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Summary
Background Synucleinopathies include a spectrum of disorders varying in features and severity, including idiopathic/
isolated REM sleep behaviour disorder (iRBD), Parkinson’s disease (PD), and dementia with Lewy bodies (DLB).
Distinct brain atrophy patterns may already be seen in iRBD; however, how brain atrophy begins and progresses
remains unclear.

Methods A multicentric cohort of 1276 participants (451 polysomnography-confirmed iRBD, 142 PD with probable
RBD, 87 DLB, and 596 controls) underwent T1-weighted MRI and longitudinal clinical assessments. Brain
atrophy was quantified using vertex-based cortical surface reconstruction and volumetric segmentation. The
unsupervised machine learning algorithm, Subtype and Stage Inference (SuStaIn), was used to reconstruct
spatiotemporal patterns of brain atrophy progression.
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Findings SuStaIn identified two distinct subtypes of brain atrophy progression: 1) a “cortical-first” subtype, with at-
rophy beginning in the frontal lobes and involving the subcortical structures at later stages; and 2) a “subcortical-first”
subtype, with atrophy beginning in the limbic areas and involving cortical structures at later stages. Both cortical- and
subcortical-first subtypes were associated with a higher rate of increase in MDS-UPDRS-III scores over time, but
cognitive decline was subtype-specific, being associated with advancing stages in patients classified as cortical-first
but not subcortical-first. Classified patients were more likely to phenoconvert over time compared to stage 0/non-
classified patients. Among the 88 patients with iRBD who phenoconverted during follow-up, those classified
within the cortical-first subtype had a significantly increased likelihood of developing DLB compared to PD, unlike
those classified within the subcortical-first subtype.

Interpretation There are two distinct atrophy progression subtypes in iRBD, with the cortical-first subtype linked to an
increased likelihood of developing DLB, while both subtypes were associated with worsening parkinsonian motor
features. This underscores the potential utility of subtype identification and staging for monitoring disease
progression and patient selection for trials.
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Introduction
Synucleinopathies are pathologically defined by the
misfolding and aggregation of alpha-synuclein.1 During
the prodromal phases of disease, patients manifest a
variety of deficits in multiple clinical domains, including
cognitive and motor abnormalities, olfactory dysfunc-
tion, constipation, dysautonomia, and sleep disorders.2

One highly studied prodromal phenotype is idio-
pathic/isolated REM sleep behaviour disorder (iRBD), a
parasomnia characterised by dream enactment

behaviours during REM sleep.3 The vast majority of
patients with iRBD will eventually develop an overt and
clinically-defined disorder, mainly dementia with Lewy
bodies (DLB) and Parkinson’s disease (PD), and less
frequently multiple system atrophy.4

As a prodromal synucleinopathy, clinical changes
and patterns of brain atrophy in iRBD are already
reminiscent of what is seen in overt disease.4–6 In
particular, patients with iRBD and concomitant mild
cognitive impairment have more extensive cortical and
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subcortical abnormalities compared to those without
mild cognitive impairment, with the severity of atrophy
predicting subsequent development of DLB.7–9 This
supports the notion that substantial variability exists
between patients with iRBD during this prodromal
phase, with some destined to develop dementia earlier
in their disease course than others.10 In silico modelling
of atrophy in iRBD, based on computational spreading
models of alpha-synuclein,11–13 has demonstrated that
gene expression and structural connectivity jointly in-
fluence brain neurodegeneration.5 Notably, a closer
match between the in silico atrophy pattern and the pa-
tient’s actual atrophy pattern correlates with increased
cognitive impairment but not motor impairment in
iRBD.5 Identifying patterns in this variability might be
useful for prognostic purposes and allow more precise
selection of patients for future therapeutic trials.3

However, the changes in brain morphology that begin
during iRBD and eventually progress toward the devel-
opment of dementia remain unclear.

To better understand the relationships between
interindividual variability within patients with iRBD and
their subsequent transition to dementia and parkin-
sonism, a systematic investigation of the specific
sequential brain changes leading to DLB and PD is
needed. Several studies have documented the longitu-
dinal brain changes taking place over time in iRBD,9,14,15

but these have been restricted by a limited number of
patients, the high level of inter-assessment variability in
imaging techniques, and the extended follow-up delay
between the diagnosis of iRBD and phenoconversion.

In this study, we performed a comprehensive quan-
tification of brain atrophy in iRBD, PD, and DLB and
reconstructed the subtypes of spatiotemporal changes in
brain atrophy progression from cross-sectional data to
understand their associations with clinical disease pro-
gression. We compiled the largest collection of struc-
tural brain MRI data acquired to date in patients with
iRBD (n = 451 from 11 international study centres). To
derive atrophy-driven subtypes of iRBD and their
associated patterns of progression, we performed vertex-
based cortical surface analysis of thickness and subcor-
tical volume quantification on the complete dataset and
applied the Subtype and Stage Inference (SuStaIn)
model, an unsupervised machine learning algorithm
that uses a combined disease progression modelling
and clustering approach on cross-sectional scans of pa-
tients at different stages of a clinical continuum.16

Finally, we describe the clinical characteristics and
phenoconversion status of the resulting data-driven
subtypes to gain an understanding of the relationship
between patterns of atrophy in iRBD and the develop-
ment of dementia and parkinsonism.

Methods
Participants
A total of 1276 participants were prospectively recruited
for this study and underwent T1-weighted brain MRI
imaging and clinical assessments (see Fig. 1 for an
overview of the study protocol). Of these, 451 had
polysomnography-confirmed iRBD, 142 had PD with

Research in context

Evidence before this study

Idiopathic/isolated REM sleep behaviour disorder (iRBD) is a
strong predictor for developing overt synucleinopathies
including dementia with Lewy bodies (DLB) and Parkinson’s
disease (PD). Previous studies have established that patterns
of brain atrophy in iRBD are already reminiscent of what is
later seen in overt disease and are related to cognitive
impairment, being associated with the development of DLB.
However, how this brain atrophy begins and progresses
remains unclear. To better understand the interindividual
variability in iRBD and the distinct spatiotemporal patterns of
neurodegenerative changes that lead to the development of
overt disease, a systematic investigation of the sequential
brain changes leading to overt disease is needed.

Added value of this study

This study includes the largest collection of structural brain
MRI data of individuals with iRBD and leverages the powerful
Subtype and Stage Inference (SuStaIn) machine learning
algorithm to identify two distinct subtypes of brain atrophy
progression: a “cortical-first” subtype and a “subcortical-first”

subtype. We demonstrate that these brain atrophy
progression subtypes are associated with different disease
trajectories, with patients classified into the cortical-first
subtype having an increased likelihood of developing DLB
compared to PD, while both subtypes are associated with
worsening parkinsonian motor features over time. This study,
for the first time, delineates the subtypes of brain atrophy
progression in iRBD and their distinct associations with
clinical outcomes.

