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Abstract
Frontotemporal lobar degeneration (FTLD) represents a spectrum of clinically, genetically, and pathologically 
heterogeneous neurodegenerative disorders. The two major FTLD pathological subgroups are FTLD-TDP and 
FTLD-tau. While the majority of FTLD cases are sporadic, heterogeneity also exists within the familial cases, typically 
involving mutations in MAPT, GRN or C9orf72, which is not fully explained by known genetic mechanisms. We 
sought to address this gap by investigating the effect of epigenetic modifications, specifically DNA methylation 
variation, on genes associated with FTLD genetic risk in different FTLD subtypes. We used frontal cortex DNA 
methylation profiles from three FTLD datasets containing different subtypes of FTLD-TDP and FTLD-tau: FTLD1m 
(N = 23) containing FTLD-TDP C9orf72 mutation carriers and sporadic cases, FTLD2m (N = 48) containing FTLD-Tau 
MAPT mutation carriers, FTLD-TDP GRN and C9orf72 mutation carriers, and FTLD3m (N = 163) sporadic FTLD-Tau 
(progressive supranuclear palsy - PSP) cases, and corresponding controls. We then leveraged FTLD transcriptomic 
and proteomic datasets to investigate possible downstream effects of DNA methylation changes. Our analysis 
revealed shared promoter region hypomethylation in STX6 across FTLD-TDP and FTLD-tau subtypes, though 
the largest effect size was observed in PSP cases compared to controls (delta-beta = -32%, FDR adjusted-p 
value = 0.002). We also observed dysregulation of the STX6 gene and protein expression in some FTLD subtypes. 
Additionally, we performed a detailed examination of MAPT, GRN and C9orf72 across subtypes and observed 
nominally significant differentially methylated CpGs in variable positions across the genes, often with unique 
patterns and downstream changes in gene/protein expression in mutation carriers. We highlight aberrant DNA 
methylation at different CpG sites mapping to genes previously associated with genetic risk of FTLD, including 
STX6. Our findings support convergence of genetic and epigenetic factors towards disruption of risk loci, bringing 
new insights into the contribution of these mechanisms to FTLD.
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Introduction
Frontotemporal lobar degeneration (FTLD) represents a 
spectrum of clinically, genetically, and pathologically het-
erogeneous neurodegenerative disorders characterised by 
progressive atrophy of the frontal and temporal lobes of 
the brain [1, 2]. FTLD is the umbrella term that describes 
the neuropathology of frontotemporal dementias (FTD) 
and related disorders. FTD is the second most common 
form of early-onset dementia and FTD also represents an 
estimated 25% of dementia cases occurring in individu-
als over 65 [3, 4]. Damage to frontal and temporal regions 
of the brain typically manifests as executive dysfunction, 
changes in personality and behaviour and language defi-
cits within the clinical subtypes of FTD: behavioural vari-
ant frontotemporal dementia (bvFTD), logopenic variant 
primary progressive aphasia (lvPPA), semantic variant 
PPA (svPPA)/semantic dementia (SD), nonfluent vari-
ant or progressive nonfluent aphasia (PNFA) [5]. Amyo-
trophic lateral sclerosis (ALS) and atypical parkinsonian 
syndromes, including progressive supranuclear palsy 
(PSP), frontotemporal dementia and parkinsonism linked 
to chromosome 17 (FTDP-17) and corticobasal degener-
ation (CBD), overlap with the clinical phenotypes of FTD 
and are also neuropathologically classed under the FTLD 
umbrella [6].

The neuropathological classification of FTLD is based 
on the presence and morphology of protein aggregates: 
50% of cases are attributed to the presence of TAR DNA-
binding protein (TDP-43) positive aggregates (FTLD-
TDP) (which is further divided A-E subtypes according 
to the genetic contribution and distribution of the aggre-
gates), 40% to neuronal and glial inclusions of tau (FTLD-
tau), while the remaining 10% is comprised of cases with 
inclusion bodies showing immunoreactivity for fused in 
sarcoma (FTLD-FUS) and FTLD-UPS involving protein 
inclusions of the ubiquitin proteasome system in indi-
viduals affected by a mutation in CHMP2B. A minority 
of cases show no known proteinaceous inclusions and are 
classified as FTLD-ni [2].

FTLD is reported to have a strong genetic component, 
with 30–50% of cases having a positive family history 
with at least one affected close relative [7]. Heritabil-
ity varies greatly between syndromes, with frequency of 
mutations also different between geographical popula-
tions [8]. Most of the heritability in European popula-
tions is attributed to autosomal dominant mutations 
in three genes: Chromosome 9 open reading frame 72 
(C9orf72), progranulin (GRN), and microtubule-associ-
ated protein tau (MAPT) [9–12]. Rare mutations in other 
genes, including TARDBP, VCP and TBK1, have also 
been associated with inherited forms of FTLD [13]. How-
ever, many FTLD cases are sporadic, and several genetic 
risk factors have been identified through genome-wide 
association studies (GWAS) [14–18]. Single nucleotide 

polymorphisms (SNPs) in MAPT and MOBP loci have 
been associated with risk of FTD and PSP suggesting 
common genetic denominators across subtypes of FTLD 
[18–20]. SNPs in STX6 and EIF2AK3 have been reported 
to influence the risk of PSP, with no reported associa-
tion with risk of FTD so far. Exploring the contributions 
of mutation carriers to the disease phenotype has been 
an avenue to elucidate which signatures are unique to 
causative genes [21–25]. Although the identification of 
these FTLD risk genes has provided a basis for explor-
ing pathways and mechanisms driving the pathology of 
these diseases, genetics on its own has not explained the 
clinicopathological heterogeneity of FTLD. Epigenetic 
modifications such as DNA methylation reflect the inter-
play between genetics and the environment. These modi-
fications are regulatory mechanisms which influence 
gene expression without changing the underlying DNA 
sequence. As most human diseases, including neurode-
generative diseases, result from gene deregulation with 
loss or gain in their functions, epigenetic modifications 
influencing disease are gaining attention [26–29].

We note that DNA methylation contributes to tight 
gene expression regulation, as this mechanism has been 
reported to contribute to changes in expression of the 
major FTD genes GRN and C9orf72 in FTLD individu-
als compared to controls [30–33]. There has been no 
conclusive evidence to link DNA methylation at MAPT 
to changes in its expression levels, despite preliminary 
suggestions of an effect in PSP [30–34]. To further assess 
the relevance of DNA methylation in FTLD, we previ-
ously published an epigenome-wide association study 
(EWAS) meta-analysis using post-mortem frontal lobe 
DNA methylation profiles from three datasets comprised 
of different subtypes of FTLD-TDP and FTLD-tau [35]. 
As ageing is a key risk factor for neurodegeneration, we 
have also investigated biological ageing in FTLD by using 
DNA methylation clocks [36, 37]. The results provided 
more evidence for the involvement of variable DNA 
methylation in FTLD pathogenesis and accelerated age-
ing [35, 38].

