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stratified carriers into three groups: asymptomatic, prodromal, and symptomatic. We

extracted measures of cortical thickness, white matter integrity, and functional con-

nectivity, which were compared between each carrier group and controls using linear

mixedmodels.

RESULTS: Early isolated functional disruptions in salience/visual networks were

present in asymptomatic carriers, alongwith anterior cingulate graymatter reductions.

In prodromal carriers, functional changes extended to other networks, with additional

structural damage in temporal poles/cingulate.

DISCUSSION: This study shows that functional networks likely drive lifelong com-

pensation for a genetically determined disease, manifesting clinically when structural

damage reaches a critical threshold. This supports connectivity measures as potential

biomarkers forMAPT-related neurodegeneration.

KEYWORDS

functional connectivity, genetic frontotemporal dementia, graph analysis, graymatter,macroscale

organization, MAPT, mutation, neurodegeneration, tau, tau pathology, white matter

Highlights

∙ Our findings reveal the progressive and staged nature of structural and functional

connectivity alterations in MAPT mutation carriers, with distinct patterns at each

disease stage.

∙ In asymptomatic carriers, we identified early functional connectivity alterations in

salience and visual networks, despite preserved white matter and only subtle gray

matter atrophy. These appear to represent both response to pathology and possible

compensatorymechanisms.

∙ In prodromal carriers, functional connectivity alterations were accompanied by

structural damage, including cortical atrophy and white matter tract disruptions, in

regions directly connected to early-affected networks.

∙ The sequential progression, from functional connectivity changes to structural

degeneration, aligns with the hypothesis that tau propagates along axonal connec-

tions, disrupting neural network integrity beforemeasurable atrophy occurs.

∙ We propose a theoretical data-driven model of biomarker evolution inMAPTmuta-

tion carriers, highlighting functional disruptions as early indicators and structural

damage as a later-stage hallmark.

∙ These connectivity biomarkers have the potential to inform therapeutic strategies

and clinical trial design.

1 BACKGROUND

Many mutations in the microtubule-associated protein tau (MAPT)

gene are pathogenic and known to lead to frontotemporal demen-

tia (FTD), neurodegenerative conditions primarily affecting behaviour,

language, and/or motor function.1,2 MAPT mutation carriers often

develop the behavioural variant of FTD (bvFTD), characterised by

behavioural and personality deterioration, but also other clinical mani-

festations such as corticobasal syndrome (CBS), progressive supranu-

clear palsy (PSP), or an Alzheimer’s-like syndrome.2 Subjects with

MAPTmutations typically exhibit an earlier age of symptomonset com-

pared to carriers of other gene mutations like expansions in C9 open

reading-frame 72 (C9orf72) or progranulin (GRN), sometimes as early

as in the second decade of life.3–5

Neurodegenerative syndromes like FTD are thought to reflect the

disruption of large-scale neuronal networks, with both structural and

functional connectivity changes reported in patients.6–17 Research

suggests that the progression of these diseases may arise from the
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propagation of pathological processes along anatomical and func-

tional brain connectivity pathways.18–21 A key challenge in the field

is understanding how tau pathology spreads from its initial site of

aggregation. Some studies propose that tau aggregates propagate to

neighbouring brain regions,22 while others suggest that tau spreads

along synaptically connected networks.23

Although several studies have explored connectivity changes in

MAPT mutation carriers, research is often limited by small sample

sizes, and few studies have examined both structural and functional

connectivity simultaneously. This gap hinders a comprehensive under-

standing of these two types of connectivity and their changes at dif-

ferent disease stages. Some evidence suggests that inMAPTmutation

carriers, functional connectivity changes in frontotemporal circuits

may precede structural atrophy.9,24 Metabolism studies also highlight

altered connectivity before detectable structural neurodegeneration

occurs.25–27 These early functional changes have also been reported to

show patterns of change opposite to those seen in patients, possibly

reflecting synaptic dysfunction related to tau pathology or compen-

satory mechanisms, suggesting potential as biomarkers for disease

progression.26,28

The primary aim of this study was to identify which connectivity

pathways become altered andwhen during the disease course inMAPT

mutation carriers, shedding light on the molecular processes underly-

ing neurodegeneration. Structural connectivity was assessed via corti-

cal thickness and white matter (WM) tract integrity, while functional

connectivity was examined through graph theory measures (local and

global) andmacroscale gradients of functional networks. Furthermore,

we stratified MAPT mutation carriers into three groups, accounting

not only for asymptomatic versus symptomatic status but also for the

“grey zone” representing the transitional phase between these stages,

definedhere as “prodromal.” Consistentwith the existing literature,we

hypothesised that changes in functional networkswould be detectable

from the earliest presymptomatic stages, whereas structural alter-

ations would be more closely linked to symptom onset. Understanding

these changes may enhance our knowledge of FTD pathology pro-

gression and contribute to the identification of biomarkers for early

diagnosis, accurate staging, and effective diseasemonitoring.

