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1.  INTRODUCTION

Spatial navigation is a fundamental ability for any mobile 
organism. A prominent feature of spatial navigation is 
that information about one’s position and orientation can 

typically be derived from a multitude of spatial cues, 

including static cues provided by the environment and 

dynamic self-motion cues. Despite the diversity of spatial 

information utilized, we usually perceive a unified spatial 
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ABSTRACT
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space during navigation. Therefore, a critical question is 
how a navigator synthesizes the array of spatial cues to 
construct a coherent spatial representation of the space. 
Understanding this cue unification process is paramount 
for unraveling the mechanisms governing the formation 
of cognitive maps, mental representations of space that 
enable flexible navigation behavior.

A major classification is made between landmarks and 
self-motion cues, two fundamental types of spatial infor-
mation for navigation (Etienne et  al., 1996). Navigation 
with self-motion cues—such as proprioceptive inputs, 
vestibular signals, and optic flow—requires continuous 
integration of self-movement to determine one’s location 
and direction, a process known as path integration 
(Etienne & Jeffery, 2004; Mittelstaedt & Mittelstaedt, 
1980). In contrast, landmarks are prominent environmen-
tal features that provide direct spatial information. It is 
frequently observed that navigation relying on self-motion 
cues and landmarks involves distinct cognitive pro-
cesses. For example, past studies have shown that vary-
ing the quality of landmarks (e.g., stability and richness) 
does not affect path integration performance in humans, 
and indicate that landmark-based navigation does not 
overshadow path integration (Chen et al., 2017). Similarly, 
in rodents, navigating with a beacon landmark does not 
overshadow the ability to return home with self-motion 
cues after food retrieval (Shettleworth & Sutton, 2005). 
This mutual independence of landmark-based navigation 
and path integration is in contrast to the strong competi-
tion usually observed between different types of environ-
mental cues (e.g., Cheng, 1986; Wilson & Alexander, 
2008). The relative independence of these two forms of 
navigation makes it particularly interesting to explore how 
they are unified to form coherent cognitive maps.

However, it remains uncertain whether landmarks and 
self-motion cues recruit distinct or common neural pro-
cesses in the brain. This question has been investigated in 
non-human animals in the hippocampus (Geva-Sagiv 
et  al., 2016; Markus et  al., 1995; Quirk et  al., 1990; 
Radvansky et al., 2021; to name a few) and the retrosplen-
ial cortex (RSC) (Mao et al., 2017, 2020), but the results 
have been inconsistent. In contrast, this question has 
rarely been examined in humans, despite a great number 
of behavioral studies on the interaction between different 
spatial cue types in human navigation (e.g., Newman & 
McNamara, 2022; Zhao & Warren, 2015). Two notable 
exceptions are the human fMRI studies conducted by 
Wolbers et  al. (2011) and Huffman and Ekstrom (2019), 
both of which have provided preliminary evidence for cue-
independent spatial representations in the human brain.

Recently, we investigated this question with memory-
based navigation tasks that dissociate the use of land-
marks and visual self-motion cues (i.e., optic flow). We 

required participants to retrieve memories of the same 
set of spatial locations using either cue type alone. We 
found that the right entorhinal cortex (EC) (Chen et  al., 
2019) and the bilateral RSC (Chen et al., 2024) encoded 
spatial locations for both landmarks and self-motion 
cues. Specifically, we observed fMRI adaptation (fMRIa), 
meaning brain activation changed as a function of spatial 
proximity between successively visited spatial locations. 
Furthermore, these fMRIa-based spatial representations 
were cue specific: in the right EC, different subregions 
encoded spatial relationships for landmarks and self-
motion cues (Chen et  al., 2019); in RSC, the voxel-to-
voxel pattern of adaptation was distinct between these 
two cue types (Chen et al., 2024).

Besides the fMRIa analysis, representational similarity 
analysis (RSA)—a variant of multi-voxel pattern analysis 
(MVPA)—can also be utilized to examine neural represen-
tations. The rationale behind RSA is that the representa-
tional similarity between two stimuli, as indexed by the 
similarity between their multi-voxel activation patterns, is 
proportional to their similarity, such as in the stimulus 
space (Kriegeskorte et al., 2008). Here, we speculate that 
RSA, when combined with the fMRIa analysis, can be 
leveraged to investigate the cue unification question in 
spatial navigation for the following two reasons.

First, RSA can potentially reveal neural representa-
tions of spatial relationships among locations. While 
most RSA studies operate on the assumption that neural 
similarity corresponds to perceptual or conceptual simi-
larities (e.g., Drucker & Aguirre, 2009; Hatfield et  al., 
2016), RSA-based coding of spatial distance has been 
demonstrated in RSC (Peer & Epstein, 2021) and related 
regions, including the hippocampus (Deuker et al., 2016; 
Nielson et  al., 2015) and occipital place area (Peer & 
Epstein, 2021). Accordingly, we expect that the RSA 
approach could capture spatial relationships among 
locations in regions such as EC and RSC, where closer 
locations exhibit greater representational similarity. In 
this sense, the RSA approach shares the basic rationale 
in assessing neural coding of spatial information with the 
fMRIa approach, with the key difference being how neu-
ral distance between spatial locations is measured 
(Aguirre, 2007).

Second, RSA can potentially reveal cue-independent 
spatial representations by transcending lower level phys-
ical properties of stimuli. Many studies have shown that 
the fMRIa and MVPA approaches often yield inconsistent 
results, leading to the emerging consensus that they 
interrogate different aspects of the underlying neuronal 
computations. Specifically, fMRIa-based coding is sensi-
tive to low-level physical properties of stimuli (Epstein 
et al., 2003; O’Connell et al., 2018; Xu et al., 2007), which 
resonates with our prior findings that fMRIa-based spatial 
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representations are cue specific in both the right EC and 
bilateral RSC. On the contrary, MVPA-based coding tends 
to reflect higher level abstract representations linked to 
participants’ behavior (Hatfield et al., 2016; Walther et al., 
2009; Williams et al., 2007). Accordingly, applying RSA to 
our existing data might reveal cue-independent spatial 
representations: RSA-based coding could capture 
abstract features (i.e., spatial locations) that remain invari-
ant to lower level stimulus properties (i.e., specific spatial 
cues), aligning with the requirement of retrieving memo-
ries for the same locations regardless of the specific cue 
type present in our tasks (Chen et al., 2019, 2024).

Given the complementary relationship between the 
fMRIa and RSA approaches, the simultaneous applica-
tion of both methods can allow for a more comprehen-
sive understanding of the neural operations underpinning 
the cue unification process during spatial navigation. 
Furthermore, when a brain region exhibits both fMRIa- 
and RSA-based neural representations, a detailed exam-
ination of their relationships can provide in-depth insights 
into the underlying intricate neural computations, thereby 
going beyond the mere assertion that the brain region 
houses neural representations for a certain cognitive 
variable. For example, Mattar et al. (2018) applied both 
the fMRIa and RSA approaches to investigate object 
representations in the lateral occipital complex (LOC). 
LOC exhibited both fMRIa- and RSA-based neural cod-
ing for objects, and voxels exhibiting stronger fMRIa-
based coding also demonstrated stronger RSA-based 
coding for objects. These findings support the long-
standing hypothesis that neuronal adaptation enhances 
the representational distinctiveness of different stimuli, 
thereby improving discrimination performance (Barlow & 
Földiàgk, 1989).

Here, we aimed to obtain a more complete under-
standing of how the brain supports the cue unification 
process during spatial navigation, by investigating RSA 
effects using the same fMRI datasets that we previously 
used for the fMRIa analysis. Both of our prior studies 
contrasted landmarks versus visual self-motion cues in 
a desktop virtual reality environment. Since the experi-
mental trials were counterbalanced to control for carry-
over effects (Aguirre, 2007; Aguirre et  al., 2011), we 
were able to investigate RSA effects in addition to 
fMRIa effects using the same datasets. To approach a 
mechanistic understanding of the underlying neural 
operations, we focused our analyses on the right ento-
rhinal subregions and the bilateral RSC, which had 
shown fMRIa effects (Chen et al., 2019, 2024) and may, 
therefore, be involved in the cue unification process. 
Comparing neural representations between the two 
approaches in the same brain regions enabled us to 
move beyond merely using RSA to detect spatial repre-

sentations that might have been missed in our previous 
fMRIa investigations.

To preview, although we did not observe concurrent 
RSA effects in the right entorhinal subregions, we 
observed them in RSC for both landmarks and self-
motion cues. Furthermore, in RSC, RSA-based spatial 
representations exhibited opposite properties to those 
based on fMRIa: while fMRIa-based representations 
reflected the actual stimulus (i.e., location actually occu-
pied by the participant) and were cue specific (Chen 
et  al., 2024), RSA-based representations reflected the 
behavior (i.e., location reported by the participant) and 
were cue independent. Finally, RSA and fMRIa effects 
were dissociated anatomically, with voxels higher in 
fMRIa effects not necessarily contributing more to RSA 
effects than those lower in fMRIa effects. Collectively, our 
findings demonstrate that RSC contains concurrent cue-
specific and cue-independent spatial representations, 
suggesting that this region plays a critical role in incorpo-
rating diverse spatial cues into a unified cognitive map to 
support navigation behavior.

2.  METHODS

Regarding our first ultra-high field fMRI study (Chen et al., 
2019), because we did not observe simultaneous RSA 
effects in the right entorhinal subregions (Supplementary 
Information, Section 2.1), for brevity purpose, we do not 
describe the methods of this study here. Readers can 
refer to our previous publication.

Regarding our second ultra-high-field fMRI study 
(Chen et  al., 2024), we observed simultaneous RSA 
effects in the RSC, alongside the previously reported 
fMRIa effects. Therefore, in the forthcoming paragraphs 
of this section, we will present a succinct overview of the 
materials and methods, as these contents have already 
been described in detail in our previous report.

2.1.  Participants

Twenty healthy adults from the Magdeburg community 
participated in this study (10 male; mean age = 25.35 years, 
standard deviation of age = 3.91 years). All participants 
were right handed, possessed normal or corrected-to-
normal vision, and had no history of neurological dis-
eases. Three additional participants underwent testing 
but were excluded from data analysis either due to drop-
ping out during the experiment or due to technical prob-
lems corrupting the fMRI data. Informed consent was 
obtained from all participants prior to the experiment, 
and they received monetary compensation upon comple-
tion. The Ethics Committee of the University of Magde-
burg approved the experiment.
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2.2.  Stimuli and navigation task

Participants undertook a spatial localization task within 
virtual environments generated using Worldviz 5.0 
(https://www​.worldviz​.com). Two virtual settings, city and 
nature (see Fig. 1a), with distinct background views and 
ground textures were utilized. Both environments fea-
tured a linear track covered in the same texture but pre-
sented in different colors. The linear tracks shared an 
identical object configuration, with three arrows and a 
tree placed along the track layout. The arrows and tree 
were identical but rendered in different colors in each 
environment. In between the arrows and the tree were 
four balls of varying colors placed at evenly spaced loca-
tions along the linear track, each separated by intervals 
of 4 m. To further differentiate between the environments, 
the order of the four balls was reversed along the track.

2.2.1.  Learning task

The purpose of the learning task was to allow partici-
pants acquire memories of the four test locations. This 
task was not accompanied by functional scanning. Par-
ticipants used a joystick to navigate around in the virtual 
environments and give responses. Participants were 
trained to learn four test locations that were evenly 
spaced on the linear track (Fig. 1a). Four balls of different 
colors were positioned at the four test locations. Partici-
pants needed to remember the colors of the balls associ-
ated with the test locations (see the video—the part 
“LEARNING”).

2.2.2.  Test task: Location identification task

Location identification was the focus of the test task. This 
task was accompanied by functional scanning, which 
was used to assess neural representations of the four 
test locations. The trial timeline is illustrated in Figure 1b. 
In each trial, participants were transported passively to 
one of the four test locations, stayed for 4 seconds, and 
were required to recall the color of the invisible ball at that 
location. The starting position of passive movement was 
randomly sampled from a uniform distribution ranging 
from -18 to -4 m on a trial-by-trial basis. This randomiza-
tion of the starting position dissociated path length and 
allocentric position of the test location to a certain degree 
in each cue condition.

The task dissociated self-motion cues and landmark 
cues, following a similar approach to established behav-
ioral paradigms (Bates & Wolbers, 2014; Chen et  al., 
2017; Nardini et al., 2008). Cue dissociation was imple-
mented in both the nature and city environments. In the 
self-motion condition, both arrows and linear track tex-

ture were visible, allowing participants to use arrows as 
an anchor for path integration based on optic flow. Land-
marks were not visible to eliminate landmark-based nav-
igation. To prevent association of test locations with 
isolated ground features, the textures of the linear track 
and floor outside of it were randomly shifted along the 
track’s long dimension from trial to trial, following a uni-
form distribution UD(-50 vm, 50 vm).

Conversely, in the landmark condition, the landmark 
was visible, enabling participants to rely on it for localiza-
tion. To eliminate path integration, arrows were invisible, 
and the ground of the linear track remained blank to 
remove texture information. Although peripheral optical 
flow from the floor texture outside of the linear track was 
present, the randomized starting position of passive 
movement and the invisibility of the anchoring point for 
path integration (i.e., arrows) prevented participants from 
performing path integration to solve the task. This cue 
manipulation in the landmark condition is akin to the dis-
orientation manipulation typically used to eliminate self-
motion information in spatial navigation studies (Cheng, 
1986; Sutton et al., 2010).

Note that in the landmark condition, subjects could 
theoretically use the landmark as a distal anchoring point 
for path integration. However, because the landmark was 
located far from the starting position of movement, any 
anchoring information it provided would be very impre-
cise, thereby limiting the usefulness of the path integra-
tion strategy. This limitation existed even when the floor 
outside of the track was textured.

In the response phase, the order of the four screen 
options was randomized across trials, and a randomly 
chosen option was highlighted as the initial answer. Par-
ticipants used a specific button on the joystick to loop 
through options, preventing any fixed associations 
between test location choices and screen positions or 
consistent joystick movements. Movement speed was 
randomly sampled from a uniform distribution ranging 
from 2 to 5 m/s on a trial-by-trial basis. Accuracy was 
prioritized but unnecessary delays were discouraged.