For this study, we compiled a list of causal and risk 
genes associated with FTLD and leveraged omics data 
from available brain derived datasets. We investigated 
DNA methylation patterns in the FTLD genetic risk-
related loci and determined whether the patterns varied 
across the heterogeneous FTLD subtypes. As DNA meth-
ylation plays a key role in regulating gene expression, we 
also investigated possible downstream dysregulation in 
gene and protein expression using transcriptomics and 
proteomics data. One of our main findings was dysreg-
ulation of DNA methylation at the Syntaxin-6 (STX6) 
locus across FTLD-TDP and FTLD-tau subtypes. We 
also report on DNA methylation patterns and further 
dysregulation with the major FTLD Mendelian loci 
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(C9orf72, GRN and MAPT). Our findings highlight that 
loci previously associated with FTLD genetic risk can 
also be affected via aberrant DNA methylation.

Methods
Characterisation of post-mortem brain donors included in 
DNA methylation investigations
The details of the DNA methylation datasets used in this 
study are as previously described [35] (Fig.  1, Supple-
mentary Table 1). The post-mortem tissues for FTLD1m 
(N = 23) were obtained from brains donated to the Queen 
Square Brain Bank where the tissues are stored under a 
licence from the Human Tissue authority (No. 12198). 
The brain donation programme and protocols have been 
granted ethical approval for donation and research by 
the NRES Committee London Central. The post-mortem 
tissues for FTLD2m (N = 48) were obtained through a 
Material Transfer Agreement with the Netherlands Brain 
Bank, as described by Menden et al. [39]. The data used 
for FTLD3m (N = 163, after quality control) were made 
available by Weber et al. [40] and accessed through the 
Gene Expression Omnibus (GEO) database (GEO acces-
sion number GSE75704).

Compilation of known FTLD-associated loci
To focus this study on FTLD genetic risk-associated loci, 
we compiled a list of genes by searching the DisGeNET 
text-mining database by disease terms “Frontotemporal 
lobar degeneration” and “Progressive supranuclear palsy” 

alongside a literature search to validate entries to the 
list. Duplicated genes, those that presented with nega-
tive results and those where the findings were neither 
substantial nor replicated were removed. The final list of 
genes is shown in Supplementary Table 2.

DNA methylation patterns in FTLD-associated loci
The genome-wide DNA methylation profiles for FTLD1m 
(N = 23), FTLD2m (N = 48) and FTLD3m (N = 163) were 
generated using either the Illumina 450K or the EPIC 
array, as described by Fodder et al. [35], Menden et al. 
[39] and Weber et al. [40], respectively. Beta-values 
between 0 and 1 were used to represent the percentage of 
methylation at each CpG site based on the intensities of 
the methylated and unmethylated alleles. All analyses and 
quality control measures were performed using R with 
Bioconductor packages, as previously described [27, 35]. 
Briefly, stringent and harmonised quality control mea-
sures were performed on the three datasets through the 
following steps: (1) the raw data files (idat) were imported 
for preprocessing, (2) quality control was performed 
using the minfi [41], wateRmelon [42], and ChAMP [43] 
packages where cross-reactive probes and probes of poor 
quality, those mapping to common genetic variants and 
those mapping to X or Y chromosome, as well as sam-
ples with high failure rate (≥ 2% of probes), inappropri-
ate clustering and mismatch of predicted and phenotypic 
sex, were excluded as previously reported [35]. ChAMP 
Beta-Mixture Quantile (BMIQ) was used to normalise 

Fig. 1  Overview of the study design, datasets and analysis framework. FTLD – Frontotemporal lobar degeneration, PSP – Progressive supranuclear palsy
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the beta-values which then also underwent logit transfor-
mation into M-values for further statistical analysis [44]. 
The annotations of CpG sites mapping to FTLD-associ-
ated genes were done based on the Illumina arrays mani-
fest files. Making use of the results from the previously 
conducted dataset-specific EWAS [35], we characterised 
in depth the FTLD-associated loci (listed in Supplemen-
tary Table 2). Further details regarding regression models 
used for each EWAS are described by Fodder et al. [35] 
and in Supplementary Table 1. For the current study, 
we have focused on all methylation sites (CpGs) map-
ping to FTLD-associated loci showing at least nominally 
significant DNA methylation changes when comparing 
FTLD subtypes and controls (unadjusted p < 0.05) and 
an absolute delta-beta of at least 0.05 (i.e., mean differ-
ence in DNA methylation levels between cases and con-
trols ≥ 5%), to ensure the reported differences/effects 
were biologically relevant and not due to possible tech-
nical noise. We analysed the DNA methylation patterns 
both across datasets and subtypes to also determine if 
the differential methylation patterns were affected by the 
presence of certain genetic mutations. We present nomi-
nal p-values, unless otherwise specified.

Gene and protein expression patterns of FTLD-associated 
loci
To assess whether the expression patterns of genes asso-
ciated with FTLD risk are in concert with the dysregu-
lation of DNA methylation patterns in FTLD, we used 
available transcriptomics data for FTLD cases and con-
trols. We have used gene expression data from bulk 
frontal cortex tissue of FTLD-TDP cases and controls 
(N = 44) from Hasan et al. [45] which has overlapping 
brain donors with a subset of the FTLD1 DNA meth-
ylation dataset, henceforth called FTLD1e. We also used 
transcriptomic data (N = 44) from the same brain donors 
as the FTLD2 DNA methylation dataset, called FTLD2e 
[39]. Briefly, RNAseq data for both datasets underwent 
quality control and processing as previously described 
[45]. The limma package was used to calculate normali-
sation factors accounting for differences in library sizes 
[46]. Genes with low expression levels were removed i.e. 
genes where the maximum counts per million (CPM) 
value across all samples was less than 1. The voom func-
tion was used to model the mean-variance relationship 
and transform the counts data into log2 counts per mil-
lion (log-CPM) values for linear modelling. A linear 
model was fitted to the transformed data used to adjust 
for covariates (Supplementary Table 1). For overlapping 
brain donors with gene expression and DNA methyla-
tion datasets, we also performed DNA methylation-gene 
expression correlations, using the Pearson correlation 
coefficient (r) with nominal p-values at a threshold of 
p < 0.05.

Further to gene expression analysis, we looked at the 
genes of interest in the proteomics data from our pre-
vious study [35], with brain donors overlapping with 
FTLD1 (FTLD1p), where protein levels were quantified 
using frontal cortex homogenate of frozen post-mortem 
human brain tissue on control (N = 6), FTLD-TDP type 
A with C9orf72 repeat expansion (N = 6), and FTLD-TDP 
type C (N = 6) cases. Samples were pooled per disease 
group (three cases per pooled sample) to enable deeper 
coverage of the proteome with higher fractionation. 
Fold-changes and standard errors between FTLD-TDP 
subtypes compared to controls were calculated. As there 
were only two pooled samples per group, no statistical 
analysis was performed, but an absolute fold-change > 1.5 
was considered biologically meaningful. In this pro-
teomics dataset, no data was available for some of the 
genes we have studied in more detail, including GRN and 
C9orf72.

