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Abstract 
Gene regulation varies across different cell types and developmental stages, leading to distinct cellular roles across cellular populations. 
Investigating cell type-specific gene coexpression is therefore crucial for understanding gene functions and disease pathology.However, 
reconstructing gene coexpression networks from single-cell transcriptome data is challenging due to artifacts, noise, and data sparsity. 
Here, we present an efficient method for inference of gene coexpression networks via variance decomposition analysis (GCNVDA) to 
explore the underlying gene regulatory mechanisms from single-cell transcriptome data. Our model incorporates multiple sources
of variability, including a random effect term G to capture gene-level variance and a random effect term E to account for residual 
errors. We applied GCNVDA to three real-world single-cell datasets, demonstrating that our method outperforms existing state-of-
the-art algorithms in both sensitivity and specificity for identifying tissue- or state-specific gene regulations. Furthermore, GCNVDA 
facilitates the discovery of functional modules that play critical roles in key biological processes such as embryonic development. 
These findings pro vide new insights into cell-specific regulatory mechanisms and have the potential to significantly advance research
in developmental biology and disease pathology.
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Introduction 
Genes play distinct regulatory roles across different tissues, devel-
opmental stages, and cell states within biological systems [1, 2]. 
Investigating the underlying gene regulatory mechanisms in nor-
mal and diseased tissues is crucial for understanding these roles. 
Gene coexpression networks (GCNs) have become a widely used 
tool for modeling complex regulatory systems, where nodes rep-
resent genes and edges represent the coexpression relationships 
between them. Accurately reconstructing GCNs can provide pro-
found insights into the causes of diseases through downstream 
network-based analyses. Numerous studies on coexpression net-

works have demonstrated that transcriptional dysregulation can

lead to abnormal cellular development, contributing to diseases

such as various cancers [3], neurological disorders [4], and psychi-
atric conditions [5]. 

Many research studies [6] have focused on inferring gene 
coexpression networks from bulk RNA-seq data, which enables 
the identification of functional gene modules based on total 
gene expression read counts of cells in an entire tissue. 
However, these approaches are limited in t heir ability to detect

regulatory changes across cell types. The advent of single-cell

RNA sequencing (scRNA-seq) technologies [7] has revolutionized 

our ability to investigate cellular heterogeneity by enabling the 
inference of gene coexpression networks at single-cell resolution. 
These technologies facilitate the characterization of cell type-
specific coexpression patterns and the analysis of dynamic gene 
regulatory programs during processes such as cellular differentia-

tion and development.However, amajor challenge in constructing 
accurate GCNs lies in the limited availability or absence of 
prior knowledge regarding cell type annotations in most scRNA-

seq datasets. This lack of predefined labels complicates the 
identification of biologically meaningful coexpression modules

that are specific to distinct cell populations. Therefore, many

computational tools have been developed to capture cellular

heterogeneity [8–11] and cell-type-specific gene coexpre ssion
networks [12]. 

These GCN inference tools can be grouped into four main 
categories: ordinary differential equation (ODE)-based models 
for dynamic system behavior, regression models for predictive 
relationships, correlation models for association inference, and 
Boolean network models for logic-based system representation. 
ODE-based models typically utilize a set of differential equations
along with cell pseudotime ordering to model the time-delayed

regulatory effects of one gene on another. Some of the algorithms
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most widely used in this category include SCODE [13]  and  
GRISLI [14]. Regression-based models employ dependent and 
independent variables to predict gene regulatory relationships 
through parametric or non-parametric functions. These models 
examine how the expression level of one gene (the dependent 
variable) changes in response to variations in the expression levels 
of other genes in other genes (the independent variables) while

holding the other variables constant. Examples of regression-

based models for inferring GCNs include SINCERITIES [15]  and  
GENIE3 [16]. However, both ODE-based and regression-based 
models rely on strong assumptions. ODE-based models assume 
that the rate of expression change for each transcription factor 
(TF) linearly depends on the expression levels of other genes, 
while r egression-based models assume linear or non-linear

dependencies between the expression of a target gene and

other driving genes. Correlation-based models, such as LEAP

[17], scLink [18], and PIDC [19], calculate a correlation matrix 
based on statistical models to characterize gene coexpression 
relationships. However, inappropriate assumptions about gene 
expr ession distribution can lead to high false positive rates

in gene regulation predictions [20, 21]. For example, LEAP and 
scLink focus on identifying relationships between genes without 
considering random effects between cells, which may reduce the 
impact of inter -cellular randomness on accurately inferring gene

coexpression networks. Boolean network models [22] consist of 
nodes that represent genes in the regulatory system, with each 
node’s state quantified as 0 (not expressed) or 1 (expressed). These 
models simply quantify the regulatory interactions between 
genes using Boolean discrete variables, predicting only the

existence of potential edges between two genes.

While recent approaches have made progress in addressing 
noise and sparsity in scRNA-seq data, they often suffer from 
key limitations. For example, methods based on correlation or 
regression typically assume independence among cells or treat all 
cells as equally related, ignoring hierarchical or continuous struc-
tures such as developmental trajectories. Others rely on strong 
parametric assumptions that may not hold i n heterogeneous

tissues, leading to biased or unstable coexpression estimates.