2.3.  Procedure

The experiment took place on 3 separate days, with 
behavioral training on the 1st day (Pre-scan_day) and MRI 
scanning on the 2nd day (MRI_day1) and 3rd day (MRI_
day2) (Fig. 1c). On the Pre-scan_day, participants went 
through several cycles of the learning task and the test 
task to memorize the colors of the balls positioned at the 
four test locations. Because the Pre-scan day was not 
our focus of MRI scanning, the associated details are not 
included here. Readers can refer to our previous report 
for the details (Chen et al., 2024).

https://www.worldviz.com


5

X. Chen, Z. Wei and T. Wolbers	 Imaging Neuroscience, Volume 3, 2025

Fig. 1.  Experimental setup. (a) There were two different virtual environments (left): nature (upper panel) and city (lower 
panel). The two environments shared the same object layout on the linear track (left). There were arrows, four differently 
colored balls on poles, and a tree on the linear track. The four balls were positioned at the four test locations, that is, 
Loc1, Loc2, Loc3, and Loc4. To improve visibility, we used three identical arrows positioned above the ground to denote 
the same spatial position, meaning that the arrows vertically projected to the same position on the ground and only 
differed in height. The arrows, the tree, and the floor texture of the linear track had the same physical appearances but 
in different colors in the two environments. The four balls positioned at the test locations were the same but reversed in 
order in the two environments. The floor texture outside of the linear track also differed between the two environments. 
Displayed on the right are snapshots of the two environments, with the background environment, the linear track, the 
tree, the arrows, and the ball positioned closest to the arrows. (b) The time course of the location identification task. 
Here, the trial is depicted in the nature environment, which was exactly the same in the city environment. Each trial had 
six phases. In phase 1 “start,” the participant was positioned at the starting location, which was randomized trial by trial 
based on a uniform distribution [-18 m, -4 m] (see Fig. 1a, right). In phase 2 “movement,” the participant was passively 
transported to one of the four test locations. In phase 3, after arriving at the test location, the participant’s first-person 
perspective was smoothly turned down to vertically face the ground. In phase 4 “location occupation,” the participant’s 
perspective was fixed at the ground for 4 seconds. In phase 5 “response,” the participant was required to identify the 
color of the ball positioned at that location within 20 second. In phase 6 “feedback,” feedback was provided, telling 
the participant whether the response was accurate, and, if incorrect, what the correct answer was. Note that the balls 
remained invisible throughout the trial, so that participants needed to recall from memory the color of the ball associated 
with the test location. In the landmark condition, the arrows were invisible, the tree was displayed, and the floor of linear 
track remained blank. In the self-motion condition, the arrows were displayed, the tree was invisible, and the texture of the 
linear track was displayed. In both conditions, the background environment only appeared briefly at the beginning of the 
trial (=0.7 seconds), and disappeared once the passive movement started. The fMRI analyses focused on the 4-second 
location occupation period (i.e., phase 4), when the visual inputs were the same for both cue conditions (landmark 
condition & self-motion condition). (c) Participants were familiarized with the virtual environments and trained in the 
location identification task on the 1st day (pre-scan day). On the following 2 days (MRI_day1 & MRI_day2), they completed 
the location identification task while undergoing MRI scanning in the 7T scanner. In each scanning session, each of the 
four condition combinations was conducted for two runs, and the eight runs were counterbalanced with the Latin square 
design, with the restriction that no condition combination occurred consecutively.
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The two scanning sessions, MRI_day1 and MRI_day2, 
followed the same procedure. Each scanning day began 
with participants re-familiarizing themselves with the task 
during structural scanning inside the scanner. This prac-
tice lasted approximately 5  minutes and was not sub-
jected to analyses. Subsequently, participants performed 
the “location identification task” during functional scan-
ning (Fig. 1b). Each scanning day comprised eight runs in 
total, with two runs for each combination of environment 
(city vs. nature) and cue condition (self-motion vs. land-
mark). The eight runs were semi-randomized in order 
using Latin square designs, with the restriction that the 
combinations in two consecutive runs must differ within 
the same day.

We adopted a continuous carry-over design (Aguirre, 
2007), using the eight de Bruijn sequences from our pre-
vious study with relatively high detection power and  
low correlation coefficient (Chen et  al., 2019). These 
sequences were generated with 2nd order counterbalanc-
ing, using the “path-guided” approach (Aguirre et  al., 
2011). The “carry-over” effect—the influence of a prior 
item on the brain response to the current item—was 
counterbalanced, allowing us to rigorously investigate 
fMRI adaptation and multi-voxel activation pattern simi-
larity simultaneously on the dataset (Aguirre, 2007; 
Morgan et al., 2011). There were five types of events in 
each sequence—location occupation periods at the four 
test locations, in which participants stayed at the test 
locations for 4s, and null events, in which participants 
fixated their eyes at a cross displayed in the middle of the 
blank screen. Each de Bruijn sequence contained 20 
location occupation events in total, with 5 repetitions for 
each location. To allow the hemodynamic response to 
reach a steady state before the sequence started, we 
duplicated the very last event in the sequence and placed 
it at the very beginning. This duplicated event was mod-
eled in the first-level GLMs, but was not included for the 
analyses of either fMRIa or RSA effects. The eight de 
Bruijn sequences were randomly assigned to the eight 
runs in each scanning day for each participant. On each 
MRI scanning day, the total scanning time lasted up to 
about 1.75  hours, with the functional scanning up to 
about 1 hour.

2.4.  MRI acquisition

Structural and functional images were acquired in a 7T MR 
scanner (Siemens, Erlangen, Germany) at the Leibniz Insti-
tute for Neurobiology in Magdeburg with a 32-channel 
head coil (Nova Medical, Wilmington, MA). A high-
resolution whole-brain T1-weighted structural scan was 
acquired with the following MP-RAGE sequence: 
TR = 1700 ms; TE = 2.01 ms; flip angle = 5°; slices = 176; 

orientation = sagittal; resolution = 1 mm isotropic. A partial-
volume turbo spin echo high-resolution T2-weighted 
structural scan was acquired perpendicular to the long 
axis of the hippocampus (TR = 8000 ms; TE = 76 ms; flip 
angle = 60°; slices = 55; slice thickness = 1 mm; distance 
factor = 10%; in-plane resolution = 0.4 ×  0.4 mm; echo 
spacing  =  15.1  ms, turbo factor =  9, echo trains per 
slice  =  57). Functional scans were acquired with a T2*-
weighted 2D echo planar image slab centered on the hip-
pocampus and parallel to its long axis (TR  =  2000  ms, 
TE = 22 ms; flip angle = 85°; slices = 35; resolution = 1 mm 
isotropic, parallel imaging with grappa factor 1, echo spac-
ing = 0.82 ms). We also obtained 10 volumes of whole-
brain functional scans for the purpose of co-registering 
anatomical masks obtained on the T2-weighted structural 
scan to functional scans with an MPRAGE sequence 
(TR = 5000 ms, TE = 22 ms; flip angle = 85°; slices = 100; 
resolution = 1.6 mm isotropic). The T1-weighted structural 
image was bias corrected in SPM12. Functional scans 
were motion and distortion corrected online via point 
spread function mapping (In & Speck, 2012). Functional 
scans were left spatially unsmoothed.

Figure 2a displays the coverage of the functional scan 
and the T2-weighted structural scan in the T1-weighted 
structural scan of an example participant’s brain.

2.5.  Anatomical masks for regions of interest

We obtained anatomical masks of the retrosplenial cortex 
(RSC) and regions in the medial temporal lobe (MTL) and 
for each participant in the native brain space.

RSC mask was automatically extracted from each 
participant’ T1-weighted structural scan (bias corrected 
in Advanced Normalization Tools (ANTs)) in Freesurfer 
(Dale et  al., 1999). RSC was defined as the posterior-
ventral portion of the cingulate gyrus, which mainly con-
sists of BA29/30. Note that this definition of RSC is 
anatomically different from the retrosplenial complex, 
which is a functionally defined region typically extending 
into the parieto-occipital sulcus (Epstein, 2008). For co-
registration, the anatomical masks for RSC and its subdi-
visions were first co-registered to the mean functional 
scan along with the T1-weighted structural scan in 
SPM12. Next, the co-registered anatomical masks were 
resliced using the nearest-neighbor interpolation, with 
the mean functional scan as the reference image.

The medial temporal lobe consisted of hippocampus, 
parahippocampal cortex (PHC), perirhinal cortex (PRC), 
entorhinal cortex (EC). These regions were manually seg-
mented by the author X.C. on the T2-weighted structural 
scan in ITK-SNAP (Yushkevich et al., 2006; http://www​
.itksnap​.org​/pmwiki​/pmwiki​.php), following the protocol 
developed by Berron, Vieweg, and colleagues (Berron 

http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
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et al., 2017). The hippocampus was further segmented 
into different subfields (CA1, CA2, CA3, subiculum (SUB), 
dentate gyrus (DG), and tail) (Berron et al., 2017). EC was 
further segmented into the anterior-lateral subregion 
(alEC) and the posterior-medial subregion (pmEC) on 
each hemisphere (Chen et  al., 2019). The anatomical 
masks for these MTL regions were co-registered to the 
mean functional scan of the first scanning day in SPM12, 
using the same procedure adopted in our previous study 
(Chen et al., 2019): first, the mean whole-volume func-
tional scan was co-registered to the mean functional 
scan; second, the T2-weighted structural scan, along 
with the anatomical masks, was co-registered to the 
mean whole-volume functional scan obtained from the 
first step; third, the co-registered anatomical masks were 
re-sliced using nearest-neighbor interpolation, with the 
mean functional scan as the reference image.

Figure  2 displays all the anatomical masks for our 
main ROIs in the T1-weighted structural scan and the T2-
weighted structural scan of an example participant’s 
brain.

2.6.  fMRI analysis

fMRI analyses focused on the location occupation phase, 
during which the camera faced the blank ground to 

ensure identical sensory inputs between the landmark 
and self-motion conditions (Fig. 1b, Phase 4). ROI-based 
RSA was conducted on participants’ native anatomical 
space (i.e., without normalization or transformation to a 
standard template).

Figure  3a depicts the analysis pipeline. First, we 
adopted the RSA approach to address the question of 
whether the activity of an ROI encoded allocentric spatial 
relationships among the four test locations in terms of 
multi-voxel activation pattern similarity in individual cue 
conditions (i.e., landmark condition and self-motion con-
dition). The basic rationale is a negative correlation 
between the distances among test locations and their 
multi-voxel activation pattern similarities, such that test 
locations closer to each other showed higher multi-voxel 
activation pattern similarity.

Second, if spatial coding was detected in an ROI, we 
assessed whether the spatial coding in individual cue 
conditions was driven by location (i.e., where the partici-
pant was actually located, as indicated by sensory spatial 
inputs) or response (i.e., where the participants reported 
they were located, corresponding to the retrieved mem-
ory of spatial location). This analysis was motivated by 
frequent finding of the stronger tie of RSA effects with 
behavior than stimulus (Bellmund et  al., 2019; Hatfield 
et  al., 2016; Koch et  al., 2020; Walther et  al., 2009; 

Fig. 2.  MRI acquisition and anatomical masks of regions of interests. (a) MRI scanning and regions of interest. For an 
example participant, the functional scan (in green) and the T2-weighted structural scan (in blue) are overlaid on the brain 
extracted from the T1-weighted structural scan. (b) For an example participant, the anatomical mask of retrosplenial 
cortex (RSC; in red) and the anatomical mask of hippocampus (HIPP; in violet) are overlaid on the brain extracted from the 
T1-weighted structural scan. (c) Manually segmented anatomical masks for regions in the medial temporal lobe (MTL) in 
one example participant. (d) Manually segmented anatomical masks for hippocampal subfields in one example participant. 
ROI-based RSA was conducted on participants’ native anatomical space (i.e., without normalization or transformation 
to a standard template). “DG”—dentate gyrus, “SUB”—subiculum, “PRC”—perirhinal cortex, “PHC”—parahippocampal 
cortex, “alEC”—anterior-lateral entorhinal cortex, “pmEC”—posterior-medial entorhinal cortex. “A”—anterior, “P”—
posterior, “M”—medial, “L”—lateral.
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Fig. 3.  fMRI analysis. (a) Illustrated is the pipeline of our fMRI analysis. We employed the representational similarity 
analysis (RSA). In Step 1, we examined whether regions of interest (ROIs) exhibited RSA effects for individual cue 
types separately; that is, we assessed whether the multi-voxel activation pattern similarity between two locations 
was negatively correlated with the distance between them. In Step 2, we determined whether these RSA effects were 
associated with stimulus (i.e., location occupied by the participant) or participants’ behavior (i.e., response made by the 
participant). In Step 3, we analyzed cue specificity/generalizability of the RSA effects. Finally, in Step 4, we investigated 
the spatial relationship between RSA and fMRIa effects within the same ROI, if both types of effects were present. How 
Step 3 and Step 4 were conducted depended on the outcome of Step 2. Our analysis particularly focused on brain 
regions previously identified to show fMRIa effects in our previous reports (Chen et al., 2019, 2024). (b) Depicted is 
representational dissimilarity model (RDM), illustrating how representational dissimilarity increases as a function of the 
spatial relationship between the four test locations. Rows and columns represent the four test locations (Loc1, Loc2, 
Loc3, Loc4). When the locations are defined by their true locations, the RDM captures location-based positional coding; 
when defined by participants’ recognition responses, it captures response-based positional coding. The full RDM consists 
of four sub-RDMs: one capturing RSA effects within the landmark condition (red square), one within the self-motion 
condition (blue square), and two between landmark and self-motion conditions (two gray squares). (c) Illustrated is the 
RSA pipeline. In Step 1, LM_P1, LM_P2, LM_P3, LM_P4 stand for the four parts of runs in the landmark condition, with 
each part containing data from two runs. Similarly, SM_P1, SM_P2, SM_P3, SM_P4 stand for the four parts of the self-
motion condition. Activation vectors for test locations were averaged voxel-by-voxel across the two environments in 
the two runs of each part. In Step 2, the eight parts of the two cue conditions were paired, using the cross-validation 
approach (Walther et al., 2016). Pairings within the same cue condition (green and blue links) were used to calculate the 
within-landmark or within-motion spatial information scores. Parings between cue conditions (salmon links) were used 
to compute the between-cue spatial information score. For each pairing, a 4 x 4 pattern similarity matrix was calculated, 
denoting the pairwise correlations between activation vectors of test locations. These pattern similarity matrices were then 
averaged cell-by-cell to produce the mean pattern similarity matrix. In Step 3, the spatial information score was obtained 
by correlating the mean pattern similarity matrix and the RDM (Fisher transformed and reversed in sign). Values in the 
matrices are hypothetical data. This illustration depicts the computation of the within-landmark spatial information score. 
The same logic is applied to the computation of within-motion and between-cue spatial information scores.

Williams et al., 2007), and our previous finding that fMRIa-
based spatial coding in RSC was more strongly tied to 
stimulus than response (Chen et al., 2024). Assessing the 
relationship of RSA-based spatial coding with stimulus 
versus behavior is a critical step in the analysis pipeline, 
as this assessment would ensure appropriate measure-
ments and adequate statistical power in subsequent 
analyses.

Third, we assessed whether the RSA-based spatial 
coding was cue specific or cue independent. How this 
analysis should be conducted depends on the outcome 
of the preceding analysis. For example, if the preceding 
analysis showed that the spatial coding was driven by 
behavior rather than stimulus, we would assess cue 
specificity of the spatial coding with respect to behavior 
instead of stimulus.

Finally, to gain a deeper understanding of the intricate 
neuronal computations underlying the spatial representa-
tions, we evaluated the spatial relationship between the 
RSA-based spatial coding and the fMRIa-based spatial 
coding, if both forms of spatial coding existed in the 
same ROI. Again, the setting of this analysis was also 
contingent on the outcome of the second analysis, for 
the purpose of ensuring appropriate measurements and 
adequate statistical power.

In the following paragraphs, we will describe each 
step in detail.