2 METHODS

2.1 Participants

We included controls (n = 272) and MAPT mutation carriers (n = 86)

from the sixth data freeze in the GENFI study. These participants com-

pleted a baseline visit between January 2012 and January 2021 across

24 centers in theUnitedKingdom,Canada, Italy, theNetherlands, Swe-

den, Portugal, Germany, France, Spain, and Belgium. The study was

approved by each local ethics committees, written informed consent

was obtained from all participants, and the study was conducted in

accordance with the ethical standards of the Declaration of Helsinki.

Participants were screened and genotyped at their local sites. MAPT

mutations includedmutations in intron10 (IVS10+14, IVS10+15A>C,

RESEARCH INCONTEXT

1. Systematic review: This study builds on a growing body

of literature investigating the neural correlates of tau-

related neurodegeneration, specifically in the context of

MAPT mutations associated with FTD. Neurodegenera-

tion such as that involved in MAPT-related FTD involves

the disruption of large-scale neuronal networks, with the

propagation of pathological processes occurring along

anatomical and functional brain connectivity pathways. A

review of prior work informed the selection of advanced

structural and functional imaging approaches and guided

the definition of a well-characterised cohort of MAPT

mutation carriers to better understand the mechanisms

of pathology progression by identifying which connectiv-

ity pathways becomealtered andwhenduring thedisease

course.

2. Interpretation: Our findings demonstrate that functional

network alterations emerge early in the disease pro-

cess, preceding or co-occurring with structural damage

in MAPT-associated FTD. These results support a model

in which tau pathology disrupts large-scale brain net-

works early on, with subsequent structural degeneration

reflecting a progression of these functional abnormali-

ties. Additionally, the data suggest a dynamic interplay

between pathological changes and potential compen-

satory mechanisms. Together, these insights highlight the

importance of both functional and structural connectivity

biomarkers in improving early diagnosis, disease staging,

and therapeutic monitoring in tauopathies.

3. Future directions: While clinical trials are under way for

several forms of genetic FTD, MAPT mutation carriers

remain underrepresented in therapeutic development

efforts. Future research must prioritise the validation

of robust and reliable biomarkers specifically tailored to

this population. Longitudinal studies with larger cohorts

are needed to confirm the temporal sequence of net-

work changes and to assess their predictive value for

clinical progression. Additionally, future trials will bene-

fit from identifying biomarkers that are not only sensitive

to disease onset and progression but also responsive to

therapeutic intervention, thereby accelerating the path

toward targeted treatment strategies for tauopathies.

IVS10+16, IVS10+16C > T, IVS10+3G > A, IVS10+16) as well as

exonic missense mutations (G272V, L266V, L315R, P301L, P397S,

Q351R,R406W, S320F, S356T).GENFI has strict eligibility criteria that

includes only the inclusion of participants with confirmed pathogenic

mutations. The distribution of mutations across our MAPT carrier

groups is detailed in Table S1. All participants underwent a standard-
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TABLE 1 Demographic and neuropsychological details of sample studied, with values presented asmean± standard deviation, unless

otherwise noted.

Demographic data MAPT carriers

ControlsFTLD-CDR global score 0= asymptomatic 0.5= prodromal 1 to 3= symptomatic

N 47 16 23 272

Sex ratio F:M 28:19 n.s. 09:07 n.s. 08:15 n.s. 163:118

Age (years) 39.7 ± 11.0 0.003 42.2 ± 11.5 n.s. 56.4 ± 10.0 0.0001 45.8 ± 13.0

Education (years) 14.6 ± 3.3 n.s. 14.3 ± 2.4 n.s. 14.1 ± 3.4 n.s. 14.5 ± 3.4

MMSE 28.3 ± 6.1 n.s. 26.7 ± 7.4 n.s. 23.0 ± 7.1 <0.0001 28.9 ± 4.1

Neuropsychological data

Benson figure recall 12.5 ± 3.9 n.s. 12.3 ± 5.0 n.s. 6.1 ± 4.8 <0.0001 12.9 ± 3.5

Camel and cactus 28.0 ± 8.2 n.s. 29.7 ± 2.6 n.s. 25.1 ± 3.9 <0.0001 29.3 ± 5.8

Trail Making Test A time 23.1 ± 10.3 n.s. 23.4 ± 5.4 n.s. 41.2 ± 17.1 <0.0001 26.6 ± 12.8

Trail Making Test B time 53.8 ± 23.4 0.03 59.1 ± 23.5 n.s. 133.1 ± 71.8 <0.0001 62.2 ± 33.6

BostonNaming Test 27.4 ± 4.5 n.s. 27.1 ± 3.2 n.s. 16.6 ± 6.9 <0.0001 27.4 ± 4.2

FCSRT immediate free 27.7 ± 12.1 n.s. 30.3 ± 10.6 n.s. 11.1 ± 8.2 <0.0001 30.3 ± 8.6