Moreover, some techniques require predefined cell type labels

or network topologies, which may not be available or reliable in

practice.

To address the challenges inherent in constructing gene 
coexpression networks from single-cell RNA sequencing data, 
we propose GCNVDA, a novel variance decomposition-based 
algorithm designed to explicitly account for cellular hetero-
geneity. Unlike many existing methods that rely on restrictive 
modeling assumptions—such as linear dependencies, pre-defined 
gene modules, or the assumption of homogeneity within cell 
populations—GCNVDA integrates a random effects model with 
a structured cell–cell covariance matrix to better reflect the 
underlying biological complexity. This design enables more 
accurate and robust inference of gene coexpression patterns 
across diverse cellular contexts. We applied GCNVDA to three 
biologically diverse single-cell datasets and demonstrated its 
superior performance in constructing biologically meaningful 
coexpression netw orks. Our results show that GCNVDA not

only improves the accuracy of gene network inference but also

enhances downstream analyses, including clustering, functional

module detection, and identification of condition- or state-

specific regulatory programs. These improvements highlight

GCNVDA’s potential as a general-purpose tool for single-cell

systems biology and reinforce its advantage over existing state-

of-the-art algorithms.

Materials and Methods
The GCNVDA mod el
Here, our aim is to reconstruct a gene coexpression network from 
single-cell transcriptome data. Suppose that an expressionmatrix

Yp×n of n cells measured in p genes is randomly sampled from a 
matrix normal distribution. We fit a model with two covariance 
components to these samples,

Y = M + G + E; G ∼ MNp×n(0,Vg,K), E ∼ MNp×n( 0,Ve, I), (1)

where Y is a random variable of a p by n expression matrix, M is
a p by n matrix representing the mean of gene expression, G is a p 
by n matrix of random effects, and E is a p by n matrix of residual 
errors. The key point is that the variance of the outcome variable

Y is partitioned into two components represented by G and E.  In  
our model, we assume that the latent matrix G follows a matrix 
normal distribution with mean 0,  a  p × p row covariance matrix

Vg, and a known n×n column covariancematrix K, which  encodes  
the pairwise relationships among cells. Similarl y, the noise matrix

E is assumed to follow a matrix normal distribution with mean

0, a row covariance matrix Ve, and a column co variance matrix

In×n, reflecting independent measurement noise across cells. The 
use of matrix normal distributions enables us to explicitly model 
structured dependencies across both genes and cells. The inclu-

sion of K as the column covariance of G is motivated by the 
need to account for structured variation arising from latent cell 
states, such as cell type, cell cycle phase, or differentiation stage. 
These factors introduce corr elations among cells that, if unac-

counted for, may confound the estimation of gene coexpression

patterns. By incorporating K, GCNVDA borrows strength from 
prior knowledge or learned similarity between cells—e.g. derived 
from diffusion maps, graph-based distances, or principal com-

ponents—to better disentangle biologically relevant signal from

noise. Since K must be a valid covariance matrix, it is required 
to be symmetric and positive def inite. Therefore, there exists an

eigendecomposition K = UDU ⊤,  whe  re U is an orthogonal matrix

and D = diag(δ1, δ2, .  .  . , δn) contains the eigenvalues of K.  This  
decomposition facilitates a transformation of the matrix normal

model (Equation 1) into a multivariate normal model, simplifying 
inference and computation. While the assumptions regarding

G and E are rooted in established statistical models, their bio-
logical plausibility is supported by empirical observations: gene 
expression variation acr oss cells often reflects both coordinated

biological programs (modeled via G) and technical or stoc hastic
noise (modeled via E). Real data analyses in the section of results 
further confirm that incorporating structured cell–cell covari-
ance significantly improves the accuracy and interpretability of 
inferred gene coexpression networks. Then, we can transform the

matrix normal model in Equation 1 into a multivariate normal 
model as follows

y = g + e; g ∼ MVN(0,D ⊗ Vg), e ∼ MVN(0, I ⊗ Ve), (2)

where y =  v  ec(Y − M ), g =  v  ec(G · U ), e =  v  ec(E · U),  ve  c(X) denotes 
the vectorization of X (i.e. stacking columns), g and e follow a 
multivariate normal distribution, and ⊗ denotes the kronecker 
product. Further, we can partition y in Equation 2 into n indepen-
dent (but not identical) multivariate normal v ariables as follows

yi = gi + ei; gi ∼ MVN(0, δiVg), ei ∼ MVN(0,Ve), i = {1, 2, · · · ,n},

(3)
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where yi, gi,  a  nd ei are the ith column of Y − M, G · U,  a  nd E · U, 
respectively .

