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Abstract

INTRODUCTION: Monoclonal anti-amyloid therapies are now accessible, but how

these treatments influence changes within the brain is still not clear. We investigated

overall and regional change in amyloid removal, glucose metabolism, and atrophy in

trial participants with dominantly inherited Alzheimer’s disease (DIAD).

METHODS: In the DIAN-TU-001 trial, 92 carriers received gantenerumab or

placebo and underwent serial neuroimaging assessments including [11C]-Pittsburgh

compound-B (PiB) positron emission tomography (PET), [18F]-fluoro-2-deoxyglucose

(FDG) PET, andmagnetic resonance imaging (MRI).

RESULTS: Gantenerumab significantly reduced PiB-PET uptake overall and in most

regions and showed no changes in FDG-PET or MRI measures. Drug effects were

associated with baseline PiB-PET uptake, and the largest effects occurred in medial

regions.
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DISCUSSION: Treated DIAD participants, and especially those with higher amyloid

burden, showed a decrease in PiB-PET uptake, which was more pronounced in the

basal ganglia andmedial frontal structures. These results may inform patient response

and future drug trial design.
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Highlights

∙ Gantenerumab unevenly decreasedAβ burden asmeasured byPiB-PET across brain

regions.

∙ The strongest decrease in PiB-PET uptake was in basal ganglia and medial frontal

structures.

∙ Variable drug effect on Aβ was partly due to the amount of burden present before

treatment.

∙ There was no regional effect on FDG-PET metabolism or MRI volumetrics after 4

years.

1 INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder

with a decades-long cascade of pathological changes preceding the

onset of clinical symptoms. The formation of extracellular amyloid beta

(Aβ) plaques is hypothesized to initiate destructive cellular processes

that culminate in widespread neuronal dysfunction and the buildup of

neurofibrillary tangles (NFTs), primarily composed of hyperphospho-

rylated tau protein.1,2 To date, clinical trials have focused primarily

on Aβ-lowering therapies, given the prominence of Aβ early in the

disease.3–5 The primary approaches to lowering Aβ have been either

the use of drugs that alter β-site amyloid precursor protein cleavage

(BACE inhibitors6–9) or monoclonal antibody therapies that recog-

nize monomeric (e.g., solanezumab10,11) or aggregated forms of Aβ
(e.g., gantenerumab12–14). Despite initial promise, these trials mostly