Results
DNA methylation is dysregulated in FTLD-associated loci
This study examined in detail loci associated with the 
genetic risk of FTLD to determine whether these may be 
affected by changes in DNA methylation, possibly lead-
ing to downstream consequences on gene and/or protein 
expression. We leveraged frontal lobe DNA methylation 
data from three cohorts composed of multiple FTLD-
TDP and FTLD-Tau subtypes, previously studied by Fod-
der et al. [35]. The DNA methylation patterns observed 
for the FTLD risk genes (listed in Supplementary Table 
2) showing effect sizes of at least 5% (absolute delta-
betas ≥ 0.05) and nominal p-value < 0.05, when comparing 
FTLD and/or its subtypes with the corresponding con-
trols in each cohort, are shown in Fig.  2 and described 
in Table  1. It is of note that several genes, including 
MAPT, show changes in multiple DNA methylation sites. 
Although DNA methylation changes are observed in pro-
moter regions represented by CpGs mapping to TSS200 
(up to 200 bases upstream of the transcription start site) 
and TSS1500 (200–1500 bases upstream of the transcrip-
tion start site), many also occur throughout gene bodies 
and other regions.

Dysregulation in the STX6 locus is shared across FTLD 
subtypes
From our analysis, one CpG mapping to the promoter 
region of STX6 (cg02925840) was of particular interest, 
as it passed genome-wide significance in the FTLD3m 
dataset (FDR adjusted p-value = 0.002), with a strong 
decrease in methylation levels in the PSP cases com-
pared to controls (delta-beta = -31.5%, Table  1; Fig.  2). 
Notably, STX6 has been identified as a genetic risk locus 
specifically for PSP [20]. Still, though to a lesser extent 
compared to PSP, this same CpG has shown concordant 
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direction of effect in the FTLD2m dataset (FTLD vs. con-
trols, delta-beta = -7.9%, nominal p-value = 0.003), and in 
all its individual subtype comparisons (FTLD-Tau MAPT 
mutants vs. controls, FTLD-TDP C9orf72 mutants and 
GRN mutants vs. controls, Table  1). An additional CpG 
(cg05301102) in the same region showed similar results 
and reached nominal significance in FTLD2m C9orf72 
mutation carriers and vs. controls (delta-beta = -12%, 
nominal p-value = 0.032) (Fig.  3). Unfortunately, this 
region could not be analysed in FTLD1m, as probes 

were excluded during quality control pre-processing of 
the data (Supplementary Fig.  1). Overall, these findings 
suggest that disruption of DNA methylation patterns at 
STX6 locus might be an important feature shared across 
FTLD-TDP and FTLD-tau and multiple subtypes, includ-
ing MAPT, C9orf72 and GRN mutation carriers, in addi-
tion to sporadic PSP.

Given this finding in STX6, we analysed available FTLD 
transcriptomics and proteomics datasets to investigate 
possible downstream consequences in gene and protein 

Fig. 2  Overview of CpGs showing differences in DNA methylation between FTLD subtypes and controls (absolute delta-beta ≥ 5% and nominal p < 0.05) 
across three independent datasets (FTLD1m, FTLD2m and FTLD3m). It is of note that dysregulation of cg02925840, mapping to the promoter region of 
STX6, is shared across datasets by all FTLD2m and FTLD3m subtypes. FTLD – Frontotemporal lobar degeneration, PSP – Progressive supranuclear palsy
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FTLD1m: FTLD vs. CTRL
Gene CpG Chr Position Feature CGI Delta-beta p-value
MAPT cg01934064 17 44,064,242 Body shelf -0.14 0.024
MAPT cg15323584 17 44,022,846 5’UTR shelf 0.11 0.009
MAPT cg17569492 17 44,026,659 5’UTR island 0.09 0.019
MAPT cg12727978 17 44,075,500 Body opensea 0.08 0.009
TREM2 cg02828883 6 41,131,823 TSS1500 opensea 0.08 0.005
TIA1 cg14434028 2 70,452,453 Body opensea 0.08 0.036
TIA1 cg13119546 2 70,444,039 Body opensea 0.05 0.041
RUNX2 cg16181497 6 45,409,732 Body opensea -0.07 0.042
RUNX2 cg12755953 6 45,430,813 Body opensea 0.06 0.039
RUNX2 cg04110902 6 45,500,999 Body opensea 0.05 0.038
GRN cg06800040 17 42,427,647 Body shelf 0.07 0.022
FTLD1m by subtype: TDP Type A C9orf72 vs. CTRL
MAPT cg15323584 17 44,022,846 5’UTR shelf 0.17 0.002
MAPT cg12727978 17 44,075,500 Body opensea 0.15 0.001
MAPT cg17569492 17 44,026,659 5’UTR island 0.1 0.032
MAPT cg19276540 17 44,060,353 Body island 0.08 0.035
RUNX2 cg12041069 6 45,341,222 Body shelf 0.15 0.04
RUNX2 cg17636752 6 45,391,973 Body shore 0.09 0.036
RUNX2 cg12755953 6 45,430,813 Body opensea 0.08 0.026
TIA1 cg14434028 2 70,452,453 Body opensea 0.13 0.011
TIA1 cg13119546 2 70,444,039 Body opensea 0.06 0.047
TIA1 cg15836561 2 70,442,511 ExonBnd opensea 0.06 0.028
TBK1 cg23175599 12 64,848,891 5’UTR shelf 0.1 0.026
TREM2 cg02828883 6 41,131,823 TSS1500 opensea 0.09 0.017
CCNF cg26647200 16 2,482,775 Body shelf 0.09 0.022
GRN cg06800040 17 42,427,647 Body shelf 0.08 0.031
GRN cg12837296 17 42,426,483 5’UTR opensea 0.07 0.033
GRN cg23570245 17 42,426,011 5’UTR opensea 0.06 0.048
GRN cg08491241 17 42,421,960 TSS1500 opensea 0.06 0.05
SQSTM1 cg05578452 5 179,255,653 Body opensea 0.07 0.005
SQSTM1 cg09046399 5 179,264,098 3’UTR opensea 0.06 0.025
FTLD1m by subtype: TDP Type C vs. CTRL
MAPT cg01934064 17 44,064,242 Body shelf -0.16 0.016
MAPT cg17569492 17 44,026,659 5’UTR island 0.08 0.045
MAPT cg26979107 17 44,061,355 Body shore 0.06 0.016
MAPT cg22635938 17 44,039,549 5’UTR opensea -0.06 0.012
MAPT cg01582587 17 44,036,817 5’UTR opensea 0.05 0.022
TBK1 cg09999583 12 64,878,162 Body opensea -0.1 0.029
TREM2 cg02828883 6 41,131,823 TSS1500 opensea 0.08 0.009
TIA1 cg17674811 2 70,443,967 Body opensea -0.06 0.032
RUNX2 cg04110902 6 45,500,999 Body opensea 0.06 0.023
FTLD2m: FTLD vs. CTRL
TBK1 cg15343732 12 64,862,422 Body opensea 0.09 0.034
STX6 cg02925840 1 180,992,110 TSS200 island -0.08 0.003
MOBP cg14968361 3 39,543,547 5’UTR shore 0.08 0.050
TIA1 cg20423569 2 70,452,935 Body opensea -0.05 0.008
FTLD2m by subtype: Tau MAPT vs. CTRL
MOBP cg14968361 3 39,543,547 5’UTR shore 0.1 0.042
TREM2 cg25748868 6 41,131,213 TSS1500 opensea 0.09 0.025
SQSTM1 cg17602756 5 179,246,001 5’UTR shore -0.08 0.021
STX6 cg02925840 1 180,992,110 TSS200 island -0.07 0.037

