea of the CPP algorithm”).
Sequence parts—in our case, the TMD and its adjacent N- and
C-terminal juxtamembrane domains (JMD-N and JMD-C, respectively)
of single-spanmembrane proteins—can be split into either continuous
segments or discontinuous patterns (Supplementary Fig. 1b–d, Meth-
ods “Splitting of sequence parts”). These patterns reflect helical peri-
odicity, where residues spaced 3 or 4 positions apart align on the same
side of an α-helix33. For each resulting split, feature values are com-
puted by assigning to each residue a value of a min-max normalized
physicochemical scale (e.g., charge or volume) and averaging them.
Scales were obtained mainly from the AAindex database34 and classi-
fied into categories (e.g., conformation) and subcategories (e.g., β-
strand), as provided by AAontology35 (Methods “Classification of
scales”). A redundancy-reduced set of 133 scales was obtained using
AAclust36 (Supplementary Fig. 1e, Methods “Selection of scales”).

We used CPP to identify features characteristic of γ-secretase
substrates. To account for the inherent complexity of defining the
exact locations of membrane boundaries, we considered three differ-
ent sources of TMD annotations (UniProt37, TMHMM38, and Phobius39;
Supplementary Fig. 1f); if not stated otherwise, the TMHMM annota-
tionwas used as the default.We compared an expert-curated subset of
known γ-secretase substrates (SUBEXPERT, n = 63) with a non-
redundant reference set of single-span type I transmembrane pro-
teins with unknown substrate status (OTHERS, n = 631; Methods
“Datasets”). By combining parts, splits, and scales, CPP created over
100,000 features and performed statistical filtering (Supplementary
Fig. 1g, Methods “CPP algorithm”), yielding 150 non-redundant fea-
tures (Supplementary Data 8). These features embody physicochem-
ical properties most discriminative between SUBEXPERT andOTHERS,
such as the formation of extended conformations within the TMD-C-
JMD-C, as illustrated for APP and the known non-substrate TMX3 in
Supplementary Fig. 2a–c.

Identification of additional non-substrates by dPULearn
To overcome the challenge of robust machine learning posed by an
imbalanced dataset comprising 63 substrates (SUBEXPERT) and 14

Fig. 1 | Sequence analysis of the γ-secretase substrate cleavage region.
aOverview of γ-secretase cleavage and functions (Created in BioRender. Breimann,
S. (2025) https://BioRender.com/bzswlhf). b Sequence logo of the cleavage region
of 23 substrates with known cleavage sites. Shown are five positions on the
N-terminal (P1–P5) and C-terminal side (P1’–P5’) of the initial cleavage site indicated
by ↓. Amino acids are colored according to their physicochemical properties:

hydrophobic (black), neutral (green), hydrophilic (blue). c, d Sequence logos of the
last ten amino acids of theTMD-C and the first four amino acidsof the JMD-C for the
SUBEXPERT (c) and NONSUB (d) datasets. See Methods (“Sequence parts of
transmembrane proteins”, “Datasets”, and “Sequence logos”) for further details.
Source data are provided as a Source Data file.
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non-substrates (NONSUB), we developed a deterministic PU learning
algorithm (dPULearn) for identifying additional negatives from unla-
beled data based on CPP features (Supplementary Fig. 3a). dPULearn
uses principal component analysis to compress the entire feature
space (i.e., an n ×m matrix, where n is the number of proteins and
m = 150 is the number of features) onto principal components (PCs).
For each PC, proteins from OTHERS that are most distant from SUB-
EXPERT proteins are identified as additional non-substrates, based on
the absolute distance between their PC value and themean PC value of
SUBEXPERT proteins (Methods “Computational non-substrate identi-
fication by dPULearn”). Using dPULearn, we extended the set of 14
known non-substrates by 49 predicted non-substrates (NON-
SUBPRED), balancing the dataset at 63 substrates and 63 non-
substrates (Supplementary Fig. 3b–e).

We benchmarked dPULearn (Supplementary Methods “Bench-
marking dPULearn”) against the popular PU learning framework
developed by ref. 40 (referred to as “Elkanoto”), which uses machine
learning classificationmodels and is, therefore, a stochastic approach.
Sets of non-substrates generated by the Elkanoto framework and
dPULearn were used to assess the prediction performance of two
machine learning model types, support vector machine and random
forest, as recommended for small datasets41. Both approaches showed
similar performance (Supplementary Fig. 4a). However, the Elkanoto
framework lacked reproducibility (Supplementary Fig. 4b) and con-
sistency (Supplementary Fig. 4c, d). In contrast, dPULearn achieved
100% reproducible results (Supplementary Fig. 4b), high consistency
in terms of robustness for selected model hyperparameters (Supple-
mentary Fig. 4e), and a significantly better performance than random

Fig. 2 | Identification of the physicochemical signature of γ-secretase sub-
strates using CPP. a Workflow comprising the identification of substrate features
by Comparative Physicochemical Profiling (CPP), the prediction of substrate can-
didates using machine learning, and the explanation of feature impacts on sub-
strate prediction scores via Shapley Additive exPlanations (SHAP). b–e Results of
CPP analysis comparing SUBEXPERT with OTHERS (dataset 1 with TMHMM anno-
tation). Feature importance was obtained by machine learning models trained on
SUBEXPERT against non-substrates (NONSUB with NONSUBPRED). Sequence
lengthwas set to 40 residues.bCPPprofile showing cumulative feature importance

per residue. Different sequence regions are indicated, including their total feature
importance. c CPP feature map showing the feature value mean differences (SUB-
EXPERT - OTHERS) per residue position and scale subcategory, classified into 6
categories as provided by AAontology35. The cumulative feature importance per
scale subcategory is indicated by gray bars (right). The feature importance per
residue position and scale subcategory is highlighted by black squares if higher
than 0.2%. d Relative occurrence of scale categories per sequence region as shown
in (b). e Cumulative feature importance for top 10, 25, 50, and 117 out of 150
features. Source data are provided as a Source Data file.
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sampling of non-substrates (P < 0.001, two-sided one-sample t-test,
Supplementary Fig. 4f).

We tested CPP for sets of parts and scales using machine learning
models trained on SUBEXPERT vs NONSUB with balanced accuracy
(Methods “Machine learning models”) as an evaluation measure for
predicting the substrate status of these proteins. Without expanding
the non-substrates by NONSUBPRED (Supplementary Fig. 4g,Methods
“Derivation of the optimal scale and part sets for CPP”), average scale
values over the entire sequence of the TMD and its JMDs (TMD-JMD)
achieved a balanced accuracy of only 50% when splitting was omitted
(referred to as “scale-based” feature engineering). When applying
splitting on either the TMD alone or the TMD-JMD, CPP performed
similarly. However, CPP achieved 84% balanced accuracy with an
optimized part set and 92% accuracy when NONSUBPRED was inclu-
ded to balance the datasets (Supplementary Fig. 4g, h, Supplementary
Methods “Benchmarking CPP without and with NONSUBPRED”).

Feature ranking using machine learning
To rank the features obtained by CPP, machine learning models were
trained for the three TMD annotations and on two alternative training
datasets (Supplementary Fig. 5a, b,Methods “Training datasets”) using
as positive training data either expert-curated substrates (SUBEXPERT,
n = 63) only (dataset 1) or both expert-curated and literature-based6

substrates (SUBEXPERT and SUBLIT, n = 136 = 63 + 73) (dataset 2). In
both datasets, the same negative training data (NONSUB and NON-
SUBPRED, n = 63 = 14 + 49) was included. For each annotation-dataset
combination, 10 different machine learning classification model types
—four tree-based, two linear, one kernel-based, one neural network,
and two ensemble model classes—were used in 25 training rounds,
yielding 250= 25 × 10 trained models.

Each training round involved data splitting, recursive feature
selection, model hyperparameter optimization, and substrate pre-
diction (Methods “Learning strategy”). The number of pre-selected
features was optimized at every round, and the results of all models
were aggregated for model evaluation and substrate prediction
(Supplementary Fig. 5c, d). For feature ranking, the feature impor-
tance was obtained directly from the four tree-based model types
(100 = 25 × 4 trained models) and averaged. If not stated otherwise,
results are described for dataset 1 with TMHMM annotation, as this
has the best performance (Supplementary Fig. 5d). These ranked
features form the basis for distinguishing γ-secretase substrates from
non-substrates.

Physicochemical signature of γ-secretase substrates
To enable an insightful interpretation of the CPP features and their
importance as obtained by machine learning models (Fig. 2a), we
developed the “CPP profile” and “CPP feature map” visualizations
(Fig. 2b, c). The CPP profile shows the cumulative feature importance
per amino acid position within the different TMD-JMD sequence
regions (Fig. 2b). Remarkably, for all identified 150 features, two
regions exhibit the highest cumulative feature importance: the region
around the initial γ-secretase cleavage site within the TMD-C (33%) and
the first four residues of the JMD-C, referred to as “TMD-C anchor”
(28%; Fig. 2b, Methods “Sequence parts of transmembrane proteins”).

Further detail for this analysis is offered by the CPP feature map
(Fig. 2c), which illustrates the mean differences of feature values
between SUBEXPERT and OTHERS (red/blue indicates higher/lower
feature values for substrates) per residue position and for each scale
subcategory from AAontology35 (color-coded, left), combined with
feature importance. This map reveals that among the most important
properties discriminating substrates from non-substrates (highlighted
by black squares) are: (a) within the TMD-C anchor, residues with
increased helix termination propensity (“α-helix (C-cap)”), large “side-
chain length” and “accessible surface area (ASA)”, as well as
increased “charge” and disorder (“entropy”); (b) at the TMD-C/JMD-C
interface, residues with an increased α-helical (“α-helix”) and
decreased β-sheet termination (“β-sheet (C-term)”) tendency; and (c)
around the initial cleavage site within the TMD-C, an increased con-
formational preference for both extended (“β-strand”) and helical (“α-
helix”) structure as well as altered unfolding propensities (“free energy
(unfolding)”) and reduced “backbone dynamics (-CH)”. In addition,
substrates are characterized by small residues (e.g., reduced “side-
chain length”) within the TMD-N and flexibility-inducing residues (e.g.,
reduced “stability”) within the JMD-N.