FCSRT immediate total 40.2 ± 15.7 n.s. 43.1 ± 8.3 n.s. 25.7 ± 10.8 <0.0001 43.8 ± 9.0

FCSRT delayed free 10.5 ± 4.9 n.s. 10.8 ± 4.8 n.s. 4.1 ± 3.9 0.0001 11.7 ± 3.4

FCSRT delayed total 13.4 ± 5.4 n.s. 14.5 ± 3.2 n.s. 9.3 ± 4.1 <0.0001 15.0 ± 3.1

Stroop ink time 47.0 ± 20.2 n.s. 46.0 ± 9.8 n.s. 85.0 ± 35.8 0.001 50.4 ± 15.8

Verbal fluency animals 23.3 ± 7.4 n.s. 23.4 ± 5.8 n.s. 13.4 ± 6.2 <0.0001 23.7 ± 6.7

Verbal fluency F 13.8 ± 5.7 n.s. 14.8 ± 4.7 n.s. 9.0 ± 5.3 0.0002 13.4 ± 5.2

Verbal fluency A 12.4 ± 5.3 n.s. 12.7 ± 4.8 n.s. 7.1 ± 4.6 <0.0001 12.3 ± 4.9

Verbal fluency S 13.7 ± 5.8 n.s. 16.6 ± 6.0 0.04 9.4 ± 4.0 0.0002 13.6 ± 5.6

miniSEA 23.1 ± 8.1 n.s. 24.5 ± 2.9 n.s. 19.1 ± 7.0 0.01 25.1 ± 4.7

The column to the right of the values is the result of statistical comparisons with control group; the p value is reported if there was no significant difference;

n.s. is reported.

Abbreviations: FCSRT, Free and Cued Selective Reminding Test; FTLD-CDR, Clinical Dementia Rating scale plus National Alzheimer’s Coordinating Center

Behaviour and Language domains;MAPT, microtubule-associated protein tau; n.s., non-significant.

ised clinical assessment as described previously,29 including the CDR

Dementia Staging Instrument plus National Alzheimer’s Coordinating

Center (NACC) Behaviour and Language domains (CDR plus NACC

FTLD), hereafter referred to as FTLD-CDR,30 a measure of disease

severity from which a global score can be calculated. The global score

was used in this work to stage mutation carriers, with those having a

score of 0 being considered asymptomatic, 0.5 as prodromal, and 1, 2,

or 3 as symptomatic.We compared demographic details and neuropsy-

chological test scores across multiple cognitive domains between each

carrier group and controls, using chi-squared tests for sex andKruskal-

Wallis followed by Mann–Whitney U tests for continuous variables.

Our sample’s characteristics are summarized in Table 1.

2.2 Neuroimaging sequences

Analogous imaging sequences were acquired on 3T magnetic reso-

nance imaging (MRI) scanners at each GENFI site accommodating

differentmanufacturers. A summaryof thedifferent scanners used and

the specific protocol parameters for each can be found in Table S2.

For anatomical images, T1-weighted scans were acquired using a mag-

netisation prepared rapid acquisition gradient echo pulse sequence

(MPRAGE). T2*-weighted echo-planar imaging (EPI) pulse sequences

for resting-state functional MRI (fMRI) were acquired for functional

imaging. Participants were asked to lie with their eyes closed, with-

out falling asleep, during the resting-state acquisition run. Finally,

diffusion-weighted scans were acquired using single-shell diffusion

encoding with a b-value of 1000 s/mm2 and 64 diffusion directions.

Data were collected using single-shot spin-echo echo-planar imaging

(SE-EPI) with interleaved acquisitions of five non-diffusion-weighted

(b= 0) images.

2.3 Gray matter analysis

2.3.1 Preprocessing

T1 scans that passed visual quality inspection were processed using

FreeSurfer version7.1.1. This pipelineperformscortical surfaceextrac-

tion, segmentation of subcortical structures, cortical thickness esti-
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mation, spatial normalisation onto the FreeSurfer surface template

(FsAverage), and parcellation of cortical regions based on different

atlases.31 We ran the recon-all cross-sectional analysis using Clinica’s

t1-freesurfer pipeline.32 FreeSurfer segmentation outputs were each

visually inspected for serious errors. When serious errors occurred,

or when FreeSurfer crashed without providing outputs and this was

not fixed by repeated attempts, FreeSurfer analyses of those scans

were omitted. No manual correction of FreeSurfer segmentations was

performed.

2.3.2 Cortical thickness extraction

Gray matter (GM) thickness values were generated using the recon-

all cross-sectional approach, which generated values across 327,684

vertices of the cortex, with a full width at half maximum of 20.