Table 1  CpGs mapping to FTLD-associated loci showing differential methylation in FTLD cohorts and their subtypes compared to 
controls (absolute delta-beta ≥ 5% and nominal p < 0.05)
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expression, respectively. Regarding gene expression 
(Fig. 4a, b), we observed a small increase in STX6 expres-
sion in the FTLD1e GRN mutation carriers (Fold-change 
1.2, nominal p < 0.01), only passing multiple testing cor-
rections in FTLD sporadic TDP cases compared to con-
trols (Fold-change 1.1, FDR adj. p = 0.03). We observed, 
however, a non-significant decrease in STX6 expression 
in the MAPT and C9orf72 mutation carriers represented 
in FTLD2e (Fold-changes − 1.1, n.s.). Similarly, gene 
expression data analysed by Wang et al. [47], showed a 
non-significant decrease in STX6 expression in PSP tem-
poral cortex compared to controls. Leveraging a frontal 
cortex proteomics dataset FTLD1p, we also observed 
decreased STX6 protein expression in FTLD-TDP type A 
(C9orf72 mutation carriers) and FTLD-TDP type C com-
pared to controls (Fold-change − 1.9 and − 1.5, respec-
tively; Fig. 4c).

Using overlapping cases between FTLD2m and 
FTLD2e, although non-significant, we observed a posi-
tive correlation between STX6 expression and the top 
differentially methylated site - cg02925840 in the MAPT 
mutation carriers only (r = 0.42, n.s.; Supplementary 
Fig. 2), with very weak effects in all other groups. A simi-
lar direction of effect was observed for the other high-
lighted STX6 CpG - cg05301102 in MAPT (r = 0.20, n.s.) 

as well as in GRN mutation carriers (r = 0.63, n.s.). This 
suggests a possible contribution of DNA methylation 
shaping STX6 gene expression landscape at least in these 
subtypes. However, given the small sample sizes and lack 
of statistical significance, these findings should be inter-
preted with caution and warrant further investigation.

.

Variable DNA methylation patterns are observed in MAPT, 
GRN and C9orf72
As mutations in MAPT, GRN and C9orf72 represent the 
majority of familial FTLD cases, we used this opportu-
nity to conduct a detailed investigation of DNA methyla-
tion patterns in these loci as well as to analyse possible 
downstream gene expression in both mutation carriers 
and non-carriers. Although C9orf72 did not pass the set 
thresholds, we still included this locus in our investiga-
tion owing to its importance as a Mendelian gene.

MAPT
At the MAPT locus, which encodes for tau, dysregula-
tion of DNA methylation levels was variable across FTLD 
datasets and subtypes, not only in FTLD-tau but also in 
FTLD-TDP, with several CpGs passing the thresholds of 
absolute delta-beta values ≥ 5% at nominal significance 

TIA1 cg20423569 2 70,452,935 Body opensea -0.06 0.005
FUS cg18647183 16 31,201,691 Body opensea 0.06 0.042
MAPT cg05533539 17 44,104,521 3’UTR opensea 0.06 0.017
FTLD2m by subtype: TDP Type A GRN vs. CTRL
RUNX2 cg18323984 6 45,386,802 Body shore 0.09 0.018
MOBP cg24050474 3 39,544,326 Body shore 0.09 0.046
CCNF cg02796204 16 2,499,223 Body opensea 0.08 0.031
STX6 cg02925840 1 180,992,110 TSS200 island -0.08 0.015
OPTN cg16907766 10 13,143,470 5’UTR shore 0.07 0.041
APOE cg21879725 19 45,412,647 3’UTR shore -0.06 0.027
GRN cg10591948 17 42,421,375 TSS1500 opensea 0.06 0.03
FTLD2m by subtype: TDP Type B C9orf72 vs. CTRL
VCP cg10828210 9 35,072,977 TSS1500 shore -0.23 0.017
STX6 cg05301102 1 180,992,117 TSS200 island -0.12 0.032
STX6 cg02925840 1 180,992,110 TSS200 island -0.09 0.001
TBK1 cg15343732 12 64,862,422 Body opensea 0.09 0.022
RUNX2 cg18323984 6 45,386,802 Body shore 0.08 0.015
GRN cg01524226 17 42,427,606 Body shelf 0.06 0.007
GRN cg10591948 17 42,421,375 TSS1500 opensea 0.06 0.03
FTLD3m: Tau PSP vs. CTRL
STX6 cg02925840 1 180,992,110 TSS200 Island -0.32 1.66E-07
MAPT cg02804087 17 43,972,969 5’UTR Island 0.1 0.027
MAPT cg11489262 17 43,973,426 5’UTR Island 0.08 0.016
SOD1 cg16086310 21 33,031,992 5’UTR Island -0.08 0.002
RUNX2 cg23261343 6 45,413,792 Body opensea 0.05 0.044
CpGs highlighted in bold reached epigenome-wide significance (FDR adjusted p-value ≤ 0.05). FTLD – frontotemporal lobar degeneration; PSP – progressive 
supranuclear palsy; CTRL – controls; CpG – DNA methylation sites; Chr – chromosome; CGI – CpG Islands and other regions; TSS – transcription start site; TSS200–0–
200 bases upstream of TSS; TSS1500–200–1500 bases upstream of TSS; UTR – untranslated region