The maximum likelihood estimation
To estimate the unknown parameters Vg and Ve in Equation 3, 
we maximize the likelihood probability of the observed gene

expression data Y, P(Y|Vg,Ve) = �GP(Y,G|Vg,Ve ). The joint log 
likelihood of Y and G is the sum of the log likelihood of all cells, 
which is

log l(Y,G|Vg,Ve) = 
n∑

i=1 

log P(yi, gi|Vg,Ve) . (4)

It should be noted that gi is a hidden variable. The joint log 
likelihood probability of yi and gi can be further written as 

log P(yi, gi|Vg,Ve) = log P(yi|gi,Vg,Ve) + log P(gi|Vg,Ve) 

= −p log(2π) − 
1 
2 
log |Ve| −  

1 
2 
eT 
i V

−1 
e ei 

− 
1 
2 
log |δiVg| −  

1 
2 
gT 
i (δiVg)

−1 gi. 

(5) 

How ever, as gi is a missing value, the maximum lik elihood estima-

tion task [23] of estimating parameters Vg and Ve in Equation 5 is 
a computational challenge. Methods for solving this optimization 
problem generally fall into two categories based on their use of 
gradient information: ‘derivative-based’ methods, which rely on 
analytical or numerical gradients, and ‘derivative-free’ methods, 
which optimize the objective function without requiring gradient

computation. The derivative-free methods search for a combina-

tion of parameters along a searching path [24]. These methods are 
sometimes employed for convenience rather than by necessity. 
Although they are usually easy to implement, the decision to use 
a derivative-free method is typically limited by performance in 
terms of accuracy, expense, or problem size. The computational 
cost usually grows exponentially with the increasing number of
genes and cells. The derivative-based methods determine search

direction according to an objective function’s derivative informa-

tion, which include the expectation maximization (EM) algorithm

[25] and its accelerated version PX-EM [26]. Finally, considering 
the computational requirements, we use the PX-EM algorithm to

estimate the two parameters Vg and Ve until the convergence 
condition is reached.

Data prepr ocessing
Our first application utilized the dataset pro cessed by SCODE

[13], while the remaining datasets were processed as described 
below. Initially, we filtered out genes with expression levels of

zero in the majority of cells (∼95%). Typically, genes displaying 
significant variability in expression levels within a cell population 
are of particular interest, as such variability is often driven by 
underlying biological factors. To capture this, we calculated the 
variance of expression counts for each gene across all cells, sub-
sequently selecting those with the highest variability for further 
anal ysis. Given the computational demands associated with large

gene sets, we ultimately narrowed the focus to 100–500 candidate

genes. Next, we normalized the count matrix by the library size

of each cell, ensuring that all cells contained M reads post-
normalization. Common choices forM include the median library 
size or a predetermined constant (e.g. 105)  [27]. Denoting the 
normalizedmatrix asC, to reduce the influence of extreme values, 

we then applied a log10 transformation to the normalized count 
matrix, resulting in a log-transformed gene expression matrix Y, 
wher e Yij = log10(Cij + 1),  f  or i = 1, 2, .  .  . , p and j = 1, 2, .  .  .  ,n. 

Selection of genes
The BEELINE framework [28] provided reference ground truth net-
works for the datasets we used. In the Application 2, to facilitate 
more reliable performance verification, we used this reference 
network to calculate each gene’s degree (both in-degree and out-
degree). We then selected the top 100 genes with the highest 
degree as candidate genes for further analysis. Relying solely on 
v ariance as a filtering criterion may result in a situation where

only a small number of predicted edges correspond to those in the

ground truth, leading to a significant imbalance between positive

and negative samples.

Calculation of pseudotime
Among methods we compared, some, like SCODE, require pseu-
dotime information for analysis. To calculate pseudotime for each 
cell, we utilized the R package monocle3 (version 1.0.0) [29]. Pseu-
dotime can be derived by inputting the expression matrix along 
with cell and gene information into the package. One challenge 
in this process is that monocle3 requires the specification of 
a starting cell, but our datasets lack explicit labels to identify 
such a cell. To address this, we select several marker genes 
based on literature research and experience within the dataset 
and determined the starting cell based on the expression levels

of these markers. For instance, in tumor cells, the expression

levels of certain proto-oncogenes are elevated. The pseudotime

dimensionality reduction trajectory for the cells in Application 3

is illustrated in Supplementary Fig. S1. 

Enrichment anal ysis
Following gene clustering, we conducted enrichment analysis for 
each cluster using the R package clusterProfiler (version 3.18.1)

[30]. For human datasets, we employed the or g.Hs.eg.db database

(version 3.12.0) [31] as the input parameter, while for mouse 
datasets, we u sed the org.Mm.eg.db database (version 3.12.0)

[32]. 

Methods and parameters for comparison
In this study, datasets were analyzed with several state-of-the-art 
methods. The usage details of each method are as follows:

• GENIE3 was obtained from Bioconductor and run using 
the default parameters of the R implementation version. 
The GENIE3() function w as executed to obtain the weights

between all gene pairs.

• SCODE was obtained by running the command ‘git clone

https://github.com/hmatsu1226/SCODE’ and was executed 
with the command ‘Rscript SCODE.R <Input_file1><Input_ 
file2><Output_dir><G><D><C><I>’. The expression 
matrix and pseudotime matrix were processed into text files 
and used as Input_file1 and Input_file2. G represented the 
number of genes , Z was set to the example parameter 4,

C was the number of cells, and I was set to the example

parameter 100.