Implications of all the available evidence

The identification of distinct atrophy progression subtypes
has significant implications for the early identification of
disease trajectories in iRBD. This stratification can help guide
patient selection for clinical trials, potentially improving
outcomes by targeting therapies based on the underlying
atrophy subtype. As synucleinopathies advance,
understanding the spatial and temporal dynamics of brain
atrophy will be critical for prognostication and early
intervention in patients with iRBD.
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probable RBD (PD-pRBD), 87 had DLB, and 596 were
healthy controls recruited in every centre. Biological sex
was collected by self-report of the study participants.

Participant recruitment by study centre and disease
group are detailed in Supplementary Table S1. Partici-
pants were recruited from the Centre for Advanced
Research in Sleep Medicine at the Hopital du Sacre-
Coeur de Montreal and The Neuro (n = 178), the Oxford
Parkinson’s Disease Centre (n = 147), the Department
of Neurology at Charles University (n = 140), Newcastle

University (n = 135), the Movement Disorders clinic at
the Hôpital de la Pitié-Salpêtrière (n = 130), the
COMPASS-ND Study from the Canadian Consortium
on Neurodegeneration in Ageing (CCNA; n = 71),17–19

the Parkinson’s Disease Research Clinic at the Univer-
sity of Sydney (n = 56), the Department of Neurology at
the University of Cologne (n = 47), Aarhus University
Hospital (n = 38), the IRCCS Ospedale Policlinico San
Martino in Genoa (n = 29), as well as part of the Par-
kinson’s Progression Markers Initiative (PPMI;

Fig. 1: Overview of study design, data processing, and subtype modelling. (a) 1276 participants were recruited, with 203 participants
excluded after quality control. (b) T1-weighted MRI scans underwent cortical reconstruction, volumetric segmentation, multi-centre harmo-
nisation, z-score normalisation, and disease progression modelling using the SuStaIn algorithm. (c) SuStaIn identified two distinct subtypes of
brain atrophy progression, each with unique spatiotemporal patterns and stages of disease. DLB = dementia with Lewy bodies;
iRBD = idiopathic/isolated REM sleep behaviour disorder; PD-pRBD = Parkinson’s disease with probable RBD; QC = quality control; ROI = region
of interest.
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n = 305).20 A subset of the patients with iRBD (n = 182,
40%) included in this study were part of previous
studies investigating prodromal atrophy in synucleino-
pathies.5,6 Patients with iRBD were diagnosed using the
International Classification of Sleep Disorders, third
edition diagnostic criteria,21 including video-
polysomnography, and underwent clinical assessments
to confirm absence of DLB, Parkinson’s disease, and
multiple system atrophy at the closest examination in
time to the MRI acquisition. Patients with iRBD were
followed longitudinally approximately every 6–12
months in every centre to assess for the development of
dementia and parkinsonism (phenoconversion). Clinical
assessments used at all sites included cognitive testing
with either the Montreal Cognitive Assessment (MoCA)
or the Mini-Mental State Examination (MMSE), and
motor examination using the Movement Disorders So-
ciety—Unified Parkinson’s Disease Rating Scale, part
III (MDS-UPDRS-III) or the original 1987 version
(UPDRS-III). Patients with probable DLB were diag-
nosed using previously published criteria.22 Patients
with PD-pRBD were recruited from the PPMI baseline
cohort and the presence of probable RBD was defined by
a cut-off score ≥5 on the RBD Screening
Questionnaire.23

MRI acquisition and processing
Structural T1-weighted brain MRI scans were acquired
at each site and are detailed in Supplementary Table S1.
T1-weighted scans underwent cortical reconstruction
and volumetric segmentation using the FreeSurfer 7.1.1
image analysis suite (http://surfer.nmr.mgh.harvard.
edu). The technical details of the FreeSurfer procedure
have been described previously.5 Briefly, this processing
included motion correction, removal of non-brain tissue
using a hybrid watershed/surface deformation proced-
ure, automated Talairach transformation, segmentation
of the subcortical white matter and deep grey matter
volumetric structures, intensity normalisation, tessella-
tion of the grey matter white matter boundary, auto-
mated topology correction, and surface deformation
following intensity gradients to optimally place the grey/
white and grey/CSF borders at the location where the
greatest shift in intensity defines the transition to the
other tissue class. Once the cortical models were com-
plete, deformable procedures were performed including
surface inflation, registration to a spherical atlas based
on individual cortical folding patterns to match cortical
geometry across patients, parcellation of the cerebral
cortex into units with respect to gyral and sulcal struc-
ture, and creation of a variety of surface-based data. This
method used both intensity and continuity information
from the entire MRI volume in segmentation and
deformation procedures to produce representations of
cortical thickness, calculated as the closest distance from
the grey/white boundary to the grey/CSF boundary at
each vertex on the tessellated surface. The maps were

created using spatial intensity gradients across tissue
classes and were therefore not simply reliant on abso-
lute signal intensity.

All surface maps were inspected visually by a trained
rater (S.R.) and scored from 1 to 4 based on published
guidelines.24,25 Scans with major artefacts or recon-
struction errors (score >2) were excluded from further
analyses. Due to the significant atrophy found on DLB
scans and the impact on surface reconstruction, the
cortical surfaces from patients with DLB and associated
controls were manually edited slice-by-slice (S.J., S.R.,
A.De.) and reprocessed. Cortical thickness, cortical vol-
ume, and subcortical volume measurements were next
extracted from the resulting maps using the bilateral 83-
region Desikan–Killiany atlas (68 cortical regions and 15
subcortical regions, namely the bilateral thalamus,
caudate, putamen, pallidum, hippocampus, amygdala,
nucleus accumbens, and brainstem). These metrics
were all extracted because they were shown to be
differentially affected in iRBD.5,26 Given that volume
scales with head size,27 volume values were normalised
by dividing values by the estimated total intracranial
volume. To reduce the number of input features when
modelling subtypes and preserve sufficient power, the
labels of each individual parcellation were fused
together inside FreeSurfer to yield lobar measurements
of cortical thickness for the frontal, parietal, temporal,
occipital, and cingulate lobes, as done previously.16,28,29

To control for the differences in scanner acquisitions,
we next applied NeuroComBAT on the regional mea-
surements, a batch-correcting tool widely used in
multisite MRI studies that removes scanner-dependent
variations while preserving the biological variance of
interest, using age, sex, and disease group as
covariates.30–32 Although the CCNA and PPMI cohorts
involved multiple different scanners, these cohorts were
each included as single entities in the NeuroComBAT
harmonisation process, since i) the CCNA participants
were scanned using the harmonised Canadian De-
mentia Imaging Protocol, which was developed to
ensure consistency in MRI acquisitions across multiple
centres33; and ii) the site details of PPMI participants are
not available due to confidentiality restrictions. For
harmonisation, we expressed each regional measure-
ment as a piecewise linear z-score normalised to the
control population using age and sex as regression
covariates as previously described (see Supplementary
Table S2 for group descriptives).16 This allowed the
brain measurements from each patient to reflect de-
viations from what was expected for age and sex, thereby
ensuring that the identified progression patterns were
not merely reflective of normal ageing. Regions of in-
terest were averaged between hemispheres; paired t-
tests between left and right regions determined that
there was no statistically significant difference between
them (all p-values > 0.084). The NeuroComBAT-
corrected, z-scored regional measurements served as
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the input for the analyses involving the reconstruction of
transdiagnostic brain atrophy subtypes in
synucleinopathies.