FreeSurfer is a surface-based analysis (SBA), meaning that for each

vertex, cortical thickness is calculated as the mean distance between

vertices of a corrected, triangulated, estimated GM/WM surface and

GM/cerebrospinal fluid (CSF) (pial) surface.33

2.4 WM connectivity analysis

2.4.1 Preprocessing

Diffusion-weighted images (DWI) were preprocessed using an in-

house pipeline that combines state-of-the-art tools (DWEZ).34 The

overall steps involved, first, concatenation and denoising of the DWI

volumes, followed by removing Gibbs ringing artifacts using MRtrix3

tools. Then we performed motion correction with FSL’s mcflirt,

extracted amean b= 0 image, and stripped the skull from the T1 image

using SynthStrip, a Python singularity wrapper. Next, using Synb0-

DISCO, a deep-learning tool, we generated a synthetic undistorted

b = 0 volume, which was input into FSL topup for DWI distortion cor-

rection. Finally, a new mean b = 0 was extracted from the undistorted

DWI volumes from which SynthStrip created a new brain mask. Tis-

sue response, fiber orientation distribution, and tissue segmentation

on the aligned DWI to T1w scan, followed by anatomical constrained

tractography (ACT), were performed usingMRtrix3.

Further details regarding this pipeline can be found in the openly

available repository: https://github.com/Vince-LD/DWEZ.

2.4.2 Segmentation and data extraction

To extract WM bundles, we used TractSeg, a Python-implemented

tool.35 This applies a novel convolutional neural network-based

approach that directly segments WM tracts using a fiber orienta-

tion distribution function. As opposed to atlas-based methods, this

pipeline does not assume a common anatomy between subjects and

therefore relies on each individual’s anatomical structure. For every

subject, we obtained segmentation of 21 WM tracts of interest based

on previous evidence: bilateral uncinate, bilateral inferior longitudi-

nal fascicle, bilateral cingulum, bilateral arcuate fascicle, and bilateral

superior longitudinal fascicle divided into three bundles and the cor-

pus callosum divided into seven sections (rostrum, genu, rostral body,

anterior midbody, posterior midbody, isthmus, and splenium). Figure 1

is a schematic representation of each tract segmented.Moreover, each

tract obtained was divided into 100 segments. Thus, for each position

along all tracts, we extractedmeasures ofWM integrity, including frac-

tional anisotropy (FA), aswell asmeandiffusivity, radial diffusivity (RD),

and axial diffusivity.

Further details regarding the TractSeg toolbox can be found in

Wasserthal et al.35 or in the openly available repository: https://github.

com/MIC-DKFZ/TractSeg. Out of the total sample, 46 controls, 17

asymptomatic, three prodromal, and five symptomatic MAPT carriers

were not included in the WM analyses because they did not have a

diffusion scan or the data extraction process failed.

2.5 Functional connectivity analysis

2.5.1 Preprocessing

T1 scans and fMRI resting-state time series for all participants were

preprocessed using fMRIprep 21.0.1 27, an automated Nipype-based

preprocessing pipeline for fMRI data implemented in Python, which

uses tools from software packages including FSL, ANTs, FreeSurfer,

and AFNI.36 Briefly, the pipeline included bias field correction, skull

stripping, brain tissue segmentation, slice time correction, correction

for head motion parameters, co-registration to corresponding struc-

tural image, and non-linear spatial normalisation toMNI space. Further

details on anatomical and functional data preprocessing can be found

in SupplementaryMethods.

To remove physiological and other sources of noise from the fMRI

time series, fMRI confounds generated with fMRIprep were loaded

using the Python package load_confound (version 0.6.4.). Six motion

parameters, signals estimated from CSF and WM, their derivatives,

quadratic terms, and squares of derivatives were regressed out from

functional data separately for each run. The rs-fMRI data from each

subjectwas smoothedwith a fullwidth at halfmaximum6mmGaussian

kernel and temporally bandpass filtered in the 0.01 to 0.1Hz frequency

range. Resting-state time series with a mean framewise head displace-

ment of more than 0.5 were excluded, as was done in previous work

with similar patient populations.

2.5.2 Parcellating and data extraction

Resting-state time series were spatially parcellated according to the

Schaefer atlas (400 parcels across seven functional networks).37 The

Schaefer atlas was chosen for its basis in resting-state functional

networks. Using the nilearn connectome Python package, after stan-

dardising the time series, we computed each subject’s correlation

matrix applying the Ledoit-Wolf estimator to adjust for the small

number of volumes used and ensure matrix stability for downstream

analyses. We then used the bct package implemented in Python to
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F IGURE 1 Tracts segmented and extracted using the automated TractSeg tool. For tracts existing in the left and right hemispheres, only the

right one is shown. Adjusted fromWasserthal et al.35 AF, arcuate fascicle; CC, corpus callosum (rostrum [CC 1], genu [CC 2], rostral body [CC 3],

anterior midbody [CC 4], posterior midbody [CC 5], isthmus [CC 6], splenium [CC 7]); CG, cingulum; ILF, inferior longitudinal fascicle; SLF, superior

longitudinal fascicle (I, II, III); UF, uncinate fascicle.

apply a proportional threshold, retaining only the top 17% of strongest

connections (by absolute value) in each functional connectivity matrix.