Overall, conformational features are dominant (Fig. 2d). Of the
150 CPP features, the ten most important ones constitute 28% of
the cumulative feature importance, the top 50 account for 73%,
and the top 117 for 100% (Fig. 2e), indicating that the last 33 features
contribute minimally to γ-secretase substrate identification. We refer
to this set of CPP features and their importance as the common phy-
sicochemical signature of γ-secretase substrates.

CPP and dPULearn outperform state-of-the-art methods
To evaluate how CPP and dPULearn perform against state-of-the-art
protein prediction methods, we compared them with both a scale-
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without splits (scale-based), deep learning-based ProtTrans5 embedding (ProtT5),
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were used for validation. b Heatmap showing optimization of the number of CPP
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optimized result is indicated by a bold square. Source data are provided as a Source
Data file.
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based and a deep learning-based feature engineering approach, com-
bined with the Synthetic Minority Over-sampling Technique
(SMOTE)42,43 for handling imbalanced datasets. Scale-based features
were generated by averaging physicochemical properties (e.g., polar-
ity, charge, volume) across the entire TMD-JMD sequence of a protein,
creating for each scale a single representative value used as a feature.
For the deep learning-based approach, we used the ProtTrans5
(‘ProtT5’) language model25,26, which produced numerical vectors,
known as embeddings, for each protein sequence. These protein
embeddings represent scale-like residue properties learned by ProtT5
from large protein sequence datasets. To ensure comparability
between the scale-based and embedding-based approaches, we also
averaged the embedding values across the entire TMD-JMD sequence.

For each combination of feature engineering methods (scale-
based, embeddings, CPP) and data expansion techniques (None,
SMOTE, dPULearn), support vector machine models with default set-
tings were trained and consistently evaluated by leave-one-out cross-
validation on SUBEXPERT and NONSUB (Supplementary Methods
“Evaluation measures”) to compare the different approaches in a
standardized baseline machine learning setting. Support vector
machine models employing scale-based feature engineering or
embeddings showed only ~50% balanced accuracy without data
expansion and ~60% with SMOTE (Fig. 3a). Models employing
embeddings anddPULearn reached65%. In contrast,models usingCPP
features achieved a balanced accuracy of 84% without data expansion
and up to 90% with dPULearn when optimized by testing different
numbers of CPP features for model training and non-substrate iden-
tification with dPULearn (Fig. 3b, Supplementary Methods “Bench-
marking CPP and dPULearn against deep learning-based
embeddings”).

Substrate prediction using machine learning
Theprobability of a givenproteinbeing cleavedby γ-secretase (termed
“substrate prediction score”) was computed as the average prediction
score over the six best-performing dataset-annotation combinations,
using a total of 1500 = 250× 6 trained machine learning models (Sup-
plementary Fig. 5d–f, Methods “Aggregation of prediction results”). As
expected, the substrate prediction scores differed between substrate
and non-substrate datasets (Fig. 4a), showing, with a few exceptions,
the highest scores for proteins from SUBEXPERT (>80%), scores
between 50 and 95% for SUBLIT, and scores <50% for NONSUB and
NONSUBPRED. The substrate prediction scores for proteins from our
reference set (OTHERS) ranged between 10 and 95% (Supplementary
Fig. 5e). When considering dataset-annotation combinations inde-
pendently (Supplementary Fig. 5f), lower prediction scores were
obtained for dataset 1, yielding a right-skewed distribution of predic-
tion scores for OTHERS, and vice versa for dataset 2. This dataset-
dependent effect on substrate prediction scores became even more
pronounced when they were averaged over the three TMD annotation
sources separately for datasets 1 and 2 (Supplementary Fig. 6a). The
consistency of the prediction scores was higher within TMD annota-
tions (e.g., Pearson’s r =0.9 for dataset 1 vs dataset 2, TMHMM) than
within datasets (e.g., Pearson’s r =0.74 forUniProt vs TMHMM, dataset
1) (Supplementary Fig. 6b).

Very low or high machine learning prediction scores generally
indicate higher model confidence. In our approach, extreme substrate
prediction scores for a given protein reflect consistent predictions
across the six dataset-annotation combinations. We defined the fol-
lowing confidence-based substrate classes encompassing the con-
tinuum of γ-secretase substrate prediction scores: high-confidence
(HC) non-substrates (0–20%), low-confidence (LC) non-substrates
(>20–50%), LC substrates (>50–80%), and HC substrates (>80–100%)
(Fig. 4b, Methods “Confidence-based substrate classes”). The 80% HC
substrate cut-off was chosen because with this threshold ~90% of the
SUBEXPERT proteins and 0% of proteins from the non-substrate

datasets are classified as HC substrate (Fig. 4c). Compared to HC
classes, substrate prediction scores for LC classes had higher standard
deviations (Fig. 4d–f), supporting our threshold choices. Notably, all
proteins from SUBEXPERT score over 50%, while 15 proteins from
SUBLIT score below this LC substrate cut-off. However, these outliers
are all classified as LC non-substrates, reflecting the uncertainty of the
LC classes. Among these proteins is the Alzheimer’s disease-associated
TREM2, which is an uncommon substrate due to a charged lysine
residue in its TMD44. Charting the complete human single-span N-out
proteome (n = 1534; Methods “Datasets”) by substrate prediction
scores reveals that 250 proteins belong to the HC substrate class
(Fig. 4b, see Supplementary Data 13 for the prediction results), while
98, 599, and 587 proteinswere classified asHCnon-substrates, LC non-
substrates, and LC substrates, respectively.

Experimental validation of predicted substrates and non-
substrates
We experimentally validated predicted γ-secretase substrates using
established cell-based cleavage assays (Supplementary Fig. 7a). Can-
didateswere chosen across all four confidence classes (Supplementary
Data 14). For the selection of biologically interesting HC substrates
(Methods ‘Selection of substrate and non-substrate candidates’), we
devised a “relevance score” [0–1] (Fig. 4g) based on five equally
weighted factors such as associations with diseases or pathways that
have not been previously linked to γ-secretase or its known substrates
(Methods “Computation of relevance score”).

As an experimental readout for the substrate status, we analyzed
substrate accumulation following expression of C-terminally 10×His-
tagged candidate proteins in HEK293 cells with or without a double
knockout (DKO) of the catalytic subunits of γ-secretase, presenilin 1
(PS1) and presenilin 2 (PS2)45 (Methods “Cell-based cleavage assays”).
As shown in Fig. 5a, compared to control cells without DKO, the
C-terminal fragments (CTFs) of five HC and six LC predicted substrate
candidates accumulated in the DKO cells, confirming them as sub-
strates of γ-secretase. Validated HC substrate candidates are CD2,
CD68, CD86, ERBB2, and FAM174A. Notably, the immune system-
related CD68 and CD86, as well as the cancer-related ERBB2, have a
relevance score of 0.8 (Fig. 4g). We also validated the LC substrate
candidates CLMP, ICAM1, PCDH17, as well as the cancer-related
GPNMB and TIMD4 as substrates. While shedding was previously
only reported for ERBB2, GPNMB, ICAM1, and TIMD4 (Supplementary
Data 3, 4, 14), our results imply the existence of a sheddase for the
other validated substrates. The LC substrate tyrosine-protein kinase
STYK1 was validated by the accumulation of its full-length protein
because shedding is not required due to its naturally short ectodomain
(i.e., containing less than 75 residues46,47). Additionally, the substrate
status of all candidates was confirmed by pharmacological γ-secretase
inhibition (Supplementary Fig. 7b). VCAM1, predicted as an LC non-
substrate with a substrate prediction score of 32 ± 16%, was deter-
mined to actually be a substrate, thus being the only positive outlier.

For non-substrate candidates, we selected proteins with a natu-
rally short ectodomain of ~30 amino acids to circumvent the initial
shedding requirement, thereby facilitating unambiguous validation.
Accordingly, we validated one HC non-substrate (ACSL5) and three LC
non-substrates (FAAH2,MANBAL, SLC27A1; Fig. 5b and Supplementary
Fig. 7c)by theunchanged levels of the full-lengthprotein.Onenegative
outlier was found, the predicted LC substrate RELL2 (53 ± 21%).