Brain atrophy subtype and stage inference
modelling
To reconstruct brain atrophy subtypes and stages from
cross-sectional imaging data, we used the SuStaIn al-
gorithm implemented in Python.16,34 In contrast to
conventional analyses, which would generate subtypes
exclusively based on temporal progression, the SuStaIn
algorithm considers both temporal and spatial infor-
mation in order to define synucleinopathy groups with
distinct patterns of progression (subtypes) and assigns a
disease stage for each participant, thereby allowing for
the identification of transdiagnostic trajectories of brain
neurodegeneration. We ran SuStaIn using 25 start
points and 1,000,000 Markov Chain Monte Carlo itera-
tions. The optimal number of subtypes was determined
using the cross-validation information criterion calcu-
lated through 10-fold cross-validation.16 The SuStaIn
algorithm subtyped individuals by calculating the
maximum likelihood they belong to each subtype, and
staged individuals by calculating their average stage
weighted by the probability they belonged to each
stage of each subtype. Individuals that were assigned a
stage of 0 were determined to be “non-classifiable”,
whereas individuals with a higher probability of
belonging to a SuStaIn subtype were determined to be
“classifiable”. To compare the subtype progression pat-
terns between different neuroimaging metrics (i.e.,
cortical thickness vs. cortical volume) and across cross-
validation folds (i.e., the cross-validation similarity
metric), we calculated the Bhattacharyya coefficient35

between the position of each biomarker event in the
two subtype progression patterns, averaged across
biomarker events and Markov Chain Monte Carlo sam-
ples, as previously described.16 To ensure the robustness
of our subtypes, we repeated the same analyses in the
groups of patients with iRBD or DLB alone and in the
group of patients with iRBD alone. The Bhattacharrya
coefficient35 was used to assess the similarity of these
brain atrophy progression patterns compared to the
initial model involving patients with iRBD, DLB, and PD-
pRBD. SuStaIn models were visualised using Brain-
painter software.36

Statistical analyses
Statistical analyses were performed in R (version 4.3.2).
MMSE scores were converted to MoCA scores, which
involved 73 patients with DLB and 18 patients with
iRBD.37 UPDRS-III scores were converted to MDS-
UPDRS-III scores in 43 patients with iRBD as previ-
ously described.4 Demographics and clinical variables
were compared between patients and controls using
ANOVA with post-hoc Tukey HSD testing and χ2 testing
with post-hoc pairwise comparisons. Comparisons

between subtypes used t-tests for continuous variables
and χ2 tests for categorical variables. The progression of
clinical variables with respect to SuStaIn subtypes and
stages was assessed by linear regression using age,
sex, SuStaIn subtype, SuStaIn stage, the interaction
between subtype and stage, and the probability of
subtype as covariates (i.e., clinical variable ∼

age + sex + subtype + stage + interaction between sub-
type and stage + probability of subtype). Logistic
regression was also used to predict the log-odds of
phenoconversion (i.e., received a clinical diagnosis at
the last follow-up compared to being phenoconversion-
free) and log-odds of phenoconversion outcomes in
iRBD (DLB compared to PD) with respect to SuStaIn
subtypes (i.e., phenoconversion ∼ age + sex + SuStaIn
subtype + SuStaIn stage + interaction between subtype
and stage). We did not include “years after iRBD onset”
in the logistic regression models because the precise
onset of iRBD symptoms is often uncertain and subject
to recall bias. When interactions were significant, partial
correlations were used for assessing subtype-specific
associations while controlling for other covariates part
of the logistic model.

Ethics approval and consent to participate
Ethics approval was obtained from the local institutional
boards of each centre with subject consent in accor-
dance with the Declaration of Helsinki. The current
study was approved by the Research Ethics Board of the
McGill University Health Centre (MP-37-2022-7744)
and the Quebec Integrated University Centre for Health
and Social Services of Northern Island of Montreal
(MEO-37-2024-2699).

Role of funders
The sources of funding did not influence the design of
the study, the collection of data, the analysis of data, the
interpretation of results, or the writing of the
manuscript.

Results
Participant demographics
Of the 1276 participants with T1-weighted imaging, 14
(1.1%) failed the FreeSurfer processing step and 189
(14.8%) did not pass surface-based quality control, leading
to a final sample for analysis of 362 patients with iRBD,
110 with PD-pRBD, 82 with DLB, and 519 controls. As
expected, patients with DLB were older (76.8 ± 6.45 years),
had lower MoCA scores (14.4 ± 5.46), and higher MDS-
UPDRS-III scores (32.1 ± 18.1) compared to the iRBD,
PD-pRBD, and control groups. Patients with iRBD were
younger (67.1 ± 6.95 years), with intermediate MoCA
(25.7 ± 3.02) and MDS-UPDRS-III scores (6.04 ± 5.57).
Controls were slightly younger than patients with iRBD
(65.6 ± 10.1 years) and had the highest MoCA scores
(26.8 ± 2.36) and lowest MDS-UPDRS-III scores
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(2.28 ± 4.44). Finally, patients with PD-pRBD were the
youngest (62.1 ± 8.93), had comparable MoCA scores as
patients with iRBD (25.9 ± 3.31), and higher MDS-
UPDRS-III scores compared with patients with DLB
(21.4 ± 9.61). Summarised demographic and clinical in-
formation is available in Supplementary Table S2 and
Supplementary Figure S1.