failed to meet their primary clinical endpoints unless amyloid was

fully removed at an early stage of disease.15,16 Possible reasons for

failure include targeting the wrong protein aggregate, poor target

engagement, inadequate or poorly optimized dosing, the influence of

comorbidities in trial populations, and targeting individuals too late in

the disease course.17–20

Dominantly inherited Alzheimer’s disease (DIAD) is a rare form of

AD caused by mutations in either the presenilin-1 (PSEN1), presenilin-

2 (PSEN2), or amyloid precursor protein (APP) genes. In DIAD, age of

symptomatic onset is heritable and highly predictable andmakesDIAD

a powerful model to study the pathogenesis and progression of AD.21

Research with DIAD participants has shown that Aβ concentrations

become abnormal decades before the onset of cognitive impairment

and that there are sequential downstream changes in tau phosphory-

lation, brain metabolism, structural declines in gray and white matter,

and the formation of NFTs.22–27

The dominantly inherited Alzheimer network (DIAN) launched an

observational study of DIAD in 2008,28,29 and the DIAN trials unit

(TU) was established in 2012 as a public-private collaboration.30–32

The first trial (DIAN-TU-001) was launched in 2012 in asymptomatic

and mildly symptomatic individuals to test the monoclonal Aβ anti-

body gantenerumab to abrogate disease progression in patients with

DIAD.32 The trial initially had a 2-year biomarker endpoint that transi-

tioned to a 4-year treatment trial with a cognitive endpoint. Although

the trial did not meet its cognitive endpoints within its 4-year scope,

theadministrationof gantenerumab lowered levels of cerebralAβmea-

sured using 11C-Pittsburgh compound B (11C-PiB) positron emission

tomography (PET).33 The observed longitudinal changes in volumet-

ric estimates from MRI and brain metabolism assessed with FDG PET

were not significantly different between placebo and drug arms when

using the a priori defined summary measures, although significant

reductions in cerebrospinal fluid (CSF) total tau and phosphorylated

tau181 (p-tau181), and slowed increases in CSF neurofilament light

chain (NfL) concentrations were observed in the gantenerumab group

relative to placebo.33

Gantenerumab is a fully humanmonoclonal antibody that binds and

removes aggregated Aβ by Fc receptor-mediated phagocytosis.34,35

Early trials in patients with late-onset, sporadic AD found significant

dose-dependent reductions in Aβ tracer uptake in participants receiv-
ing gantenerumab, assessed using florbetapir PET.13,14 A substudy of

participants enrolled in the open-label extension of these trials with

titration schedules up to 1200 mg every 4 weeks showed mean Aβ
reduction levels of 90.3Centiloids in the treatment-naïve group and57
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and 74.9 Centiloids for the previously treated groups at Year 3. These

reductions resulted in 80% of participants having values below the

amyloidpositivity threshold.14 The initial analysesof theDIAN-TU-001

data33 looked only at prespecified summary neuroimaging variables

and did not account for regional heterogeneity. There is an urgent

need to understand what impact anti-amyloid treatments have on Aβ
plaques, glucose metabolism, and cortical atrophy in distinct regions

of the brain to inform future drug trials and treatment plan design.

Recognizing this, we aimed to assess how regional analysis of amyloid

removal, glucose metabolism, and atrophy in the DIAN-TU-001 trial

informed overall conclusions of 4-year gantenerumab treatment.

2 MATERIALS AND METHODS

2.1 Participants

All datawere collected during theDIAN-TU-001 trial (trial registration

number: NCT01760005). Two hundred eleven participants were

referred to DIAN-TU-001 from DIAN observational (DIAN-OBS),

DIAN Expanded Registry, DIAN-TU, and partner sites. Eligibility

criteria included participants known to have or to be at risk of a DIAD

mutation, to be between15years before to 10 years after the expected

age of symptom onset (EYO), and to have received a Clinical Dementia

Rating (CDR) of 0 (cognitively normal) or 0.5 to 1 (early symptomatic

cognitive impairment).36 Previously published demographics of this

trial cohort33 (see also Table 1) show that, although amyloid positivity

was not explicitly part of the inclusion criteria, the vast majority of

participants were amyloid positive at baseline due to the EYO range

and mutation carrier status requirements. Participants could choose

to remain blinded to theirmutation status; mutation non-carriers were

assigned to placebo groups. DIAD mutation carriers were randomized

3:1 to active or placebowith aminimization procedure.31,32,37 All study

participants, personnel, and sponsorswere blinded to active or placebo

assignment. Data from participants in the DIAN-OBS study who met

the DIAN-TU inclusion criteria were used to represent natural history

controls for improved estimates of the placebo group. The DIAN-OBS

and DIAN-TU studies have similar monitoring protocols, including cog-

nitive, clinical, imaging, and biomarker measures. Statistical evaluation

of characteristics for all participants is provided in Table 1.

2.2 Study design

DIAN-TU-001 was conducted at 25 sites in seven countries, from

December 2012 through November 2019. Investigators are listed in

the supplementary information. Cognitive outcomes were assessed

every 6months, clinical outcomes annually, and biomarkers at baseline

and at Years 1, 2, and 4. A common close design ensured double-

blind treatment continued for all participants until the last participant

reached 4 years. Based on the results of concurrent phase 2 and 3 trials

in sporadic AD,13,14,38 target drug doseswere increased approximately

midway or later through the study. Gantenerumab was increased from

225mg (subcutaneously, every 4weeks) to 1200mg in 2016.33

RESEARCH INCONTEXT

1. Systematic review: The literature was reviewed using

PubMed and appropriately cited trial studies of anti-

amyloid immunotherapies. Gantenerumab, a monoclonal

antibody targeting fibrillar Aβ, engaged its target. The pri-
mary imaging endpoint of global Aβ removal, estimated

with PiB-PET, was reached in DIAD.