• scLink was run using the R package “scLink” (v0.0.1). Specif-
ically, we used the sclink_cor() function, where expr was the 
preprocessed expression matrix, ncore was set to 8, and nthre

and dthre were set to the default parameters.
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Figure 1. Method schematic for GCNVDA. (A) GCNVDA first models the scRNA-seq data with the formula Y = M + G + E. Each row of M is the mean 
of the corresponding row of Y. G and E are two random matrix variables that obey matrix normal distribution, respectively. (B) The covariance matrix 
that characterizes the correlation between genes is obtained by estimating the parameter Vg, and the greater its value, the stronger the interaction 
relationship between genes. (C) The GCN is obtained by converting Vg into a correlation coefficient matrix and setting a threshold to filter some 
edges with small correlation coefficients. (D) We use the correlation coefficient as a distance measure to cluster and get several gene sets . Then we 
did enrichment analysis of these gene sets and selected the functional modules that were both significant (P-value ≤ 0.05) and consistent with the 
characteristics of the data.

Results 
GCNVDA method ov erview
Abriefmethodworkflow diagram is provided in Fig. 1. Specifically, 
we first model the normalized expression data and express it as
the sum of three matrices:M, G,  a  nd E.  Among  the  se, G is the ran-
dom effect term, E is the residual errors term, and both follow the 
matrix normal distribution. By estimating the parameters of the 
row covariance matrices of these two random matrix variables,

we obtain the desired correlation matrix Vg. Further, this matrix 
is transformed into a correlation coefficient matrix and used as 
the final predicted network. In this process, we account for both

the random effect (K) between cells and random noise, thereby 
fully utilizing the data. Next, we cluster all genes according to the 
Euclidean distance of the correlation coefficients. In each cluster, 
the R package clusterProfiler provides a ranking of GO terms 
based on significance and identifies a set of functionally related 
genes for each GO term. We then use these most prominent gene 
sets to construct gene modules. To test the ability of GCNVDA in 
constructing and analyzing gene coexpression networks across 
datasets, we applied GCNVDA in three real data applications.

The following subsections are organized as follows: (i) GCNVDA

infers a gene coexpression network from human embryonic stem

(ES) cells; (ii) GCNVDA captures the response of mouse dendritic

cells (mDCs) stimulated by lipopolysaccharide; and (iii) GCNVDA

recognizes differences in gene regulation between tumor cells and

normal cells.

GCNVDA accurately infers gene coexpression 
network from definitive endoderm cells
In this section, we aim to evaluate the accuracy and functional 
relevance of gene coexpression networks inferr ed by GCNVDA

in definitive endoderm (DE) cells [13, 33], comprising 758 cells 
and 100 genes. In this application, we compared GCNVDA’s per-
formance with other methods using receiver oper ating charac-

teristic (ROC) and precision-recall (PRC) curves (Fig. 2A and B). 
The results indicate that GCNVDA outperforms other methods 
in terms of ROC, with an area under the ROC curve (AUROC) 
of 0.582 for GCNVDA, compared to 0.483 for GENIE3, 0.518 for 
SCODE, and 0.543 for scLink. In network inference problems, it 
is common to encounter a significant imbalance between the 
number of negative and positive samples, with negative samples 
typically far outnumbering positive ones. As a consequence, the 
PR curve may not yield a high overall area under the curve (AUC), 
even if the classifier performs reasonably well in distinguishing 
between the two classes. This occurs because the abundance 
of negative samples dilutes the influence of the fewer positive 
instances, thus suppressing the AUC in comparison to other

metrics that might account for class imbalance differently. The

PR curve demonstrates that despite the inherent class imbalance

in network inference problems, GCNVDA still achieves a relatively

higher precision in identifying true gene interactions, suggesting

that it is more robust in handling sparse regulatory connections.

Additionally, we extracted the top 1000 edges predicted by each
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method and used their true positives as a p recision metric. As

shown in Fig. 2C, GCNVDA achieves the best score (67), followed 
by scLink (59), GENIE3 (50), and SCODE (41). After confirming 
the network’s accuracy, we proceeded to assess its functional 
relevance by clustering genes and analyzing enriched GO terms. 
T o further evaluate the utility of the predicted correlation coef-

ficients, we clustered the 100 genes into five clusters using K-

means [34] clustering based on the correlation coefficient matrix 
obtained by GCNVDA. The heatmap (Fig. 2D) shows that genes in 
the first and fifth clusters exhibit relatively higher within-cluster 
correlation coefficients than genes in the other three clusters. 
Notably, key genes such as NANOG, SOX2, and POU5F1, which are