SuStaIn identifies two brain atrophy subtypes
First, we used SuStaIn to identify subtypes of brain at-
rophy progression in the neurodegenerative spectrum
linking iRBD, PD-pRBD, and DLB. Using cortical
thickness and subcortical volume regions of interest as
input (Supplementary Table S3), SuStaIn identified a

two-subtype model as being the best representation of
brain atrophy progression in patients (Fig. 2a). This
subtyping classified 304 (55%) patients with iRBD, PD-
pRBD, or DLB into one of the two subtypes (Fig. 2b and
c), each with distinct sequences of atrophy (Fig. 2d): (i) a
“cortical-first” progression subtype, found in 58% of
classifiable patients, characterised by atrophy beginning
in the frontal lobes followed by the temporal and parietal
areas and remaining cortical areas, with the involvement
of subcortical structures at later stages; and (ii) a
“subcortical-first” progression subtype, found in 42% of
classifiable patients, characterised by atrophy beginning
in the limbic areas (primarily the amygdala and hippo-
campus), followed by structures of the basal ganglia and

Fig. 2: SuStaIn identified a two-subtype model as being the best representation of brain atrophy progression in patients. (a) CVIC across
10-fold cross-validation of left-out individuals; lower CVIC represents better model fit. (b) Distribution of subtypes across SuStaIn stages. (c) The
assignability of disease subtype, operationalised as the distance from the top or bottom axis, which represents the maximum probability (100%)
of that subtype. (d) SuStaIn identified two unique subtypes of brain atrophy progression. At each stage, the colour in each region indicates the
level of severity of atrophy, with grey representing unaffected regions, red mildly affected regions (z-score of −1), magenta moderately affected
regions (z-score of −2), and blue severely affected regions (z-score of −3 or more). Brainstem atrophy begins at approximately stage 6 in the
subcortical-first subtype (not shown). CVIC = cross-validation information criterion; CVS = cross-validation similarity; iRBD = idiopathic/isolated
REM sleep behaviour disorder; SuStaIn = Subtype and Staging Inference.
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only involving cortical structures at later stages. The
cortical-first subtype included 177 patients, namely 111
(62.7%) iRBD, 33 PD-pRBD (18.6%), and 33 (18.6%)
DLB, while the subcortical-first subtype included 127
patients, namely 75 (59.1%) iRBD, 22 PD-pRBD
(17.3%), and 30 (23.6%) DLB (Table 1). The remaining
250 patients with synucleinopathies (176 [70.4%] iRBD,
55 PD-pRBD [22%], and 19 [7.6%] DLB) were cat-
egorised as stage 0/non-classifiable (i.e., assigned to very
early SuStaIn stages at which point there is low confi-
dence in the subtype assignment or displayed a different
atrophy pattern compared to the rest of the sample).

The average similarity between cross-validation folds
was >90% for each subtype, indicating high reliability of
subtype progression patterns with 10-fold cross-
validation. Moreover, the identification of two distinct
subtypes was recapitulated when using cortical volume
(as a measure of cortical atrophy instead of cortical
thickness) with subcortical volume as input features,
with >86% similarity when comparing the subtypes’
progression patterns (Supplementary Figure S2). Since
atrophy has previously been reported to be more

prominent in iRBD associated with MCI, and given that
atrophy predicts the development of DLB compared to
PD in iRBD,5,7,8 we hypothesised that the more extensive
atrophy observed in patients with DLB may influence
the subtyping results. Therefore, to test the robustness
of our subtyping, we performed secondary analyses
excluding patients with PD-pRBD from the SuStaIn
modelling and, separately, using only patients with
iRBD as inputs (Supplementary Figure S3 and
Supplementary Table S4). In both cases, the two sub-
types identified in the primary SuStaIn model were
recapitulated with similar patterns of progression. As
expected, the iRBD-only model showed increased un-
certainty at higher stages, particularly in the cortical-first
subtype. The exclusion of patients with PD-pRBD
resulted in a distribution of classifiable patients com-
parable to the main SuStaIn model. The Bhattacharrya
coefficient indicated a similarity between 81% and 94%
with the original model that included patients with
iRBD, PD-pRBD, and DLB. Taken together, this in-
dicates that the primary driver of subtyping and staging
reflects the progression of cortical and subcortical

Phenoconversion Classifiable Subtyped

Non-classifiable Classifiable p-valuea Cortical-first Subcortical-first p-valueb

Demographics

n (%): iRBD 176 (70.4) 186 (61.2) 0.710 111 (62.7) 75 (59.1) 0.061

n (%): DLB 19 (7.6) 63 (20.7) <0.001 33 (18.6) 30 (23.6) 0.789

n (%): PD-pRBD 55 (22) 55 (18.1) 1.0 33 (18.6) 22 (17.3) 0.292

Age: All 67.1 (8.2) 68 (8.7) 0.218 68.1 (8.8) 67.7 (8.7) 0.654

Age: iRBD 67.3 (7.3) 67 (6.6) 0.667 67.3 (6.4) 66.5 (7.1) 0.472

Age: DLB 75.9 (6) 77.1 (6.6) 0.48 78.3 (6.9) 75.7 (6) 0.116

Age: PD-pRBD 63.3 (9) 60.9 (8.8) 0.151 61 (8.9) 60.7 (8.8) 0.921

% male/% female 83.8/16.2 83.8/16.2 0.960 82.7/17.3 85.6/14.4 0.611

Stagec (SD): All 0 (0) 4.3 (3.9) <0.001 4.0 (3.8) 4.6 (3.9) 0.232

Stagec (SD): iRBD 0 (0) 3.6 (2.8) <0.001 3.2 (1.9) 4.2 (3.6) 0.029

Stagec (SD): DLB 0 (0) 6.7 (6) <0.001 7.5 (7) 5.7 (4.6) 0.215

Stagec (SD): PD-pRBD 0 (0) 3.8 (2.8) <0.001 3.4 (2) 4.3 (3.7) 0.293

Clinical variables

MDS-UPDRS-III (SD): All 10.4 (11.1) 15.4 (15.2) <0.001 15.8 (15.9) 14.8 (14.3) 0.56

MDS-UPDRS-III (SD): iRBD 5.2 (4.9) 6.9 (6.1) 0.005 7.1 (6.6) 6.5 (5.4) 0.475

MDS-UPDRS-III (SD): DLB 24.4 (17.4) 34.4 (17.8) 0.036 37.4 (18.9) 31.2 (16.2) 0.166

MDS-UPDRS-III (SD): PD-pRBD 21.7 (9.8) 21.1 (9.4) 0.737 21.6 (9.2) 20.4 (9.9) 0.634

MoCA (SD): All 25.4 (3.7) 23.3 (6) <0.001 23.3 (6.3) 23.3 (5.6) 0.984

MoCA (SD): iRBD 26.1 (2.7) 25.4 (3.2) 0.044 25.4 (3.4) 25.4 (3) 0.921

MoCA (SD): DLB 17.5 (5.2) 13.5 (5.3) 0.015 12.6 (5.9) 14.6 (4.2) 0.152

MoCA (SD): PD-pRBD 25.7 (3.1) 26 (3.5) 0.675 25.9 (3.4) 26.1 (3.8) 0.836

% MCI: iRBDd 36.3 45.3 0.084 43.0 48.6 0.452

% MCI: PD-pRBDd 40.0 36.7 0.745 37.9 35.0 0.834

Bold values represent significant p-values. DLB = dementia with Lewy bodies; iRBD = idiopathic/isolated REM sleep behaviour disorder; MoCA = Montreal Cognitive
Assessment; MCI = mild cognitive impairment; MDS-UPDRS-III = Movement Disorders Society – Unified Parkinson’s Disease Rating Scale, Part III; MoCA = Montreal Cognitive
Assessment; PD-pRBD = Parkinson’s disease with probable REM sleep behaviour disorder; SD = standard deviation; SuStaIn = Subtype and Staging Inference. aNon-
classifiable group vs. classifiable group; t-tests for continuous variables and χ2 tests for categorical variables. bCortical-first subtype vs. subcortical-first subtype; t-tests for
continuous variables and χ2 tests for categorical variables. cStage refers to SuStaIn stage. dMCI as defined by ≤ 25/30 on MoCA; all patients with DLB met criteria for
dementia.