Table 1  (continued) 
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Fig. 3 (See legend on next page.)
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(*p ≤ 0.05, Table 1; Fig. 5, Supplementary Fig. 3). However, 
the location of those above-threshold CpGs through-
out the gene, seemed to differ between FTLD subtypes. 
The MAPT mutation carriers (FTLD-Tau – FTLD2m) 
had a unique and significantly hypermethylated CpG 
(cg05533539) in the 3’UTR region of the gene. While the 
PSP cases (FTLD-Tau – FTLD3m) had two hypermeth-
ylated CpGs (cg02804087 and cg11489262) in the 5’UTR 
region of the gene, none of which surpassed the chosen 
thresholds or same direction of effect in any other FTLD 
subtype. For this dataset (FTLD3m), we also stratified 
samples by the presence/absence of the MAPT H2 haplo-
type to explore whether it could affect DNA methylation 
patterns at the locus when comparing PSP with controls. 
However, findings for the gene were similar to those of 
the unstratified analysis (data not shown), suggesting 
the MAPT haplotypes are not playing a major role in the 
observed disease-associated DNA methylation landscape 
at this locus. In the FTLD1m dataset, several CpGs dis-
tributed across the gene showed variable methylation 
patterns, with cg01934064 and cg15323584, in the MAPT 
gene body and 5’UTR, respectively, being the topmost 
differentially methylated CpGs in FTLD-TDP compared 
to controls. However, looking at the individual subtypes 
within this cohort, the cg01934064 was significantly 
hypomethylated in the TDP type C cases (sporadic) 
compared to controls, while cg15323584 was hyper-
methylated in the TDP type A cases (C9orf72 mutation 
carriers) compared to controls. The cg17569492 probe, 
also in the 5’UTR region, was hypermethylated in both 
FTLD-TDP types A and C. Further to this finding, it is of 
note that FTLD-TDP types A and C showed downregula-
tion of MAPT protein expression compared to controls 
in the FTLD1p dataset (Fold-changes < -1.5, Fig. 5d). In 
accordance with this, in the FTLD1e expression dataset, 
MAPT expression was lower in the TDP type A C9orf72 
and sporadic TDP cases (which included TDP type C) 
when compared to controls (nominal p < 0.05), while 
the FTLD2e dataset showed no significant differences 
between FTLD subtypes and controls. Wang et al. [47] 
reports a non-significant increase in MAPT expression in 
PSP temporal cortex compared to controls.

Using overlapping cases between FTLD2m and 
FTLD2e, although non-significant, we observed a nega-
tive correlation between MAPT expression and the 

3’UTR CpG which was hypermethylated (cg05533539) 
in the MAPT mutation carriers (r = -0.27, n.s.; Supple-
mentary Fig.  4). It is of note that the controls (r = 0.47, 
p = 0.089) and the C9orf72 mutation carriers showed the 
opposite direction of effect with positive correlations 
(r = 0.53, p = 0.064). Once again, these findings should be 
interpreted with caution due to the small sample sizes 
and lack of statistical significance, and warrant further 
investigation in future studies.

GRN
At the GRN locus we observed promoter hypermeth-
ylation in the TDP Type A cases containing differ-
ent mutation carriers (FTLD1 TDP Type A – C9orf72, 
FTLD 2 TDP Type A – GRN) compared to correspond-
ing controls, the CpGs cg08491241 and cg10591948, 
respectively, mapping to the TSS1500 region (Fig.  6a, 
Supplementary Fig. 5). The TDP Type A C9orf72 subtype 
also showed CpGs with hypermethylation patterns in 
the 5’UTR and body while the TDP Type B C9orf72 sub-
type had one CpG in the body surpass the set thresholds 
(absolute delta-beta ≥ 5% and nominal p < 0.05). In both 
the FTLD1e and FTLD2e datasets, when compared to 
controls, higher expression was observed in the MAPT 
and C9orf72 mutation carriers while lower expression 
was observed in the FTLD-TDP Type A GRN cases in 
both datasets (Fold-changes of -1.2 and − 1.6, respec-
tively), as often observed with promoter hypermethyl-
ation, though this effect only achieved nominal statistical 
significance in FTLD2e (Fig. 6b-c).

C9orf72
As C9orf72 is an important gene in FTLD, even though 
no CpG fully met the established thresholds (absolute 
delta-beta ≥ 5% and p-value < 0.05), we still detailed the 
DNA methylation patterns throughout the locus as well 
as downstream gene expression changes (Fig.  7). We 
observed higher DNA methylation levels with a delta-
beta > 5% (n.s.) in two CpGs only in C9orf72 mutation 
carriers (both the TDP Type A and TDP Type B sub-
types) compared to controls (Fig. 7a, other subtypes are 
shown in Supplementary Fig.  4). One near the location 
of the C9orf72 repeat expansion in the 5’UTR region and 
another within the promoter region (cg01861827 and 
cg14363787, respectively). We also observed a significant 

(See figure on previous page.)
Fig. 3  Analysis of DNA methylation patterns across the STX6 locus reveals that hypomethylation at the promoter region is shared across subtypes in 
FTLD2m and in FTLD3m (PSP). (a) cg02925840 in the promoter region of STX6 is hypomethylated across subtypes of FTLD2m at the set threshold of 
an absolute mean difference (delta-beta value) of ≥ 5% represented by red horizontal lines and at least at nominal significance (*nominal p < 0.05). Ad-
ditionally, cg05301102 also achieves nominal significance in the FTLD-TDP Type A C9orf72 mutation carriers. (b) cg02925840 the promoter region of 
STX6 shows strong hypomethylation in FTLD3m in PSP compared to controls (-32%) and reached epigenome-wide significance (FDR adjusted p = 0.002). 
*Indicates nominal p < 0.05. FTLD2m – frontotemporal lobar degeneration DNA methylation cohort 2, FTLD3m – frontotemporal lobar degeneration DNA 
methylation cohort 3; PSP – progressive supranuclear palsy, TSS – transcription start site; TSS200–0–200 bases upstream of TSS; TSS1500–200–1500 bases 
upstream of TSS; UTR – untranslated region. NA – These CpGs were not available in the specified dataset due to differences in the methylation array (450K 
or EPIC) or removal during quality control
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downregulation of C9orf72 gene expression in C9orf72 
mutation carriers, both in FTLD-TDP types A (Fold-
change = -1.3, nominal p = 0.005) and B (Fold-change = 
-1.9, FDR adj. p = 0.003), when compared to the corre-
sponding controls (Fig. 7b, c). Although to a lesser extent, 
decreased C9orf72 expression was also observed in GRN 
and MAPT mutations carriers compared to controls, 
suggesting this locus may be more broadly dysregulated 
across FTLD subtypes.