We next asked whether the main features identified by CPP
(Fig. 2b, c) are sufficient to define substrate cleavage. To this end, we
analyzed the cleavability of selected biotinylated peptides designed to
solely encompass their TMD and C-terminal flanking region48 in a cell-
free γ-secretase assay (Supplementary Fig. 8a–c, Methods “Cell-free
cleavage assays”). Immunoblot analysis indeed showed that the APP-,
APLP2-, NOTCH1-, NOTCH2-, and ERBB2-based peptide substrates
were specifically cleaved by γ-secretase (Fig. 5c), whereas the non-

Article https://doi.org/10.1038/s41467-025-60638-z

Nature Communications |         (2025) 16:5428 5

www.nature.com/naturecommunications


Fig. 4 | Prediction of γ-secretase substrates and non-substrates. a Stacked bar
chart showing the number of proteins against the substrate prediction score for
expert-curated γ-secretase substrates (SUBEXPERT, green), other published sub-
strates (SUBLIT, blue), established non-substrates (NONSUB, purple), and non-
substrates predicted by dPULearn (NONSUBPRED, brown).b Bar chart showing the
number of proteins against substrate prediction score for all human N-out single-
span membrane proteins, categorized as high-confidence (HC) or low-confidence
(LC) substrates (red color tones) and non-substrates (blue color tones).
c Percentage of SUBEXPERT proteins (green), non-substrates (NONSUB+
NONSUBPRED, brown) and all N-out membrane proteins (gray) as a function of the
substrate prediction cut-off. d–f Substrate prediction scores for the UniProt
annotation-based datasets of d SUBEXPERT (n = 68), e SUBLIT (n = 79), and

f NONSUB (n = 15) and NONSUBPRED (n = 53), given here instead of the TMHMM
default to show all known substrates and non-substrates (see Supplementary
Fig. 1f). Color code as in (a). In a–f, substrate prediction scores are shown aggre-
gated over the six best approaches for each dataset-annotation combination (see
Methods “Aggregation of prediction results”). In d–f, the substrate prediction
scores are shown as mean ± standard deviation, reflecting variability across
approaches andoverall prediction uncertainty.gBar chart showing relevance score
for the 50 new HC substrates with the highest substrate prediction score. Experi-
mentally validated substrates are highlighted in red. In d–g, gene names are in
uppercase for human and the first letter capitalized for other organisms (Supple-
mentary Methods “Datasets”). Source data are provided as a Source Data file.
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substrate peptides of ITGB19 and SLC27A1 were not (Fig. 5d). In total,
with a 50% cut-off, 11 substrate candidates (5 HC and 6 LC substrates)
and 4 non-substrate candidates (1 HC and 3 LC non-substrates) were
validated. Only two predictions were incorrect, yielding a success rate
of 88% (15 out of 17), consistent with our computational accuracy
(90%, Fig. 3a).

In linewithour results, recent studies identified andbiochemically
validated additional γ-secretase substrate candidates for which we
determined substrate prediction scores of ~50% (CD300A, MILR1, and
TNFRSF1B49), above 70% (TNR1247), and above 90% (PTPRD50 and
PTPRT51) (Supplementary Data 13). To assess our substrate predictions
for endogenously expressed γ-secretase substrates, we used a recent
proteomics screen that identified 85 substrate candidates in human
microglia-like cells by pharmacological γ-secretase inhibition49. We
observed a significant positive Spearman correlation (ρ =0.44,
P <0.001, two-sided) between our substrate prediction scores and
their reported fold changes of CTF accumulation (Fig. 5e). Using a log2
fold change above 1 as identification threshold, 42 out of 48 proteins
were predicted as substrates, yielding a success rate of 88%. These 48
proteins included28proteins of unknown substrate status, ofwhich 24
were predicted to be substrates, yielding a similar success rate of 86%.
These success rates are consistentwith our experimental results (88%),
both aligning with our computational accuracy of 90% (Fig. 3a).

Explaining prediction results at the amino acid sequence level
To interpret the substrate prediction scores of individual proteins, we
combined CPP with the explainable AI framework SHAP32 (Supple-
mentary Fig. 9a,Methods “ExplainableAI using SHAP” and “Combining
CPP with SHAP”). SHAP quantifies the contribution of each feature
(“feature impact”) to increaseor decreaseprediction scoresbypositive
and negative SHAP values, respectively. The sum of these additive
values, referred to as the SHAP value sum, ranges from 0 to 1 and
approximates the prediction score [0–100%], as illustrated by SHAP
force plots for APP, ITGB1, and TMX3 (Supplementary Fig. 9b). We
developed four further visualizations: “CPP-SHAP ranking plot”, “CPP-
SHAP profile”, “CPP heatmap”, and “CPP-SHAP heatmap” (Supple-
mentary Methods “CPP-SHAP plots”).

To assess CPP and SHAP against conventional sequence similarity
approaches (Fig. 6), we first compared two HC substrates, APP and
NOTCH2,with the LCnon-substrate ITGB1 (Fig. 6a–f). Despite their low
TMD-JMD sequence similarity (21%; Fig. 6g, Methods “Comparison of
CPP with a similarity-based approach”), APP and NOTCH2 have nearly
identical CPP-SHAP profiles with almost exclusively positive-impact
features (Fig. 6d, e). Both echo general substrate-defining properties,
characterized by similar CPP features over all annotations (Supple-
mentary Fig. 9c). In contrast, ITGB1, which also has a low TMD-JMD
sequence similarity to APP (19%, Fig. 6g), shows different CPP-SHAP

Fig. 5 | Experimental validation of predicted substrates and non-substrates.
a Immunoblot analysis of substrate candidates tested in a cell-based cleavage assay.
C-terminal fragment (CTF, ●) accumulation in PS1/2 DKO cells validates their
substrate status. For STYK1, the full-length (FL) protein form (○) accumulated as
this protein can be cleaved directly by γ-secretase. For ERBB2, a smaller band than
the expectedmolecular weight (MW)of its CTFwas found, likely due to subsequent
caspase cleavage of the accumulating CTF97. b Immunoblot analysis of non-
substrate candidates, performed as in (a). Unchanged FL levels validate their non-
substrate status. In a, b, β-Actin served as a loading control. c, d Immunoblot
analysis of substrate and non-substrate TMD-based peptides (TMD) tested in a cell-
free cleavage assay. Cleavageproducts (CP)were found after incubationat 37 °C for
substrate peptides (c), but not non-substrate peptides (d). To control for cleavage
specificity, the γ-secretase inhibitor (GSI) DAPT was used81. For APP, LVMLKKK-
BiotinwasusedasaCPmigration standard (M) in (c). Substrates andnon-substrates
are indicated by their gene name followed by their substrate prediction scores ±

standard deviation (see Methods “Aggregation of prediction results”) using the
color code for confidence-based substrate classes (Fig. 3b). VCAM1 and RELL2 are
outliers in that they proved to be substrate or non-substrate, respectively, contrary
to the prediction. Small black, blue, and red lines indicate 105, 34, and 7 kDaMW
markers. All tested candidates were from human, except CD68, ICAM1, STYK1,
ACLS5, and SLC27A1, which were frommouse (seeMethods “Selection of substrate
and non-substrate candidates”). Immunoblot analyses in a–d are representative of
three independent experiments. eA scatterplot showing the correlation (two-sided
Spearman correlation) between substrate prediction scores and recently reported
log2 fold change (FC) of CTF accumulation in the presence of a GSI against control,
obtained for 85 endogenously expressed proteins in human microglia-like cells49.
The maximum FC was used for proteins with CTF detection only during inhibition.
The regressionestimate (solidblack line)with 95% confidence interval (gray shaded
area) and the chosen substrate identification FC threshold (dashed gray line) are
indicated. Source data are provided as a Source Data file.
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plots, in which negative-impact features predominate (Fig. 6c, f). To
further demonstrate the discriminative power of CPP features, we
compared the ability of CPP feature similarity vs TMD-JMD sequence
similarity to distinguish HC non-substrates from HC substrates
(Fig. 6h, Supplementary Methods “Comparison of CPP with a
similarity-based approach”). Both measures were given as min-max
normalized similarity to the most similar (“closest”) substrate in SUB-
EXPERT. For example, the HC substrate candidate ADAM7 has a mere
5% TMD-JMD sequence similarity to IL1R2 but shares a 69%CPP feature
similarity with CDH1. Remarkably, while sequence similarity was
unsuitable for discrimination, the separation based on CPP features
was perfect (Fig. 6h, dashed line).

SHAP values depend on the machine learning model, the data-
set, and how samples are labeled during training—i.e., whether they
are marked as positive or negative. When extending our SHAP ana-
lysis to proteins that are not included in the training dataset, the
challenge arises of whether to label them as positive (i.e., substrate)
or negative (i.e., non-substrate). To address this labeling ambiguity,
we developed fuzzy labeling (Supplementary Fig. 10, Supplementary
Methods “Fuzzy labeling”). In this labeling procedure, machine
learning models are trained over multiple rounds, and the frequency
of labeling proteins with unknown status (as positive or negative) is
set corresponding to their prediction score. This probabilistic
approach is designed for proteins that are absent from a training

Fig. 6 | Explainable AI analysis of substrate-defining features for APP, NOTCH2,
and ITGB1. a–c CPP-SHAP ranking plots showing the top 15 features explaining the
substrate prediction scores of the high-confidence (HC) substrates APP (a) and
NOTCH2 (b), as well as of the low-confidence (LC) non-substrate ITGB1 (c). The
substrate prediction scores ± standard deviation (see Methods “Aggregation of
prediction results”) for APP, NOTCH2 and ITGB1 are given, followed by their color-
highlighted prediction scores (based on dataset 1 and TMHMM annotation)
explained by SHAP. Indicated are the scale subcategories, residue positions of part-
split combinations, differences in the mean feature value (compared to OTHERS),
and the feature impact (based on TMHMM, dataset 1 training). Features are ranked
according to their positive (blue) or negative (red) impact. Σ indicates the sum of
the importanceof all top 15 features.d–fCPP-SHAPprofiles showing the cumulative
feature impact per residue for the TMD-JMD sequenceof APP (d), NOTCH2 (murine

sequence), and ITGB1 (f).The feature impact was obtained based on dataset 1 with
TMHMM annotation (see Methods “Combining CPP with SHAP”). g Comparison of
discriminative power (substrates vs non-substrates) for different similarity mea-
sures exemplified for APP, NOTCH2, and ITGB1. Arrow thickness corresponds to
similarity strength. h A scatterplot showing the normalized similarity to the closest
(i.e., most similar or correlating) substrate from SUBEXPERT for all HC non-
substrates (blue) and new HC substrates (red). A pair of connected dots represents
the normalized similarity values for a particular protein based on the TMD-JMD
sequence (gray) or CPP feature correlation (black). The closest substrate can differ
between both measures, as exemplified by the newHC substrate ADAM7.Min-max
normalization was performed on the human N-out proteome dataset. The dashed
black line indicates the discrimination border based on CPP features. Source data
are provided as a Source Data file.
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dataset and is particularly useful for explaining uncertain prediction
scores reflected by high variance. We showcased fuzzy labeling for
TREM2, which is a substrate from SUBLIT, but predicted as a low-
confidence non-substrate (36 ± 20%).