Table 1: Baseline demographic and clinical variables for each brain atrophy progression subtype.
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atrophy, independent of the inclusion of patients with
PD-pRBD or the use of patients with iRBD alone.

Inspecting the subtypes based on the progression of
atrophy in each brain region revealed that compared to
normative data from control scans, patients with iRBD
from the subcortical-first subtype had rapid subcortical
volume loss in the early stages, with relative stability of
most cortical structures but progressive atrophy of the
hippocampus, putamen, and cortical structures at later
stages (Fig. 3). This pattern was generally reversed in
cortical-first patients, where atrophy of cortical structures
occurred in the earlier stages followed by relative stability
in the cingulate, occipital, and parietal structures, with
progressive atrophy in the frontal, insular, and temporal
cortical areas and subcortical structures (Fig. 3).

Atrophy subtypes are related to increased clinical
burden
Next, we investigated whether demographics and clin-
ical variables differed between classifiable and stage 0/
non-classifiable patients and between the identified
subtypes. The baseline demographics and clinical vari-
ables of the classifiable and stage 0/non-classifiable
groups are shown in Table 1. The classifiable group
(which includes patients identified as either cortical-first
or subcortical-first subtypes) had more patients with
DLB (20.7% vs. 7.6%, p < 0.001 [χ2 test]) and had worse
MoCA (23.3 ± 6.0 vs. 25.4 ± 3.7, p < 0.001 [t-test]) and
MDS-UPDRS-III (15.4 ± 15.2 vs. 10.4 ± 11.1, p < 0.001
[t-test]) scores than stage 0/non-classifiable patients.
Worse clinical scores in classifiable patients were also

Fig. 3: Progression of cortical and subcortical atrophy by subtype and stage in iRBD. The progression of atrophy in cortical regions (a) and
subcortical regions (b) used in the SuStaIn modelling in classifiable patients with iRBD. iRBD = idiopathic/isolated REM sleep behaviour disorder;
SuStaIn = Subtype and Staging Inference.
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observed when comparing within iRBD and DLB
groups. In other words, our modelling identified brain
atrophy subtypes related to higher cognitive and motor
disease burden.

In contrast, there were no significant differences in
sex proportion, age, MoCA scores, and MDS-UPDRS-III
scores when comparing patients classified in the
cortical-first versus the subcortical-first atrophy pro-
gression subtypes (Table 1). However, it is important to
note that these comparisons are based on group means,
and the groups represent patients at different SuStaIn
stages on the atrophy progression subtype, limiting the
interpretability of these findings due to confounding
effects of disease progression.

Brain atrophy severity relates to cognitive and
motor progression
To account for disease progression inside subtypes, we
next sought to determine whether global cognition and
parkinsonian motor features varied as a function of
SuStaIn subtype and severity. Using linear regression to
predict MoCA scores based on age, sex, SuStaIn stage
and subtype (and its interaction), and probability of
subtype, we found significant effects of age and inter-
action between SuStaIn subtype and stage (Fig. 4 and
Table 2). Higher age was associated with lower MoCA
scores (estimate [95% CI] = −0.37 [−0.46, −0.27],
p < 0.001 [linear regression]). The interaction effect
indicated that SuStaIn stage had a steeper negative
impact on MoCA scores in patients classified as cortical-
first compared to those classified as subcortical-first.
Specifically, in cortical-first patients, there was a

significant negative correlation between SuStaIn stage
and MoCA scores (r = −0.28, corrected for age, sex, and
subtype probability, p < 0.001 [Pearson’s correlation]),
whereas no significant relationship was observed in
subcortical-first patients (r = 0.002, corrected for age,
sex, and subtype probability, p = 0.98 [Pearson’s corre-
lation]). In contrast, when predicting MDS-UPDRS-III
scores, the analysis revealed significant effects of age
and SuStaIn stage only. Older age (estimate [95%
CI] = 0.92 [0.66, 1.17], p < 0.001 [linear regression]) and
higher SuStaIn stage (atrophy progression) (estimate
[95% CI] = 2.31 [0.09, 4.52], p = 0.041 [linear regression])
were both significantly associated with increased MDS-
UPDRS-III scores (Fig. 4 and Table 2). Taken
together, cognitive decline (as measured by MoCA) was
more strongly associated with disease progression in
cortical-first patients, while motor impairment (as
measured by MDS-UPDRS-III) was influenced by both
age and overall disease stage, regardless of subtype.

Atrophy subtypes relate differently to
phenoconversion in iRBD
We investigated whether SuStaIn atrophy subtypes were
associated with phenoconversion risk and pheno-
conversion phenotypes in iRBD. Among all patients
with iRBD, the mean follow-up time was 5.25 ± 3.34
years and 88 (24%) phenoconverted to a defined synu-
cleinopathy, with 26 (30%) having developed DLB, 56
(63%) Parkinson’s disease, and 6 (7%) multiple system
atrophy. Although the unadjusted number of pheno-
converted patients did not differ significantly between
those classified within the SuStaIn subtypes (cortical-

Fig. 4: Progression of clinical variables by SuStaIn stage. Higher SuStaIn stages was associated with worse clinical scores on MDS-UPDRS-III
and MoCA in patients. MoCA = Montreal Cognitive Assessment; MDS-UPDRS-III = Movement Disorders Society – Unified Parkinson’s Disease
Rating Scale, Part III; SuStaIn = Subtype and Staging Inference.
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first or subcortical-first) and those who were not classi-
fied (stage 0/non-classifiable) (Supplementary Table S5),
we performed a logistic regression to predict the log-
odds of phenoconversion in iRBD based on age, sex,
SuStaIn classifiability, SuStaIn stage, and the interaction
between classifiability and stage (Supplementary
Table S6). This analysis revealed a significant effect of
classifiability on phenoconversion risk, with the log-
odds of phenoconverting compared to remaining
disease-free being significantly higher for patients with
iRBD classified as subcortical-first compared to stage 0/
non-classifiable patients (estimate [95% CI] = 2.56
[1.04–6.34], p = 0.042 [logistic regression]). Specifically,
patients with iRBD within the subcortical-first subtype
had 2.6 times higher odds of phenoconversion
compared to remaining disease-free than those who
were stage 0/non-classifiable.