2. Interpretation: We observed regional variability in Aβ
plaque removal by gantenerumab in DIAD participants.

PiB-PET signal was most strongly reduced in basal gan-

glia and medial frontal structures, suggesting a regional

susceptibility to Aβ plaque removal. For each region, this

susceptibility was associated with the Aβ burden present
before treatment. Removal of Aβ plaques did not influ-

ence measures of brain metabolism or cortical atrophy,

suggesting the need for a longermonitoring timeframe or

larger effect.

3. Future directions: This study demonstrates regional vari-

ability in drug effect of an anti-amyloid agent inDIAD and

provides insights into the design of future clinical trials.

Some participant dropout was observed over the course of the trial

(Table 2). This can be attributed mainly to (1) participant dropout due

to pathology advancement and (2) data loss due to rigorous imaging

quality control measures.While themodeling strategy used attempted

to account for this asymmetrical dropout, its potential effects on these

results must be noted.

2.3 Imaging methods

Magnetic resonance imaging (MRI) was performed using the

Alzheimer’s Disease Neuroimaging Initiative protocol. T1-weighted

images (1.1 × 1.1 × 1.2 mm voxels) were acquired for all participants

on a 3T MRI scanner. The DIAN MRI and PET quality control (QC)

cores screened images for protocol compliance, imaging artifacts, and

amyloid-related imaging abnormalities.39 Volumetric segmentation

and cortical surface reconstruction were completed using FreeSurfer

version 5.3 to define cortical and subcortical regions of interest

(ROIs).40,41 Segmentations and surface reconstructions were visually

inspected by members of the DIAN-TU Imaging Core and edited when

needed. Subcortical volumes were corrected for intracranial volume

using a regression approach.42 Cortical thicknesses and subcortical

volumes were summed across hemispheres.

ROIs defined by FreeSurfer on the MRI scans were used for the

regional processing of all PET data. Aβ PET imaging was performed

using 11C-PiB, and 18F-fluorodeoxyglucose (FDG)PET imagingwasuti-

lized as a marker of brain metabolism. Scans were processed using

the PET Unified Pipeline (https://github.com/ysu001/PUP) that uti-

lizes the ROIs defined by FreeSurfer. PiB PET data from the 40- to
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TABLE 1 Baseline participant characteristics.

Active gan-

tenerumab Placebo

N 52 40

Age (mean± SD, years) 46.0 ± 10.8 44.2 ± 9.6

Female, n (%) 21 (40) 22 (55)

APPmutation carrier, n (%) 6 (12) 5 (13)

PSEN1mutation carrier, n (%) 43 (83) 32 (80)

PSEN2mutation carrier, n (%) 3 (6) 3 (8)

APOE ε4 carrier, n (%) 16 (31) 13 (32)

EYO (mean± SD, years) −3.5 ± 7.1 −3.5 ± 7.6

CDR 0, n (%) 31 (60) 22 (55)

CDR 0.5, n (%) 15 (29) 15 (38)

CDR 1, n (%) 6 (12) 3 (8)

CDR-SB (mean± SD) 1.33 ± 2.08 1.43 ± 1.87

Digit symbol (mean± SD) 46.96 ± 20.56 46.63 ± 19.12

MMSE (mean± SD) 27.10 ± 3.45 26.68 ± 3.97

Logical memory (mean± SD) 9.90 ± 6.33 9.40 ± 6.45

ISLT (mean± SD) 5.96 ± 4.04 5.80 ± 4.42

Aβ burden (mean± SD,

PiB-PET composite SUVR)

2.64 ± 1.23 2.62 ± 1.20

Aβ burden (mean± SD,

Centiloid units)

64.75 ± 51.87 63.97 ± 49.46

Abbreviations: APOE ε4, apolipoprotein E allele ɛ4; CDR, Clinical Demen-

tia Rating; CDR-SB, Clinical Dementia Rating Sum of Boxes; EYO, estimated

years to symptomonset; ISLT, International Shopping List Test;MMSE,Mini-

Mental State Examination; PET, positron emission tomography; PiB, Pitts-

burgh compound B; SD, standard deviation; SUVR, standardized uptake

value ratio.

TABLE 2 Longitudinal participant data totals for each
neuroimagingmodality.