2.6.1.  Step 1: Analysis of RSA effects for individual 
cue types

The neural representational similarity between two loca-
tions is indexed as the similarity between their multi-voxel 
activation patterns, which is measured as the correlation 
between their multi-voxel activation patterns: the higher 
the correlation, the more similar their neural representa-
tions are to each other. Mathematically, the multi-voxel 
activation pattern is a one-dimensional vector, whose 
elements represent the activation levels of individual vox-
els within a brain region. Hence, the size of the multi-
voxel activation pattern is equal to the total number of 
voxels in the brain region. If a brain region contains RSA-
based neural representations of spatial relationships 
among locations, the physical distances between pair-
wise locations should be negatively correlated with their 
multi-voxel activation pattern similarities. RSA is a 
method that belongs to the broader framework of multi-
voxel pattern analysis (MVPA).

2.6.1.1.  First-level GLM.  To capture RSA effects related 
to location information, we constructed a first-level 
GLM—GLM-RSA-location. This GLM modeled the loca-
tion occupation phase (Phase 4 in Fig. 1b) for the four 
test locations, using separate regressors. The first loca-
tion occupation event in each run, which was duplicated 
to stabilize the hemodynamic response before the 



9

X. Chen, Z. Wei and T. Wolbers	 Imaging Neuroscience, Volume 3, 2025



10

X. Chen, Z. Wei and T. Wolbers	 Imaging Neuroscience, Volume 3, 2025

sequence started, was modeled with a separate regres-
sor and not analyzed further. To control for potential 
effects of the preceding movement phase on brain acti-
vation during the location occupation phase, we included 
regressors to model the movement phase (Phase 2 in 
Fig.  1b), independent of test location. Head motion 
parameters (three rotation parameters and three transla-
tion parameters) were included as nuisance regressors. 
Other phases in the location identification task (Fig. 1b) 
were not modeled to avoid multicollinearity or due to their 
brief durations. In particular, since the response phase 
and the feedback phase were matched among the four 
test locations, omitting these two phases from the GLM 
should not affect the spatial coding results from the loca-
tion occupation phase. For a detailed rationale of the 
GLM construction, refer to our previous report (Chen 
et al., 2024).

Nevertheless, to comprehensively assess the impact 
of the preceding navigation experiences during the loca-
tion occupation phase, we constructed an additional 
GLM, which extended the regressors modeling the 
“movement” phase to encompass the entire navigation 
stage (Phases 1 + 2 + 3). The RSA results remained con-
sistent with this GLM (see Section  3.2.7.1 “Passive 
Movement Phase”).

Notably, all first-level GLMs in the present study were 
constructed in parallel with those used in our previous 
fMRIa investigation (Chen et al., 2024), ensuring effective 
comparisons between the RSA and fMRIa effects.

2.6.1.2.  Representational similarity analysis (RSA).  After 
obtaining the beta estimates for the location occupation 
phase from the first-level GLM-RSA-location, we con-
ducted the ROI-based RSA. As illustrated in Figure 3c, 
The RSA pipeline consists of four steps.

In Step 1, for each cue type and scanning day, the run-
specific and location-specific beta estimates for the loca-
tion occupation phase were divided into two parts 
chronologically, resulting in four parts in total for each 
cue type (gray dots in Fig. 3c, Step 1). For each cue type, 
within each part, we averaged out the factor “environ-
ment,” which was not of our main interest, by computing 
the mean activation vector of the two consecutive runs 
belonging to the two environments for each test location. 
Each element of the mean activation vector denotes the 
mean activation level averaged across the two runs of 
each voxel in the ROI. This resulted in four mean activa-
tion vectors for each of the four test locations and each 
cue type. This approach of averaging out a secondary 
factor was effectively employed in a previous fMRI study 
employing the MVPA method (Shine, Valdés-Herrera, 
et al., 2019). For further justification of this approach, see 
Section 3.2.5.

In Step 2, we calculated cross-validated activation pat-
tern similarities, by computing Pearson correlations 
between the mean activation vectors of pairwise test loca-
tions from different parts. This resulted in a 4 x 4 pattern 
similarity matrix for each part pair, with each cell of the 
matrix denoting the neural representational similarity 
between two locations. There were 6 part pairs in total for 
each within-cue spatial information score, and 16 part 
pairs in total for the between-cue spatial information score.

In Step 3, the pattern similarity matrices for all part 
pairs were averaged cell-by-cell, resulting in a 4 x 4 mean 
pattern similarity matrix. The spatial information score 
was computed as the Pearson correlation between the 
Fisher-transformed mean pattern similarity matrix and 
the RDM. The score was then Fisher transformed and 
reversed in sign. A positive information score thus indi-
cates that spatial distance information among the test 
locations is encoded in BOLD signals, meaning that loca-
tions are more similar to each other in neural representa-
tions as their distance decreases.

Here, we calculated spatial information scores for 
landmark and self-motion cues separately, meaning that 
any two mean activation vectors involved in the correla-
tion calculation in step 2 were both from the same cue 
condition. The spatial information scores were tested 
using directional one-sample t tests against 0, because 
we expected closer test locations to exhibit more similar 
multi-voxel activation patterns. A directional statistical 
tests are commonly used in studies employing the MVPA 
approach to examine neural representations of stimuli 
(Deuker et al., 2013; Morgan et al., 2011; Nielson et al., 
2015), as the opposite pattern is difficult to interpret. For 
comparisons without any specific directional hypothe-
ses, we adopted default tests. For example, when testing 
the difference between two spatial information scores, 
we employed a two-tailed t test. For each statistical test, 
we also calculated the Bayes factor, which indicates the 
likelihood ratio of the alternative hypothesis over the null 
hypothesis (BF10).

2.6.2.  Step 2: Analysis of relationship of RSA 
effects with stimulus and behavior

We investigated whether RSA effects for individual cue 
types were tied more strongly to the stimulus received by 
participants or participants’ behavior. Here, “stimulus” 
refers to the objective position of the test location defined 
by the external spatial inputs (i.e., the actual location 
occupied by the participant). On the contrary, the term 
“behavior” refers to the response made by the participant 
(i.e., the location the participant thought herself/himself 
occupied). When participants made errors, “stimulus” 
and “behavior” became dissociated.
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First, we conducted an RSA-based neural space 
reconstruction analysis, which recovered the underlying 
neural space based on pairwise neural representational 
similarities between locations. We assessed whether the 
neural space aligned more closely with the stimulus or 
behavior. Next, we directly contrasted stimulus and 
behavior in the same first-level GLM, disentangling the 
contributions of the location-based and response-based 
distances to neural representational similarity.

2.6.2.1.  RSA-based neural space reconstruction.  The 
basic principle is that locations with more similar multi-
voxel activation patterns should be positioned closer to 
each other in the neural space than those with less simi-
lar patterns. In other words, neural representational dis-
tinctions determine distances among locations in the 
neural space. The neural space reconstruction analysis 
constitutes a deeper analysis of the underlying neural 
representations, compared with the abovementioned 
general RSA approach. A major limitation of the general 
RSA approach is that different location pairs with the 
same inter-location distance (e.g., Loc1&Loc2 vs. 
Loc3&Loc4) were treated equally, which could have 
obscured potential subtle aspects of the underlying neu-
ral representations, as suggested by participants’ behav-
ioral performance pattern (Fig. 4). In contrast, the neural 

space reconstruction analysis overcomes this problem 
by recovering the entire neural space with positional esti-
mates for all locations.

The neural space reconstruction analysis consisted of 
three steps (Fig. 6a). In Step 1, we constructed the 4 x 4 
neural distance matrix for the four test locations, based 
on the beta estimates associated with the location occu-
pation phase in GLM-RSA-location. Each element of  
the matrix equaled to 1 minus the Pearson correlation 
between the multi-voxel activation patterns of two test 
locations. In this way, elements in the neural distance 
matrix denote pairwise neural distances among the four 
test locations. We averaged symmetrical off-diagonal 
elements in the neural distance matrix. The four diagonal 
entries were manually set to 0, because multidimensional 
scaling only exploits relative distances among different 
items (also see Marchette et al., 2014). Elements in the 
matrix were normalized to be within the range [0, 1]: nor-
malized value = (original value – matrix minimum)/(matrix 
maximum – matrix minimum). In Step 2, multi-dimensional 
scaling was performed on the normalized neural distance 
matrix to recover spatial coordinates of the four test loca-
tions in the neural space, following the basic principle 
that locations with greater representational similarities 
are positioned closer to each other (Kruskal & Wish, 
1978). In Step 3, the Procrustes analysis was performed 

Fig. 4.  Behavioral findings (Chen et al., 2024). (a) Behavioral accuracy is plotted as a function of cue type and test 
location on each experimental day. (b) Behavioral confusion matrix for the landmark condition (left) and self-motion 
condition (right), where columns represent true test locations and rows represent participants’ responses. Cell values 
denote the proportion of responses. Error bars represent ± SE. Adapted from our previous report (Chen et al., 2024).
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to map the estimated coordinates of locations to the orig-
inal physical space through rotations and reflections 
(Gower & Dijksterhuis, 2004).

After obtaining the reconstructed neural space, we 
evaluated the relationship of location-based RSA effects 
with behavior versus stimulus. To assess whether the 
neural space resembled participants’ behavior, we com-
pared the neural space with participants’ behavioral per-
formance. To preview, one of our main behavioral findings 
was that when participants made mistakes in recalling 
test locations, most of the time they confused between 
adjacent locations, for example, reporting Loc2 or Loc4 
when occupying Loc3 (Fig.  4b). Mistakes between two 
locations that were separated by one or more locations 
(i.e., inter-location distance ≥ 8 m) were extremely rare. 
Another main behavioral finding is that in the landmark 
condition, participants were more likely to confuse adja-
cent locations when they were farther away from the 
landmark, whereas in the self-motion condition, partici-
pants were more likely to confuse adjacent locations 
when they were farther away from the fixed anchoring 
point of path integration (Fig.  4a, b). If RSA effects 
reflected behavior, the underlying neural space should 
resemble this behavioral pattern by displaying an interac-
tion between cue type and neural distance between adja-
cent locations along the linear track. To test this 
possibility, for each cue condition, we quantified neural 
distance between adjacent locations by computing their 
distance in the neural space, separately for the three 
pairs of adjacent locations (Loc1&Loc2, Loc2&Loc3, 
Loc3&Loc4). The neural distance between adjacent 
locations was then subjected to a repeated measures 
ANOVA test, with cue type (landmark vs. self-motion) 
and adjacent–location pair (Loc1&Loc2 vs. Loc2&Loc3 
vs. Loc3&Loc4) as independent variables.

To assess whether the underlying neural space signifi-
cantly resembled the physical space, we analyzed the 
group-level neural distance matrix for the sake of maxi-
mizing statistical power (Marchette et al., 2014; Persichetti 
& Dilks, 2019). We adopted a non-parametric permuta-
tion approach. First, we obtained the actual Procrustes 
distance calculated from the group-level neural distance 
matrix, which indicates the deviation of the reconstructed 
neural space from the physical space. Second, we 
applied the permutation procedure to obtain the surro-
gate distribution of Procrustes distance, to which the 
actual Procrustes distance would be compared. Specifi-
cally, in each permutation, we randomly shuffled the 
entries in the group-level neural distance matrix. We 
obtained the Procrustes distance by applying multidi-
mensional scaling and the Procrustes analyses to the 
shuffled neural distance matrix. This process was 
repeated 5000 times, resulting in a surrogate distribution 

of Procrustes distance. Third, the actual Procrustes dis-
tance was compared with the surrogate distribution. The 
significance level (i.e., p value) was calculated as the pro-
portion of values in the surrogate distribution being 
smaller than the actual Procrustes distance. Significant 
results (i.e., p < 0.05) would indicate that the group-level 
neural space resembled the original physical space. This 
test is inherently one tailed, because a lower Procrustes 
distance consistently reflects greater similarity between 
the neural space and the physical space. In other words, 
deviations of the actual Procrustes distance from the sur-
rogate distribution are expected only in one direction.

2.6.2.2.  Direct comparison between stimulus and 
behavior in RSA effects.  We directly contrasted stimulus 
(i.e., location) and behavior (i.e., response) in RSA effects 
by estimating their unique contributions to RSA effects 
for each cue condition (Fig.  7a). Because location and 
response were dissociated from each other at the trial 
level (i.e., whether a trial was completed correctly or 
incorrectly by the participant), we built a new first-level 
GLM GLM-RSA-single-trial, in which individual trials were 
modeled with separate regressors. Each trial was associ-
ated with two labels, location and response. Whether the 
two labels matched depended on whether the participant 
completed the trial correctly by retrieving the correct 
memory for the occupied location.

Next, we computed cross-validated Pearson r correla-
tion between single-trial-based multi-voxel activation 
patterns from pairwise runs, resulting in a 20 x 20 activa-
tion pattern similarity matrix for each run pair in the neural 
space, as there were 20 effective trials in each run 
(Fig.  7a, the gray matrix). In addition, two 20 x 20 dis-
tance matrices were constructed, one based on location 
and the other on response (Fig. 7a, the two green–orange 
matrices). When based on location/response, the dis-
tance matrix denotes pairwise objective/subjective dis-
tances between test locations. For example, if the 
participant reported Loc2 while occupying Loc1 in one 
trial and reported Loc4 while occupying Loc2 in another 
trial, the distance between the two trials was 8 m in terms 
of response and 4 m in terms of location.

Next, we used these two distance matrices (standard-
ized) to jointly predict the activation pattern similarity 
matrix (Fisher transformed and standardized), using the 
multiple linear regression analysis. The two estimated 
regression coefficients (i.e., beta-unique, reversed in 
sign) denoted the respective unique contributions of the 
two predictors, with the contribution of the other predic-
tor excluded. The multiple linear regression was per-
formed for each run pair, and the estimated regression 
coefficients were averaged across all run pairs to obtain 
the final estimates. These estimates were tested against 
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0 using directional one-sample t tests, with Bayes factors 
(BF10) computed.

This analysis was conducted for the landmark condi-
tion and the self-motion condition separately, meaning 
that the two runs in each run pair were from the same cue 
condition.

2.6.3.  Step 3: Analysis of cue specificity/
generalizability of RSA effects

After determining whether RSA-based spatial representa-
tions were driven by stimulus or behavior, we evaluated 
whether these representations were cue specific or cue 
independent. If stimulus was the driving factor, cue speci-
ficity was evaluated based on the true locations using the 
beta estimates from the location occupation phase in the 
previously described first-level GLM (GLM-RSA-location). 
In this GLM, within each run, the location occupation 
events were modeled with the same event regressor, irre-
spective of the test location. In contrast, if behavior was 
the driving factor, the analysis was conducted based on 
participants’ responses. A new first-level GLM, RSA-GLM-
response, was constructed, which had the same structure 
as RSA-GLM-location, except that location occupation 
events were classified by the participant’s responses rather 
than the actual occupied locations. In each run, events with 
the same response were modeled with the same event 
regressor.

Cue specificity of spatial representations was assessed 
by calculating the between-cue spatial information score. 
The calculation of this score was similar to the previously 
mentioned within-cue spatial information score (Sec-
tion 2.6.1), with one key difference. In the within-cue calcu-
lation, any two multi-voxel activation patterns associated 
with two locations in the correlation calculation were from 
the same cue condition. In contrast, in the between-cue 
calculation, the two multi-voxel activation patterns associ-
ated with two locations were from different cue conditions 
(see Fig. 3c, Step 1). A significantly greater than 0 between-
cue spatial information score indicates that spatial repre-
sentations are generalizable between different cue types; 
otherwise, cue-specific representations are implied.