The thresholded matrices were then binarised, creating binary masks

of the strongest connections. These binary masks were used to fil-

ter each corresponding correlation matrix, isolating only the strongest

connections for further analysis.

For each parcel of the Schaefer atlas from the binarised and filtered

matrices, we extracted four graph theory metrics: two relating to the

extent of connections of the parcel and two relating to graph organi-

sational principles. First, degree and strength quantify the number and

strength of connections a node (parcel in this case) has. Second, eigen-

vector centrality considers the centrality and number of connections

of a node, while the clustering coefficient corresponds to howmuch of

the network clusters together. These four graph metrics enabled us to

assess both local and global properties, offering deeper insights into

the structural and functional changes with the different resting-state

networks.

Moreover, we extracted macroscale connectivity gradients by

applying generalised Canonical Correlation Analysis (gCCA) to all our

subjects’ time series using the Python-implemented package mvlearn

(https://mvlearn.github.io/references/embed.html#generalized-

canonical-correlation-analysis-gcca), as was done in previous

work.17,38 This decomposes the functional connectome into primary

components, referred to as gradients, with each gradient explaining

different levels of variance in connectivity. These gradients discrim-

inate across levels of the cortical hierarchy (i.e., sensory processing

vs higher-order cognition), whereas region-specific values along the

gradient, referred to as embedding values, reflect the similarity in

connectivity along the sensory-transmodal axis. Further details on

the connectome gradient mapping specific pipeline can be found in

SupplementaryMethods.

2.5.3 Statistical analyses

We compared cortical thickness values between each MAPT carrier

group and controls using separate general linear models per cortical

vertex. These models were adjusted for participants’ age, sex, educa-

tion, total intracranial volume, and site of data acquisition. Pointwise

false positives were controlled for with false discovery rate to account

for the 327,684 vertices, and cluster-level multiple comparisons were

controlled for with random-field theory, applying a vertex-wise clus-

ter threshold of 0.01. Moreover, as the same control group was used in

the three models, we corrected the p value threshold using Bonferroni

(0.05/3 = p < 0.016). We thus identified regions that showed signifi-

cant reductions of GM thickness in each group compared to controls.

We calculated effect sizes for each region using Cohen’s d.

WM tract integrity metrics, graph metrics, and connectivity gra-

dient embedding values were compared between each MAPT carrier

group and controls using linear mixed-effects models. In each model,

the metrics were the dependent variables, while network/tract, group,

age, and sex were the fixed effects. Site of acquisition, subject, and
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parcel/position were included as random effects. We investigated the

Network/Tract x Group interaction effect to determine which net-

works or tracts showed significant differences in each group compared

to controls. P values were corrected for multiple comparisons using

Benjamini andHochberg for both the number of contrasts and number

of networks/tracts.

Statistical analyses were performed using R version 4.3.3.

3 RESULTS

3.1 Participant groups

Carriers in the asymptomatic group were significantly younger than

controls (p = 0.003), while carriers in the symptomatic group were

significantly older than controls (p = 0.0001). There were no signifi-

cant differences between any carrier group and controls for years in

education or sex distribution (p > 0.05). Symptomatic patients scored

significantly worse compared to controls on tests spanning visual and

verbal memory, processing speed, naming, semantic associations, ver-

bal fluency, executive function, and social cognition. Asymptomatic and

prodromal groups showed no significant neuropsychological test score

differences compared to controls, apart from better performances in

asymptomatic carriers for the Trail Making Test B time (p = 0.03) and

in prodromal carriers for verbal fluency letter S (p= 0.04). Group aver-

ages, standard deviations, and p values compared to controls are ed in

Table 1.

3.2 Cortical thickness

In asymptomatic carriers, cortical thickness showed sparse areas of

thinning in the left anterior cingulate gyrus, with low effect size. In

carriers in the prodromal phase, cortical thinning was apparent in the

left cingulate and left temporal pole, with medium effect size. Finally,

in symptomatic carriers, cortical thinning affected bilateral temporal

lobes, both lateral and mesial, left cingulate, as well as bilateral frontal

lobes, with high effect sizes. Figure 2 illustrates these results on the

cortical surface, and details of the statistical results are reported in

Table S3.

3.3 WM connectivity

No WM tracts showed alterations (in any metric) compared to con-

trols in asymptomatic MAPT carriers. However, in prodromal carriers,

reduced FA was identified in the rostrum of the corpus callosum, bilat-

eral uncinate fasciculus, and left cingulumcompared to controls, aswell

as increased RD in the left uncinate. In symptomatic MAPT carriers,

reduced integrity as measured across several metrics was found in the

anterior (rostrum, genu, rostral body, anterior midbody) and splenium

of the corpus callosum, as well as bilateral uncinate fasciculus, bilat-

eral inferior longitudinal fasciculus, and left cingulum. Figure 3 shows a

summary of the results (panel A) as well as the average FA and RD val-

ues for each group along the tracts that showed early changes (panel

B). The results of themodel are presented in Table S4.