Discussion
FTLD has a strong genetic component both in terms of 
Mendelian genes and in genes associated with risk in 
sporadic cases. However, genetics alone cannot explain 
the clinicopathological heterogeneity and/or overlap 
between FTLD subtypes. This suggests that epigenetic 
regulatory mechanisms, such as DNA methylation, that 
represent the interplay between the genetic makeup of an 
individual and their environmental exposures, may be at 

play in FTLD. We therefore set up this study to investi-
gate whether DNA methylation changes could contribute 
to dysregulation of known FTLD genetic risk-associated 
loci, and how this is affected. For this study, we used 
DNA methylation data derived from frontal cortex tis-
sue of three independent cohorts, including FTLD-TDP 
and FTLD-tau pathology, which we had investigated pre-
viously from a different perspective [35]. We also com-
bined these datasets with overlapping or corresponding 
gene and protein expression datasets [35, 45] to further 
characterise possible dysregulation of such FTLD-asso-
ciated loci. Our findings highlighted DNA methylation 
changes in STX6, shared across different FTLD subtypes 
as a major finding. Furthermore, by characterizing DNA 
methylation and gene expression in known FTLD Mende-
lian genes (i.e., MAPT, GRN and C9orf72), we found that 
dysregulation may occur even in non-mutation carriers. 
To our knowledge this is the first comprehensive analysis 
of DNA methylation patterns and characterisation of its 

Fig. 4  Gene and protein expression patterns of STX6 in frontal cortex of FTLD cases and controls. (a) Boxplot showing STX6 gene expression in FTLD1e 
cases and controls, with a small increase detected in FTLD-TDP GRN mutation carriers and sporadic TDP cases. (b) Boxplot of FTLD2e showing STX6 de-
creased gene expression but non-significant across all FTLD subtypes (both FTLD-TDP and FTLD-Tau) when compared to controls. Comparisons between 
the controls and all subtypes for the expression data were carried out using regression models adjusted for multiple covariates as detailed in Supplemen-
tary Table 1, nominal p-values are shown (**p ≤ 0.01; ***p ≤ 0.001). (c) Bar plot showing protein quantifications of STX6 in the frontal cortex of the FTLD1p 
dataset (FTLD TDP Type A C9orf72 mutation carriers and FTLD TDP Type C sporadic cases). For each group we used two pooled samples (2 × 3 samples) 
and derived the quantifications using mass spectrometry. Both FTLD subtypes showed decreased protein expression as visualised by the fold-changes in 
the bar plot (TDP Type A = -1.9 and TDP Type C =-1.5); standard errors from the mean are also shown. FTLD – frontotemporal lobar degeneration; FTLD1e 
– gene expression cohort 1; FTLD2e – gene expression cohort 2; FTLD1p – protein expression cohort 1
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Fig. 5 (See legend on next page.)
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possible downstream consequences in FTLD-associated 
loci, in mutation and non-mutation carriers and in a 
range of FTLD-TDP and FTLD-tau subtypes.

The “DNA methylation paradox” underscores the com-
plex relationship between DNA methylation and gene 
expression. Promoter DNA methylation has garnered 
attention owing to a typically inverse correlation with 
gene expression [48–53]. Similarly, DNA methylation in 
the 5’ untranslated region (UTR) has been inversely cor-
related with gene expression, while in the 3′ UTR region 
a positive correlation has been observed [53–55]. Our 
analysis highlighted two hypomethylated CpGs at the 
promoter region of STX6 (cg05301102 and cg02925840) 
in multiple genetic forms of FTLD (all subtypes of 
FTLD2m, including MAPT, GRN and C9orf72 mutation 
carriers) and in sporadic PSP (FTLD3m), with a much 
larger effect size in the latter. Interestingly, genetic vari-
ants in STX6 had been significantly associated with risk 
of PSP (FTLD-tau) in multiple studies [20, 56–58]. STX6 
encodes syntaxin 6, which is a soluble N-ethylmaleimide 
sensitive factor attachment protein receptor (SNARE)-
class protein involved in regulation of vesicle membrane 
fusion [59]. Although syntaxin 6 is widely expressed 
in tissues throughout the body, Bock, Lin and Scheller 
showed in their seminal work that the brain is among 
the tissues expressing the highest levels of STX6 protein 
[60]. Dysregulation of STX6 expression has been associ-
ated with AD risk and faster cognitive decline potentially 
relating to neuronal circuitry pathways [61, 62]. It has 
also been associated with PSP risk, as more specifically 
the SNP rs1411478 risk allele has been associated with 
decreased STX6 expression levels in the white matter 
[56]. Variants in and around STX6 have also been associ-
ated with risk of the prion disease, specifically sporadic 
Creutzfeldt-Jakob disease, with a recent study showing 
that upregulation of both gene and protein expression of 
syntaxin-6 in the brain is associated with the disease risk 
[63–65]. Dysregulated transport of misfolded proteins 
from the endoplasmic reticulum to lysosomes has been 
hypothesized as an underlying mechanism of STX6 [20, 
56]. Recently, an expression quantitative trait loci (eQTL) 
colocalization has been shown for STX6 specifically in 
oligodendrocytes and brain regions associated with PSP 

pathology [58]. DNA methylation has been implicated 
in the development, differentiation, and maintenance 
of oligodendrocyte lineage cells where STX6 is highly 
expressed [58, 66] therefore, its dysregulation is likely 
playing a role in disease. It is also of note that PSP, shows 
tau pathology in oligodendrocytes in the form of coiled 
bodies [67].

Tau is a microtubule-associated protein, encoded by the 
MAPT gene, which becomes abnormally phosphorylated 
leading to aggregation and formation of intracellular fila-
mentous inclusions, consisting of hyperphosphorylated 
tau, in several neurodegenerative diseases. These diseases 
are called tauopathies and include AD as well as several 
diseases under the FTLD umbrella (FTLD-tau) such as 
PSP, Pick’s disease, corticobasal degeneration (CBD), 
argyrophilic grain disease, and frontotemporal dementia 
with parkinsonism linked to chromosome 17 (FTDP-17), 
most of which are sporadic with the exception of the lat-
ter which is caused by mutations in MAPT (such as the 
MAPT mutation carriers in FTLD2m) [2, 68]. Interest-
ingly, the work by Lee et al. shows a link between syn-
taxins 6 and 8 and tau, more specifically that they are 
important in mediating tau secretion through their inter-
action with the C-terminal tail region of tau [69]. Addi-
tionally, it has been proposed that pathological TDP-43 is 
spread between cells in an autophagy-dependent, prion-
like manner via extracellular vesicles potentially involving 
STX6 [70–72]. Our findings of STX6 dysregulation across 
distinct pathologies supports a broader involvement of 
STX6 in both FTLD-TDP and FTLD-tau subtypes.