2.6.4.  Step 4: Spatial relationship between RSA and 
fMRIa effects

To assess the spatial relationship between fMRIa and 
RSA effects, we first ranked voxels in the ROI by the 
magnitude of landmark or self-motion fMRIa effect 
(signed and spatially unsmoothed) from low to high. The 
ranked voxels were then divided into four equally sized 
quarters. We compared spatial information scores for the 
four quarters (Mattar et al., 2018).

Additionally, we compared quarter-wise spatial infor-
mation scores with empirical chance levels. To calculate 
these levels, we randomized the order of the voxels, 
rather than ranking them by adaptation magnitude. For 
each randomization, we calculated the spatial informa-
tion scores for each quarter of voxels. Voxel randomiza-
tion was performed for 1000 times, and the mean spatial 
information scores were averaged across all the random-
izations, which was taken as the empirical chance levels.

Similar to the previously described assessment of cue 
specificity/generalizability of spatial representations, RSA 
measurements here should depend on the outcome of 
the comparison between location and response. If stimu-
lus was the driving factor behind the RSA effects, then 
the RSA measurements should be defined by true posi-
tions of the test locations. Conversely, if the response 
was the driving factor, then the RSA measurements 
should be defined by participants’ responses.

Notably, all RSA-related analyses in the present study 
were conducted in parallel with our previous fMRIa anal-
yses (Chen et al., 2019, 2024), ensuring effective com-
parisons between the RSA and fMRIa effects. This 
methodological parallelism arises from the conceptual 
similarity between the RSA and fMRIa analyses. The key 
difference between the RSA and fMRIa approaches lies 
in how neural representational similarity is measured. In 
RSA, neural representational similarity between two loca-
tions is indexed by their multi-voxel activation pattern 
similarity, whereas in the fMRIa analysis, it is indexed by 
the brain activation level for one location when preceded 
by the other location.

3.  RESULTS

To reiterate, we had a particular focus on brain regions 
that already showed fMRIa-based spatial coding in our 
previous reports, specifically the right EC subregions in 
our first fMRI study (Chen et al., 2019) and RSC in our 
second fMRI study (Chen et al., 2024). To preview, we did 
not observe concurrent RSA effects in the right EC sub-
regions in the first study (Chen et al., 2019; Supplemen-
tary Information, Section  2.1). However, in the second 
study (Chen et al., 2024), we observed concurrent RSA 
effects in RSC. Therefore, here we report and discuss the 
results from the second study.

3.1.  Previous behavioral results

The behavioral results have been described in detail in 
our previous report (Chen et  al., 2024), and hence we 
only summarize key findings here (Fig.  4). Participants 
showed distinct behavioral accuracy profiles across the 
test locations between the landmark condition and the 



14

X. Chen, Z. Wei and T. Wolbers	 Imaging Neuroscience, Volume 3, 2025

Fig. 5.  Location-based RSA effects for individual cue types in RSC. (a) The RDM for calculating location-based within-
cue RSA effects. This RDM contains physical distances between pairwise locations from the same cue condition. This 
means that trials were categorized according to the actual locations occupied by the participant. The location-based 
spatial information scores were calculated based on this RDM. (b) RSA results. Location-based spatial information score is 
plotted as a function of cue type (landmark vs. self motion). Inside the red circles are statistical outliers, which are greater 
than t interquartile ranges above the 3rd quartile or less than 3 interquartile ranges below the 1st quartile. “*”—p1-tailed < 0.05, 
“**”—p1-tailed < 0.01, “***”—p1-tailed < 0.001. When testing whether the spatial information score was greater than 0, one-
tailed t test was adopted. (c) To visualize the significant RSA effects shown in (b), activation pattern similarity is plotted as 
a function of inter-location distance defined by true test locations for each cue type. Error bars represent ± SE.

self-motion condition (Fig. 4a), such that in the landmark 
condition, accuracy increased as the test location 
became closer to the landmark, while in the self-motion 
condition, accuracy increased as the test location 
became closer to the fixed starting point of path integra-
tion (interaction between cue type and the linear trend of 
test location, t(57) = 8.487; p < 0.001).

We also presented the behavioral confusion matrix, 
which showed more details of participants’ behavior 
(Fig. 4b). In both cue conditions, when participants made 
mistakes, they often confused the target location with its 
adjacent locations, for example, confusing Loc1 with 
Loc2. The confusion between two locations that were 
more than one location apart was very rare, for example, 
confusing Loc1 with Loc3. Together, the behavioral 
results implied that our manipulation of cue dissociation 
was successful.

3.2.  Current fMRI results from representational 
similarity analysis (RSA)

We re-analyzed the fMRI dataset from our previous report 
(Chen et al., 2024), using the RSA approach. As described 
in the Methods section, the current fMRI analyses 
adhered to the following pipeline (Fig. 3): First, we tested 
for RSA effects reflecting the coding of spatial relation-
ships between test locations, separately for the two cue 
types. Next, we examined the nature of the RSA effects 
by assessing whether these effects were driven by stim-
ulus or behavior. After that, we evaluated whether the 
RSA effects were cue specific or cue independent. Finally, 
we compared the RSA effects with our previously 
reported fMRIa effects. The third step and the fourth step 
are contingent on the outcome of the second step.

3.2.1.  RSC showed location-based RSA effects  
for both cue types

To test whether RSC contained neural coding of spatial 
relationships between test locations for individual cue 
types, we calculated a spatial information score, quanti-
fied as the correlation between inter-location distances 
and multi-voxel activation pattern dissimilarities (see 
Methods, Section 2.6.1.2 for detailed methodology).

As shown in Figure 5b (left panel), in RSC, spatial infor-
mation score was significantly greater than 0 in both the 
landmark condition (t(19)  =  3.207, p1-tailed  =  0.002, 
BF10 = 19.486; two outliers winsorized, t(19) = 4.822, p1-tailed 
<  0.001, BF10  =  478) and the self-motion condition 
(t(19) = 1.938, p1-tailed = 0.034, BF10 = 2.109). To visualize the 
significant spatial information scores, the multi-voxel pat-
tern similarity decreased gradually as inter-location dis-
tance increased (Fig. 5b, right panel).

These findings converge with our previous finding of 
fMRIa-based spatial coding for both cue types in RSC 
(Chen et  al., 2024), implying that this structure plays a 
crucial role in processing spatial information stemming 
from diverse sensory sources.

3.2.2.  RSA-based spatial coding in RSC reflects 
behavior rather than stimulus

Here, we sought to compare the roles of stimulus and 
behavior in the RSA effects in RSC. This analysis was 
motivated by the frequent finding that MVPA effects in 
general are strongly linked to participants’ overt behav-
ior (Hatfield et al., 2016; Vass & Epstein, 2013; Walther 
et  al., 2009; Williams et  al., 2007) and our previous 
observation that the fMRIa effects were more strongly 
associated with stimulus than behavior (Chen et  al., 
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2024). Determining the driving factor behind this coding 
is crucial for adequately assessing its cue specificity/
generalizability in the subsequent analysis—the core 
question we aimed to answer.

3.2.2.1.  RSA-based neural space reconstruction.  The 
neural space reconstruction analysis aimed to recover 
the entire neural space with positional estimates for all 
four test locations, based on the rationale that locations 
with more similar multi-voxel activation patterns should 
be positioned closer to each other in the neural space 
(see Methods, Section 2.6.2.1 for detailed methodology).

First, we assessed whether the neural space resem-
bled participants’ behavior by comparing the neural 
space with participants’ behavioral performance pattern, 
as depicted in Figure 4 (see Methods, Section 2.6.2.1 for 
detailed methodology; also see Fig. 6a). To reiterate, after 
obtaining participant-specific neural spaces, for each 
cue condition, we quantified neural distance between 
adjacent locations by computing their distance in the 

neural space, separately for the three pairs of adjacent 
locations (Loc1&Loc2, Loc2&Loc3, Loc3&Loc4). The 
neural distance between adjacent locations was then 
subjected to a repeated measures ANOVA test, with cue 
type (landmark vs. self-motion) and adjacent–location 
pair (Loc1&Loc2 vs. Loc2&Loc3 vs. Loc3&Loc4) as inde-
pendent variables. As shown in Figure 6b.1, we observed 
a significant interaction between cue type and the linear 
trend of adjacent–location pair (F(1, 19)  =  12.016, 
p  =  0.003, ηp

2  =  0.387): in the landmark condition, the 
neural distance between adjacent locations decreased 
as the locations got farther away from the landmark, 
whereas the opposite occurred in the self-motion condi-
tion. Because shorter neural distance means more similar 
neural representations, this finding is parallel to the 
behavioral finding that in the landmark condition, loca-
tions farther away from the landmark were behaviorally 
more confusable than those closer to the landmark, 
whereas the opposite occurred in the self-motion condi-
tion (Fig. 4).

Fig. 6.  RSA-based neural space reconstruction in RSC. (a) Setup of the analysis. First, a 4 x 4 neural distance matrix 
was constructed, with the elements denoting pairwise neural distances among the four test locations. Neural distance 
was measured as 1—pattern similarity. Next, the neural distance matrix was normalized, so all the elements were within 
the range [0, 1]. The four on-diagonal elements were manually set to 0 (dark cells), as this analysis only exploits neural 
dissimilarities between different items. The normalized neural distance matrix was then subjected to the multi-dimensional 
scaling analysis, followed by the Procrustes analysis to reconstruct the neural space. Here, the matrices contain 
hypothetical data. (b) Results of the analysis. In the left panel (b.1), the neural space was compared with participants’ 
behavior. The reconstructed distance between adjacent locations is plotted as a function of location pair and cue 
type. The interaction between the linear trend of location pair and cue type was significant (p = 0.003), resembling the 
behavioral performance pattern as shown in Figure 4. In the right panel (b.2), the group-level neural space (red circles) 
was compared with the physical space (blue circles), via a permutation test. Numbers in the circles denote the four 
test locations (e.g., “1” indicates Loc1). The group-level neural space did not significantly resemble the physical space 
for either cue type (p’s ≥  0.1). Error bars represent ± SE. The arrow and the tree are displayed alongside the results to 
indicate the test locations’ positions relative to the anchoring points for path integration in the self-motion condition and 
for landmark-based navigation in the landmark condition.
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Next, we assessed whether the underlying neural 
space significantly resembled the physical space. To reit-
erate, we compared the actual Procrustes distance with 
the surrogate distribution obtained by permuting cells in 
the group-level neural distance matrix (see Methods, 
Section 2.6.2.1 for detailed methodology). As shown in 
Figure 6b.2, the group-level neural space did not signifi-
cantly resemble the physical space in either the land
mark condition (p = 0.102) or the self-motion condition 
(p  =  0.158). Furthermore, the group-level neural space 
exhibited a structure qualitatively similar to the behavioral 
performance pattern in both cue conditions (Fig. 4); that 
is, the neural distance was larger for locations closer to 
the landmark in the landmark condition, and the opposite 
pattern occurred in the self-motion condition.

In brief, in RSC, the RSA-based neural space did not 
resemble the physical space, indicating that the physical 
space was not represented faithfully in this region. In 

contrast, the neural space exhibited a pattern parallel to 
that of participants’ behavioral performance, suggesting 
that the deviations of the RSA-based neural representa-
tions from the physical space might have mediated the 
mistakes participants made in their behavior.

3.2.2.2.  Direct comparison between stimulus and 
behavior in RSA effects.  To compare stimulus and 
response directly, we estimated their unique contribu-
tions to the RSA effects while accounting for each other. 
We used location- and response-defined distances 
among individual location occupation events as indepen-
dent variables to jointly predict multi-voxel activation pat-
tern similarity between locations (Fig.  7a; also see 
Methods, Section 2.6.2.2 for detailed methodology).

As shown in Figure 7b (left panel), in the self-motion 
condition, the unique contribution of location was not 
significant and was even negative numerically 

Fig. 7.  Direct comparison between location and response in RSA effects in RSC. (a) We disentangled location and response 
by estimating their unique contributions to RSA effects. Each run contained 20 trials in a given cue condition. For each 
run pair, we calculated three measurements for each trial pair: the location distance based on the true positions of the test 
locations, the response distance based on participants’ responses (i.e., retrieved location memories), and the multi-voxel 
activation pattern similarity, resulting in three 20 x 20 matrices. For each run pair, we conducted a multiple linear regression 
with the two distance matrices as the independent variables and the multi-voxel activation pattern similarity matrix as the 
dependent variable. The estimated beta coefficients (β1 and β2) were then averaged across all pair runs, which were taken 
as the unique contributions of location and response to RSA effects. Here, all matrices contain hypothetical data. (b) The 
left panel displays the unique contributions of location and response in each cue condition. This analysis also allowed us to 
estimate the total contribution of response to RSA effects, that is, response-based RSA effects, when the other independent 
variable was not included in the multiple linear regression (a.3). Results for response-based spatial information scores are 
displayed in the middle panel. The right panel visualizes the response-based RSA effects as displayed in the middle panel, 
by plotting multi-voxel activation pattern similarity as a function of inter-response distance for each cue condition. “*”—p1-tailed 
< 0.05, “**”—p1-tailed < 0.01, “***”—p1-tailed < 0.001. When testing whether the spatial information score was greater than 0, the 
one-tailed t test was adopted, because we had a specific directional hypothesis that pattern similarity should increase as 
inter-response/inter-location distance decreased. Error bars represent ± SE.
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(t(19) = -1.274, p1-tailed = 0.866, BF10 = 0.114), whereas the 
unique contribution of response was significant (t(19) = 
2.806, p1-tailed = 0.004, BF10 = 9.198). This result indicates 
that RSA-based spatial coding for self-motion cues was 
driven by response rather than location. In the landmark 
condition, however, neither the unique contribution of 
location nor response was significant (location, t(19)  = 
1.343, p1-tailed  =  0.099, BF10  =  0.904; response, t(19)  = 
0.674, p1-tailed = 0.258, BF10 = 0.419). This result suggests 
that in the landmark condition, location and response 
could not be dissociated, probably due to the very high 
behavioral accuracy, which caused a high correlation 
between the two independent variables.

One potential limitation of this control analysis is the 
high behavioral accuracy exhibited by our participants in 
the landmark condition (mean ACC = 0.851), as dissocia-
tion between objective location and subjective response 
depends on the number of errors made by participants. 
On the contrary, behavioral accuracy was significantly 
lower in the self-motion condition (mean ACC = 0.851 vs. 
0.786, F(1, 19) = 10.552; p = 0.004, ηp

2 = 0.357), ensuring 
the reliability of the stimulus–behavior dissociation results 
in this condition.* As the results are less conclusive for the 
landmark condition, future studies employing more chal-
lenging tasks are needed to examine stimulus–behavior 
dissociation in RSA-based spatial coding during 
landmark-based navigation.

Taken together, these findings indicate a stronger rela-
tionship between the RSA effects and behavior com-
pared with stimulus, though these two factors could not 
be unequivocally dissociated in the landmark condition 
due to the high behavioral accuracy in this condition.