In dataset 1, where TREM2 is not included, its prediction score is
22%. However, labeling TREM2 as substrate yields a SHAP value sum of
0.66 (Supplementary Fig. 10a). Applying fuzzy labeling on TREM2
during 25 training rounds (i.e., labeling it 5 rounds as substrate and 20
rounds as non-substrate) results in a SHAP value sum of 0.27, closely
reflecting its 22% prediction score (Supplementary Fig. 10b). For
dataset 1, the low prediction score of TREM2 is explained by the lack of
disordered, large, and charged residues in the TMD-C anchor (Sup-
plementary Fig. 10c, d). For dataset 2, which contains TREM2, it is
always labeled as a substrate so that fuzzy labeling is not applied. This
results in a higher prediction score of 62%, explained by positive-
impact features overruling negative ones (Supplementary Fig. 10e).
Basically, fuzzy labeling ensures that SHAP values reliably approximate

prediction scores for any protein with unknown substrate status,
which is especially useful for prediction scores with high variance. This
probabilistic labeling approach allows an in-depth comparison of the
physicochemical signatures of any protein with a predicted substrate
status, as illustrated for the validated HC substrate ERBB2 (Fig. 7) and
LC non-substrate SLC27A1 (Supplementary Fig. 11).

To discover substrate subgroups based on the feature impact, we
hierarchically clustered dataset 1 using Pearson correlation as a simi-
larity measure, yielding five clusters in concordance with our
confidence-based substrate continuum (Fig. 8, Supplementary Meth-
ods “Clustering based on feature impact”). Cluster 1 contained mainly
HC substrates, such as APP or APLP2; cluster 2 comprised not only HC
substrates, but also LC substrates and one LC non-substrate (ITGB1);
clusters 3 and 4 included LC substrates and non-substrates, reflecting
the uncertainty of their prediction. In contrast, cluster 5 was dominated
by HC non-substrates such as TMX3. Supplementary Fig. 12 compares
the feature impact of four proteins selected from clusters 1, 3, 4, and 5.

Fig. 7 | CPP-SHAP analysis for ERBB2. The validated HC substrate ERBB2 analyzed
by four CPP-SHAP plots using fuzzy labeling (see Methods “Combining CPP with
SHAP”): The CPP-SHAP ranking plot (a) ranks the top 15 features by the absolute
value of their impact, which can be positive (red) or negative (blue); the CPP-SHAP
profile (b) shows the cumulative feature impact per residue; the CPP heatmap (c)
highlights the differences in feature values between the respective protein and the
reference dataset (OTHERS) per scale subcategory and residue; and the CPP-SHAP
heatmap (d) illustrates the feature impact per scale subcategory and residue. Scale
categories are from AAontology35 and uniformly color-coded. The CPP-SHAP

analysis results for ERBB2 (88 ± 7% substrate prediction score) explain its predic-
tion score of 76% (red) based on dataset 1 with TMHMMannotation. The CPP-SHAP
ranking plot shows the predominantly positive impact of the top 15 features, such
as an increased β-strand tendency in the TMD-C or an increased entropy in the
TMD-C anchor. The positive impact of these regions is underlined in the CPP-SHAP
profile. The CPP heatmap and CPP-SHAP heatmap reveal the negative impact of
some residues within the TMD-C, such as two glycines, due to their α-helix desta-
bilizing effect. For comparison, see the CPP-SHAP analysis for the LC substrate
SLC27A1 (Supplementary Fig. 11). Source data are provided as a Source Data file.
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Functional bioinformatics analysis of γ-secretase substrates
To gain deeper insight into the biological role of γ-secretase, we per-
formed a functional bioinformatics analysis of the human N-out pro-
teome (n = 1534) (Fig. 9a–c, Supplementary Data 17, and
Supplementary Methods “Dataset of human N-out proteome”),
focusing on HC substrates (n = 250) and their subgroup of HC sub-
strate candidates (“new HC substrates”, n = 160). HC substrates
showed a significant enrichment for Gene Ontology (GO) terms
(Methods “Enrichment analysis”), such as cell adhesion and cell per-
iphery (Fig. 9d). We also identified pathway terms only enriched for
new HC substrates, including allograft rejection or type I diabetes
mellitus; notably, among these were pathway terms not previously
associated with γ-secretase or its substrates, such as glyceropho-
spholipid catabolism and class 3 semaphorin (SEMA3A) related path-
way terms (Fig. 9e). Clustering all significantly enriched pathway terms
yielded 7 clusters (C1–C7) related to functions such as cell commu-
nication (C1) or immune regulation (C7) (Fig. 9f). Network analysis
(Methods “Network analysis”) of the new HC substrates revealed
8 significantly over-represented modules52 (M1–M8) associated with,
for example, immune diseases (M3) or semaphorin interaction (M5)
(Supplementary Fig. 13).

To further characterize the new HC substrates of the 8 modules
(Supplementary Fig. 14a), we computed their relevance scores, which
included a “mutatedTMD-JMD” factor accounting formutationswithin
the TMD-JMD. Several of these mutations are disease-associated,
similar to the Alzheimer’s disease-causing APP London (V717I)
mutation53. Subsequently, we selected per module the two proteins
with the highest number of pathway links (preferring validated sub-
strates) and integrated modules with clusters (Supplementary
Fig. 14b). Notably, the experimentally validated CD86 (M2) had many
associations with immune disease terms (C4), such as type I diabetes
mellitus or autoimmune thyroid disease.

Next, we obtained all pathway (Reactome), disease (DisGeNET),
and mutation links for each protein of the human N-out proteome

(Supplementary Fig. 15a, Methods “Analysis of pathway, disease, and
mutation links”). The validated substrate candidates ERBB2 and CD68
were among the top 10 proteins (Supplementary Fig. 15b). For the new
HC substrates, we considered only disease and pathway links not
previously linked to γ-secretase or its substrates (“new links”). Com-
pared to a set comprising all new HC substrates and all known sub-
strates (n = 307 = 160 + 147; Supplementary Fig. 15a), the new HC
substrates constituted over 50% of the proteins, but their new links to
pathways (n = 157), diseases (n = 313), and mutations within the TMD-
JMD (n = 39) accounted for only 7, 9, and 31% of all links, respectively
(Fig. 10a). Most of the 313 new disease links belonged to the DisGeNET
class neoplasms (n = 40; EGFR, ERBB2, KITLG, AREG) but also to
immune diseases (n = 29; FAS), neurological diseases (n = 13; PNPLA6),
and cardiovascular diseases (n = 13; CD163) (Fig. 10b, c). The largest
number of disease/pathway links was found for the apoptosis-
mediating FAS (n = 52) and for two cancer-related proteins, EGFR
(n = 43) and ERBB2 (n = 39) (Fig. 10c).

Compared to the three other confidence-based substrate classes,
HC substrates had a significantly higher (P < 0.001, two-sided
Mann–Whitney U-test with Bonferroni correction) number of path-
way and disease links (Supplementary Fig. 15c). They also generally
showed significantly greater (P <0.001) network-based measures
including degree, stress centrality, and neighborhood connectivity,
suggesting roles as network hubs, bottlenecks, or module members,
respectively (Fig. 10d, Methods “Network analysis”). Moreover, HC
substrates also exhibited a significantly higher (P < 0.001) sequence
and CPP feature similarity and displayed subcellular locations closely
matching those of known substrates (Supplementary Fig. 15d, e).

To assess the likelihood of in vivo interactions between γ-
secretase and its substrates, we analyzed their co-expression across
various tissues and cell types. Compared to the other confidence-
based substrate classes, the co-expression of γ-secretase with HC
substrateswas significantly higher (P <0.05–0.001, tested asbefore) at
both tissue and single-cell RNA levels, as shown for selected HC
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Fig. 8 | Clustering of confidence-based substrate classes based on feature
impact. a Heatmap showing hierarchical clustering of dataset 1 (with TMHMM
annotation) based on Pearson correlation coefficients for feature impacts
(see Supplementary Methods “Clustering based on feature impact”). Dataset clas-
ses (top, color code of SUBEXPERT, NONSUB, and NONSUBPRED, according to
Fig. 3a) and corresponding confidence-based substrate classes (left, color code
according to (b)) are indicated. Five distinct clusters are highlighted by squares.
b Five clusters from (a) depicted along the continuum of confidence-based

substrate classes (top), ranging fromhigh-confidence (HC) substrates, through low-
confidence (LC) substrates and LC non-substrates, to HC non-substrates. The color
code indicates the confidence-based substrate classes (Methods “Confidence-
based substrate classes”). See Supplementary Fig. 12 for the CPP-SHAP analysis
results of the four selected proteins highlighted by asterisks (SPN, BTC, murine
IGSF5, and TLR1). Gene names are in uppercase for human and with the first letter
capitalized for other organisms (Supplementary Methods “Datasets”). Source data
are provided as a Source Data file.
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Fig. 9 | Functional bioinformatics analysis of γ-secretase substrates by
enrichment analysis and pathway clustering. a Workflow of functional bioin-
formatics analysis for human single-span N-out membrane proteins (n = 1534,
humanN-out proteome). Separate enrichment analyses were performed for all 250
high-confidence (HC) substrates (gray) and the 160 new HC substrates (red), for
which an additional network analysis was conducted. b Stacked bar chart showing
the relative distribution within the human N-out proteome for proteins from the
“New (predicted)” (gray), SUBEXPERT (green), SUBLIT (light blue), and NONSUB
(purple) datasets across the four confidence-based substrate classes (see Methods
“Confidence-based substrate classes”). The “New (predicted)” dataset comprises all
proteins of the human N-out proteome with unknown substrate status. c Bar chart
showing the number of proteins with a naturally short ectodomain or known
sheddase in the humanN-out proteome.dGene ontology (GO) enrichment analysis
results for all HC substrates compared to the human N-out proteome. Top