MAPT is one of the main Mendelian genes associated 
with FTLD where individuals harbour autosomal domi-
nant mutations [9, 73], influencing alternative splicing 
patterns, producing imbalances in tau isoforms, and/or 
production of more aggregation-prone mutant tau pro-
tein [74–76]. Common genetic variation in the MAPT 
locus is also associated with risk of FTLD-tau in non-
mutation carriers [20, 58, 77, 78]. MAPT sits within a 
complex locus [79] with large insertion-deletion poly-
morphisms in a large region of Chromosome 17q that 
is in complete linkage disequilibrium, resulting in two 
major haplotypes, H1 and its inverted counterpart H2, 
as well as some sub-haplotypes [80, 81]. H1 is the most 

(See figure on previous page.)
Fig. 5  Mixed DNA methylation patterns in the UTRs and body of MAPT with patterns of lower gene and protein expression. (a)MAPT mutation carriers 
had one hypermethylated CpG in the 3’UTR region which passed both thresholds of an absolute mean difference of ≥ 5% and at least at nominal signifi-
cance (*nominal p < 0.05). Other probes surpassing these thresholds were in the 5’UTR region and the body of the gene. These showed mixed patterns of 
hypo- and hyper-methylation across different subtypes. (b) Boxplot of the FTLD1e cohort showed lower expression of MAPT in TDP Type A C9orf72 and 
sporadic TDP cases achieving significance. *Indicates p ≤ 0.05. (c) Boxplot of the FTLD2e cohort showed no changes in MAPT expression in the subtypes. 
Comparisons between the controls and all subtypes for the expression data were carried out using regression models adjusted for multiple covariates as 
described in Supplementary Table 1. (d) Barplot of the FTLD1p cohort where both FTLD subtypes showed decreased protein expression as visualised by 
the fold-changes (TDP Type A = -1.5 and TDP Type C =-1.5); standard errors from the mean are also shown. FTLD1e  – frontotemporal lobar degeneration 
gene expression cohort 1; FTLD1p – frontotemporal lobar degeneration protein quantification cohort 1. TSS – transcription start site; TSS200–0–200 bases 
upstream of TSS; TSS1500–200–1500 bases upstream of TSS; UTR – untranslated region. NA – These CpGs were not available in the specified dataset due 
to differences in the methylation array or removal during quality control
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Fig. 6  Promoter hypermethylation in GRN in FTLD-TDP Type A cases with lower gene expression in GRN mutation carriers. (a) The TDP Type A cases in 
both the FTLD1m and FTLD2m cohorts with different mutation carriers (C9orf72 and GRN, respectively) showing hypermethylation in the promoter re-
gion of GRN passing both thresholds of an absolute mean difference of ≥ 5% and at least at nominal significance (nominal p < 0.05*). The C9orf72 carriers 
also showed above-threshold hypermethylation in CpGs in the 5’UTR and gene body of GRN.(b) Boxplot of the FTLD1e cohort with mixed expression 
patterns of GRN in FTLD subtypes compared to controls with none achieving statistical significance. (c) Boxplot of the FTLD2e cohort showing mixed 
patterns of gene expression with the FTLD-TDP Type A GRN mutation carriers showing a nominally significant decrease in gene expression. Comparisons 
between the controls and all subtypes for the expression data were carried out using regression models adjusted for multiple covariates as described in 
Supplementary Table 1. *Indicates nominal p < 0.05. Note: the GRN mutation carriers were observed to show lower expression than the corresponding 
controls and other subtypes in both FTLD1e and FTLD2e. FTLD1e – frontotemporal lobar degeneration gene expression cohort 1; FTLD2e – frontotempo-
ral lobar degeneration gene expression cohort 2; TSS – transcription start site; TSS200–0–200 bases upstream of TSS; TSS1500–200–1500 bases upstream 
of TSS; UTR – untranslated region. NA – These CpGs were not available in the specified dataset due to differences in the methylation array or removal 
during quality control
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Fig. 7  DNA methylation and gene expression patterns in C9orf72. (a) Only C9orf72 mutation carriers (TDP Type A and TDP Type B) showed higher levels 
of methylation compared to the corresponding controls. The TDP Type A cases (FTLD1m) showed this effect in a CpG at the 5’UTR region while the TDP 
Type B cases (FTLD2m) showed the hypermethylation in a CpG at the promoter region. These CpGs passed the threshold of an absolute mean difference 
of ≥ 5% although did not achieve nominal significance (nominal p > 0.05). The vertical dotted line in the 5’UTR region represents the approximate location 
of the C9orf72 G4C2 hexanucleotide repeat expansion. (b) Boxplots of the FTLD1e cohort showing lower expression of C9orf72 in all subtypes with the TDP 
Type A C9orf72 mutation carriers only achieving nominal statistical significance. ** Indicates nominal p ≤ 0.01 (c) Boxplots of FTLD2e where all subtypes 
showed lower gene expression when compared to controls with only TDP Type B C9orf72 mutation carriers achieving statistical significance after multiple 
testing corrections and TDP type A GRN carriers achieving nominal significance. * p ≤ 0.05; **** p ≤ 0.0001. While all the FTLD cases showed a decrease in 
expression compared to controls, the C9orf72 mutation carriers were observed to show the largest effect size. FTLD1e  – frontotemporal lobar degenera-
tion gene expression cohort 1; FTLD2e – frontotemporal lobar degeneration gene expression cohort 2; TSS – transcription start site; TSS200–0–200 bases 
upstream of TSS; TSS1500–200–1500 bases upstream of TSS; UTR – untranslated region. NA – These CpGs were not available in the specified dataset due 
to differences in the methylation array or removal during quality control
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common haplotype and is associated with increased risk 
of sporadic FTLD tauopathies, mainly the four-repeat 
tauopathies, CBD and PSP [20, 79–81], while the H2 
haplotype is protective for PSP and CBD and has been 
associated with familial FTD and increased risk for the 
three-repeat tauopathy, Pick’s Disease [81–83]. Li et al. 
performed DNA methylation analysis in peripheral blood 
of FTLD cases, including PSP, and concluded that DNA 
methylation at the region of the MAPT locus may influ-
ence the risk of developing tauopathies alongside the 
H1/H2 haplotypes [84]. In studies using brain tissue, 
MAPT DNA methylation patterns have been variable and 
region-specific as investigated in PSP, AD and Parkin-
son’s Disease [34, 85, 86].

Previous studies have reported no significant differ-
ences in methylation in FTLD-spectrum cases compared 
to controls [30, 87]. However, we observed several dif-
ferentially methylated CpGs at the MAPT gene body and 
UTRs in our cohorts in both FTLD-TDP and FTLD-tau 
subtypes. We note that while DNA methylation patterns 
for different CpGs at the 5’UTR were variable, all those 
passing the significance thresholds were hypermethyl-
ated. The MAPT mutation carriers had a significantly 
hypermethylated CpG in the 3’UTR (cg05533539), which 
was not observed in any of the other FTLD subtypes. 
We found increased expression of MAPT across the 
FTLD2e subtypes, none of which were statistically sig-
nificant. On the other hand, we found decreased expres-
sion in FTLD1e type A with C9orf72 mutation cases and 
in sporadic cases (including TDP type C), consistent 
with FTLD1p decrease in protein expression. Untrans-
lated regions have roles in regulating gene expression 
[54, 88, 89]. However, the effect of DNA methylation at 
these regions remains unclear. MAPT has a core pro-
moter around its first exon, but it has also been suggested 
to have alternative promoters at different transcription 
start sites [76, 90], which also affect the length of 3’ and 5’ 
UTRs [76, 88]. Taken together, the complexity of MAPT’s 
structure aligns with its high variability in methylation 
and gene and protein expression in FTLD. Whether 
UTRs play a significant role in regulating expression in 
MAPT remains a point for future investigation. Overall, 
these findings also suggest that the dysregulation at the 
MAPT locus is not confined to MAPT mutation carri-
ers or tau pathology, but also extends to non-mutation 
carriers and those with other FTLD pathologies such as 
FTLD-TDP.