crucial for embryonic stem cell development [35], are prominently 
featured in the first and fifth clusters. We then performed gene 
enrichment analysis on the gene sets from these five clusters to 
better understand their functional roles. Subsequently,we refined 
the gene coexpression networks constructed for each cluster by 
applying a selective pruning approach. Initially, we identified the 
most biologically relevant Gene Ontology (GO) terms to ensure 
the focus remained on significant functional categories. Within 
these GO categories, we retained only the strongest correlations, 
thereby enhancing the functional relevance and interpretability 
of the network structure. Specifically, we first prioritized the top 
ten edges based on their correlation strength, discarding any

edges that did not meet this threshold. Additionally, we removed

disconnected edges, thereby further simplifying the network. This

pruning process effectively yielded smaller, functionally coherent

gene modules, each representing distinct biological pathways or

processes (Fig. 2E). These curated modules allow for more focused 
analyses and interpretations of gene interactions within each 
cluster, potentially uncovering unique functional insights. Results 
show that clusters 1, 2, and 5 are significantly enriched in GO 
terms related to embryonic development, while clusters 3 and 4

are enriched in digestive systemdevelopment (Figure S2), suggest-

ing that GCNVDA can effectively distinguish functional modules 
based on gene expression patterns, as evidenced by the distinct 
enrichment of GO terms between clusters. To emphasize the 
differences in gene functional modules predicted by GCNVDA, we

presented a heatmap of the top eight significantly enriched func-

tions for each cluster. Results in Fig. 3C show that there are only 
a few overlapped GO terms across clusters. It further indicates 
that clustering based on our predicted correlation coefficients can
effectively distinguish different functional modules.

To explore dynamic gene regulation, we examined how gene 
relationships change across different time points.We constructed 
gene coexpression networks for cells at 0, 12, 24, 72, and 96 h, 
and tracked the regulatory activity of each gene over time. To 
quantify these regulatory dynamics, we introduced a new metric

to evaluate the activity of individual genes throughout the time

course. For a given gene i, its gene activity score, denoted as GASi, 
is defined as follo ws:

GASi =

∑p 
j=1 1(|Wij| > 0.25) 

p
, (6)

where p represents the number of genes, and Wij denotes the 
strength of the correlation between genes i and j. This metric 
reflects the proportion of genes for which the absolute v alue of

their correlation coefficient with gene i exceeds 0.25 at a given 
time point. The threshold of 0.25 is set based on the overall 
average correlation to filter out genes with low correlation. The 
regulatory activity of a gene ranges from 0 to 1, with values closer 
to 1 indicating higher activity and those closer to 0 indicating 

weaker interactions. Our analysis revealed that the regulatory

activities of genes such as SP6, ZFX, ID1, AEBP2, and NANOG

fluctuated significantly over time, suggesting their pivotal roles

in the differentiation of embryonic stem cells into endoderm

cells (Fig. 3A). For example, SP6 is known for its maternally 
derived expression and is essential f or embryonic and extra-

embryonic tissue development [36]. We also observed dramatic 
changes in the correlation coefficients of selected genes, such as 
SOX2, NANOG, and ZFX, over time, with the correlation between 
ZFX and NANOG shifting from 0.26 to –0.22, and between ZFX 
and SOX2 shifting from 0.20 to –0.33. These changes suggest a
transition from mutual activation to mutual inhibition over time.

This observation was further corroborated by comparing their

expression levels over pseudotime (Fig. 3B). Initially, these genes 
were highly expressed, but as time progressed, the expression 
levels of SOX2 and NANOG declined, consistent with our findings. 
A literature review further supports the functional interactions 
between these genes; for instance, higher ZFX expression has 
been linked to the loss o f NANOG expression during endoderm

differentiation, with ZFX overexpression reducing spontaneous

differentiation while permitting directed differentiation, thereby

maintaining hESC pluripotency [37]. This illustrates GCNVDA’s 
capability to uncover functional relationships between genes 
and facilitate subsequent functional analyses. Some other 
functional interactions , such as TERF1 and POU5F1, have

also been identified, as shown in Supplementary Fig. S3.  It  
can be concluded that GCNVDA effectively captures dynamic 
gene regulatory networks, revealing distinct functional mod-

ules and time-dependent interactions essential to DE cell

differentiation.

GCNVDA captures the response of bone 
marrow-derived dendritic cells stimulated by
lipopolysaccharide
To assess GCNVDA’s capability to capture temporal dynamics 
in gene coexpression relationships, we conducted analyses 
with GCNVDA and several benchmark methods on a dataset 
comprising 7371 genes from 1700 bone marrow-derived dendritic 
cells. These cells were subjected to stimulation with lipopolysac-

charide (LPS) at four distinct time points—1, 2, 4, and 6 hours

post-stimulation [38, 39]. A list of gene interactions used as 
ground truth for validating the predicted networks is provided

in Supplementary Table S1. These reference interactions were 
selected based on established biological evidence, serving as a 
benchmark to assess the accuracy and r elevance of the network

predictions generated by each method. Results in Fig. 4A show 
that GCNVDA achieved the highest AUROC score (0.561), followed 
by GENIE3 (0.550), SCODE (0.541), and scLink (0.501). In a manner 
consistent with the previous application, we quantified the true 
positive counts of the top 50 000 edges to assess their accurac y
in predicting biologically meaningful gene interactions. GCNVDA

identified 82 true positive edges, compared to 68 by scLink, and 65

each by GENIE3 and SCODE (Fig. 4B). Furthermore, to investigate 
the biological functions of the genes , we applied clustering

techniques [34] to the predicted correlation matrix, resulting in 
the formation of five distinct gene clusters. Figure 4C presents 
a heatmap illustrating the gene correlation patterns within the 
identified clusters. Among them, the correlation between the 
first and fourth clusters is relatively high compared to other 
clusters, corresponding to the functions of regulating T cell 
differentiation and regulating the lifecycle of viruses, respectively.