Modality Baseline Year 1 Year 2 Year 4

PIB PET

Gantenerumab 51 48 (5.8) 44 (13.7) 35 (31.3)

Placebo 40 37 (7.5) 34 (15) 26 (35)

FDGPET

Gantenerumab 49 48 (2) 43 (12.2) 38 (22.4)

Placebo 35 35 (0) 30 (14.3) 25 (28.6)

MRI

Gantenerumab 52 52 (0) 48 (7.7) 40 (23.1)

Placebo 40 40 (0) 36 (10) 31 (22.5)

Note: Data represents the total number of scans used for analysis in each

modality at baseline, Year 1, Year 2, and Year 4, respectively. Numbers in

parentheses denote the percentage of dropout relative to baseline at each

time point. Dropout in this trial occurred for two main reasons: (1) advanc-

ing pathology of participants coupled with relatively high patient burden of

PET imaging and (2) quality control failures during rigorous review.

Abbreviations: FDG, [18F]-Fluoro-2-deoxyglucose; MRI, magnetic reso-

nance imaging; PET, positron emission tomography.

70-min post-injection window and FDG data from the 40- to 60-

min post-injection window were converted to standardized uptake

value ratios (SUVRs) using cerebellar gray matter as the reference

region.43 Data were partial volume corrected using a geometric trans-

fer matrix approach.43,44 A composite to represent a global measure

of Aβ was calculated using the averaged SUVR values in the lateral

orbitofrontal, medial orbitofrontal, precuneus, rostral middle frontal,

superior frontal, superior temporal, andmiddle temporal regions.

Voxel-wise mean SUVR images were generated by spatial normaliz-

ing participant images onto fsaverage inMNI space and calculating the

arithmetic mean at each voxel for each group. The voxel-wise results

were then surface-normal projected onto the atlas pial surface for

visualization.

2.4 Statistical analysis

Methods used to predetermine sample sizes and assign participants

to arms were detailed in previous trial publications.31,33 Linear Mixed

Effects version 4 (Lme4) models were constructed in R version 4.1.0

using the lme4 package.45 Model equations were structured as follows

in pseudocode:

Imaging variable ≈ baseline age + sex + apoe4 + baseline CDR +
drug arm + baseline EYO + time in study + (drug arm × baseline EYO)

+ (drug arm × time in study)+ (time in study | subject)

Random subject intercepts and slopes were included to accommo-

date individual variation. Models were performed with an unstruc-

tured covariance matrix to account for potential dependencies in

longitudinal measurements. Models were constructed for the global

summary measure of Aβ as well as for regional estimates of PiB, FDG,

and structural MRI. False discovery rate (FDR) correction was used for

multiple comparisons correction on regional analyses, with statistical

significance for all analyses set at a corrected p < .05. Regional anal-

yses and brainmaps utilized the beta weight of the drug arm × time

in study two-way interaction term from LME models to quantify the

estimated longitudinal effect of gantenerumab use on imaging vari-

ables. An additional set of LME models was constructed identically

except for a three-way interaction term (drug arm× baseline EYO× time

in study) being included. This set of models was designed to test for

potential changes in observed longitudinal drug effects as a function of

disease state. Correlations of regional imaging variables with regional

estimated drug effect beta weights were performed using a Pearson

correlation.

3 RESULTS

DIAD mutation carriers were randomized 3:1 to gantenerumab or

placebo drug arms with a robust minimization procedure37 as pre-

viously described.31,33 This procedure minimized between-group dif-

ferences at baseline in all relevant participant statistics, including

genetic, cognitive, imaging, and disease state categories (Table 1). At

baseline, 58% of participants were considered cognitively unimpaired
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(A) (B)

(C) (D) year

year

F IGURE 1 Voxel-wise mean PiB PET SUVR levels in 4-year completer participants by drug status. Voxel-wise mean PiB PET SUVR levels
across the subset of participants who completed the 4-year trial course at (A) baseline (Year 0) in drug group, (B) Year 4 in drug group, (C) baseline
(Year 0) in placebo group, and (D) Year 4 in placebo group. To visualize voxel-wise results, non-partial-volume-corrected data were used. PET,
positron emission tomography; PiB, Pittsburgh compound B; SUVR, standardized uptake value ratio.