3.2.2.3.  Summary.  The neural space reconstruction 
analysis and unique contribution analysis yielded rela-
tively convergent results: RSA-based positional coding 
in RSC was more strongly tied to behavior than to stim-
ulus. This finding contrasts sharply with our previous 
finding that fMRIa-based positional coding in RSC was 
more strongly linked to stimulus than to behavior (Chen 
et al., 2024).

Since the positional coding in RSC was mainly driven 
by response rather than location, we observed significant 
response-based spatial information score in each cue 

condition, which corresponds to the total contribution of 
response to multi-voxel activation pattern similarity 
between locations (landmark, t(19)  =  3.769, p1-tailed < 
0.001, BF10 = 58.228; self-motion, t(19) = 2.744, p1-tailed = 
0.006, BF10 = 8.212; Fig. 7b, middle panel). To visualize 
these effects, the multi-voxel pattern similarity decreased 
gradually as response-defined distance between location 
occupation events increased (Fig. 7b, right panel).

3.2.3.  RSA-based spatial coding in RSC is cue 
independent in terms of response

Given our preceding finding that in RSC, the RSA-based 
spatial coding in individual cue conditions was more 
strongly tied to behavioral output (response) than stimu-
lus input (location), we assessed whether this coding was 
cue specific or cue independent in terms of response. By 
selecting the driving factor—response instead of loca-
tion—to model the RSA effects, we ensured that our 
measurement adequately captured the nature of the 
underlying neural code.

First, to calculate response-based spatial information 
score, we constructed a new first-level GLM (RSA-
GLM-response) with the same structure as the original 
first-level GLM for location-based RSA effects (RSA-
GLM-location). The only difference is that in RSA-GLM-
response, the location occupation event was defined 
and grouped by the participant’ response instead of the 
actual location occupied by the participant. Next, we 
assessed cue specificity of the coding by computing the 
response-based between-cue spatial information score. 
This computation was similar to the within-cue spatial 
information scores but involved correlating multi-voxel 
activation patterns from different cue conditions instead 
of from the same cue condition. We correlated the 
between-cue multi-voxel activation pattern similarity 
with response-defined distance, which was then Fisher 
transformed and reversed in sign. If the response-based 
between-cue spatial information score is significantly 
greater than 0, it indicates that the positional coding 
was generalizable between cue types (see Methods, 
Section 2.6.3 for detailed methodology).

As shown in Figure  8b (left panel), in RSC, the 
response-based between-cue spatial information score 
was significant (t(19)  =  3.143, p1-tailed  =  0.003), with a 
Bayes factor indicating strong evidence for the alterna-
tive hypothesis (BF10  =  17.248  >  10). A visualization of 
this effect shows that as response-defined distance 
increased, between-cue multi-voxel pattern similarity 
gradually decreased (Fig. 8b, right panel).

Furthermore, we found that the between-cue spatial 
information score was driven by response rather than 
location, same as the within-cue spatial information 

*  To get a better idea of the reliability of our results, we calculated the amount 
of data excluded due to a perfect correlation between location and response. 
When the behavioral performance was perfect in both runs, the run pair was 
assigned a “NaN” value for the beta estimates (i.e., unique contributions of 
location and response) and excluded from further analysis. When all the par-
ticipants were considered, for the within-landmark spatial information score, 
64 out of 28 run pairs * 20 subjects = 560 run pairs (=11.43%) showed a 100% 
accuracy rate and were dropped from analysis. For the within-motion spatial 
information score, 18 out of 560 run pairs (=3.21%) were excluded. For the 
between-cue spatial information score, 31 out of 1280 run pairs (=2.42%) 
were excluded.
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scores. First, we computed the location-based between-
cue spatial information score using the original GLM 
assessing location-based RSA effects (GLM-RSA-
location). This score was not significant (t(19)  =  1.014,  
p1-tailed = 0.162, BF10 = 0.604; Fig. 8c). Next, we disentan-
gled location and response in explaining the between-
cue spatial information score by calculating their unique 
contributions, using the same method as for the within-
cue spatial information scores (Fig. 7a). The unique con-
tribution of response was significant (t(19)  =  2.220, 
p1-tailed = 0.017, BF10 = 3.313), while the unique contribution 
of location was not significant and numerically negative 
(t(19)  =  -0.546, p1-tailed  =  0.667, BF10  =  0.162; Fig.  8d). 
These results suggest, again, that the RSA-based posi-
tional coding in RSC was more strongly linked to partici-
pants’ behavior than to the actual stimulus.

To further characterize the response-based RSA 
effects in RSC, we subjected multi-voxel pattern similar-
ity to a repeated-measures ANOVA, with measurement 
type (within landmark vs. within motion vs. between cue) 
and inter-response distance (0  m vs. 4  m vs. 8  m vs. 
12 m) as independent variables. As expected, the main 
effect of inter-response distance was significant (F(3, 
57) = 18.563, p < 0.001, ηp

2 = 0.494). We then conducted 
the trend analysis. The linear trend was significant 
(t(57)  =  -6.621, p  <  0.001), so was the quadratic trend 

(t(57) = -3.399, p = 0.001). The cubic trend was not signif-
icant (t(57) = 0.549, p = 0.585). These results suggest that 
the relationship between multi-voxel pattern similarity 
and inter-response distance was not strictly linear. Addi-
tional analyses showed that this nonlinear relationship 
was primarily driven by the fact that multi-voxel pattern 
similarity decreased as inter-response increased only 
when different test locations were compared: multi-voxel 
pattern similarity did not differ between 0  m and 4  m 
(t(57)  =  0.657, p  =  0.514), was lower at 8  m than 4  m 
(t(57) = -2.615, p = 0.011), and was lower at 12 m than at 
8 m (t(57) = -4.150, p < 0.001).

In summary, our results showed that in RSC, the RSA-
based spatial coding, which primarily reflected response, 
was generalizable between cue types. However, this spa-
tial coding was not Euclidean, as the relationship between 
multi-voxel pattern similarity and inter-response distance 
was not strictly linear. This nonlinear relationship aligns 
with the frequent behavioral finding that spatial represen-
tations do not reflect the true Euclidean spatial relation-
ships among locations (Warren et al., 2017). However, the 
interpretation of this nonlinear relationship is complicated 
by the nonlinear relationship between stimulus strength 
and neuronal activity (Yang et al., 2021) and the elusive 
relationship between neuronal activity and fMRI BOLD 
signals (Logothetis & Wandell, 2004).

Fig. 8.  Response-based between-cue RSA effect in RSC. (a) The RDM used for calculating the response-based between-
cue RSA effect. Cells of this RDM contain response-defined distances between pairwise responses from different cue 
conditions. Trials were categorized according to participants’ responses in the first-level GLM in the first place. (b) The left 
panel displays the response-based between-cue RSA effect. The right panel visualizes this significant effect by plotting 
between-cue multi-voxel activation pattern similarity as a function of response distance. (c) For completeness, we also 
calculated the location-based between-cue RSA effect, with the location occupation events defined and grouped by true 
positions of the test locations in the first-level GLM. This effect was not significant. (d) Unique contributions of location and 
response to the between-cue RSA effect, following the procedure illustrated in Figure 7a. “*”—p1-tailed < 0.05, “**”—p1-tailed 
< 0.01, “***”—p1-tailed < 0.001. When testing whether the spatial information score was greater than 0, one-tailed t test was 
adopted. Error bars represent ± SE.
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3.2.4.  Robustness of response-based spatial 
coding in RSC

In retrospect, in the ROI-based analysis of representational 
similarity for RSC, we tested the statistical significance of 
six spatial information scores using six one-sample t tests 
in total—within landmark, within motion, and between cue, 
based on location or response. This approach involves 
multiple comparisons, which can result in false positives. 
To control for the familywise Type I error, we corrected for 
multiple comparisons across all six one-sample t tests 
using a permutation-based Max-T test, which is analogous 
to the Holm–Bonferroni approach (Supplementary Informa-
tion, Section 1). To ensure a fair comparison between loca-
tion and response, we recalculated the response-based 
within-cue spatial information scores using GLM-RSA-
response. These recalculated scores were very close to 
those obtained using GLM-RSA-single-trial.

The three response-based spatial information scores 
(using GLM-RSA-response) and the three location-based 
spatial information scores (using GLM-RSA-location) 
were subjected to the multiple comparisons correction. 
All three response-based scores remained significant: 
within landmark, pcorrected = 0.004; within motion, pcorrected = 
0.049; between cue, pcorrected  =  0.009. In contrast, the 
location-based scores remained significant in the land-
mark condition (pcorrected = 0.011), but not in the self-motion 
condition (pcorrected = 0.068). The location-based between-
cue spatial information score, which was non-significant 
even at the uncorrected significance level (p1-tailed = 0.162), 
remained non-significant (pcorrected = 0.159). In sum, while 
all three response-based spatial information scores sur-
vived the multiple comparisons correction, this was not 
the case for the location-based scores.

To further test the robustness of response-based RSA 
effects in RSC, we conducted a searchlight analysis (see 
Supplementary Information, Section  2.4 for detailed 
methodology and results). This method is equivalent to 
performing RSA across the entire search volume cov-
ered by the functional scanning. Each voxel was assigned 
with a value corresponding to the RSA effect. Using a 
nonparametric permutation-based one-sample t test 
(Nichols & Holmes, 2002), with a group-level anatomical 
mask comprising all our ROIs (MTL + RSC) for small vol-
ume correction, we found that RSC was involved in all 
three response-based RSA effects (within landmark, 
within motion, and between cue; cluster-level inference, 
psFWE,1-tailed < 0.007). These results further corroborate the 
robustness of our finding of cue-independent response-
based spatial representations in this area.

Collectively, these findings indicate that response-
based, cue-independent spatial representations in RSC 
are robust.

3.2.5.  Validity of collapsing across environments 
and days in calculating RSA effects

In the main analysis, we averaged out the environment 
factor, as it was not our primary focus. To assess the 
validity of this approach, we tested whether the response-
based RSA effects were generalizable across the nature 
and city environments. The setup was identical to the 
main analysis, but now we considered the three types of 
environment relationships separately (within nature, 
within city, and between environment) for each type of 
cue relation (within landmark, within motion, and between 
cue), resulting in nine spatial information scores in total. 
The results showed that all three between-environment 
scores were significantly greater than 0 (t’s > 2.6, p’s1-tailed 
< 0.01, BF’s10 > 7; pink bars in Fig. 9a), indicating that the 
RSA effects were generalizable across environments. 
Moreover, for each cue relation, there was no significant 
difference between the nature and city scores. In sum, 
these findings support our approach of averaging out the 
environment factor in the main analysis.

In the main analysis, in addition to averaging out the 
environment factor, we also combined data from the 2 
scanning days together. We assessed the validity of this 
approach using the same method. The results showed 
that all three between-day scores were significantly 
greater than 0 (t’s > 2.2, p’s1-tailed < 0.02, BF’s10 > 3.5; pink 
bars in Fig. 9b), indicating that the RSA effects were gen-
eralizable across scanning days. Moreover, for each cue 
relation, there was no significant difference between the 
MRI_day1 and MRI_day2 scores. In sum, these findings 
support our approach of combining data across the 2 
scanning days in the main analysis.†

3.2.6.  Spatial relationship between fMRIa and RSA 
effects within RSC

The preceding results demonstrate that RSC contained 
RSA-based spatial representations for both landmarks 
and self-motion cues, which were driven by response 
and generalizable between the cue types. Our previous 
study, which analyzed the same dataset, demonstrated 
that RSC contained fMRIa-based cue-specific spatial 
representations; specifically, the voxel-to-voxel pattern 
of adaptation was distinct between the cue types 

†  Additionally, we also investigated potential hemispheric specificity of spatial 
coding in RSC by subjecting the response-based spatial information scores to 
a repeated-measures ANOVA test, with hemisphere (left vs. right) and score 
type (within landmark vs. within motion vs. between cue) as independent vari-
ables. The main effect of hemisphere was not significant (F(1, 19) = 0.293, 
p = 0.595, ηp

2 = 0.015), nor was the interaction between hemisphere and score 
type (F(2, 38) = 1.154, p = 0.326, ηp

2 = 0.031). The main effect of score type 
was not significant either (F(2, 38)  =  0.610, p  =  0.549, ηp

2  =  0.057). These 
results indicate no hemispheric specificity of spatial coding in RSC.
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(Fig.  4b). Together, these findings raise the question of 
whether fMRIa-based and RSA-based spatial represen-
tations were spatially dissociable. If fMRIa and RSA 
effects overlapped anatomically, we would expect voxels 
with higher fMRIa effect to display stronger RSA effects. 
Since our results had shown that in RSC, fMRIa and RSA 
effects were driven by location (Chen et  al., 2024) and 
response, respectively, we conducted this analysis using 
location-based fMRIa effects and response-based RSA 
effects.

First, we ranked the retrosplenial voxels by the magni-
tude of mean fMRIa effect in the landmark condition, 
from low to high (Fig. 10a.1, left panel). The ranked voxels 
were divided into four quarters, and the response-based 
spatial information scores were calculated for each quar-
ter separately. The total number of voxels in each quarter 
ranged from 163 to 354 across participants, with a mean 
of 258, ensuring sufficient data points for calculating acti-
vation pattern similarity. We subjected these scores to a 
repeated-measures ANOVA test with quarter (Q1 vs. Q2 

Fig. 9.  Influences of environment and day on RSA effects in RSC. (a) Influences of environment on response-based 
RSA effects in RSC. Plotted are response-based spatial information scores for each environment relation (within nature, 
within city, and between cue) and cue relation (within landmark, within motion, and between cue). (b) Influences of day on 
response-based RSA effects in RSC. Plotted are response-based spatial information scores for each day relation (MRI_
day1, MRI_day2, and between day) and cue relation (within landmark, within motion, and between cue) “*”—p < 0.05, 
“**”—p < 0.01, “***”—p < 0.001. When testing whether the spatial information score was greater than 0, the one-tailed 
t test was adopted, because we had a specific directional hypothesis that pattern similarity should increase as inter-
response distance decreased. When testing the difference between two spatial information scores, the two-tailed t test 
was adopted due to the lack of a specific directional hypothesis. Error bars represent ±SE.