Mutations in GRN, which encodes progranulin, are 
another major cause of autosomal dominant FTLD. 
These mutations result in decreased expression and 
loss-of-function of the mutant allele of GRN resulting in 
haploinsufficiency and reduced expression of progranu-
lin [10, 91–93]. This is particularly important in a dis-
ease context as progranulin is proposed to localise near 

endosomes and lysosomes to participate in endocytosis, 
secretion and other related key functions [94–96]. Addi-
tionally, progranulin is involved in neuroinflammation, 
axonal growth, development and acts as a neurotrophic 
factor promoting neuronal survival [97, 98]. GRN has 
also been suggested as a modifier of risk for sporadic 
cases of FTLD. However, this finding may be related to 
a disruption of lysosomal activities chaperoned by GRN 
and requires further investigation [99, 100]. Still, the pro-
posed role for GRN across FTLD in conjunction with an 
appearance of asymmetric cortical atrophy specific to 
the mutation carriers has provided a strong argument 
to determine regulatory mechanisms, including epigen-
etic mechanisms, influencing GRN expression [101, 102]. 
Hypermethylation at the promoter region of GRN has 
been inversely correlated with gene expression and there-
fore reduced GRN expression in FTLD in sporadic cases 
[32, 33]. Banzhaf-Strathmann et al. showed hypermethyl-
ation at the promoter region in GRN in FTLD compared 
to AD and PD [33]. Likewise, we have shown hypermeth-
ylation in the promoter region of GRN in FTLD-TDP 
Type A cases not only in GRN but also in C9orf72 muta-
tion carriers. We observed lower GRN expression in the 
GRN mutation carriers only though, possibly emphasiz-
ing the impact of genetic variation and suggesting that 
DNA methylation dysregulation beyond the promoter 
region, as seen in the C9orf72 mutation carriers, may act 
differently and/or in concert with other mechanisms to 
regulate GRN gene expression.

Expansion of the non-coding G4C2 hexanucleotide 
repeat in the 5’UTR region of C9orf72 is the most com-
mon cause of familial FTLD [8]. The mechanism by 
which this mutation causes disease remains an area of 
intense research as multiple pathways have been impli-
cated [103]. Like GRN, haploinsufficiency with reduced 
C9orf72 expression and loss-of-function has been pro-
posed [104]. Toxic gain-of-function mechanisms have 
also been suggested [31, 105–110]. The biological role of 
C9orf72 also remains unclear. However, recent studies 
observing protein-protein interactions suggest involve-
ment in lysosomal activity, vesicle trafficking, axon 
growth, regulation of mTORC1 signalling and of inflam-
mation [111, 112].

Reduced expression of C9orf72 has been observed in 
some mutation carriers. Therefore, DNA methylation 
patterns have been previously analysed to determine 
whether there was a role for this reversible mechanism in 
regulating C9orf72 expression in FTLD [11, 31, 113, 114]. 
Hypermethylation at C9orf72 has been observed uniquely 
in mutation carriers in a region upstream of the repeat 
[115]. As C9orf72 promoter hypermethylation results in 
reduced C9orf72 expression, it is suggested to be a pro-
tective mechanism acting against the toxic gain-of-func-
tion mechanisms including reducing the amount of RNA 
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foci while also validating a loss-of-function mechanism 
[115]. Our results showed promoter hypermethylation 
in FTLD-TDP type B C9orf72 mutation carriers. C9orf72 
expression was reduced in all studied FTLD subtypes but 
with the largest effect size being observed in the C9orf72 
mutation carriers, both in FTLD1e and FTLD2e. This is 
in line with a previous study that showed reduced expres-
sion of C9orf72 in repeat expansion mutation carriers 
as well as MAPT and GRN mutation carriers, and pro-
posed that additional mechanisms independent of pro-
moter hypermethylation, which is primarily observed in 
C9orf72 mutation carriers, regulates C9orf72 expression 
across FTLD subtypes [113].

As with other studies, there are several limitations. We 
examined patterns in DNA methylation between sub-
types of FTLD, however, this meant using relatively small 
sample sizes to compare across subtypes which reduced 
the statistical power to detect additional genome-wide 
changes. The available DNA methylation profiles were 
derived using Illumina 450K/EPIC arrays, which are not 
comprehensive despite their coverage throughout the 
genome. This is particularly important for complex genes 
where not all regions overlap with predefined regions 
covered in the arrays. As DNA methylation and gene 
expression may vary depending on the cellular compo-
sition and properties of a sample, there may still be dif-
ferences in the tissue once chipped, which may influence 
findings in this type of study to some degree and cannot 
be fully accounted for using statistical approaches. We 
note that even in those donors that have overlapping 
samples there may be some sample variability between 
different omics modalities. We were also limited by the 
lack of full overlap between samples used to generate 
DNA methylation and gene expression datasets to fur-
ther dissect possible downstream consequences. Addi-
tionally, we cannot completely exclude the possibility that 
unmeasured genetic variants, including large structural 
variants, may have an effect on the detection of DNA 
methylation changes. However, leveraging available DNA 
methylomics, transcriptomics and proteomics datasets, 
we strived to report the most consistent findings, with a 
meaningful biological effect (e.g., absolute delta-beta ≥ 5% 
in group comparisons), and analysed the concordance 
with previously published studies whenever possible.

In summary, this study explored for the first time a 
cross-subtype analysis of the contribution of DNA meth-
ylation to the dysregulation of FTLD genetic risk loci, 
with or without the presence of genetic mutations in 
Mendelian FTLD genes. We highlight STX6 that showed 
consistent hypomethylation of the promoter region 
across FTLD subtypes and cohorts. On that basis, our 
findings support a role for STX6 in other FTLD subtypes 
beyond PSP. We suggest that DNA methylation may be 
influencing STX6 gene expression levels, at least in some 

FTLD subtypes. However, it would be important to repli-
cate and analyse this point further in future studies with 
larger samples sizes per subtype. Taking into consider-
ation a role in regulation of protein localization and its 
complex relationship with tau, and possibly TDP-43, 
the role of syntaxin-6 in various subtypes of FTLD war-
rants further investigation. Additionally, we focused on 
the Mendelian genes MAPT, GRN, and C9orf72 where 
we describe patterns of DNA methylation and gene 
expression and showed that dysregulation is not neces-
sarily unique to mutation carriers. Understanding the 
mechanisms underlying the dysregulation of such genes, 
including DNA methylation changes, will be key to the 
development of therapies. Overall, our findings have 
shown DNA methylation changes in FTLD-associated 
genes across FTLD subtypes both in carriers of known 
genetic mutations and in sporadic cases. We highlight 
that such epigenetic modifications may be a shared 
mechanism across FTLD subtypes possibly contributing 
to the dysregulation of gene expression and can provide 
new insights into genes associated with disease.
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