(CDR 0) and 42% of participants were considered cognitively impaired

(CDR > 0). Baseline mean amyloid burden across the groups was 64

Centiloids, with a wide standard deviation reflecting a large within-

group diversity of disease states while maintaining between-group

integrity (Table 1).

Analysis on the subset of participants who completed the entire 4-

year trial course resulted in a reduction of average mean cortical PiB

PET signal from 2.49 SUVR (64.6 Centiloids) at baseline to 2.09 SUVR

(46.6 Centiloids) at Year 4 in the gantenerumab group, as opposed

to a rise from 2.27 SUVR (54.2 Centiloids) at baseline to 2.61 SUVR

(70.0 Centiloids) at Year 4 in the placebo group. Figure 1 illustrates the

voxel-wise cortical PiB PET SUVR values in gantenerumab and placebo

groups in trial completers using non-partial-volume-corrected data.

LME model analysis on the entire trial dataset revealed that

treatment with gantenerumab significantly reduced the longitudinal

increase of mean cortical PiB PET signal (β = −0.15, SE = 0.026,

df = 71.26, t = −5.88, p(fdr) = 4.6810
−07 [benefit is neg.]) relative to the

placebo group (Table 2). Additionally, gantenerumab treatment signif-

icantly reduced longitudinal PiB PET in 32 of 34 cortical and seven

of nine subcortical regions examined (Table 3). The effect strength

of gantenerumab on longitudinal PiB PET values varied considerably,

with the most significant effects seen in the dorsal striatum (caudate

β=−0.35, SE=0.045,df=77.03, t=−7.91, p(fdr)=3.3910
−10; putamen

β = −0.28, SE = 0.035, df = 77.02, t = −8.04, p(fdr) = 3.3910
−10), thala-

mus (β = −0.17, SE = 0.024, df = 82.17, t = −6.92, p(fdr) = 1.3110
−08),

anterior cingulate (rostral anterior cingulate β = −0.23, SE = 0.034,

df = 69.47, t = −6.89, p(fdr) = 1.9010
−08; caudal anterior cingulate

β = −0.23, SE = 0.034, df = 69.20, t = −6.88, p(fdr) = 1.9010
−08), and

medial orbitofrontal (β = −0.21, SE = 0.033, df = 77.46, t = −6.34,
p(fdr)= 1.0210-

07) regions (Table 3, Figures 2A and 3).

Many of the regionswith high drug effects also displayed prominent

baseline PiB PET signals, although posterior cortical structures with

prominent baseline PiB PET signals showed noticeably smaller, but still

significant, drug effects (precuneus β = −0.16, SE = 0.031, df = 70.19,

t=−5.27, p(fdr)= 4.0010
−06; posterior cingulate β=−0.17, SE= 0.032,

df = 63.47, t = −5.26, p(fdr) = 4.6010
−06; isthmus cingulate β = −0.11,

SE= 0.023, df= 65.77, t=−4.75, p(fdr)= 2.0810
−05) (Figures 2B and 3).

Figure 3 corroborates the regional model results by showing baseline

normalized end-of-trial PiB PET SUVR values for four key regions dis-

playing a large variance in beta weight values of the drug × timemodel

component (Figure 3). A direct correlation between regional estimated

drug effect values to regional baseline estimates of pathology revealed

a Pearson correlation of r(43) = 0.75, p = 210
−08, with several subcor-

tical structures having outsized model beta weights relative to their

baseline PiB PET levels (Figure 2C). No statistically significant differ-

ences between gantenerumab and placebo arms were found in the

regional analyses for PiB when applying the three-way interaction

(Table S1). Although biomarker changes in FDG and MRI metrics were

observed over the course of the trial consistentwith established yearly

changes in these biomarkers at early preclinical stage of the disease,33

no significant differences were found in any regional analysis between

gantenerumab and placebo arms in FDG and MRI (Tables S2, S3a, and

S3b).