We then investigated whether SuStaIn subtypes
could predict the development of a parkinsonism or
dementia-first phenotype in patients with iRBD while
they were still in the preclinical stage, as predicting
differential pathways in patients with iRBD who phe-
noconvert to DLB or PD is essential for developing a
prognostic subtyping approach. Logistic regression to
predict the log-odds of phenoconversion to DLB versus
PD based on age, sex, SuStaIn subtype, SuStaIn stage,
and their interaction revealed a significant interaction
effect between SuStaIn subtype and SuStaIn stage (es-
timate [95% CI] = 0.36 [0.14, 0.93], p = 0.035 [logistic
regression]) (Fig. 5, Supplementary Table S7). This
interaction indicated that the log-odds of DLB compared
to PD became more negative as both predictors
increased. Specifically, unlike patients with iRBD clas-
sified within the subcortical-first subtype, the log-odds
of DLB compared to PD in cortical-first patients
increased as a function of SuStaIn stage (atrophy pro-
gression). Adding stage 0/non-classifiable patients with
iRBD to the analysis further confirmed the association
between higher SuStaIn stages and the likelihood of
developing DLB rather than PD in patients with cortical-
first iRBD (estimate [95% CI] = 0.35 [0.14, 0.90],
p = 0.029 [logistic regression]). In other words, higher
SuStaIn stages were associated with a greater likelihood
of phenoconversion to DLB rather than PD in patients
with iRBD classified as cortical-first.

Discussion
In this study, we used a data-driven approach to identify
two distinct patterns of brain atrophy progression,
summarising the spectrum linking iRBD to overt dis-
ease. The first is a cortical-first atrophy progression
subtype, where atrophy initially spreads throughout
cortical areas before manifesting in subcortical struc-
tures later. The second is a subcortical-first atrophy
progression subtype, where atrophy begins in the

amygdala and basal ganglia before spreading to the
cortical areas. Patients classified in the subtypes had an
increased clinical burden compared to patients not
subtyped by our modelling. Clinical scores of disease
severity worsened with increasing stages of atrophy,
with the progression of parkinsonian motor features
increasing regardless of whether patients were classified
as cortical- or subcortical-first subtypes. However,
cognitive decline was specific to patients classified
within the cortical-first phenotype. Phenoconversion
trajectories also differed based on the subtype, with
patients with iRBD with a cortical-first atrophy subtype
being more likely to phenoconvert to DLB, while this
pattern was not observed in patients classified as
subcortical-first. Our results provide insights into the
progression of brain atrophy in prodromal synuclein-
opathy as it develops towards manifest disease, which
may have potential utility for prognostication and pa-
tient stratification.

SuStaIn is an unsupervised machine learning model
developed to untangle the complexity of neurodegener-
ative diseases by identifying distinct subtypes and stag-
ing their progression over time. In simple terms,
SuStaIn works by simultaneously clustering patients
based on patterns of brain atrophy and ordering these
changes into a sequence of stages, thereby separating
phenotypic (subtype) differences from temporal (stage)
progression. SuStaIn makes predictions by comparing
an individual’s biomarker values (in this instance, select

Variable Estimate Standard

error

t-value p-valuea 95% CI for

estimate

MoCA

Age −0.365 0.048 −7.350 <0.001 −0.460 to −0.269

Sexb −1.833 0.981 −1.868 0.063 −3.766 to 0.100

SuStaIn subtypec −1.269 1.023 −1.240 0.216 −3.285 to 0.747

SuStaIn stage −1.178 0.419 −2.807 0.005 −2.004 to −0.351

SuStaIn subtype * stage 0.383 0.170 2.253 0.025 0.048–0.717

Probability of subtype
assignment

6.134 2.460 2.494 0.013 1.287–10.981

Constant 49.144 4.864 10.104 <0.001 39.561–58.728

MDS-UPDRS-III

Age 0.916 0.130 7.066 <0.001 0.660–1.171

Sexb −0.020 2.562 −0.008 0.994 −5.069 to 5.028

SuStaIn subtypec 1.767 2.736 0.646 0.519 −3.624 to 7.158

SuStaIn stage 2.307 1.125 2.050 0.041 0.090–4.524

SuStaIn subtype * stage −0.806 0.455 −1.772 0.078 −1.702 to 0.090

Probability of subtype
assignment

−12.815 6.501 −1.971 0.050 −25.624 to −0.006

Constant −44.782 12.743 −3.154 <0.001 −69.888 to −19.675

Bold values represent significant p-values. MoCA = Montreal Cognitive Assessment; MDS-UPDRS-
III = Movement Disorders Society – Unified Parkinson’s Disease Rating Scale, Part III; SuStaIn = Subtype and
Staging Inference. aSeparate regression models of clinical variable ∼ age + sex + subtype + stage + subtype *
stage + probability of subtype. bSex is coded as 0 = male and 1 = female. cSubtype is coded as 0 = cortical-first
subtype and 1 = subcortical-first subtype.

Table 2: Associations between clinical variables and SuStaIn subtype and stage.
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regions of brain atrophy) to its learnt progression pat-
terns—if a region’s z-score crosses a specific threshold,
it indicates a transition to a later stage and helps assign
the patient to a particular subtype, thus providing a
straightforward decision rule for stratifying patients
based on disease severity and pattern. Once fully
established, SuStaIn-based prediction could be applied
at the individual level by deriving region-specific pro-
gression slopes and assessing the similarity of a given
brain scan to each subtype. This would allow for clas-
sifying individual scans into the likeliest progression
subtype, enabling better stratification of iRBD patients
based on actual neurodegeneration and predicted dis-
ease trajectory. Additionally, it could serve as a bench-
mark to assess whether a patient’s brain disease
progression follows the expected trajectory for their
subtype or deviates from it. However, before clinical
implementation, further studies are needed to validate

these subtypes in relation to other biomarkers,
including clinical, biofluid, and genetic markers. This
will help refine their predictive value and ensure their
utility for patient monitoring and trial stratification.