6 semantic clusters (see SupplementaryMethods “Enrichment analysis”) are shown
for each GO domain: biological process (BP, orange), molecular function (MF, red),
cellular component (CC, green). An enrichment score was computed for each
semantic cluster as themean −log10 P value of its constituent GO terms. e Pathway
enrichment analysis results for known substrates (left) and new HC substrates
(right) compared to the default g:Profiler background. The Benjamini-Hochberg
adjusted −log10 P values are shown for the top 5–6 pathway terms from Reactome
(light blue), KEGG (gray), and WikiPathways (gold). New pathway links (i.e., terms
not previously linked to γ-secretase or its substrates) are highlighted in light blue.
fMapdisplaying 7 clusters (C1–C7) of pathway terms linkedby shared genes. Nodes
represent pathway terms, sizedby the numberof associated newHCsubstrates and
color-coded as in (e). Edges indicate the size of gene set overlaps. See Supple-
mentary Figs. 13–15 for results of further functional bioinformatics analysis. Source
data are provided as a Source Data file.
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substrates (Supplementary Fig. 15f–h, Methods “Co-expression analy-
sis”). This correlation, exemplified by the brain-associated HC sub-
strate PTPRD (Pearson’s r =0.80, P <0.001; Supplementary Fig. 15g),
suggests the co-evolution of γ-secretase and HC substrates. Taken
together, although the functional repertoire of γ-secretase substrates
has already been thoroughly characterized8, our computational ana-
lysis reveals HC substrate candidates with new disease/pathway links
and demonstrates roles of HC substrates as biological network hubs,
bottlenecks, or module members (Supplementary Data 17).

Discussion
To solve the problem of how γ-secretase recognizes its substrates, we
developed CPP, a sequence-based bioinformatics method to identify
discriminative physicochemical features. In addition, we developed
dPULearn to address the issue of our imbalanced datasets. In combi-
nation, these algorithms allowed for the prediction of the γ‑secretase
substrate scope, including at least 160 substrate candidates. CPP and
dPULearn reached a performance of 90% balanced accuracy in dis-
criminating substrates from non-substrates, thereby outperforming
state-of-the-art methods (deep learning-based protein embeddings
combined with SMOTE, 57% balanced accuracy). While dPULearn
shows 100% reproducibility, the advantages of CPP are that it is
automated, alignment-free, and explainable/interpretable—i.e., CPP

reveals features constituting a physicochemical signature at single-
residue resolution, going beyond consensus motifs.

CPP identified over 100 features in the TMDs of γ-secretase sub-
strates and their flanking JMD regions. Remarkably, the substrate CPP
featuremap showed that amino acidswith a highpropensity to formα-
helical and β-strand conformation are prominent in the region around
the initial cleavage site. This observation is consistentwith theα-helical
conformation of the cleavage regionofunbound substrates, whichwas
shown to be extended in the γ-secretase enzyme–substrate complex
for APP and NOTCH154,55. In addition, residues with increased side-
chain length, accessible surface area, and disorder are highly abundant
in the TMD-C anchor—typically lysine and arginine. These amino acids
are known to serve asmembrane-anchoring residues56, but our results
show that they are more prominent in γ-secretase substrates. Inter-
estingly, small residues are frequently found within the TMD-N, con-
sistent with the requirement of flexibility in this region for certain
substrates11,13.

Substrate-defining features are particularly prevalent in HC sub-
strates and decrease along the spectrum of substrate prediction
scores, ultimately becoming absent in HC non-substrates. By com-
bining CPP with SHAP, we demonstrated how the impact of these
features varies across the substrate spectrum, enabling us to explain
their substrate prediction scores at single-residue resolution for

a c

0 20 40 60
Relative frequency [%]

(of new HC + known substrates)

TMD-JMD mutations
Disease links (new)
Pathway links (new)

Proteins

31%n=39
9%313

7%157

53%n=160
New HC substrates

Top 20 new HC substrates by
new pathway/disease links

49

0 15 30 45
Number of new disease links

Others
Endocrine diseases

Orthopedic diseases
Cardiovascular diseases

Skin & tissue diseases
Neurological diseases

Mental disorders
Digestive diseases

Women´s health issues
Genetic diseases

Unclassified
Immune diseases

Pathological conditions
Neoplasms

9
9

13
13
13
13
15

23
26
28
29

33
40

sum=313

Disease classes (DisGeNET)

49

b
*

d

0

50

100

150

N
ei

gh
bo

rh
oo

d 
co

nn
ec

tiv
ity *** n.s.***

0

1×106

2×106

St
re

ss
 c

en
tra

lit
y

*** ******

0

100

200

D
eg

re
e

*** ******

LC substrate
HC substrate

HC non-substrate
LC non-substrate

Fig. 10 | Analysis of pathway, disease, and mutation links as well as network-
basedmeasures. a Bar chart showing the percentage of three relevance factors for
the set of new high-confidence (HC, n = 160 proteins) substrates compared to a set
comprising all known substrates and new HC substrates. Total numbers are indi-
cated within the respective bars. Only pathway and disease links were considered
that were not linked before to γ-secretase or its known substrates. b Bar chart
showing the number of disease links from (a), as classified by disease classes from
DisGeNET. c Chord diagram illustrating the number of links for new pathways and
disease terms from (b) for the 20 new HC substrates with the highest number of
new links (Supplementary Data 17). Substrates are sorted alphabetically, and

validated ones are highlighted in red. Note that mitochondrial proteins, such as
TOMM70 (highlighted in (c) by an asterisk), although unlikely γ-secretase sub-
strates, were not excluded to keep our analysis unbiased. d Box plots for network
metrics comparing the four confidence-based substrate classes (see Methods
“Confidence-based substrate classes” for sample sizes). Differences between HC
substrates and the other classes were tested using a two-sided Mann–Whitney U-
test with separate Bonferroni correction. Significance levels are indicated by color-
coded asterisks (*P <0.05, **P <0.01, ***P <0.001). Source data are provided as a
Source Data file.
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individual proteins. Based on our 80% cut-off, our data suggest that
16.3% (n = 250) of the entire human N-out proteome (n = 1534) are HC
substrates of γ-secretase, of which 160 were not known previously.
Whether these proteins are bona fide γ-secretase substrates is deter-
mined by additional factors such as subcellular localization or shed-
ding prior to γ-secretase cleavage.

Our predictions are supported by the experimental validation of
previously unknown substrates (n = 11) and non-substrates (n = 4)
using both cell-based and cell-free biochemical assays, with an 88%
success rate. All tested candidates with a score of >70% were experi-
mentally confirmed as substrates, and all candidates scoring <30% as
non-substrates. Among the validated substrate candidates are the
cancer-related ERBB2 as well as the immune system-related CD2,
CD68, andCD86. In addition, results of a large-scale proteomics screen
of γ-secretase substrates at the endogenous level49 align with our
predictions (88% success rate). Finally, our functional bioinformatics
analysis suggests that γ-secretase might be associated with a broader
disease spectrum than known so far.

We anticipate that our approach offers a blueprint for identifying
substrates of many other promiscuous proteases for which no clear
consensus motifs exist. The suite of methods introduced here has the
potential to advance the exploration of other molecular interactions,
including antibody or receptor recognition.

Methods
Further details for each computationalmethod section are provided in
the SupplementaryMethods under the corresponding sections.Where
applicable, additional Supplementary Methods sections are refer-
enced at the end of the respective Method section.

Data preparation
Sequence parts of transmembrane proteins. We focused on single-
span transmembrane proteins (TPs) with an extracellular N-terminal
ectodomain (i.e., an N-out topology). These proteins are characterized
by an α-helical transmembrane domain (TMD) and can be dis-
tinguished based on the presence (type I) or absence (type III) of an
N-terminal cleavable signal sequence. The following sequence parts
were considered (Supplementary Fig. 1a, b):

• TMD: TMD as annotated in the UniProt database37 or by the
transmembrane prediction algorithms TMHMM38 and Phobius39.

• TMD-N/C: N- and C-terminal halves of TMD.
• TMD-E: TMD expanded by four amino acid positions on both
sides of the membrane.

• JMD-N/C: N-terminal and C-terminal juxtamembrane domains
with ten amino acids.

• JMD-N-TMD-N: A combined sequence of JMD-N and TMD-N.
• TMD-C-JMD-C: A combined sequence of TMD-C and JMD-C.
• TMD-JMD: A combined sequence of JMD-N, TMD, and JMD-C.

Wedenote thefirst four residues of the JMD-Cof single-span type I
TPs as “TMD-C anchor” (Fig. 2b). This region is typically characterized
by positively charged residues “anchoring” the TMD at themembrane-
water interface by electrostatic interactions with negatively charged
phosphate groups56.