Regulation of T cell differentiation is an importantmechanism for

the host immune system to resist viruses, directly affecting the
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6 | Lian et al.

Figure 2. The performance of GCNVDA in inferring gene coexpression networks and the effect of clustering with its predicted correlation. (A) ROC of 
the four methods and their respective AUC values. (B) PRC of the four methods. (C) The height of the histogram represents the number of coexpression 
relationships in the first 1000 interactions predicted by this method. (D) The strength of the correlation coefficient is depicted in the form of a heatmap. 
These genes’ clusters are marked on the top and left, respectively. (E) The sub-networks are constituted by the five clusters, respectively. The part circled 
by a rectangle in the figure is a functional module. Its functions are marked around the figure.
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Figure 3. (A) Heatmap depicting the value of gene regulatory activity of 100 genes in five different periods. The genes on the right are arranged in a 
gradual gradient. (B) The dots in the figure represent cells. The fitting line indicates the expression trend of the gene with pseudotime. (C) The value  of  
the heat map represents the n umber of genes enriched in this function in the corresponding cluster.

regulation of the virus lifecycle. And viruses interfere with T cell 
differentiation in various ways, prolonging their own life cycle [40, 
41]. Similarly, we constructed gene function modules (Fig. 4D)  for  
each cluster using the selective pruning approach of the previous 
application. The significant biological functions identified across 
the five classes encompass key processes such as the regulation of 
alpha-beta T cell differentiation, vesicle fusion, cellular responses 
to interleukin-1, regulation of the viral life cycle, and defense 
responses to pro tozoan infections. These functions are consistent

with the anticipated immune and inflammatory responses

triggered by lipopolysaccharide stimulation, as documented in

previous studies [42–46]. As shown in Fig. 4E, there  was  no  overlap  
in their enriched GO terms of the five distinct groups, which 
further demonstrates that clustering based on our predicted 
correlations can accurately identify modules with relatively 

independent functions. Next, we predicted the gene coexpression
networks for datasets at each time point and analyzed the

temporal changes in gene correlations and functional activities.

Using the equation (1) described above, we calculated the 
regulatory activity of eac h gene across these four time points

(Fig. 4F). The results reveal a clear gradient in gene regulatory 
activity across the time series. Notably, the regulatory activity 
of Gbp2, Gbp6, Cd40, and Ccl22 increased significantly with 
prolonged stimulation times. Gbp2 and Gbp6 are involved in 
various biological processes, including the cellular response 
to lipopolysaccharide, a phenomenon accurately captured by 
our method. Furthermore, lipopolysaccharide stimulation is

known to promote cytokine secretion, triggering specific immune

responses, while Cd40 enhances antigen-binding activity, and

Ccl22 participates in multiple processes, including the cellular
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Figure 4. Results of mDC dataset. (A) ROC of the four methods and their respective AUC values. (B) PRC of the four methods. (C) The strength of the 
correlation coefficient is depicted in the form of a heatmap. These genes’ clusters are marked on the top and left, respectively. (D) The sub-networks 
are constituted by the five clusters, respectively. The part circled by a rectangle in the figure is a functional module. Its functions are marked around 
the figure. (E) The value of the heat map represents the n umber of genes enriched in this function in the corresponding cluster. (F) Heatmap depicting 
the value of gene regulatory activity of 414 genes at four different times after stimulation by lipopolysaccharide. The genes on the right are arranged in
a gradual gradient. Some of the top-ranked genes are shown in the left magnifying glass.

response to cytokine stimulation. These findings demonstrate 
that regulatory activity calculated by our method effectively 
captures the biological essence that changes over time. Hence, 
we concluded that GCNVDA effectively captur es time-dependent

shifts in gene coexpression networks and identifies distinct

functional modules responsive to lipopolysaccharide stimulation.

GCNVDA discovers novel transcription factors in
tumor cells
To assess GCNVDA’s ability in predicting transcription factors 
uniquely activated in tumor cells, we analyzed the GSE182434

dataset [47], which comprises 49 632 genes from a patient 
(ID: DLBCL002B) diagnosed with diffuse large B-cell lymphoma 

(DLBCL), including 1568 tumor B cells and 82 normal B cells.