4 DISCUSSION

Top-line results from the DIAN-TU-001 trial demonstrated a signifi-

cant effect of gantenerumabonglobalAβ load clearance.33 The current
analyses establish that the estimated efficacy of gantenerumab was
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TABLE 3 Regional LMEmodel outputs for drug arm × time in studymodel component.

Region name Component estimate (β) Standard error Degrees of freedom t value FDR p value

Summarymetric models

Mean cortical −0.15 0.02 71.08 −5.87 1.28E-07

Subcortical regionmodels

Caudate −0.35 0.04 77.03 −7.91 3.39E-10

Putamen −0.28 0.04 77.02 −8.05 3.39E-10

Thalamus −0.17 0.02 82.17 −6.92 1.31E-08

Nucleus accumbens −0.28 0.05 71.78 −5.76 6.15E-07

Pallidum −0.10 0.02 79.21 −4.58 2.85E-05

Ventral diencephalon −0.03 0.01 85.46 −2.31 2.65E-02

Hippocampus −0.01 0.01 229.06 −2.06 4.47E-02

Amygdala −0.02 0.01 74.59 −1.57 1.26E-01

Brainstem −0.01 0.01 81.00 −1.20 2.39E-01

Cortical regionsmodels

Rostral anterior cingulate −0.23 0.03 69.47 −6.89 1.90E-08

Caudal anterior cingulate −0.23 0.03 69.20 −6.88 1.90E-08

Medial orbitofrontal −0.21 0.03 77.45 −6.34 1.02E-07

Paracentral −0.18 0.03 78.56 −6.09 2.10E-07

Insula −0.11 0.02 78.47 −6.07 2.10E-07

Parahippocampal −0.08 0.01 77.39 −6.12 2.10E-07

Lateral orbitofrontal −0.15 0.03 77.63 −5.90 3.93E-07

Superior frontal −0.17 0.03 73.57 −5.80 5.78E-07

Superior temporal −0.13 0.02 69.54 −5.80 6.01E-07

Transverse temporal −0.18 0.03 71.57 −5.34 3.11E-06

Precuneus −0.16 0.03 70.19 −5.27 4.00E-06

Posterior cingulate −0.17 0.03 63.47 −5.26 4.60E-06

Banks of the superior temporal sulcus −0.16 0.03 59.43 −5.25 5.15E-06

Pars opercularis −0.15 0.03 66.72 −5.15 5.68E-06

Precentral −0.10 0.02 78.19 −5.00 7.51E-06

Supramarginal −0.13 0.03 60.01 −4.94 1.32E-05

Fusiform −0.09 0.02 63.26 −4.92 1.32E-05

Pars orbitalis −0.15 0.03 63.95 −4.87 1.49E-05

Isthmus cingulate −0.11 0.02 65.77 −4.75 2.08E-05

Pars triangularis −0.15 0.03 59.63 −4.76 2.24E-05

Temporal pole −0.06 0.01 72.32 −4.58 3.12E-05

Superior parietal −0.13 0.03 59.62 −4.59 3.73E-05

Postcentral −0.11 0.02 65.39 −4.52 4.07E-05

Inferior temporal −0.10 0.02 55.45 −4.39 7.56E-05

Pericalcarine −0.13 0.03 67.16 −4.30 8.04E-05

Middle temporal −0.11 0.02 57.28 −4.30 9.38E-05

Rostral middle frontal −0.15 0.04 63.10 −4.21 1.12E-04

Caudal middle frontal −0.12 0.03 65.76 −4.16 1.21E-04

Frontal pole −0.17 0.04 56.98 −3.91 3.13E-04

Inferior parietal −0.11 0.03 49.65 −3.52 1.14E-03

Lingual −0.04 0.01 63.02 −2.79 8.27E-03

Cuneus −0.05 0.02 48.30 −2.80 8.41E-03

(Continues)
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TABLE 3 (Continued)

Region name Component estimate (β) Standard error Degrees of freedom t value FDR p value

Entorhinal cortex −0.02 0.01 65.89 −1.82 7.79E-02

Lateral occipital −0.03 0.03 34.52 −0.96 3.42E-01

Note: Component estimates (β weights) represent the total effect of the predictor variable on longitudinal regional PiB PET signal over the trial period.

Significant p values after false discovery rate (FDR) correction are in bold.