Datasets. A dataset comprising 4464 single-span TP sequences (2365
fromhumanand 2099 frommouse)wasobtained from theUniProtKB/
Swiss-Prot database37, with missing UniProt topology information
being supplemented by Phobius predictions. Since γ-secretase sub-
strates have an N-out topology and are mainly of type I6, we kept all
type I TPs (containing 126 substrates6,57–59 and 12 non-substrates9,60,61)
and included three known non-substrates and 21 known substrates6

from other organisms and/or with type III orientation, yielding 2179
proteins. After removing sequences with JMDs shorter than 10 resi-
dues, 2090proteins remained. The datasetwas further reduced to 670
proteins using the CD-HIT algorithm (40%-similarity cut-off)62 applied
to the TMD-JMD sequence, ignoring clusters with substrates or non-
substrates.

We obtained the following datasets given for the UniProt anno-
tation (with the corresponding number for the TMHMM annotation in
parenthesis):

• SUBSTRATES: Set of 147 (n = 136 for TMHMM) known γ-secretase
substrates, including 144 substrates from themost recent review6,
and three further substrates from other studies57–59.

• SUBEXPERT: Non-redundant subset of SUBSTRATES with 68
(n = 63) expert-curated γ-secretase substrates selected if convin-
cing evidence for cleavage was reported in ref. 6 and the
corresponding primary literature.

• SUBLIT: Subset of SUBSTRATES with 79 (n = 73) literature-based
γ-secretase substrates that were not selected for SUBEXPERT.

• NONSUB: Non-redundant set of 15 (n = 14) experimentally verified
non-substrates from refs. 9,60,61.

• OTHERS: Non-redundant set of 670 (n = 631) single-span type I
TPs with unknown substrate status.

• NONSUBPRED: Set of 53 (n = 49) predicted non-substrates
identified from OTHERS (see “Computational non-substrate
identification by dPULearn”).

Thesedatasetswere generatedbyTMDannotations fromUniProt,
TMHMM, and Phobius predictions (Supplementary Fig. 1f and Sup-
plementary Data 1, 2). The latter two mostly yielded slightly smaller
datasets becauseof too short JMDsormissingTMDpredictions. Unless
stated otherwise, the TMHMMannotation was used because it allowed
for the best prediction results (see “Aggregation of prediction
results”). Since most γ-secretase substrates require shedding (i.e.,
removal of their N-terminal ectodomain) prior to γ-secretase cleavage,
we compiled two lists of substrates for the twomain sheddase families:

Table 1 | Key methods introduced in this work

Method Description Documentation link

CPP Interpretable feature engineering
algorithm

https://aaanalysis.readthedocs.io/en/latest/generated/aaanalysis.CPP.html

dPULearn Deterministic positive-unlabeled learning
method

https://aaanalysis.readthedocs.io/en/latest/generated/aaanalysis.dPULearn.html
https://aaanalysis.readthedocs.io/en/latest/generated/aaanalysis.dPULearnPlot.pca.html

CPP plotting functions CPP ranking plot
CPP profile
CPP feature map

https://aaanalysis.readthedocs.io/en/latest/generated/aaanalysis.CPPPlot.ranking.html
https://aaanalysis.readthedocs.io/en/latest/generated/aaanalysis.CPPPlot.profile.html
https://aaanalysis.readthedocs.io/en/latest/generated/aaanalysis.CPPPlot.feature_
map.html

Fuzzy labeling Labeling technique for samples with an
unknown class.

https://aaanalysis.readthedocs.io/en/latest/generated/aaanalysis.ShapModel.fit.html#
aaanalysis.ShapModel.fit

CPP-SHAP plotting
functions

CPP-SHAP ranking plot
CPP-SHAP profile
CPP/-SHAP heatmap

https://aaanalysis.readthedocs.io/en/latest/generated/aaanalysis.CPPPlot.ranking.html
https://aaanalysis.readthedocs.io/en/latest/generated/aaanalysis.CPPPlot.profile.html
https://aaanalysis.readthedocs.io/en/latest/generated/aaanalysis.CPPPlot.heatmap.html
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ADAM sheddases (α-secretases) as well as BACE1 and BACE2 (β-
secretases) (Supplementary Data 3, 4).

One further dataset was collated for a functional bioinformatics
analysis:

• Human N-out proteome: Set of 1534 human type I and type III
single-span TPs with a JMD length of at least 10 amino acids each
(Supplementary Data 17).

For the training of machine learning models, we assembled the
following two datasets (given for the TMHMM annotation) of sub-
strates and non-substrates used as positive and negative samples,
respectively:

• Dataset 1: 63 substrates from SUBEXPERT as well as 63 non-
substrates from NONSUB and NONSUBPRED.

• Dataset 2: 136 substrates from SUBEXPERT and SUBLIT as well as
63 non-substrates from NONSUB and NONSUBPRED.

Sequence logos. We used the WebLogo server63 to create sequence
motifs for 23 γ-secretase substrates with known cleavage sites, as well
as 63 substrates from SUBEXPERT and 14 non-substrates from NON-
SUB (both based on TMHMM annotation).

Feature engineering via Comparative Physicochemical
Profiling (CPP)
Idea of the CPP algorithm. Comparative Physicochemical Profiling
(CPP) is a sequence-based feature engineering algorithm to identify
themost distinctive features between two sets of protein sequences. It
amalgamates sequence segmentation techniques64 with dis-/con-
tinuousmotif identification65 and n-grammethods66. A “CPP feature” is
a part-split-scale combination (Supplementary Fig. 1a). CPP first splits a
sequence part into smaller segments or patterns, and then assigns
scale values to each residue to compute theirmean values. Thesemean
values are used to compare the two protein datasets.

By generating all possible part-split-scale combinations, CPP cre-
ates over 100,000 features and filters them statistically down to a user-
defined number (default 100) of non-redundant features (Fig. 2a). CPP
features are highly interpretable, leading to expressive machine
learningmodels30,31,67. See SupplementaryMethods (“Combining parts,
splits, and scales”) for further details.

Splitting of sequence parts. Sequence parts, such as the TMD, can be
split into segments, patterns, or periodic patterns (Supplementary
Fig. 1b, c). Segments are continuous subsequences of a sequence part,
split into 1 to 15 equally sized segments. Patterns are discontinuous
subsequences of a sequence part consisting of 2, 3, or 4 residues
separated by 3 or 4 positions. Periodic patterns are discontinuous
subsequences of a sequence part consisting of every third, fourth, or
alternating third and fourth residue within a whole part. Both types of
patterns represent the periodicity of an α-helix and potential interac-
tion interfaces33. CPP generates in total 330 splits (Supplementary
Fig. 1a, d; see part-split examples in Supplementary Data 5). See Sup-
plementary Algorithm 1 for further details.

Classification of scales. A set of 652 amino acid physicochemical
property scales34,68,69 was assembled, reflecting crucial sequence-to-
structure relationships33,70–72. We removed completely redundant
scales and scales containing missing values, resulting in 586 scales.
Each scale was min-max normalized to the [0,1] range. The classifica-
tion of the property scales was retrieved from AAontology35, classify-
ing these 586 amino acid scales into 8 categories (e.g., conformation or
energy) and 67 subcategories (e.g., coil or charge).

Selection of scales. Five sets of property scales (Set 1–5) were cre-
ated in two steps. Set 1 contained all 586 scales, while sets 2 to 5 were
subsets of Set 1. We first selected scale sets based on different scale

classification criteria. Then, redundancy-reduced subsets of 2–5 were
obtained using the AAclust framework36 with agglomerative cluster-
ing (complete linkage). As AAclust selects one representative scale
per cluster, we optimized the number of clusters such that each
selected scale subcategory was contained at least once in the scale
set (Supplementary Algorithm 2). Set 5, comprising 133 scales across
42 subcategories and 6 categories (Supplementary Fig. 1e and Sup-
plementary Data 6, 7), showed the best benchmarking performance
(Supplementary Fig. 4g) and was therefore chosen for subsequent
analysis steps.

CPP algorithm. Taking two protein sequence datasets—a test set and a
reference set—and a scale set as input, the CPP algorithm (Supple-
mentary Fig. 1g) involves four steps:
1. Feature creation: All possible features for given parts, splits, and

scales are created.
2. Pre-filtering: CPP removes features with a standard deviation in

the test dataset higher than the thresholdmax_std_test and selects
the top pct_pre_filter features with the highest mean difference
between the test and reference dataset.

3. Ranking: All remaining features are ranked in descending order
of the absolute adjusted area under the curve (AUC), which
compares the reference and test sets. This adjusted AUC ranges
from −0.5 to 0.5, i.e., all values in the test set are smaller or higher
than the values in the reference set, respectively.

4. Feature filtering: The remaining features are filtered for redun-
dancy regarding scale categories, sequence positions (via max_-
overlap), and scale correlation (via max_cor) until the desired
maximum number of features, specified by n_filter (default 100),
remains.

Comparing SUBEXPERT (test set) against OTHERS (reference set),
the CPP algorithm created 131,670 features for three parts (TMD, JMD-
N-TMD-N, and TMD-C-JMD-C), 330 splits (120 segments, 182 patterns,
and 28 periodic patterns), and 133 min-max normalized scales (Set 5).
To efficiently pre-filter these features, max_std_test = 0.2 and pct_pre_-
filter = 0.05 were used, yielding 6,583 features. In the filtering step, a
value of 0.5 (50%)was empirically chosen formax_overlap andmax_cor
to balance between too high redundancy (at values close to 1) and the
removal of too many potentially complementary features (at values
close to 0). Sets of 150 and 100 CPP features were tested for machine
learning (Supplementary Data 8, 9), but subsequent steps will only be
described for the 150 features, as they yielded the best performance
(Supplementary Fig. 5d).