To do this, we first used GCNVDA to calculate two correlation

matrices X and Y, for all pairs of genes in tumor and normal cells, 
respectively. Then, we applied paired t-test for (Xj,Yj), j ∈ 1, · · ·  , p, 
to determine whether each gene maintains the same regulatory 
role in both coexpression networks. If genes in the tumor network 
show significant differences (adjust-P value <0.05) compared 
to their counterparts in the normal network, the y may play

potential markers of tumor development. Consequently, our

analysis identified three candidate marker genes, FOSB (adjust-P

= 1.08 × 10− 7), JUNB (adjust-P = 6.13 × 10 −7), and JUN (adjust-P
= 1.59 × 10− 3), which have been previously implicated in tumor

progression [48–52]. The t-test results of all genes are shown in

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/4/bbaf309/8187654 by D

eutsches Zentrum
 fur N

eurodegenerative Erkrankungen D
ZN

E user on 15 July 2025



GCNVDA | 9

Figure 5. (A) The binding sites of the known transcription factors and potential transcription factors predicted by us of the three genes. (B) The value  of  
the heat map represents the number of genes enriched in this function in the corresponding cluster. (C) Heatmap depicting the value of gene regulatory 
activity of 100 genes in normal cells and tumor cells. The genes on the right are arranged in a gradual gradient. (D) The strength of the correlation 
coefficient is depicted in the form of a heatmap. These genes’ clusters are marked on the top and left, respectively. (E) Violin diagram of the expression 
levels of two genes in two different states. The P-value of the Wilcox test in two states is marked in the figure. (F) The sub-networks are constituted by 
the five clusters, respectively. T he part circled by a rectangle in the figure is a functional module. Its functions are marked around the figure.

Supplementary Fig. S4.  From Supplementary Fig. S4B–D,  it  can  
be seen that compared to the negative correlation in normal 
cells, FOSB, JUNB, and JUN all exhibit co expression with their

transcription factors in tumor cells.

To identify candidate transcription factors potentially regulat-
ing these genes, we examined our predicted gene coexpression 
network in tumor cells and selected JUNB, TCF12, and KLF2 as 
the most strongly co-expressed genes with FOSB, JUNB, and JUN,

respectively.

To verify whether these genes could function as potential 
transcription factors, we compared their motif sequences with 
the motifs of known corr esponding transcription factors. we

consulted the Transcription Factor Regulatory Network database

(http://www.regulatorynetworks.org). This database is built using 
DNaseI footprints and TF-binding motifs [53]. From the database, 
we identified ATF2, MYC, and NFKB1 as known transcription 
factors regulating FOSB, JUNB, and JUN , respectively. Notably,

JASPAR analysis (Fig. 5A) revealed strong motif similarity between 
each candidate transcription factor and its corresponding known 
regulator: JUNB with ATF2, TCF12 with MYC, and KLF2 with 

NFKB1. These findings demonstrate that GCNVDA effectively 
identifies novel transcription factors associated with tumorigenic 
activity and highlight its utility in identifying key regulatory 
elements in tumor cell development. Building on these findings,
we next investigated the functional organization of tumor-

specific regulatory networks. Clustering the top 100 genes based

on their correlation matrices revealed five distinct functional

modules, as visualized in a heatmap (Fig. 5B). Notably, clusters 
1 and 4 exhibited strong correlations and shared functions 
such as regulating DNA damage response and modulating

cyclin-dependent kinase activity (Fig. 5D). Specifically, functional 
enrichment analysis confirmed that these clusters contain key 
regulators of tumor progression, including genes involved in 
DNA re pair and kinase activity, both of which are critical in

DLBCL pathogenesis [54, 55]. These findings validate GCNVDA’s 
ability to distinguish functionally relevant gene modules in tumor 
cells. We next evaluated GCNVDA’s ability to detect differential 
gene activity between tumor and normal cells. Our analysis

identified TSC22D3 as the gene with the most significant change

in regulatory activity. TSC22D3 encodes the anti-inflammatory
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protein GC-induced leucine zipper, which plays a crucial role 
in immunosuppression. Additionally, FOSB , a member of the

AP-1 family [51, 56], exhibited altered activity, supporting its 
role in inflammation and tumorigenesis [48]  (Fig. 5C). These 
observations confirm that GCNVDA effectively captures differ-
ential regulatory activity between normal and tumor states. To 
further explore transcriptional shifts, we identified differentially 
expressed genes between normal and tumor cells, focusing on 
NFKB1 and ATF5. Both genes displayed lower expression in

normal cells but were significantly upregulated in tumor cells

(Fig. 5E). The correlation between NFKB1 and ATF5 shifted from 
–0.097 in normal cells to 0.325 in tumor cells. Validation using 
the transcription factor regulatory network database confirmed 
that NFKB1 regulates ATF5, reinforcing the relevance of these 
transcriptional changes. These results highlight the capacity 
of GCNVDA to detect tumor-specific regulatory alterations.r0. 
Finally, we examined the biological functions of genes from 
the five clusters, revealing key roles in immune response

mechanisms. Genes in cluster 3 were enriched for I-kappaB

kinase and NF-kappaB signaling pathways, which are essential

for immune regulation and cancer development [57]. Cluster 
5 contained genes involved in T-cell activation, illustrating the 
critical role of B cells in immune processes (Fig. 5F). To identify 
enriched pathways, we conducted pathway enrichment analyses 
using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database and GO enrichment analysis. The detailed results of 
the GO enrichment and KEGG pathway analyses for all five

clusters are presented in Supplementary Figs S5–S7.  These  
findings reinforce GCNVDA’s ability to uncover immune-related 
regulatory mechanisms in tumor cells. Overall, our findings 
highlight GCNVDA’s effectiveness in uncovering tumor-specific 
regulatory mechanisms and immune-related functional modules. 
Importantly, by screening for highly correlated genes, GCNVDA

has the potential to discover new transcription factors related to

tumor cell development.