Fig. 10.  Spatial relationship between RSA and fMRIa effects in RSC. (a) Retrosplenial voxels were ranked by the 
magnitude of the mean fMRIa effect for landmarks (a.1) or self-motion cues (a.2), from low to high. The ranked voxels were 
then divided into four quarters. For example, voxels in the 1st quarter (Q1) showed lowest levels of adaptation. Response-
based spatial information scores were calculated for each quarter separately. The empirical chance levels for the three 
scores (within landmark, within motion, and between cue) were also displayed. (b) The procedure was the same as (a), but 
the voxels were divided into 10 equally sized deciles instead of 4 quarters. “*”—p < 0.05, “**”—p < 0.01, “***”—p < 0.001. 
Error bars represent ± SE.
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vs. Q3 vs. Q4) and score type (within landmark vs. within 
motion vs. between cue) as independent variables. The 
main effect of score type was not significant (F(2, 
38) = 0.085, p = 0.919, ηp

2 = 0.004, BF10 = 0.113), nor was 
the interaction effect between quarter and score type 
(F(6, 114) = 1.093, p = 0.364, ηp

2 = 0.054, BF10 = 0.141). 
However, the main effect of quarter was significant (F(1, 
19) = 3.946, p = 0.026, ηp

2 = 0.172, BF10 = 1.383). The 
second quarter exhibited the greatest spatial information 
scores, which were significantly greater than the other 
three quarters (vs. Q1, t(19) = 3.085, p = 0.006; vs. Q3, 
t(19) = 2.579, p = 0.018; vs. Q4, t(19) = 2.816, p = 0.011). 
Furthermore, the scores for the second quarter were also 
significantly greater than chance levels (F(1, 19) = 12.836, 
p = 0.002, ηp

2 = 0.403, BF10 = 6.962), whereas the scores 
for the other quarters were not significantly different from 
chance levels (F’s  <  2.6, p’s  >  0.12, ηsp

2   <  0.12, 
BF’s10 < 0.55). These results indicate that voxels with rel-
atively lower landmark adaptation effects (i.e., voxels in 
the second quarter) exhibiting stronger RSA effects than 
other voxels.

Next, we ranked the retrosplenial voxels by the mean 
fMRIa effect for self-motion cues (Fig. 10a.2, right panel). 
The main effect of quarter was not significant (F(1, 
19) = 0.398, p = 0.705, ηp

2 = 0.021, BF10 = 0.049), nor was 
the main effect of score type (F(2, 38) = 0.581, p = 0.564, 
ηp
2 = 0.030, BF10 = 0.195) or the interaction effect (F(6, 

114) = 0.281, p = 0.913, ηp
2 = 0.015, BF10 = 0.024). For all 

four quarters, the response-based spatial information 
scores did not differ significantly from chance levels 
(F’s  <  3, p’s  >  0.099, ηsp

2   <  0.14, BF’s10  <  0.4). These 
results suggest that the self-motion adaptation levels of 
the voxels were unrelated to the RSA effects.

Our previous report showed that the voxel-to-voxel 
adaptation pattern was distinct between the 2 scanning 
days even within the same cue type (Chen et al., 2024). 
Consequently, we ranked the retrosplenial voxels by the 
adaptation magnitude for each cue type on each scan-
ning day; still, no significant main effects of quarter were 

observed (F’s < 1.12, p’s > 0.35, ηsp
2 < 0.06, BF’s10 < 0.2). 

Additionally, our previous report also showed that the 
voxel-to-voxel adaptation pattern was distinct between 
the two environments for self-motion cues within the 
same scanning day. Hence, we ranked retrosplenial vox-
els by the magnitude of adaptation to self-motion cues in 
each environment and each day; again, no significant 
main effects of quarter were observed (F’s  <  1.11, 
p’s > 0.35, ηsp

2 < 0.06, BF’s10 < 0.15). Finally, the pattern 
of results remained unchanged when we divided the vox-
els into 10 equally sized deciles instead of four quarters 
(Fig. 10b). Note that the number of voxels in each decile 
ranged from 65 to 142 across participants, with a mean 
of 103, ensuring sufficient data points for calculating acti-
vation pattern similarity.

In summary, we found that retrosplenial voxels higher 
in adaption did not necessarily exhibit stronger RSA 
effects than other voxels. In most of the cases, there were 
no significant influences of adaptation magnitude on RSA 
effects. There was even one instance where the opposite 
happened, that is, voxels relatively lower in landmark 
adaptation displaying stronger RSA effects (Fig. 10a.1). 
Taken together, these findings suggest that RSA-based 
and fMRIa-based spatial representations were likely ana-
tomically separable within RSC.

However, these findings do not determine the spatial 
scale at which RSA-based and fMRIa-based spatial repre-
sentations were anatomically separate. Our previous work 
showed that RSC exhibited a dominant connectopy along 
its long axis (Haak et al., 2018; Fig. 11a) and that fMRIa-
based spatial representations in RSC were stronger in the 
eight posterior deciles than the two anterior deciles (fig-
ure 7 in Chen et al., 2024). If RSA- and fMRIa-based spatial 
representations were segregated at a coarse spatial scale, 
we would expect distinct distribution patterns across ret-
rosplenial subregions for these two types of spatial repre-
sentations. Conversely, if fMRIa- and RSA-based spatial 
representations shared a similar distribution pattern across 
retrosplenial subregions, this would suggest that these 

Fig. 11.  Analysis of spatial distribution of response-based RSA effects in RSC. (a) Displayed is the RSC of an example 
participant’s brain. RSC was divided into 10 equally sized deciles, based on its dominant connectopy (see Chen et al., 
2024 for detailed methodology). (b) Response-based spatial information scores were calculated separately for each of the 
10 retrosplenial deciles. The scores are plotted as a function of retrosplenial decile. Error bars represent ±SE.
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two types of representations were likely intermixed at a 
relatively high spatial frequency.

To address this question, we calculated response-
based spatial information score for each retrosplenial 
decile along the long axis of RSC (Mattar et al., 2018), 
which was then subjected to a repeated measures 
ANOVA, with decile and score type (within landmark vs. 
within motion vs. between cue) as independent variables. 
As shown in Figure 11b, the main effect of score type was 
not significant (F(2, 38) = 0.906, p = 0.413, ηp

2 = 0.046, 
BF10 = 0.106), neither was the interaction between decile 
and score type (F(18, 342) = 0.901, p = 0.578, ηp

2 = 0.045, 
BF10 = 0.014). Although the main effect of decile was not 
significant (F(9, 171)  =  1.293, p  =  0.244, ηp

2  =  0.064, 
BF10 = 0.028), the linear trend of decile was significant 
(t(171)  =  2.823, p  =  0.005). Planned contrast analysis 
revealed significantly stronger RSA effects in the eight 
posterior deciles than the two anterior deciles 
(t(171)  =  2.874, p  =  0.005), while the eight posterior 
deciles did not differ in RSA effects (F(7, 133) = 0.495, 
p = 0.837, ηp

2 = 0.025, BF10 = 0.109)—a pattern consis-
tent with the fMRIa effects in our previous report (Chen 
et al., 2024).

In sum, our findings suggest that fMRIa- and RSA-
based spatial representations are likely intermingled at a 
relatively high spatial frequency across RSC, providing fur-
ther insight into their anatomical separability. Additionally, 
the relative uniform RSA-based spatial coding across the 
RSC (i.e., no differences among the eight posterior deciles 
of RSC) suggests that RSA-based spatial coding is broadly 
distributed within this region. Finally, our previous work 
indicates that landmark-specific and self-motion-specific 
fMRIa-based spatial representations may also be intermin-
gled at a fine spatial frequency and widely distributed 
across RSC (Chen et al., 2024). Taken together, findings 
from our two investigations imply that the three different 
types of spatial representations—landmark-specific 
fMRIa, self-motion-specific fMRIa, and cue-independent 
RSA—are all intermingled at relatively fine spatial scales 
and relatively dispersed throughout RSC.

3.2.7.  Specificity of RSA-based spatial coding  
in RSC

The preceding analyses demonstrated RSA-based spa-
tial coding in RSC was present for both cue types, driven 
by response rather than stimulus, and generalizable 
between cue types in terms of response. Here, we con-
ducted analyses to further characterize the nature of this 
coding. Specifically, we assessed specificity of this cod-
ing by examining whether it was influenced by a variety of 
factors different from location and response, including 
temporal distance between location occupation events, 

traveled time, the passive movement phase preceding 
the location occupation phase, and path length.

To preview, we found that the response-based spatial 
coding in RSC was not confounded by temporal distance 
between location occupation events or traveled time.

For the passive movement phase preceding the loca-
tion occupation phase, although the RSA effects for indi-
vidual cues were unaffected by the modeling of this 
phase, accounting for this phase was necessary to unveil 
the cue-generalizable component of the response-based 
spatial coding in RSC. This finding offers methodological 
guidance for future investigation on cue specificity/gen-
eralizability of spatial coding using fMRI.

Regarding path length, analyses of individual cues 
revealed that retrosplenial coding was driven by the per-
ceived allocentric position rather than by the path leading 
to the test location, indicating allocentric positional cod-
ing. However, the evidence is ambiguous regarding 
whether the cue-generalizable component of the posi-
tional coding was driven by perceived allocentric position 
or the path length, indicating a mixture of egocentric and 
allocentric elements in the representations.

3.2.7.1.  Temporal distance versus recognized loca-
tion.  To investigate whether the response-based posi-
tional coding in RSC was confounded by the temporal 
distance between the current location occupation event 
and the previous one (i.e., the interstimulus interval), we 
controlled for this factor using the same method for dis-
entangling true location and response location (see 
Fig. 7a). We found that the response-based RSA effects 
remained significant after temporal distance has been 
accounted for in RSC: lumped score, t(19) = 4.075, p1-tailed 
< 0.001, BF10  =  107; within landmark, (t(19)  =  4.375,  
p1-tailed < 0.001, BF10 = 195); within motion, t(19) = 3.044, 
p1-tailed = 0.003, BF10 = 14.309; between cue, t(19) = 2.852, 
p1-tailed  =  0.005, BF10  =  10.014. These findings indicate 
that the response-based positional coding observed in 
RSC was not confounded by temporal distance. This 
finding was expected because the correlation between 
inter-response spatial distance and temporal distance 
was minimal (Pearson r, mean = 0.033, SD = 0.018).

3.2.7.2.  Traveled time versus recognized location.  To 
investigate whether the response-based positional cod-
ing in RSC was confounded by traveled time, we con-
trolled for this factor using the same method for 
disentangling true location and response location (see 
Fig. 7a). We found that the response-based RSA effects 
remained significant after traveled time has been 
accounted for in RSC: lumped score, t(19)  =  4.682,  
p1-tailed < 0.001, BF10 = 361; within landmark, t(19) = 3.835, 
p1-tailed < 0.001, BF10 = 66.319; within motion, t(19) = 2.941, 
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p1-tailed = 0.004, BF10 = 11.786; between cue, t(19) = 2.573, 
p1-tailed = 0.009, BF10 = 6.056. These findings indicate that 
the response-based positional coding observed in RSC 
was not confounded by traveled time. This finding was 
expected because inter-response spatial distance and 
traveled time were only modestly correlated (Pearson r, 
mean = 0.226, SD = 0.038).

3.2.7.3.  Passive movement phase.  So far, to account 
for the passive movement phase preceding the location 
occupation phase, we used separate regressors to model 
the passive movement phase in the first-level GLMs. 
However, the other two navigation phases “start” and 
“location arrival” were left unmodeled. Therefore, we 
constructed a new GLM (GLM-RSA-response-revised) in 
which the movement regressors were extended to 
encompass all three navigation phases (“start” + “move-
ment” + “location arrival”) (see a similar control analysis 
in our previous report on location-based fMRIa effects; 
Chen et al., 2024). With this revised GLM, the pattern of 
results remained unchanged. All three response-based 
spatial information scores remained significant: within 
landmark, t(19) = 3.152, p1-tailed = 0.003, BF10 = 17.549; 
within motion, t(19) = 2.186, p1-tailed = 0.021, BF10 = 3.131; 
between cue, t(19) = 3.522, p1-tailed = 0.001, BF10 = 35.827. 
These results indicate that our RSA findings associated 
with the location occupation phase were not influenced 
by how the preceding navigation experience was mod-
eled in the first-level GLM.

To thoroughly evaluate the influences of the move-
ment phase on our RSA findings, we also constructed a 
first-level GLM without modeling the movement phase 
(GLM-RSA-response-NoPasMov). The response-based 
within-cue spatial information scores remained signifi-
cant (within landmark, t(19)  =  3.319, p1-tailed  =  0.002, 
BF10 = 24.161; within motion, t(19) = 2.422, p1-tailed = 0.013, 
BF10  =  4.652). However, the response-based between-
cue spatial information score became marginally signifi-
cant (t(19) = 1.704, p1-tailed = 0.052, BF10 = 1.485). These 
results are interpretable. Given the evidently different 
sensory inputs between different cue conditions during 
passive movement and the slow temporal dynamics of 
the hemodynamic response, any cue-specific brain activ-
ity during the movement phase would have persisted into 
the subsequent location occupation phase, thereby 
obscuring the cue-generalizable component of the posi-
tional coding. Our findings suggest that it is necessary to 
account for the preceding cue-specific navigation experi-
ence to uncover the cue-generalizable component of the 
RSA-based positional coding in RSC.

3.2.7.4.  Path length versus recognized location.  We 
evaluated whether the response-based positional coding 

in RSC could be disentangled from the length of the path 
leading to the test location. Given the randomized start-
ing positions of movement across trials in both cue con-
ditions, the path length was dissociated from the 
perceived location to a certain extent on a trial-by-trial 
basis for both cue types. This allowed us to evaluate 
whether the positional coding was primarily egocentric 
(i.e., driven by path length) or allocentric (i.e., driven by 
perceived location).‡

We employed GLM-single-trial, which modeled indi-
vidual trials with separate regressors so that trial-specific 
disparity between path length and response could be 
accounted for. We estimated the unique contributions of 
response and path length to RSA effects, using the same 
approach for disentangling response and location (see 
Fig. 7a). This approach is versatile, as it can be used to 
disentangle any two variables that differ from each other 
on a trial-by-trial basis.

For the within-landmark spatial information score, the 
unique contribution of response remained significant 
after accounting for path length (t(19)  =  4.307, p1-tailed 
< 0.001, BF10 = 170.443); on the contrary, although the 
total contribution of path length was significant 
(t(19) = 2.577, p1-tailed = 0.009, BF10 = 6.099), its unique 
contribution was not significant after accounting for 
response (t(19)  =  1.333, p1-tailed  =  0.099, BF10  =  0.893). 
Similarly, for the within-motion spatial information score, 
the unique contribution of response was significant after 
accounting for path length (t(19) = 2.461, p1-tailed = 0.012, 
BF10  =  4.975); on the contrary, although the total con
tribution of path length was significant (t(19)  =  2.393,  
p1-tailed = 0.014, BF10 = 4.427), its unique contribution was 
not significant after accounting for response (t(19) = 1.297, 
p1-tailed  =  0.105, BF10  =  0.852). However, in the case of 
between-cue spatial information score, the unique con
tribution of response was marginally significant after 
accounting for path length (t(19) = 1.637, p1-tailed = 0.059, 
BF10 = 1.349); while the total contribution of path length 
was significant (t(19) = 2.430, p1-tailed = 0.013, BF10 = 4.721), 
its unique contribution was marginally significant after 
accounting for response (t(19)  =  1.684, p1-tailed  =  0.054, 

‡  Egocentric spatial representations are defined within a reference frame 
centered on the moving navigator, reflecting first-person experience. In con-
trast, allocentric spatial representations are anchored in a reference frame 
centered on the external world and remain independent of the navigator’s 
position and head direction. Path integration is generally categorized as ego-
centric since it involves updating one’s position and head direction based on 
self movement. However, in our self-motion condition, the traveled path is 
distinctly egocentric, because its starting point is anchored to the navigator’s 
body. On the contrary, recognizing the test location required integrating self-
motion inputs relative to an external reference point (i.e., the fixed red arrow, 
the anchoring point of path integration), thereby introducing an allocentric 
element. Moreover, prior work has demonstrated that path integration can 
operate within both allocentric and egocentric reference frames (He & 
McNamara, 2018). We thus conceptualize egocentric and allocentric spatial 
representations as a continuum rather than a strict dichotomy.
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BF10  =  1.442). In brief, while the positional coding was 
predominantly driven by response rather than path 
length, the results do not conclusively determine the pri-
mary factor driving the cue-generalizable component of 
the coding.