(A) (C)

(B)

Estimated drug effect

Mean baseline PiB

A-B correlation

F IGURE 2 Regional differences in estimated drug effect on PiB PET signal levels. (A) Regional linear mixed-effects models were used to
estimate effect of longitudinal gantenerumab use on PiB PET signal. Regional PiB PET signal was dependent variable, with fixed-effects covariates
age, sex, CDR, ApoE ε4 status, and drug × time interaction term, and subject-specific random slopes and intercepts weremodeled. (A) Beta weights
for drug × time interaction term are displayed. (B) Regional mean baseline PiB PET signal for trial participants. (C) Pearson correlation between
regional estimated drug-effect beta weights and baseline PiB PET pathology levels observed. Colors classify each region by spatial location in the
brain. ApoE, apolipoprotein E; CDR, Clinical Dementia Rating; PET, positron emission tomography; PiB, Pittsburgh compound B.

not homogenous across the brain but varied by region, with the

greatest effects observed in the dorsal striatum, thalamus, nucleus

accumbens, caudal anterior cingulate, rostral anterior cingulate, and

medial frontal regions (Table 3, Figures 2A and 3). Recognizing and

understanding what drives these spatial patterns is of high interest

to inform future clinical trials, as it may elucidate the way the drug is

behaving in the brain.

Amajor contributing factor to these regional differences is thebase-

line level of Aβ pathology in each region prior to drug administration,

as evident by the spatial similarity between the two (Figure 2A,B).

However, data presented here suggest this relationship does not fully

explain the regional differences in estimated drug effects (Figures 2C

and 3). In both sporadic AD and DIAD, posterior parietal regions are

one of the earliest regions to demonstrate Aβ deposition and reach

the highest levels of pathology accumulation.24,46 In DIAD, many par-

ticipants also show substantial buildup of Aβ in the dorsal striatum,

although to a lesser extent than in both parietal and medial frontal

regions.24,46,47 The current results show the greatest estimated drug

effect was seen in the dorsal striatum, thalamus, nucleus accumbens,

anterior cingulate, and medial frontal regions of the brain, with more

modest, albeit significant, effects in posterior parietal regions (Table 3,

Figure 2A). In particular, several subcortical structures showed rel-

atively high regional model beta weights relative to their baseline

amyloid pathology levels (Figure 2) and display larger average reduc-

tions in PiB PET SUVR values at end of trial relative to other regions

(Figures 2 and 3). This suggests that drug effects are not solely propor-

tional to baseline levels of amyloid pathology and are being influenced

by other factors.

Given that regional differences in uptake between Aβ tracers have
been documented in this cohort and that regional cortical rates of

change in 11C-PiB decreasedmore rapidly than 18F-Florbetapir in both

placebo and gantenerumab group,48 it is possible that some of this

relationship is due to the use of 11C-PiB as the tracer of choice. How-

ever, drug effects remained highly significant across both Aβ tracers

and recapitulated a very similar spatial pattern regardless of the tracer

used.48

The observed spatial pattern may be driven by a unique feature of

the DIAD cohort. Prior work has shown that Aβ accrual in the dorsal

striatum is a feature of DIAD as well as Down syndrome (associated

with triplication of APP)47 and is present, but at much lower levels,

in sporadic AD.49,50 This could explain why these regions have some

of the greatest reductions in the current analyses. However, evidence
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8 of 12 MCCULLOUGH ET AL.

F IGURE 3 PiB PET SUVR values for key estimated drug regions. Baseline normalized PiB PET SUVR values at end of trial (Year 4) for a
subcortical high estimated drug effect region (caudate), a cortical high estimated drug effect region (rostral anterior cingulate), a key region in
DIAD amyloid pathology (precuneus), and a cortical region withmuch lower estimated drug effect results (inferior parietal) are shown to
demonstrate region-specific amyloid clearance rates. Longitudinal mixed-effects model βweights and p values for each region are listed for
context. PET, positron emission tomography; PiB, Pittsburgh compound B; SUVR, standardized uptake value ratio.

from previous trials in sporadic AD using gantenerumab also showed

similar regional variability, with prominent regional reductions in Aβ in
the dorsal striatum, anterior cingulate, and medial frontal regions.14,38

The consistent spatial patterns suggest a commonmechanism.