3.4 Functional connectivity

Asymptomatic MAPT carriers showed significant differences in eigen-

vector, degree, and strength, which decreased in the salience (p< 0.02)

and increased in the visual (p < 0.0002) network compared to con-

trols. In prodromal carriers, this pattern was maintained (apart from

visual network strength, which did not show significant differences),

with further decreaseswithin the saliencenetwork. Prodromal carriers

also showed the addition of eigenvector reductions in frontoparietal

(p = 0.001) and increases in sensorimotor (p = 0.002) networks, as

well as increases in default-mode degree (p < 0.0001). There were

no significant differences in clustering coefficient for any network in

asymptomatic and prodromal carriers (p > 0.05). In the symptomatic

group, several networks showed reductions across different graph

metrics. Figure 4 shows a summary of the results (panel A) as well as

the mean values of each metric for each group within the visual and

salience networks (panel B). The results of the model are presented in

Table S5.

The principal gradient anchored sensorimotor areas at its positive

extreme and default mode at its negative extreme, with a gradual

transition from sensory to transmodal association networks similar to

what was reported in previous work. Along the secondary gradient,

the visual network occupied the negative extreme, while areas from

the salience populated the positive end of this gradient. Figure 5 illus-

trates these gradients. These same gradients were reported previously

using the samemethod and a similar population of patientswith FTD.17

Brain regions with the highest or lowest embedding values are at the

extremes of the axis, contributing most to the latent component and

having the most differentiated functional connectivity. Regions with

similar embedding values have similar connectivity patterns, and those

near the center (embedding value around 0) contribute less to the

latent component.

Principal and secondary gradients revealed some significant dif-

ferences within middle networks of the gradients in asymptomatic

and prodromal groups compared to controls, but not within extreme-

end networks. Both the principal and secondary gradients showed

widespread differences in various networks in symptomaticMAPT car-

riers. Figure 6 presents the embedding values on the cortical surface

for each MAPT group for each gradient. The results of the model are

presented in Table S6.

4 DISCUSSION

4.1 Damage across different disease stages

Aligning with previous research, we found minimal GM reductions at

early stages, limited to the left anterior cingulate cortex in asymp-

tomatic carriers and left temporal pole in prodromal carriers.25,29,39–43

Additionally, asymptomatic carriers showed no evidence of compro-
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F IGURE 2 Cortical thickness effect sizes (Cohen’s d) for eachmicrotubule-associated protein tau carrier group compared to controls.

FTLD-CDR score,A. Clinical Dementia Rating plus National Alzheimer’s Coordinating Center Behavioural and Language domains global score.

mised diffusion in WM tracts, even when using our along-the-tract

approach, which allows for the detection of localised changes within

specific segments of the tracts. These results show that sparse GM

atrophy precedesWMdamage in the early disease stages.

Prodromal carriers showed reduced FA in the anterior corpus

callosum (rostrum), bilateral uncinate fascicles, and left cingulum,

alongside increased radial diffusivity in the left uncinate fascicle. These

tracts are located near atrophic regions in the temporal lobes and

anterior cingulate, highlighting the synergy between GM and WM

changes. Notably, uncinate fascicles have been implicated in studies on

presymptomaticMAPT carriers.39,44,45 These structural changes occur

in regions and tracts related to early cognitive symptoms inMAPT car-

riers: anomia, semantic and episodic memory impairments.46–49 Our

results show WM integrity becomes affected only in prodromal carri-

ers, when subtle clinical changes may be present but insufficient for

a diagnosis.44,45,50,51 A recent study found WM changes in asymp-

tomatic carriers; however, these results were based on a small sample

andwere uncorrected formultiple comparisons.52Moreover, although

some previous work suggested that mean diffusivity was sensitive to

early changes in MAPT mutation carriers,51 our findings align with

research highlighting the greater sensitivity of FA for detecting such

early alterations.52

Our results in prodromal carriers support the hypothesis that

tau pathology may progress via WM tracts,53 where tau pathology

propagates in a “prion-like” manner along connected networks.18,54

Post mortem studies in MAPT mutation carriers55 and animal mod-

els expressing mutant tau56 confirm early WM degeneration as a key

pathological feature. Interestingly, radial diffusivity changes in the

left uncinate fascicle were notable in prodromal carriers in our study

and showed significant increases in more tracts compared to axial

or mean diffusivity in symptomatic carriers, possibly suggesting that

myelin is particularly vulnerable to tau pathology. These findings align

with studies showing early WM alterations, progressing to disorgan-

ised myelinated fiber arrangements with enlarged interaxonal spaces

in later stages.57,58 Our results suggest myelin disruption as a critical

element in the progression to bvFTD inMAPTmutation carriers.