Previous studies have found cortical and subcortical
atrophy in patients with iRBD, which have been shown
to correlate with motor and cognitive dysfunction, as
well as predict phenoconversion to dementia.5,7–9,15,38 The
atrophy in iRBD, as in several neurodegenerative dis-
eases,13,39,40 has been shown to be constrained by both
the brain’s structural connectivity pattern and the local
patterns of gene expression,5 targeting preferentially
regions overexpressing genes involved in energy pro-
duction and protein degradation.6 Distinct patterns of
cortical and subcortical atrophy have also been described
in patients with mild cognitive impairment who later
developed DLB.41 Patients with DLB similarly show
unique patterns of atrophy when compared with

Fig. 5: Phenoconversion risk (calculated from the logistic regression predicting phenoconversion) differs in patients with iRBD based on

classifiability and stage. Patients with iRBD classified in the cortical-first subtype had a stronger likelihood of DLB compared to PD as disease
severity (atrophy) increases. iRBD = idiopathic/isolated REM sleep behaviour disorder; SuStaIn = Subtype and Staging Inference.
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patients with Alzheimer’s disease and healthy con-
trols,42,43 with a hippocampal-sparing pattern of regional
atrophy observed in DLB, which may be influenced by
mixed co-pathology.44 The distinct involvement of brain
structures at earlier and later disease stages depending
on machine learning-derived subtypes has also been
described in individuals with manifest Parkinson’s dis-
ease.45 The broad areas and patterns of atrophy in pro-
dromal synucleinopathy and overt disease found in the
present study are in line with these results. Here, using
a large cross-sectional sample size of brain MRI scans in
iRBD, PD-pRBD, and DLB and machine learning, we
were able to account for the variability in disease stage
across individuals and reconstruct the progression of
atrophy even at very early stages of disease. Our results
not only support the finding that atrophy is diffuse in
the late stages of synucleinopathy, but also suggest that
the origin and pathway towards this state follows
distinct patterns. These different patterns of atrophic
spread, based solely on the data-driven analysis of
quantitative atrophy derived from brain MRI scans,
could have relevance for prognosis or more precisely
select patients for disease-modifying trials. For this to be
the case, future studies will need to derive signature
patterns for each of these subtypes and develop algo-
rithms that will allow classifying brain MRI scans from
patients into the likeliest subtype.

The identified subtypes were significantly associated
with clinical features and progression trajectories.
Indeed, we observed that higher SuStaIn stages within
subtypes, reflecting more advanced brain disease (atro-
phy) progression, were associated with worse clinical
scores. Furthermore, both cortical-first and subcortical-
first subtypes were associated with a higher rate of in-
crease in MDS-UPDRS-III scores over time, aligning
with parkinsonian motor features being common to pa-
tients with iRBD progressing to either DLB or PD.
Indeed, both DLB and PD phenoconverters have simi-
larly elevated MDS-UPDRS-III in the iRBD stage, and the
motor interval is, if anything, longer in DLB pheno-
converters than PD phenoconverters.46 However, in
contrast, cognitive decline measured by MoCA was
subtype-specific, being associated with advancing SuS-
taIn stages in patients classified as cortical-first but not in
those classified as subcortical-first. This supports the idea
that cortical-first patients show a closer association be-
tween cognitive and parkinsonian features, aligning with
a trajectory toward DLB. Notably, atrophy in the posterior
cortical region was affected at late SuStaIn stages in the
cortical subtype, in keeping with the fact that visuospatial
dysfunction is a harbinger of phenoconversion to DLB.10

Importantly, the MDS-UPDRS-III and MoCA are broad
metrics of motor and cognitive function, which do not
fully capture the breadth or depth of dysfunction in
iRBD.46,47 Future work shall examine if different subtype
progression patterns are associated with more specific
patterns of clinical dysfunction.

Regression analyses indicated that classifiable sub-
jects with iRBD had a higher risk of phenoconversion
than stage 0/non-classifiable subjects. The subcortical-
first brain atrophy progression subtype in iRBD was
associated with a stronger likelihood of developing an
overt synucleinopathy. We propose that as subcortical
structures are affected initially, the hallmark clinical
features of parkinsonism become manifest, leading to a
diagnosis earlier in the subcortical-first subtype. In
contrast, the cortical-first phenotype remains “healthier”
(disease-free) for longer periods until subcortical struc-
tures become involved, at which point motor signs and
symptoms of disease appear, and phenoconversion oc-
curs. In other words, whereas both subtypes are asso-
ciated with parkinsonian motor features with increasing
progression, the cortical-first phenotype is more
strongly associated with cognitive decline and the
development of DLB compared to PD over time in iRBD
(Fig. 6). This may indicate that the cortical-first subtype
is more closely related to what is classically known as
DLB (i.e., initial cortical involvement followed by
subcortical involvement, with a long-term risk of de-
mentia), whereas the subcortical-first subtype is more
closely related to PD (i.e., initial subcortical involvement
followed by cortical involvement, with earlier pheno-
conversion to PD and an increased long-term risk of
dementia under the label of PD dementia).

Several hypotheses may explain the pathophysiolog-
ical patterns of each subtype. First, the patterns of at-
rophy may be reflective of ongoing neurodegeneration
in different regions of the brain in iRBD: the cortical-
first subtype begins with neurodegeneration of the
cortex while the subcortical-first subtype begins with
atrophy in the limbic and basal ganglia structures. It is
important to keep in mind that our model was built on
atrophy and not actual pathology, and that although
preliminary evidence has shown that atrophy in synu-
cleinopathies can be recreated in silico as a spread of
alpha-synuclein misfolded proteins,5 several other
proteins and co-pathologies may also be at play in iRBD-
associated neurodegeneration. For example, brain
neurodegeneration in DLB patients is associated with
amyloid beta and tau deposition at baseline48,49 and lower
CSF levels of amyloid beta 42 have been found in iRBD
compared to controls.50,51 Moreover, 25% of patients
with iRBD are found to be amyloid beta-positive.52

Future studies should investigate whether the cortical-
and subcortical-first atrophy subtypes of iRBD differ on
imaging and blood- and CSF-based markers of Alz-
heimer’s disease co-pathologies. Another possibility is
that the cortical-first subtype represents a relatively
“resilient” subtype compared to the subcortical-first
subtype, where pathology also spreads through the
subcortical structures but do not manifest as observable
and quantifiable atrophy, unlike cortical areas. From
this angle, both subtypes would have the same initial
starting point, and patients within the subcortical-first
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subtype would represent increased vulnerability of the
basal ganglia structures in showing neurodegeneration
and displaying atrophy. While SuStaIn stages reflect a
temporal sequence of events (allowing us to use terms
like “earlier” and “later” stages), it cannot necessarily
inform us about the actual timing or speed of the events.
As such, we do not suggest that the subcortical group
necessarily had a “faster” time to phenoconversion—
rather, the timing of atrophic changes in the subcortical
structures (earlier in some patients with iRBD, later in
others) is what appears to determine the development of
the key features of parkinsonism vs. dementia. Impor-
tantly, patients with iRBD classified in the cortical- or
subcortical-first subtypes did not significantly differ in
age, suggesting that age-related effects on SuStaIn
modelling are unlikely to explain the observed differ-
ences in progression patterns. Otherwise, despite pa-
tients with iRBD being classified in this study as
cortical- or subcortical-first, previous models have
demonstrated that the iRBD phenotype belongs to a
body-first propagation of pathology compared to a brain-

first (i.e., pathology spreading from the gut to the brain
and not from the brain to the gut).53 Therefore, it could
be that the impact of pathology differs between sub-
types, with the cortical-first subtype impacting more
strongly upon several brainstem nuclei and neuro-
transmitter systems whose upstream changes yield
observable morphological changes. Finally, it may be
that deviations in morphological measurements
compared to what was expected for age and sex are
reflective of long-term genetic, lifestyle and environ-
mental factors, which render the brain differently
vulnerable to synucleinopathies once the pathological
process hits.