To enhance statistical power, we also computed the 
lumped spatial information score based on all trials from 
all three cue conditions, treating them as originating from 
the same condition. The unique contribution of response 
was significant after accounting for path length 
(t(19) = 3.397, p1-tailed = 0.002, BF10 = 28.058 > 10). Path 
length’s total contribution was significant (t(19) = 3.352, 
p1-tailed = 0.002, BF10 = 25.741), and its unique contribution 
remained significant after accounting for response 
(t(19) = 1.992, p1-tailed = 0.030, BF10 = 2.275), albeit with a 
smaller effect size compared with response.

In summary, the RSA-based positional coding in RSC 
predominantly adhered to an allocentric reference frame, 
because it was primary driven by the allocentric position 
of the target location as retrieved by the participant. 
However, there existed a small degree of egocentric posi-
tional coding related to path length. Furthermore, we 
encountered ambiguity in disentangling response and 
path length in the between-cue spatial information score, 
suggesting inconclusive evidence regarding the spatial 
reference frame defining the cue-generalizable compo-
nent of the positional coding in RSC. These findings align 
with prior research indicating that RSC encodes spatial 
information in both egocentric and the allocentric refer-
ence frames (Chrastil et al., 2015; Mao et al., 2017), sug-
gesting its role in transforming spatial information 
between these reference frames (Byrne et al., 2007).

3.2.8.  Results of hippocampus

Our previous report has shown that the hippocampus 
was strongly connected with RSC and also exhibited a 
tendency of cue-specific location-based adaptation 
(Chen et  al., 2024). In addition, prior studies in non-
human animals have intensively investigated cue speci-
ficity/generalizability of positional coding in the 
hippocampus (Geva-Sagiv et  al., 2016; Markus et  al., 
1995; Quirk et al., 1990; Radvansky et al., 2021; to name 
a few). Additionally, prior studies have demonstrated 
strong functional coupling between RSC and hippocam-
pus (Mao et al., 2018; Wyss & Van Groen, 1992). There, 
we conducted analyses to test RSA effects in the hippo-
campus, which, though being exploratory, could provide 
valuable insights for inter-species comparisons.

As illustrated in Figure 12 and Tables S2–S3, the hip-
pocampus exhibited a pattern of results similar to those 
observed in RSC. First, we observed significant response-
based spatial information scores for both landmarks 

(t(19) = 2.254, p1-tailed = 0.018, BF10 = 3.50) and self-motion 
cues (t(19)  =  4.815, p1-tailed  <  0.001, BF10  =  471), which 
generalized across cue types in terms of response 
(t(19) = 3.147, p1-tailed = 0.003, BF10 = 17.362) (Fig. 11a). 
Unlike RSC, however, stimulus and behavior could not be 
unambiguously disentangled in the RSA effects (Fig. 11b; 
lumped spatial information score, unique contribution of 
response, t(19)  =  1.201, p1-tailed  =  0.122, BF10  =  0.755; 
unique contribution of location, t(19)  =  0.244, p1-tailed  = 
0.405, BF10 = 0.282). Second, the response-based RSA 
effects were relatively concentrated in the subiculum 
(Fig.  11d). Third, while the reconstructed neural space 
exhibited a structure parallel to the behavioral perfor-
mance pattern (Fig. 11d, left), it also significantly resem-
bled the physical space in the landmark condition 
(Fig. 11d, right), indicating again that stimulus and behav-
ior were less dissociated compared with RSC. Surpris-
ingly, unlike RSC, the RSA-based positional coding in the 
hippocampus predominantly adhered to the egocentric 
reference frame: the unique contribution of response was 
not significant after accounting for path length (lumped 
score, t(19) = 1.408, p1-tailed = 0.088, BF10 = 0.984); in con-
trast, the unique contribution of path length was signifi-
cant after accounting for response (lumped score, 
t(19) = 3.117, p1-tailed = 0.003), with the Bayes factor indi-
cating strong evidence for the alternative hypothesis 
(BF10  =  16.423). Like RSC, the unique contribution of 
response was significant after accounting for temporal 
distance between location occupation events (lumped 
score, t(19) = 2.967, p1-tailed = 0.004, BF10 = 12.378) and 
traveled time (lumped score, t(19) = 3.300, p1-tailed = 0.002, 
BF10 = 23.280), indicating the response-based positional 
coding in the hippocampus was not confounded by these 
two factors. Finally, like RSC, there were not significant 
differences between the left and right hippocampus in 
response-based spatial coding (F(1, 19)  =  1.577, p  = 
0.224, ηp

2 = 0.077).
For completeness, we also presented RSA results for 

other ROIs, detailed in the Supplementary Information 
(Tables  S2 and S3). Besides RSC and hippocampus, 
exploratory analyses revealed evidence of cue-
independent positional coding in terms of response in the 
parahippocampal cortex (PHC). Akin to the hippocam-
pus, positional coding in PHC was egocentric rather than 
allocentric: the unique contribution of response was not 
significant after accounting for path length (lumped spa-
tial information score, t(19)  =  1.129, p1-tailed  =  0.136, 
BF10 = 0.692), while the unique contribution of path length 
was significant after accounting for response (lumped 
score, t(19) = 1.956, p1-tailed = 0.033, BF10 = 2.170). How-
ever, response and stimulus could not be clearly dissoci-
ated in the positional coding in the PHC: the unique 
contribution of response after accounting for location 
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was not significant (lumped score, t(19) = 0.989, p1-tailed = 
0.168, BF10 = 0.587), neither was the unique contribution 
of location after accounting for response (t(19) = 0.465, 
p1-tailed = 0.324, BF10 = 0.342).

4.  DISCUSSION

In the current study, we analyzed ultra-high-field fMRI data 
from human navigating in a desktop virtual reality environ-
ment using either landmarks alone or visual self-motion 
cues alone. While our previous fMRI adaptation (fMRIa) 
analysis demonstrated that RSC contained spatial repre-
sentations for both cue types (Chen et al., 2024), here we 
adopted a complementary approach—representational 

similarity analysis (RSA). We observed RSA-based spatial 
representations for both cue types in RSC, with represen-
tational similarity between locations defined by the same 
cue type scaling with perceived spatial proximity. This 
RSA-based coding differed from the fMRIa-based coding 
in two main aspects. First, while the fMRIa-based coding 
showed stronger association with physical inputs (i.e., par-
ticipant’s actual location), RSA-based coding showed 
stronger association with behavior (i.e., participant’s self-
reported location). Second, while the fMRIa-based coding 
was cue specific (i.e., voxel-to-voxel adaptation patterns 
differed between cues), the RSA-based coding was cue 
independent, with representational similarity between 
locations defined by different cue types also scaling with 

Fig. 12.  Results of the hippocampus. (a) Spatial information scores based on location and response for landmark, self-
motion, and between cue. (b) Unique contributions of location and response to RSA effects for landmark, self-motion, and 
between cue. (c) Visualization of the response-based RSA effects in (a) Multi-voxel activation pattern similarity is plotted as 
a function of inter-response distance for landmark, self-motion, and between cue. (d) Location-based and response-based 
RSA effects in hippocampal subfields. It is worth mentioning that in the subiculum, all the six scores survived multiple 
comparisons correction across the six one-sample t tests (p’scorrected < 0.05). (e) RSA-based neural space reconstruction 
analysis. In the left panel, the neural space was compared with behavioral performance pattern (Fig. 4). The interaction 
between cue type and the linear trend of adjacent location pair was significant (pinteraction = 0.024). In the right panel, the 
group-level neural space significantly resembled the physical layout of the four test locations in the landmark condition 
(p = 0.028), but not in the self-motion condition (p = 0.293). Numbers in the circles denote the four test locations (e.g., “1” 
indicates Loc1). “*”—p1-tailed < 0.05, “**”—p1-tailed < 0.01, “***”—p1-tailed < 0.001. When testing whether the spatial information 
score was greater than 0, the one-tailed t test was adopted, because we had a specific directional hypothesis that pattern 
similarity should increase as inter-response distance decreased. Error bars represent ± SE.
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perceived spatial proximity. Taken together, to our knowl-
edge, our study is the first to demonstrate the coexistence 
of cue-specific and cue-independent spatial representa-
tions in the human RSC.

When changing sensory information in a given envi-
ronment, previous studies have reported cue-independent 
spatial representations in RSC in both humans (Huffman 
& Ekstrom, 2019) and rodents (Mao et al., 2017). Huffman 
and Ekstrom (2019) manipulated self-motion cues by 
varying the amount of body-based information across 
different virtual environments, where participants learned 
spatial locations. Subsequent retrieval of these locations 
during fMRI scanning recruited similar brain networks, 
including RSC, across environments. Their findings pro-
vide evidence for cue-independent spatial representa-
tions. Similarly, Mao et  al. (2017) manipulated spatial 
cues by switching lights on and off. They found that the 
collective firing pattern of place-sensitive cells in RSC 
remained stable across different lighting conditions, sug-
gesting cue-independent spatial representations in this 
region. However, in both studies, different cue types were 
not fully dissociated across conditions. In Mao et  al. 
(2017), body-based self-motion cues were available in 
both lighting conditions, while Huffman and Ekstrom 
(2019) maintained visual information across all self-
motion conditions. Consequently, the reported cue-
independent spatial representations may have been 
driven by shared spatial information, rather than repre-
senting a genuine cue-independent spatial code that 
transcends the sensory sources of spatial information.

To overcome these limitations, our experimental 
design ensured a complete dissociation between land-
marks and self-motion cues. This manipulation proved 
effective, as evidenced by differential patterns of behav-
ioral accuracy along the linear track in different cue con-
ditions. Specifically, in the landmark condition, 
performance improved as the test location neared the 
landmark, while the opposite pattern was observed in the 
self-motion condition. This finding can be explained by 
the decreasing spatial accuracy of landmark-based navi-
gation as distance from the landmark increases (Chamizo 
et al., 2006; Chen et al., 2019). Meanwhile, path integra-
tion becomes more prone to errors as the navigator 
moves away from the reference point (Stangl et al., 2020). 
These behavioral findings indicating that our experimen-
tal manipulation effectively elicited distinct navigational 
strategies reliant on landmarks versus self-motion cues. 
Hence, our finding of RSA-based cue-independent spa-
tial representations in RSC is unlikely to be confounded 
by overlapping spatial information across different cue 
conditions. Instead, this finding likely signifies an abstract 
positional coding that surpasses diverse sensory sources 
of spatial information.

Crucially, given that we also detected fMRIa-based 
cue-specific representations in RSC using the same 
dataset (Chen et al., 2024), it is possible that the two prior 
studies might have overlooked parallel cue-specific spa-
tial representations that could manifest in a different form 
of neural activity (Huffman & Ekstrom, 2019; Mao et al., 
2017). Our study underscores the importance of leverag-
ing complementary neural phenomena to achieve a more 
comprehensive understanding of the neural operations 
supporting the formation of coherent cognitive maps.

Why would cue-specific and cue-independent spatial 
representations coexist in RSC? From a behavioral per-
spective, our task comprised both a sensory component 
and a long-term memory component, as participants had 
to compare sensory inputs with memory traces of spatial 
locations to determine where they were located. The sen-
sory component involved deriving positional estimates 
from the perception of cue-specific spatial inputs. In con-
trast, the long-term memory component involved forming 
and retrieving memory traces of the four test locations. 
This component was cue independent because the test 
locations remained the same regardless of the cue type 
used. Although the behavioral performance profile along 
the linear track differed between the landmark and self-
motion conditions (Fig. 4a), additional analysis revealed a 
strong across-participant correlation in behavioral accu-
racy between the two cue conditions (r = 0.696, N = 20, 
p < 0.001). This result means that those who performed 
better with landmarks also performed better with self-
motion cues. This finding indicates that the two cue con-
ditions might share certain cognitive components, which 
likely correspond to the common long-term memory 
traces of the test locations.

Consistent with the behavioral findings, our fMRI 
results revealed contrasting properties of fMRIa and RSA 
effects in RSC: while fMRIa effects were cue specific and 
associated with stimulus input (i.e., objective location), 
RSA effects were cue independent and linked to behavior 
(i.e., retrieved spatial memory). The coexistence of 
stimulus-oriented fMRIa effects and behavior-oriented 
RSA effects in RSC suggests that this region is crucially 
involved in the neural process of comparing perceptual 
inputs with stored memory traces to make navigation 
decisions (Alexander et al., 2023).

Notably, our fMRI results align broadly with previous 
studies reporting distinct properties of fMRIa and MVPA 
effects (RSA effects included). These studies focused on 
brain regions associated with scene and object process-
ing, which are also involved in spatial navigation (Chen 
et  al., 2019; Diersch et  al., 2021; Epstein, 2008; Julian 
et al., 2016). fMRIa and MVPA effects differ in two main 
aspects: stimulus selectivity and relationship with behav-
ior. First, regarding stimulus selectivity, fMRIa effects are 
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sensitive to viewpoint changes of scenes in brain regions 
such as the parahippocampal place area (PPA), retro-
splenial complex, and lateral object complex (LOC) 
(Epstein et al., 2003). In contrast, MVPA effects code spa-
tial locations of the scenes independent of facing direc-
tion in regions such as the presubiculum, retrosplenial 
complex, and parietal-occipital sulcus (Vass & Epstein, 
2013); additionally, the presubiculum contains MVPA-
based representations for facing direction independent of 
spatial locations of the scenes (Vass & Epstein, 2013). 
Consistent with both streams of evidence, O’Connell et al. 
(2018) compared color photographs and line drawings of 
natural scenes, and demonstrated concurrent stimulus-
specific fMRIa-based coding and stimulus-independent 
MVPA-based coding of scenes in the same brain regions, 
including the retrosplenial complex, PPA, and OPA. These 
results demonstrate that while fMRIa effect is sensitive to 
lower level physical features of stimuli, MVPA effects 
reflect abstract coding of the target stimulus dimension 
by remaining insensitive to changes in other stimulus 
dimensions. The stimulus selectivity of fMRIa effects in 
human studies is reminiscent of the stimulus selectivity 
observed in neuronal adaptation in electrophysiological 
studies (De Baene & Vogels, 2010; Liu et  al., 2009; 
Sawamura et  al., 2006). Second, regarding relationship 
with behavior, the scene-related fMRIa effect in PPA is 
unaffected by top-down cognitive operations, such as 
task requirements that typically influence behavioral per-
formance (Xu et al., 2007). In contrast, the MVPA effect in 
LOC reflects behavioral confusability among stimulus 
items (Hatfield et al., 2016), and better behavioral perfor-
mance in discriminating stimulus items corresponds to 
more distinct MVPA-based neural representations in 
regions such as the retrosplenial complex (Koch et  al., 
2020; Walther et al., 2009), alEC (Bellmund et al., 2019), 
PPA (Walther et al., 2009), and LOC (Walther et al., 2009; 
Williams et  al., 2007). The close relationship between 
MVPA effects and behavior in human studies is reminis-
cent of findings that the collective activity of neuronal 
populations in the hippocampus (Saleem et al., 2018) and 
RSC (Alexander & Nitz, 2015) reflects overt behavior in 
electrophysiological studies. However, this link should be 
interpreted with caution due to the unclear relationship 
between BOLD signals and neuronal activity (Arthurs & 
Boniface, 2002).