Contrasting with the onset of structural connectivity changes in

the prodromal stage, functional connectivity alterations were evi-

dent in asymptomatic carriers (n = 47), with graph metrics found

to be decreased in the salience but increased in the visual network.

Functional connectivity changes in MAPT carriers, particularly in the

salience network and anterior cingulate cortex, have been reported

before.28,39,59 PET studies further highlight early functional alterations

in the anterior cingulate and insula regions,25–27 which are found post

mortem to be most affected by tau aggregation in MAPT-associated

FTD.60Moreover, these regions alignwith clinical symptoms of bvFTD,

involving executive dysfunction, apathy, and social cognition deficits.

As graphmetric alterations correlate with synaptic density, early func-

tional connectivity changes likely reflect synaptic disruptions.61 Synap-

tic loss accounts for functional connectivity reductions not explained

by atrophy, suggesting these changes may precede myelin and axonal

damage as well as GM atrophy. Together, these findings point toward a

progression fromearly synaptic dysfunction to structural degeneration

inMAPT-related neurodegeneration, though thiswarrants validation in

a longitudinal sample.

4.2 Neural compensation

Our study is the first to identify functional connectivity changes in

visual network in presymptomatic MAPT carriers, despite the pre-

served structural integrity of the occipital lobe even in later disease

stages. This may reflect connectomal diaschisis, where a “lesion”

induces distal connectivity changes, either increased or decreased.62
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F IGURE 3 A. Summary of tracts showing significantly different diffusionmetrics in eachmicrotubule associated protein tau (MAPT) carrier

group compared to controls, *p< 0.05, **p< 0.005. FA, fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity; AD, axial diffusivity. B.

Adjustedmean fractional anisotropy and radial diffusivity values frommixedmodel for each group, with shaded standard deviation, along tracts

showing significant early changes inMAPT prodromal carriers compared to controls.

Consistent with this concept, visual network exhibited connectiv-

ity changes opposite to those observed in salience network, which

aligns with expected pathology-driven alterations. In the same vein,

enhanced metabolic activity in asymptomatic MAPT carriers, which

diminishes in symptomatic stages, has been reported.26 Similar visual

network alterations have been observed in patients with sporadic

bvFTD and primary progressive aphasia using functional connectome

gradient mapping.17 Such changes may arise from overexcitation due

to reduced inhibitory control from affected networks, such as the

salience network.11,13,63–65 Alternatively, they may reflect compen-

satory mechanisms in response to pathology.17 Despite early func-

tional disruptions, MAPT carriers remained clinically asymptomatic,

as highlighted by finding no differences between their cognitive test

scores and those of controls (or, if so, better performances), support-

ing the concepts of neurodevelopmental resilience in genetic FTD66

and compensatory hyperconnectivity preserving cognitive function

in early disease stages.28 These findings suggest that pathology-

induced disruptions in certain networks may drive increased visual

network connectivity, highlighting the interplay between resilience

and vulnerability in earlyMAPT-related neurodegeneration.

The extent to which MAPT mutations cause neurodevelopmental

differences in human carriers remains unclear. However, it is well

established that tau expression changes dynamically during neurode-

velopment, with isoform expression varying across neurodevelopmen-

tal and neurodegenerative stages.67 Decades ago, it was suggested

that abnormal tau phosphorylation in neurodegenerative diseases,

such as Alzheimer’s, may result from the reactivation of pathways

involved in tau phosphorylation during brain development.68 The func-

tional connectivity differences observed in our study may reflect

altered “wiring” of the brain inMAPT mutation carriers from develop-

ment, potentially representing compensatory mechanisms that delay

pathological tau aggregation during early neurodevelopment.66 Study-

ing carriers at a young age could help distinguish between changes

stemming from neurodevelopmental processes and those related to

early neurodegeneration, providing crucial insights for developing

intervention strategies forMAPTmutation carriers.
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10 of 17 BOUZIGUES ET AL.

F IGURE 4 A. Summary of networks showing significant different graphmetrics in eachmicrotubule associated protein tau (MAPT) carrier

group compared to controls, with the direction of change depicted by an arrow. B. Adjustedmeans and standard errors frommixedmodel for each

group and for different graphmetrics within salience and visual networks which showed early changes compared to controls.