Substrate prediction by machine learning
Machine learningmodels. To predict γ-secretase substrates, we used
10 different types of machine learning classification models, applying
default settings except where specified. This selection included 4 tree-
based models (e.g., random forest), 2 linear models, 1 kernel-based
model (support vector machine), 1 neural network, and 2 ensemble
models (Supplementary Data 10). For benchmarking, support vector
machine and random forest were employed as validation models, as
recommended for small datasets41,73. Leave-one-out cross-validation
was used for validation unless stated otherwise. See Supplementary
Methods (“Feature representation” and “Evaluation measures”) for
further details.

Derivation of the optimal scale and part sets for CPP. To select the
best sets of scales and parts for CPP, we trained 20 = 5 × 4 support
vector machine classification models. We combined 5 scale sets (Set
1–5, see “Selection of scales”) and 4 sets of parts: (1) TMD; (2) TMD-
JMD; (3) TMD, JMD-N-TMD-N, TMD-C-JMD-C; and (4) TMD, TMD-E,
JMD-N-TMD-N, TMD-C-JMD-C. All models were trained on SUBEXPERT
(n = 63) against NONSUB (n = 14), using balanced accuracy as a
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performance measure. The combination of scale set 5 (n = 133) and
part set 3 yielded the highest balanced accuracy (84%, Supplementary
Fig. 4g) and was therefore used for further analysis steps.

Computational non-substrate identification by dPULearn. To bal-
ance the training dataset of 63 known substrates (SUBEXPERT) and 14
non-substrates (NONSUB), we utilized positive-unlabeled (PU)
learning24,28,29. Since common PU learning approaches28,40,74 lead to
irreproducible results due to their non-deterministic nature (see Sup-
plementary Methods “Benchmarking dPULearn”), we developed a
deterministic PU learning algorithm called dPULearn. dPULearn
(Supplementary Fig. 3) first compresses the feature space using prin-
cipal component analysis (similar to ref. 75) and then iteratively iden-
tifies putative non-substrates based on the m principal components
(PCs) with the highest explained variance. For each PC, dPULearn
computes the average PC value (mean PCi) for positive labeled pro-
teins (SUBEXPERT) and selects the unlabeled proteins (OTHERS) with
the greatest distance to mean PCi as additional non-substrates, where
the number of selected proteins depends on the explained variance of
the respective PC. Using dPULearn, we identified 49 additional non-
substrates (NONSUBPRED), extending NONSUB (n = 14). Different
TMD annotations showed a moderate overlap in the NONSUBPRED
sets, with 53 and 51 additional non-substrates identified for the UniProt
and Phobius annotations, respectively (Supplementary Data 11).

Benchmarking of CPP and dPULearn. We first compared dPULearn
against a popular PU learning framework by ref. 40 regarding predic-
tion performance and reproducibility (Supplementary Fig. 4a–f). Next,
we evaluated CPP without and with NONSUBPRED identified by dPU-
Learn, observing an improved prediction accuracy from 84 to 92%
when NONSUBPREDwas included (Supplementary Fig. 4g, h). We then
benchmarked the performance of CPP and dPULearn against state-of-
the-art protein embeddings (ProtT5)25,26 utilized by transfer
learning27,30 (Fig. 3). The Synthetic Minority Over-sampling Technique
(SMOTE)42,43 was tested as an alternative to dPULearn for data expan-
sion of the non-substrates. See information for each benchmarking
step in Supplementary Methods (“Benchmarking dPULearn”, “Bench-
marking CPP without and with NONSUBPRED”, and “Benchmarking
CPP and dPULearn against deep learning-based embeddings”) as well
as benchmarking results in Supplementary Data 12.

Training datasets. Our machine learning pipeline (Supplementary
Fig. 5a) was performed separately for each dataset-annotation com-
bination. Two training datasets (dataset 1 and dataset 2) were collated
for each TMD annotation (UniProt, TMHMM, Phobius). For the
TMHMM annotation (Supplementary Fig. 5b), dataset 1 contained
63 substrates (SUBEXPERT) and 63 non-substrates (14 from NONSUB
and 49 from NONSUBPRED), while dataset 2 comprised 136 substrates
(63 from SUBEXPERT and 73 from SUBLIT) and the same 63 non-
substrates as in dataset 1.

Learning strategy. We performed 25 independent training rounds
(Supplementary Fig. 5a) to obtain aMonte Carlo estimate of prediction
scores76. In each training round, a dataset was randomly split into a
training set (80%) and a test set (20%), both containing a balanced
proportion of substrates and non-substrates. As recommended for
small datasets41, weused anested cross-validation approach,where the
training set was used for feature selection and hyperparameter opti-
mization by a 5-fold cross-validation. The test set was then used for an
independent evaluation of the optimized models at the end of each
round. See Supplementary Methods (“Feature selection” and “Model
optimization and evaluation”) for further details.

Aggregation of prediction results. We aggregated the best-
performing training approaches for each dataset-annotation

combination, selecting 6 = 2 × 3 approaches—corresponding to 2
datasets and 3 TMD annotations (UniProt, TMHMM, Phobius). To this
end, each dataset-annotation combinationwas optimized for 6 feature
pre-selection setups (Supplementary Fig. 5c). For each combination,
we chose the approach with the highest average accuracy (Supple-
mentaryFig. 5d, f), each comprising 250 trainedmodels, fromwhichan
average prediction score was derived. Aggregating these scores across
the 6 selected approaches (1500 = 6 × 250 trained models, Supple-
mentary Fig. 5e) yielded the final “substrate prediction score”, with the
standard deviation computed over the prediction scores of the 6 best
approaches (Fig. 4d–f andSupplementaryData 13). Training ondataset
1 with TMHMM annotation resulted in the highest accuracy (96%,
Supplementary Fig. 5d) and was thus used in subsequent steps unless
otherwise stated.

Confidence-based substrate classes. Based on the substrate pre-
diction score [0–100%], we classified single-spanTPs into the following
four classes, distinguished by varying prediction confidence:

• HC substrate: High-confidence substrate, prediction score ≥80%.
• LC substrate: Low-confidence substrate, prediction score ≥50
and <80%.

• LC non-substrate: Low-confidence non-substrate, prediction
score <50 and >20%.

• HC non-substrate: High-confidence non-substrate, prediction
score ≤20%.

Applying these confidence-based classes to the human N-out
proteome (n = 1534) yielded 250 HC substrates, 587 LC substrates, 599
LC non-substrates, and 98 HC non-substrates (Fig. 4b).

Experimental validation of predicted substrates and non-
substrates
Selection of substrate and non-substrate candidates. Substrate and
non-substrate candidates (human or murine) for experimental valida-
tion were selected primarily based on their substrate prediction score
(Supplementary Data 13, 14). To gain further insight into cellular
functions of γ-secretase, candidates were also selected using infor-
mation derived from our functional bioinformatics analysis of the
human N-out proteome (see “Computation of relevance score”). We
favored candidates known to be cleaved by sheddases such as BACE1
or ADAM proteases (Supplementary Data 3, 4) to facilitate an unam-
biguous validation. Alternatively, candidates with an ectodomain
shorter than 30 amino acids were also selected, assuming that they do
not to require shedding prior to γ-secretase cleavage. For these pro-
teins, the accumulation of their full-length (FL) form was used as a
readout of substrate status.

Cell-based cleavage assays. The cleavage of candidates by γ-
secretase was tested using transient overexpression of C-terminally
10×His-tagged proteins in HEK293 cells stably expressing APP car-
rying the Swedish mutation (HEK293/sw) and corresponding PS1/PS2
DKO cells45 (Supplementary Fig. 7a). cDNA ORF clones of the candi-
dates in pCMV3-C-His mammalian expression vector were purchased
from Genomics online or Sino Biological. After 48 h of transient
transfection using Lipofectamine 2000 (Invitrogen), levels of FL
protein and its C-terminal fragment (CTF) (for type I TPs), or FL
protein alone (for type III TPs), were analyzed by immunoblotting of
cell lysates separated on Novex 10–20% Tris-Tricine gels (Invitrogen)
using rabbit monoclonal anti-His tag antibody RM146 (biotin con-
jugate, NSJ Bioreagents, Catalog No. R20255BTN-50UG). In addition,
cleavage of candidates was assessed in HEK293/sw cells 24 h fol-
lowing transient transfection by inhibition of γ-secretase overnight
using 2 µML-685,45877 (Merck). To identify the FL protein of our
candidates in the immunoblot analysis, the expected molecular
weight (MW) of the (non-glycosylated) FL protein was calculated
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from its amino acid sequence, not including the N-terminal signal
sequence. The expected MW of the CTF was calculated from the
sequence of the intracellular domain and the TMD (UniProt annota-
tion) plus 15 adjacent extracellular amino acids similar to the ecto-
domain length of canonical γ-secretase substrates such as APP78 or
NOTCH179 (Supplementary Data 14). Comparable sample loading was
confirmed by reprobing the immunoblots with mouse monoclonal
anti-β-Actin antibody (Sigma, Product No. A5316, Batch number
123M4876).