Having established that RSC contained concurrent 
cue-specific and cue-independent spatial representa-
tions associated with stimulus and behavior, respectively, 
one critical question arises: why did this intriguing phe-
nomenon occur in RSC? The anatomical and functional 
characteristics of RSC make it well suited to support nav-
igation behavior by mediating the interplay between sen-
sory processing and long-term memory functions 

(Alexander et al., 2023). On one hand, RSC’s connections 
with brain regions that process sensory information of 
landmarks and self-motion cues are fundamental to this 
role (Vann et al., 2009). In primates, RSC is anatomically 
connected with occipital regions and V4, whose human 
homologue, hV4, is hypothetically situated in the lingual 
gyrus, a region critical for landmark recognition (Pallis, 
1955). Notably, human RSC demonstrates structural and 
functional connectivity with BA17 (Li et al., 2018), whose 
activity distinguishes different object sizes (Schwarzkopf 
et  al., 2011); this size-distinguishing signal can poten-
tially aid in gauging distance to a landmark based on its 
perceived size (Howard, 2002). Moreover, human RSC 
displays functional connectivity with optic-flow-
responsive areas such as V3A, V6, and hMT+ during 
path integration (Sherrill et al., 2015). RSC also has dense 
connections with the thalamus (Vann et al., 2009), which 
is involved in spatial processing of both landmarks (Yoder 
et al., 2011) and self-motion cues (Arleo et al., 2013). On 
the other hand, RSC’s anatomical connectivity with MTL 
in primates (Vann et al., 2009) underscores its pivotal role 
in long-term memory functions. Human RSC also medi-
ates the functional connectivity between MTL and the 
cortical areas of the default mode network, with this 
mediation correlating with episodic memory perfor-
mance (Kaboodvand et  al., 2018). Accordingly, RSC 
often serves as a repository for long-term memory traces 
relevant to spatial navigation (Diersch et al., 2021; Patai 
et al., 2019; Wolbers & Büchel, 2005). In brief, the inter-
action between the sensory and memory components 
makes RSC pivotal for the formation of coherent cogni-
tive maps from various spatial inputs during navigation 
(O’Keefe & Nadel, 1978; Tolman, 1948).

How can the coexistence of cue-specific and cue-
independent spatial representations in RSC refine our 
understanding of its functional architecture? First, we 
previously found that the voxel-to-voxel patterns of fMRIa 
effect based on objective location were spatially dissoci-
ated between landmarks and self-motion cues (Chen 
et al., 2024), suggesting the existence of distinct location-
sensitive neuronal subpopulations processing sensory 
inputs from the two cue types, respectively. These neuro-
nal subpopulations should display adaptation to stimula-
tion from external spatial inputs. Second, we currently 
found that RSA effects based on subjective response 
were spatially generalizable between cue types, which is 
indicative of a location-sensitive neuronal subpopulation 
whose ensemble activity represented the navigator’s 
subjective recognition of spatial locations in a cue-
independent manner. Crucially, this particular neuronal 
subpopulation should not display adaptation; otherwise, 
the voxel-to-voxel patterns of fMRIa effect would show 
spatial overlap between the cue types, thus eliminating 
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the cue specificity observed in the voxel-to-voxel pattern 
of fMRIa effect. Third, RSA and fMRIa effects were inde-
pendent at the voxel level, indicating that the non-
adapting subpopulations reflecting subjective responses 
are anatomically separable from the adapting subpopula-
tions encoding objective locations (Fig. 10). Finally, our 
findings also suggest that all these neuronal subpopula-
tions were rather distributed along the long axis of RSC 
and intermingled with one another at high spatial fre-
quencies. Collectively, our findings align with recent 
rodent studies suggesting that RSC contains distinct 
neuronal subpopulations, which respond differently to 
the adaptation manipulation (Brennan et  al., 2020) and 
task engagement (Fischer et al., 2020). Our findings also 
suggest that adaptation can be a vital tool for distinguish-
ing diverse neural units serving different computational 
purposes during navigation. Nevertheless, given the elu-
sive relationship between BOLD signals and neuronal 
activity (Arthurs & Boniface, 2002), our interpretation is 
speculative at this point and awaits further rigorous 
investigations.

Although our findings suggest that RSC could be a 
candidate locus of spatial cue unification due to simul-
taneous cue-specific and cue-independent spatial rep-
resentations in this region, the precise role RSC plays in 
this process remains to be determined. One hypothesis 
is that RSC performs the computations of cue unifica-
tion (unification-in-RSC hypothesis). Alternatively, RSC 
might merely relay cue-specific spatial information to 
other brain regions for unification and subsequently 
receives cue-independent representations via feedback 
projections (unification-outside-RSC hypothesis). Arbi-
trating between these two hypotheses likely hinges on 
the connectivity structure within RSC (Alexander et al., 
2023). We previously speculated that there might exist 
three separate neuronal subpopulations: two adapting 
subpopulations responding to the sensory inputs stem-
ming from landmarks and self-motion cues, respec-
tively, and a third non-adapting sub-population 
representing abstract spatial locations as retrieved by 
the navigator. The unification-in-RSC hypothesis would 
require strong interactions among these neuronal sub-
populations within RSC. Conversely, limited interaction 
would support the unification-outside-RSC hypothesis. 
The unification-outside-RSC hypothesis also appears 
plausible, as RSA-based cue-independent spatial rep-
resentations were observed not only in RSC but also in 
regions such as the hippocampus and PHC. Notably, 
the hippocampus may simultaneously contain fMRIa-
based cue-specific spatial representations (Chen et al., 
2024, see the Discussion section). Furthermore, the 
searchlight analysis revealed spatial coding in various 
brain regions, including the middle temporal gyrus and 

middle occipital gyrus (Table  S5; Fig.  S3; Chen et  al., 
2024, fig. E4). Further investigation is warranted to clar-
ify the roles of RSC and other regions, such as hippo-
campus and PHC, in forming coherent cognitive maps 
and integrating various spatial cues during navigation, 
and it would be enlightening to interpret RSC’s spatial 
functions within the broader neural network of spatial 
navigation, emphasizing its interactions with other rele-
vant regions rather than viewing it as an isolated pro-
cessing module (Ekstrom et al., 2017).

Our findings not only illuminate the spatial cue unifica-
tion process in the brain, but also provide insights into 
the mechanisms underlying fMRIa- and MVPA-based 
neural coding, a key topic in the fMRI literature. Currently, 
there are two main hypotheses: the input-versus-output 
hypothesis and the tuning-versus-clustering hypothesis.§

The input-versus-output hypothesis proposes that 
fMRIa effects reflect neural processing at the synaptic 
level, whereas MVPA effects capture contents of neuro-
nal outputs (Epstein & Morgan, 2012). Our findings are  
partially consistent with this hypothesis. First, this 
hypothesis predicts that fMRIa and MVPA effects would 
be associated with stimulus and behavior, respectively, 
which is exactly what we observed in our studies. It is 
conceivable that the synaptic processing reflects the 
sensory information received by RSC from lower level 
cortical sensory areas, whereas neuronal outputs are 
more directly related to the behavior after RSC has incor-
porated sensory information with stored memory traces. 
Second, this hypothesis implies that fMRIa and RSA 
effects are dissociated within the same neuron, which 
predicts spatial overlap between these two types of 
effects. However, this prediction is contradicted by our 
finding that fMRIa and RSA effects appeared anatomi-
cally separable: voxels higher in fMRIa effect did not 
contribute more to RSA effects (Fig. 10).

We propose that separate neural subpopulations are 
responsible for stimulus-oriented coding and behavior-
oriented spatial coding, which helps explain the coexis-
tence of both fMRIa and RSA effects within RSC. This is 
particularly relevant, because RSC is hypothesized to 
mediate the bidirectional information flow between the 
parietal cortex and medial temporal lobe, as formalized in 
a well-known neural network model (Byrne et al., 2007). 
Relating this model to our task, it is conceivable that sen-
sory information flows from the parietal cortex to MTL via 

§  Epstein and Morgan (2012) also describe a third hypothesis, proposing 
that fMRIa effects reflect top-down influences of higher level cognitive func-
tions, such as expectation (Summerfield et al., 2008). However, this hypothe-
sis is challenged by a later study (Kaliukhovich & Vogels, 2011). Moreover, our 
study adopted randomized location sequences, excluding the impact of 
expectation. Therefore, we have, therefore, chosen not to discuss this hypoth-
esis here.
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RSC in a feedforward pathway, while behavior-related 
information is sent back to the parietal cortex from MTL 
in a feedback pathway. If a single group of neurons in 
RSC were to receive both stimulus-oriented information 
from the parietal cortex and behavior-oriented informa-
tion from MTL, this neuron group would process both 
types of information at the synaptic level, making stimu-
lus- and behavior-oriented coding inseparable. On the 
contrary, having distinct neuronal subpopulations for 
stimulus and behavior makes the coexistence of these 
neural representations plausible. Moreover, one potential 
benefit of this neuronal separation is that it readily allows 
for cue segregation within RSC, alongside cue unifica-
tion. Cue segregation typically occurs when the sensory 
inputs from different cue types are considered to origi-
nate from discrepant spatial origins (French & DeAngelis, 
2020; Körding et al., 2007). In this case, the cues should 
be separated rather than integrated. Future research will 
need to examine how the hypothesized sensory- and 
memory-driven neural subpopulations interact to support 
complex computations such as cue unification, segrega-
tion, and integration.

Contrary to our findings, Mattar et al. (2018) report that 
in the lateral occipital complex (LOC), voxels with higher 
fMRIa effects also exhibited greater RSA effects compared 
with those with lower fMRIa effects, suggesting that the 
same set of neural units was involved in both types of 
effects. This finding is consistent with the input-versus-
output hypothesis and implicates neuronal adaptation as a 
mechanism for sharpening neural representations within 
the same neuronal population. The discrepancies between 
Mattar et al. (2018) and our study indicate that the spatial 
relationship between fMRIa and MVPA effects may differ 
across brain regions.

The tuning-versus-clustering hypothesis is proposed 
by Drucker and Aguirre (2009). The authors found that 
the ventral LOC contained fMRIa-based representations 
of objects, while the lateral LOC contained RSA-based 
representations of objects. At the same time, they also 
found that the voxel tuning curve was rather broad over 
the object space in the ventral LOC, whereas it was 
much narrower in the lateral LOC. Based on these find-
ings, they concluded that fMRIa effects reflect broad 
tuning curve of individual neurons, whereas RSA effects 
reflect clustering of neurons at a coarse spatial scale.

However, it may be premature to generalize properties 
of the voxel tuning curve to the neuronal tuning curve. In 
addition to the width of neuronal tuning curve, the even-
ness of spatial distribution of neurons across voxels also 
influences the voxel tuning curve. This is because the 
measurement unit in fMRI studies is voxel, and each 
voxel contains thousands of neurons. We run a simplified 
simulation to examine influences of the two factors on 

fMRIa and RSA effects. Detailed methodology and results 
are provided in Supplementary Information (Section 3). In 
brief, we found that the width of the neuronal tuning 
curve, which reflects representational overlap at the neu-
ron level, influences fMRIa- and RSA-based effects in a 
similar manner, contradicting the tuning-versus-clustering 
hypothesis proposed by Drucker and Aguirre (2009). Par-
ticularly, for both types of effects, the emergence of spa-
tial distance coding requires a moderately broad neuronal 
tuning, while the emergence of location identity coding 
requires a sharp neuronal tuning. In contrast, the even-
ness of the across-voxel distribution of neurons influ-
ences these two types of coding in opposite ways: a less 
even distribution of neurons leads to stronger MVPA 
effects but weaker fMRIa effects. However, the influence 
on fMRIa effects is minimal unless the distribution is 
highly uneven. These results are consistent with the 
tuning-versus-clustering hypothesis, in that MVPA effects 
benefit from relatively coarse spatial distributions of neu-
rons across a brain region.

At a first glance, our finding that fMRIa effects were 
stimulus driven but not behavior driven seems to conflict 
with the turning-versus-clustering hypothesis’s proposi-
tion that fMRIa effects reflect the tuning of individual neu-
rons. This proposition associates fMRIa effects to 
behavior, as sharper tuning curves correspond to less 
neuronal representation overlap among different stimulus 
items and thus better behavioral performance in distin-
guishing them. However, this contradiction is not neces-
sarily true. As discussed in our previous paper, it is 
plausible that different parameters of the neuronal tuning 
curve influence different aspects of the fMRIa effect 
(Chen et al., 2024). For example, the means of the tuning 
curves are determined by objective location, which fit 
fMRIa-based spatial coding better than perceived loca-
tion. Meanwhile, the standard deviations of the tuning 
curves represent the precision of sensory information, 
shaping the format and magnitude of the fMRIa effect, 
which in turn affects behavioral accuracy.

To test this hypothesis’s proposition that MVPA effects 
reflect coarse spatial clustering of neurons with our data, 
we re-computed the response-based spatial information 
scores using spatially smoothed beta images from the 
first-level GLM (with 3  mm isotropic FWHM) (Op de 
Beeck, 2010). In RSC, response-based spatial informa-
tion scores remained significant: within landmark, 
t(19) = 4.661, p

1-tailed < 0.001, BF10 = 347; within motion, 
t(19) = 4.401, p1-tailed < 0.001, BF10 = 206; between cue, 
t(19) = 3.679, p1-tailed < 0.001, BF10 = 48.776. Given that 
spatial smoothing reduces differences among voxels, the 
persistence of RSA-based coding in RSC after spatial 
smoothing suggests that (i) the anatomical scale of 
location-sensitive neural units is rather coarser in RSC 
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and (ii) uneven across-voxel distribution of neural units is 
a prerequisite for the emergence of RSA effects in a 
region, as posited by the tuning-versus-clustering 
hypothesis and demonstrated in our simulation analysis.

In summary, our findings are partially consistent with 
the existing two primary hypotheses regarding the neu-
ronal mechanisms underlying fMRIa- and MVPA-based 
coding. Relating our findings to these hypotheses 
enhances our understanding of the neural processes 
driving these two types of neural coding. However, this 
understanding must be considered within the context 
of the specific brain region under investigation, as the 
underlying mechanisms may vary across different 
regions.

5.  CONCLUSION

In the current study, we observed RSA-based cue-
independent neural representations of spatial locations in 
RSC. Together with our previous finding of fMRIa-based 
cue-specific spatial representations in the same region, 
our study is the first to demonstrate the concurrent pres-
ence of cue-specific and cue-independent spatial repre-
sentations in RSC. Our findings provide novel insights 
into a fundamental question in the spatial navigation liter-
ature: how the brain constructs coherent cognitive maps 
from various sensory sources of spatial information. Our 
findings suggest that RSC may play a crucial role in the 
unification of spatial cues, thereby facilitating the creation 
of coherent cognitive maps during navigation.
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