4.3 Complementary measures of functional

connectivity

Our analysis showed focal functional connectivity changes from the

asymptomatic stage, while global disruptions were only evident in

symptomatic stages. Clustering and macroscale gradients remained

intact in asymptomatic and prodromal carriers. Specifically, no major

differences were observed in the principal or secondary gradients,

with preserved organisation of extreme-end networks (sensorimotor

and default mode for the principal gradient, salience and visual for

the secondary gradient). This contrasts with findings in symptomatic

FTD17 and aligns with reports of within-network changes and intact
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F IGURE 5 Distribution of principal and secondary gradient embedding values for each network in controls and projected on cortical surface.

global organisation in presymptomatic carriers.69 These results sug-

gest global connectivity, crucial for cognitive resilience, is preserved

at early stages, with structural and functional disruptions becoming

widespreadonly at symptomonset.69,70 Again, this alignswithour find-

ings of preserved cognitive function in asymptomatic and prodromal

MAPTmutation carrier groups.

4.4 Theoretical progression model

Our findings suggest a pathophysiological progressionmodel forMAPT

mutation carriers that begins with focal tau pathology targeting neu-

rons within functional network hubs (anterior cingulate cortex). This

leads to sparse early GM atrophy. Early functional connectivity net-

work, related to the targetedneurons (salience network) but also those

that are not (visual network), are either triggered by this pathology

or serve a (compensatory) function different from that of controls,

possibly since neurodevelopment stages. Network disruptions likely

encourage the propagation of pathology via initially intact axonal

pathways, causing demyelination and diffuse structural connectivity

changes in regions connected to affected hubs. These stages align

with the hypothesis of tau spreading along axonal connections,71 caus-

ing functional network disruptions before widespread atrophy occurs.

Very recentwork inAlzheimer’s disease suggests thatpathological pro-

tein deposition of amyloid beta can induce hyperconnectivity between

tau epicenters and posterior brain regions vulnerable to tau accumula-

tion, with this increased connectivitymediating faster tau spreading.72

This again highlights that hyperconnectivity precedes neocortical tau

propagation while being instrumental in its progression.

We propose a theoretical model of biomarker evolution in MAPT

mutation carriers (Figure 7), where functional dysconnectivity

emerges as an initial disease indicator, followed by structural degen-

eration as the disease advances. Structural connectivity disruptions

become widespread in later stages, coinciding with global functional

alterations. Our framework aligns with prior hypotheses,73 incor-

porating multimodal data from the same cohort and offering robust

evidence for the dynamic progression of MAPT-related neurode-

generation. Early focal functional changes, potentially reversible,

may serve as biomarkers for monitoring treatment efficacy, while

later structural alterations signify irreversible damage. Validating

these biomarkers is crucial for enhancing patient stratification and

evaluating disease-modifying therapies in clinical trials.

4.5 Strengths and limitations

Our study benefited from multimodal imaging to evaluate structural

and functional connectivity in conjunction, a rarity in presymptomatic
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12 of 17 BOUZIGUES ET AL.

F IGURE 6 Principal and secondary gradient embedding values projected on cortical surface for eachmicrotubule associated protein tau

(MAPT) carrier group.

F IGURE 7 Theoretical model of graymatter, white matter, and

functional connectivity neuroimaging biomarker evolution in

microtubule-associated protein tau-mutation carriers.

FTD research. Large sample sizes enabled precise subgrouping while

avoiding underpowered groups, though the prodromal carrier group

remained modest. Moreover, the large control group enabled a more

accurate assessment of potential demographic influences, such as sex

and age, which were unevenly distributed across the different car-

rier groups and were therefore included as covariates in our statistical

models. Notably, we observed contrasting sex ratios: asymptomatic

and prodromal carriers were predominantly female, whereas symp-

tomatic carriers were more often male. This discrepancy was likely

influenced by societal factors, as women are more frequently primary

caregivers and tend to remain in this role for longer, a pattern that is

well documented in dementia research.74

The study’s quasi-longitudinal design provides valuable insights

but cannot replace true longitudinal studies, which are essential to

validate our results and refine our theoretical biomarker evolution

model. Further,wedidnot analysemutation-specific differences,which
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are known to influence atrophy patterns.75 Additionally, though both

structural and functional neuroimagingmodalities were included, trac-

tography and connectomics are completely different methodologies

with disparate underlying priors. Therefore, our findings cannot be

directly compared. Employingmultivariatemultimodal methodswould

enhance the integration and interpretation of these findings.

5 CONCLUSION

MRI biomarkers, being non-invasive, cost-effective, and suitable for

longitudinal studies, hold promise for tracking or predicting disease

progression and guiding therapeutic strategies. This study highlights

functional connectivity changes as an early biomarker and structural

changes as indicators of advanced stages. By interpreting these find-

ings balancing pathology and compensation, we propose a model

of biomarker evolution in MAPT-related neurodegeneration. Under-

standing these dynamics, whether specific to tau pathology or shared

across proteinopathies, could aid in developing early interventions

to preserve compensation and slow progression. In conclusion, our

results highlight the relevance of investigating GM and WM struc-

ture alongside functional connectivity in genetic FTD, particularly in

presymptomatic stages. Although not directly translatable to clinical

use yet, these findings lay essential groundwork for future biomarker

development and patient stratification.
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