Discussion 
The advancement of single-cell sequencing technology has 
revolutionized the inference of gene coexpression networks, 
enabling unprecedented resolution. In this study, we introduce 
GCNVDA,a novelmethod specifically designed to leverage scRNA-

seq data for more accurate and reliable network predictions. 
By addressing cellular heterogeneity through modeling random
effects, GCNVDA reduces errors, enhances the identification of

functional modules, and avoids biases associated with predefined

assumptions.

Our findings highlight three key strengths of GCNVDA: its 
precision in inferring gene coexpression networks, its ability to 
classify functionally distinct gene sets, and its use of a statistical 
model that directly analyzes gene expression data. These fea-
tures allow GCNVDA to uncover biologically relevant functional

modules and identify potential transcription factors, making it

a valuable tool for exploring gene regulatory mechanisms and

functional relationships.

Despite its strengths,GCNVDA is best suited for analyses focus-

ing on highly variable genes or targeted subsets of the tran-
scriptome due to computational demands. Future work aims to 
integrate pseudotime and spatial transcriptomics data to fur-
ther refine network predictions and capture dynamic regulatory

changes, potentially broadening its applicability and improving

performance in large-scale datasets.

Key P oints
• We present gene coexpression networks via variance 

decomposition analysis (GCNVDA), a novel computa-

tional framework for inferring gene coexpression net-
works from single-cell RNA sequencing data. Unlike 
existing methods, GCNVDA is specifically designed 
to address cellular heterogeneity without relying on 
restrictive modeling assumptions commonly used in
regression-based approaches.

• GCNVDA integrates a random effects model with a 
precomputed cell-to-cell similarity matrix, K, which 
encodes prior information about cellular relationships. 
This integration effectively mitigates the confounding 
influence of cell state variability, leading to more accu-
r ate and biologically meaningful GCNs.

• We demonstrate the utility and robustness of GCNVDA 
across multiple scRNA-seq datasets, including human 
embryonic stem cells and tumor-infiltrating B cells. 
Empirical evaluations show that GCNVD A outperforms 
state-of-the-art methods in detecting functional gene 
modules and recov ering known gene regulatory interac-

tions.

• Our results highlight GCNVDA’s potential as a general-
purpose tool for single-cell network inference, offering 
improved resolution and interpretability in studies of 
cellular differentiation, disease progression, a nd regula-

tory dynamics.
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Data av ailability
Application 1: The first dataset is a scRNA-seq time course (at 
0, 12, 24, 36, 72, and 96 hours) derived from DE cells differ-
entiated fr om human ES cells, comprising 758 cells. The orig-

inal dataset is available from GEO (GSE75748) [33]  and  can be
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downloaded at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? 
acc=GSE75748. In this application, we utilized the processed ver-
sion provided by SCODE [13]. SCODE preprocessed this dataset 
and selected 100 highly variable genes for network inference .
The processed dataset can be accessed at https://github.com/ 
hmatsu1226/SCODE/tree/master/data3. 

Application 2: In the second application, datasets were 
obtained from BEELINE and downloaded from https://zenodo.org/ 
record/3701939. The dataset contains 7371 genes and 383 cells, 
with cells stimulated using lipopolysaccharides for 1, 2, 4, and 6 
hours. BEELINE provided the ground truth for the dataset. After 
preprocessing, we selected 414 genes (using a degree threshold of 
7) based on the degree of nodes in the graph constructed by the 
r eference network, in descending order, for subsequent inference.

This threshold was chosen to ensure that the number of selected

genes fell within the range of 100–500 while maximizing the

number of included genes (see more in Selection of genes). 
Application 3: In the third application, we analyzed a dataset 

comprising 24 379 tumor cells from diffuse large B-cell lymphoma

(DLBCL) and 4037 normal cells, obtained from the GEO database

(GSE182434) [47] and available for download at https://www. 
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE182434. To minimize 
variability introduced by different patients, we focused on data 
from the same patient within the dataset. Specifically,we selected 
1568 tumor cells and 82 normal cells, all derived from patient 
DCBCL002 and identified as B cells. The raw data were normalized

using counts per million (CPM), followed by a log(1 + CPM )
transformation. Given the large number of genes in the dataset 
(49 632 genes), we selected the top 100 most highly variable genes

to ensure computational efficiency.

The R source code of GCNVDA for reproducing the re sults
of this paper can be accessible at https://github.com/jhu99/ 
GCNVDA. 
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