If the pattern is not driven by the cohort, then it is likely tied to

properties of the specific regions. Previous research demonstrated

that blood flow levels varied regionally across the brain,51 and this

could cause different levels of drug delivery and, therefore, pathology

clearance. Additionally, it may not be overall blood flow that deter-

mines drug access, but rather blood-brain barrier (BBB) permeability.52

Anecdotal evidence fromclinical trials has showncaseswhere amyloid-

related imaging abnormalities were associated with a corresponding

local clearance of plaques interpreted as being due to increased drug

accessibility.34,53 Finally, there is evidence that lymphatic systems play

a role in regulating CSF flow in the brain.54 It may be that regional

exposure to the drug is modulated by both blood flow and subsequent

clearance from the brain.

Histopathological examinations have classified an array of different

plaque types occurring in the brain, potentially representing different

stages in the life cycle of plaque development,55–57 and this evo-

lution varies regionally in the brain.58 Pharmacodynamic studies of

gantenerumab show specific binding to fibrillar Aβ at sites on the

N-terminal and spatially adjacent central Aβ sequences.12,35 Thus, gan-
tenerumab may display a different affinity, and therefore a different

clearance rate, for each specific type of Aβ plaque depending upon the
availability of these binding sites. Such a phenomenonmay explainwhy

medial frontal regions and basal ganglia structures displayed higher

drug effects and parietal structures displayed lower estimated drug

effect levels, respectively, than their baseline levels of Aβ load would

suggest.

Althoughwe found significant reduction in PiBPET signal during the

4-year trial period, we found no evidence of significant drug effects

on the downstream imaging markers of FDG PET or MRI. Prior anal-

yses of cerebrospinal fluid during the trial did reveal decreases in

CSF total tau and p-tau181 levels and blunted increases in CSF NfL

levels,33 indicating at least some modification of neurodegeneration

processes. This lack of effect on these imaging measures could be due

to multiple causes. First, imaging measures specifically are known to

be aggregate measures that include prior damage; therefore, down-

stream effects take a longer time to become apparent.23–27 The 4-year
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MCCULLOUGH ET AL. 9 of 12

trial length, coupled with the dose escalation protocol mid-trial, meant

that participants only received the highest doses of gantenerumab

between Years 2 and 4.33 Marked increases in Aβ clearance were

observedduring this time, suggesting that evenmore significant effects

of gantenerumab could have been observed if higher doses had been

administered throughout the trial. Second, despite significant reduc-

tions, a large majority of participants still had abnormal levels of Aβ as
measured by both PiB PET signal andCSF. Itmay be onlywhen levels of

Aβ deposits are sufficiently reduced to normal levels or when enough

bulk amyloid has been removed from the brain that neurodegener-

ative markers substantially improve. Additionally, the relatively low

N of the trial, coupled with progressively losing some high-pathology

participants due to asymmetrical dropout, could negatively affect the

ability of this analysis to identify any biomarker changes beyond the

strongest effects. Finally, tau PET imaging was introduced late in the

trial, preventing us from relating amyloid reductions to this keymarker

of neurofibrillary pathology. The extension of the DIAN TU-001 into a

3-year open-label extension will address these key questions.

In conclusion, treatment with gantenerumab significantly reduced

global PiB PET signal in DIAD participants over a 4-year trial period.

This estimated drug effect was not ubiquitous across the brain but var-

ied regionally, with the highest levels of signal reduction in the dorsal

striatum, thalamus, nucleus accumbens, caudal anterior cingulate, ros-

tral anterior cingulate, and medial frontal regions. Regional variations

in PiB signal change were positively correlated with, but not solely

explained by, levels of baseline Aβ pathology present in each region.

Wedidnot findanyevidenceof improvement indownstreammetabolic

or neurodegeneration imaging biomarkers over the 4-year trial period.

These findings suggest that prolongeduseof gantenerumab is effective

in significantly reducing PiB PET signal, although futurework is needed

to evaluate whether reductions in Aβ can affect changes in clinical and
neurodegenerative trajectories.
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