Cell-free cleavage assays. TMD-based peptides of selected substrate
and non-substrate proteins of γ-secretase were synthesized by Pep-
tides Specialty Laboratories (Heidelberg, Germany). The peptides
comprised the entire TMD combined with the first amino acid at the
flanking N-terminal JMD and the first three amino acids of the flanking
C-terminal JMD, of which the last amino acid was C-terminally tagged
with biotin (Supplementary Fig. 8c). The peptide substrates were
reconstituted in large unilamellar vesicles (LUV) composed of
palmitoyl-oleoyl-phosphatidylcholine (POPC) at a 50:1 lipid/protein
molar ratio by co-mixing an accurately weighed amount of
500–1000 µg peptide with the corresponding amount of POPC in 1ml
hexafluoroisopropanol (HFIP). After evaporation of HFIP with a gentle
stream of nitrogen gas, the mixture was redissolved in 1ml cyclohex-
ane. Subsequent removal of cyclohexane by 2 h incubation in a
SpeedVac concentrator resulted in a fluffy powder, which was sus-
pended in ultrapure water (Sigma, Molecular Biology Reagent W4502)
at a final peptide concentration of 200 µM. Following ten freeze-thaw
cycles, LUVs were prepared by 21 extrusions through a 100-nm poly-
carbonate membrane and a LipofastTM extruder device (Armatis
GmbH, Weinheim, Germany). The α-helical conformation of the
reconstituted peptides was confirmed by circular dichroism by sus-
pending the LUV-reconstituted peptides at 25 µM in water (Chirascan
V100, Applied Photophysics, UK). Size and homogeneity of the LUVs
were checked by dynamic light scattering (Zetasizer nano, Malvern
Instruments), confirming the Z-average size of about 100nm and a PDI
<0.2. Finally, the LUV-reconstituted peptides were diluted with water,
1.5M citrate (pH 6.4), and 32% (v/v) glycerol to a final concentration of
150 µM peptide in 30mM citrate (pH 6.4), 3.5% (v/v) glycerol and
stored in aliquots of 5 µl at −20 °C. For the cell-free cleavage assays
(Supplementary Fig. 8a), aliquots of 20 µl containing POPC-
reconstituted endogenous γ-secretase purified from HEK293 cells80

were assayed for γ-secretase cleavage of LUV-reconstituted peptides at
2 µM (APP, APLP2, NOTCH1, NOTCH2, ERBB2, and SLC27A1) or 3 µM
(ITGB1)final peptide concentration. Sampleswere incubated for 18 h at
the indicated temperature with or without 2.5 µMDAPT81 (Merck) with
300 rpm agitation in an Eppendorf ThermoMixerC (with ThermoTop)
and subsequently analyzed by immunoblotting. For this, biotin-tagged
substrate peptides and their cleavage products were separated by 16%
Tricine SDS-PAGE82 prepared with 40% acrylamide/bis-acrylamide 19:1,
5% crosslinker solution (Biorad). Immunoblots were blocked with
biotin-free StartingBlock (ThermoFisher) and decorated with Immuno
Pure Goat anti-biotin antibody (Pierce Biotechnology, Product No.
31852, Lot number EG769216).

Explainable AI
Explainable AI using SHAP
To enhance the interpretability of our machine learning models, we
used the explainable AI framework SHapley Additive exPlanations
(SHAP)32,83. Four key concepts of the SHAP framework are defined as
follows:

• Feature impact: Positive or negative contribution of a feature,
resulting in the model output for a sample (i.e., prediction score)
to be higher or lower, respectively.

• Base value: Average model output of SHAP values over the entire
training dataset.

• SHAP output: Sample-specific sum of the base value and all
respective feature impacts, approximating the prediction score of
a given sample.

• Feature importance: The absolute value of the feature impact,
used for feature ranking.

CombiningCPPwith SHAP. To determine the impact of CPP features,
we used the SHAP tree-based explainer32,83 for computing SHAP values
for the best features and the best tree-basedmodels for each of the 25
training rounds (Supplementary Fig. 9a). Each tree-based model was
re-trainedon the complete training dataset (dataset 1 or dataset 2), and
mean SHAP values were computed for each feature and sample across
all models and rounds. To obtain the feature impact for a protein
contained in the training dataset, we normalized its average SHAP
values by dividing each by the sum of its absolute SHAP values. The
feature importance was calculated by averaging the absolute SHAP
values over all samples.

We then combined the CPP feature concept with SHAP values to
reveal the residue-specific84 feature impact for individual sequences,
developing four visualizations: “CPP-SHAP ranking plot”, “CPP-SHAP
profile“, “CPP heatmap”, and “CPP-SHAP heatmap”.

To obtain the feature impact for any protein not contained in the
training dataset (hence unlabeled), we developed “fuzzy labeling”. In
this procedure, the unlabeled protein was included in the initial
training dataset during model training, and its frequency of being
labeled positive (as a substrate) or negative (as non-substrate) corre-
sponded to its substrate prediction score (Supplementary Fig. 10a, b).
See Supplementary Methods (“CPP-SHAP plots”, “Fuzzy labeling”, and
“Clustering based on the feature impact”) and Supplementary Data 15,
16 for further details.

Functional bioinformatics analysis of γ-secretase substrates
Enrichment analysis. Enrichment analysis (Fig. 9a, b) for the human
N-out proteome (n = 1534) was performed using the g:Profiler web
server85 with settings recommended in ref. 86. Derived GO term were
semantically clustered using REVIGO87 (similarity ≥0.5, default set-
tings). The significant pathway terms (Reactome, KEGG,WikiPathways)
were clustered and visualized using Cytoscape (version 3.9.1)88 and
EnrichmentMap89 (edge similarity ≥0.5, node q value ≤0.05). Clusters
were automatically named using the MCL clustering algorithm of the
Cytoscape AutoAnnotate plugin and then manually refined for biolo-
gical consistency. See the datasets and results of this computational
analysis in Supplementary Data 17–19. See Supplementary Methods
(“Dataset of human N-out proteome”) for further details.

Network analysis. DOMINO web server90 was used to identify protein
modules for the new HC substrates (n = 160, Fig. 9b) based on the full
STRING network91. We visualized the protein modules using
Cytoscape88 and integrated them with the clustered pathway terms. A
whole network analysis was performed for the humanN-out proteome
on the STRING network obtained by the Cytoscape StringApp92 (con-
fidence ≥0.4, default; 0.8 was also tested). Using Cytoscape
NetworkAnalyzer93, we obtained the degree, neighborhood con-
nectivity, and stress centrality of each protein in the network (Sup-
plementary Data 17).

Analysis of pathway, disease, and mutation links. We downloaded
Reactome pathway links from the g:Profiler web server, disease links
from DisGeNET94 (confidence score ≥0.1), and mutation links from the
UniProt database37 (Supplementary Data 17). We kept only mutations
within the TMD-JMD reported in UniProt or the dbSNP database95, of
which several are disease-associated.

Computation of relevance score. For the new HC substrates, we
obtained “new links” with pathways and diseases (Supplementary
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Fig. 15a and Supplementary Data 20) not previously associated with γ-
secretaseor proteins in SUBEXPERT and SUBLIT, referred to as “known
substrates”. A “relevance score” was computed based on five “rele-
vance factors”: (a) existence of a “new pathway link”; (b) existence of a
“new disease link”; (c) existence of mutations within the TMD-JMD
sequence (“mutated TMD-JMD”); (d) whether the protein family to
which the respective protein belonged to was not contained in protein
families of the known substrates (“new protein family”); and (e) whe-
ther the TMD-JMD sequence did not exhibit more than 30% sequence
identity to any substrate from SUBEXPERT (“dissimilar TMD-JMD”).
Each relevance factor was assigned a value of 1 or 0 (true or false), and
the relevance score was computed as their average (Fig. 4g and Sup-
plementary Data 17).

Comparison of CPP with a similarity-based approach. Sequence
similarity (whole sequence or TMD-JMD) was assessed using the
BLAST algorithm96. The similarity between proteins from the
human N-out proteome to the closest (i.e., most similar) substrate
from SUBEXPERT was used as a similarity measure. Alternatively,
Pearson correlation based on the top 100 CPP features was used
(Supplementary Data 17).

Co-expression analysis. RNA expression data were obtained from
the Human Protein Atlas database (version 21.1; Supplementary
Data 21). The co-expression relationship between γ-secretase and
proteins of the four substrate classes were assessed by Pearson
correlation.

Statistics
Differences between the HC substrates and the other substrate classes
were tested by a two-sided Mann–Whitney U-test. P values were
adjusted by Bonferroni correction. See exact P values and summary
statistics for all performed tests in Supplementary Data 22. Analyses
were conducted in Python v3.9 using key packages including pandas
v2.2.1, SciPy v1.8.1, matplotlib v3.5.2, scikit-learn v1.1.1, and SHAP
v0.44.0. See the Reporting Summary for a complete list.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study are provided in Supplementary
Data 1–22 (overview in Supplementary Data 23). A subset of a pre-
viously published proteomics dataset49 was used in this study and is
included in our Source Data for transparency. Unless otherwise stated,
all data supporting the results of this study can be found in the article,
supplementary, and Source Data files. Source data are provided with
this paper.

Code availability
The methods introduced here (CPP and dPULearn) form the founda-
tion of AAanalysis, a Python-based framework for interpretable,
sequence-based protein prediction. AAanalysis is fully documented on
Read the Docs [https://aaanalysis.readthedocs.io/en/latest/index.
html] and freely available on GitHub [https://github.com/
breimanntools/aaanalysis]. Tutorials can be found at [https://
aaanalysis.readthedocs.io/en/latest/tutorials.html]. All analyses pre-
sented in this study were conducted using AAanalysis v1.0.0, which is
installable via PyPi and archived on Zenodo [https://doi.org/10.5281/
zenodo.15320204] for long-term access and reproducibility. Table 1
provides an overview of the primary algorithms and visualizations
introduced in this work, along with a brief description and a link to
their respective documentation.
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