Approximately half of the patients with iRBD were
not classifiable into a disease subtype. The stage 0/non-
classifiable patients were significantly younger, had
better MDS-UPDRS-III and MoCA scores, and less
overall brain atrophy. This was expected, as previous
studies using computational neuroimaging in iRBD
demonstrated that cognitive impairments account for a
large variance of the morphological changes associated

Fig. 6: Hypothetical schematic representing the pathways of evolution of brain atrophy progression in iRBD, as simulated by SuStaIn. In
this model, the subcortical-first subtype is associated with increased phenoconversion compared to non-classified patients, possibly due to
initial involvement of the basal ganglia structures. By contrast, the cortical-first subtype is associated with specific phenoconversion to DLB
compared to PD as disease severity (atrophy) progresses. This model suggests that the cortical-first subtype is more closely related to what is
classically known as DLB (i.e., initial cortical involvement followed by subcortical involvement, with a long-term risk of dementia), whereas the
subcortical-first subtype is more closely related to PD (i.e., initial subcortical involvement followed by cortical involvement, with earlier phe-
noconversion to PD and an increased long-term risk of dementia under the label of PD dementia). DLB = dementia with Lewy bodies;
iRBD = idiopathic/isolated REM sleep behaviour disorder; PD = Parkinson’s disease.
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with iRBD,8 being significantly more prominent in the
presence of mild cognitive impairment,7 which affects
30%–50% of patients with iRBD.10,54 A smaller number
of patients with DLB (23%) were stage 0/non-classifi-
able, similar in proportion to a recent SuStaIn study in
patients with progressive supranuclear palsy.29 Patients
with DLB that were stage 0/non-classifiable were also
younger relative to classifiable patients with DLB and
had better MoCA scores, although all met criteria for
dementia. It is possible that stage 0/non-classifiable
patients with iRBD or DLB reflect phenotypes with less
overall disease burden or perhaps different patterns of
brain atrophy progression. For example, it is known
that patients with de novo DLB have much higher fre-
quencies of Alzheimer’s disease co-pathology as
compared to patients with de novo Parkinson’s disease,
implying that Alzheimer’s disease co-pathology during
the prodromal phase is a strong determinant of DLB
phenoconversion and the development of dementia in
synucleinopathies in general.55 Information about
Alzheimer’s disease co-pathology was not available for
this study; however, we speculate that the unclassifi-
able patients with DLB or iRBD could reflect a “pure”
alpha-synuclein phenotype with limited co-pathology,
with consequently a lesser degree of atrophy.
In keeping with this possibility, the presence of
PD-pRBD—who had less overall atrophy and presum-
ably less Alzheimer’s disease co-pathology—to the
SuStaIn model did not substantively change the sub-
typing patterns compared to when including only pa-
tients with iRBD or DLB, nor did it result in a
significant number of previously stage 0/non-classifi-
able patients becoming classifiable or create a novel
alternative subtype. Moreover, 50% of the patients with
PD-pRBD were not classifiable, in keeping with the fact
that atrophy was the primary driver of subtyping and
staging. Once a computational framework becomes
available for obtaining a probability of subtyping from
individual brain MRI scans in iRBD, future studies
should investigate more thoroughly the clinical fea-
tures and biological underpinnings of classified and
unclassified patients.

Some limitations in this study should be discussed.
First, the modelling based on the SuStaIn algorithm
recreated spatiotemporal brain atrophy progression
patterns from cross-sectional MRI scans. Although
powerful for leveraging large datasets of brain disease
scans, future initiatives should aim at investigating the
differential pathways of brain disease progression from
longitudinal MRI scans in patients with iRBD. Second,
even though this multicentric study involved the largest
MRI sample of patients of polysomnography-proven
iRBD, the number of patients remains limited, which
increases the uncertainty of staging. Moreover, large
regions of interest were used to better balance the
spatial and temporal dimensions, which may have hid-
den the presence of atrophy in smaller areas. This is

even more important for the brainstem, where specific
nuclei have been reported to be impacted by neuro-
degeneration and pathology in iRBD.56–58 Another limi-
tation of the study is the combination of patients from
different centres including distinct imaging and acqui-
sition protocols. However, we performed our analyses
on imaging data that were harmonised for the effect of
imaging site using NeuroComBAT. All DLB and PD
diagnoses were made clinically and not confirmed at
post-mortem; thus, some degree of misdiagnosis cannot
be excluded, for example, with Alzheimer’s disease.
Furthermore, patients with DLB were also not
polysomnography-proven to have RBD, although RBD is
highly prevalent in DLB (70–90% of patients) and is a
core clinical feature in the diagnosis.22 As RBD is less
common in PD (25–58%),59 we explicitly included pa-
tients with PD-pRBD. We did not additionally include
patients with PD and dementia (PDD), since any patient
with PD-RBD who develops dementia meets diagnostic
criteria for DLB.22 In order to harmonise clinical data,
MMSE scores were converted to estimated MoCA scores
in a subset of participants, which may limit the inter-
pretation of cognitive function since the MMSE is less
sensitive to mild cognitive impairment.37 However, the
majority of such conversions involved those with DLB,
who meet criteria for dementia by definition. Finally,
due to limitations on available MRI studies, we were not
able to verify subtyping patterns using an independent
replication sample set; however, to our knowledge, our
primary analysis has used by far the largest sample size
of prodromal synucleinopathy MRIs assembled to date.
The strength of this study from a generalisability
perspective is that it reflects the combined experience of
11 international study centres and used controls from
each. What limits the generalisability is the fact
that most study subjects were Caucasian, and all study
centres were in relatively higher-income countries,
which is a common issue in prospective studies of this
nature.

In conclusion, we demonstrate data-driven evidence
for the existence of two atrophy progression subtypes in
iRBD. The cortical-first subtype was associated with a
greater likelihood of DLB over time in iRBD, while both
the cortical- and subcortical-first subtypes were associ-
ated with increasing parkinsonian motor features over
time. The accurate identification and staging of patients
with iRBD may have important implications for tracking
disease progression.
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