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A B S T R A C T

Background: Healthy aging is associated with a decline in cognitive and motor functions, affecting daily activities 
and quality of life. Combining transcranial direct current stimulation (tDCS) with behavioral training may be a 
promising intervention against this decline. However, individual response variability may obscure group-level 
effects and mislead conclusions about tDCS efficacy. Quantifying this variability is crucial for accurately 
assessing stimulation effects and understanding individual response factors, like age. Yet, no study has quanti
tatively compared tDCS variability across age groups. This systematic review and meta-analysis examine age- 
related variability in cognitive and motor responses to tDCS.
Methods: Following PRISMA guidelines, we searched PubMed and Cochrane for studies directly comparing young 
and healthy older adults under similar experimental conditions. Across 19 studies comprising 390 older adults 
(mean ± SD age: 67 ± 5 years) and 384 young adults (mean ± SD age: 24 ± 3 years) receiving transcranial 
direct current (tDCS), we quantified behavioral variability using the log-transformed coefficient of variation ratio 
(lnCVR).
Results: Results revealed substantially higher response variability in healthy older compared to young adults 
during active tES (21 %, lnCVRactive = − 0.24 [-0.43, − 0.04], p = 0.02), but not during sham conditions 
(lnCVRsham = − 0.18 [-0.42, 0.05], p = 0.13).
Conclusion: These findings provide the first quantitative evidence that advanced age increases behavioral tDCS 
response variability, highlighting the need to develop personalized tDCS approaches to optimize their efficacy in 
older populations.

1. Introduction

Healthy aging is associated with declines in cognitive and motor 
functions, impacting everyday activities and quality of life [1–3]. 
Cognitive decline is evident in domains such as memory, executive 
functions, attention, and processing speed [1,4,5], while motor 
impairment manifests in reduced accuracy, slower movement, and 
increased risk of falling [6,7]. Transcranial direct current stimulation 
(tDCS) has emerged as a promising, noninvasive and cost-effective 
approach to counteract age-related functional decline [8,9]. This 

technique applies direct low-intensity current (typically 1–2 mA) via 
two or more scalp-attached electrodes to modulate neuronal excitability 
and promote synaptic plasticity by altering membrane potentials [10,
11]. While tDCS does not directly induce action potentials, it can in
fluence network-level activity and facilitate long-lasting changes in 
synaptic strength through plasticity-related mechanisms [12–15]. When 
applied during cognitive or motor tasks, tDCS has been shown to 
enhance performance both in young and older adults [3,6,16,17]. These 
findings highlight its potential as a compensatory intervention [18,19]. 
However, tDCS effects are inconsistent across studies, particularly in 
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older adults [20,21]. Several studies report only small or even a lack of 
stimulation effects [22–24], while others suggest that older adults 
experience greater performance gains than young adults [3,25,26]. This 
divergence may be because individuals with lower baseline perfor
mance, having more room for improvement, often gain greater benefits 
from tDCS interventions than those with initially higher performance 
levels [27–29]. However, older adults may exhibit reduced plasticity 
than young adults, diminishing their responsiveness to both 
training-based and tDCS approaches [23,30].

In addition to conflicting findings between studies, responses to tDCS 
vary widely between individuals [31–34]. Interindividual differences in 
brain anatomy and function likely influence this variability. The former 
affects the current flow to the target regions for tDCS, hence its func
tional network organization and activity [35,36]. Such response vari
ability can obscure group-level effects, potentially leading to the 

incorrect assumption that tDCS lacks efficacy when, in fact, individual 
differences may drive mixed outcomes [31,37]. In some cases, this 
variability can lead to highly significant effects, driven by a subset of 
individuals who exhibit exceptionally strong responses, even though the 
majority experience minimal or no benefit [33,38]. Quantifying this 
response variability is a crucial step in accurately evaluating tDCS effi
cacy. In other therapeutic contexts, such as antipsychotic treatment for 
schizophrenia, this variability quantification can enable the identifica
tion of responder subgroups [39,40], potentially supporting the devel
opment of personalized or stratified treatment approaches [41]. 
Variability measurement provides insight into the consistency of an 
intervention’s effects across individuals, helps to identify factors that 
influence differential outcomes like age and might guide the refinement 
of interventional strategies [39]. Notably, reduced response variability 
often reflects enhanced treatment effectiveness [39,42].

Fig. 1. PRISMA flowchart for the study identification procedure.
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So far, no study has systematically examined and quantified age- 
related variability in response to tDCS. Greater variability within an 
age group would indicate more heterogeneous responses due to under
lying biological factors, allowing a quantitative assessment of this hy
pothesized variability for the first time. To address this gap, we 
conducted a systematic review [43] to identify studies directly 
comparing young and older adults across motor and cognitive domains 
within the same experimental setup. Then, we quantified cognitive and 
motor performance variability using the log-transformed coefficient of 
variation ratio (lnCVR) to systematically assess age-related differences 
in tDCS response [44,45]. We hypothesized that age-related variability 
would differ substantially between young and older adults, with older 
adults exhibiting higher variability. Moreover, we hypothesized that this 
difference would be more pronounced in active tES than sham stimu
lation, allowing us to identify a unique factor distinct from any general 
differences in behavioral training effectiveness between age groups.

2. Methods

2.1. Search strategy and study selection

A comprehensive literature search was conducted in the PubMed and 
Cochrane databases from January to August 2024. The used search 
string was: “(transcranial electrical stimulation OR tES OR transcranial 
direct current stimulation) AND (old OR elder OR older) AND (young).” 
The reference lists of the retrieved studies were also checked for addi
tional eligible studies. A total of 411 studies were identified through the 
database search, with one additional study found through reference 
checking (see Fig. 1).

Studies were included if they met the following criteria: (a) applied 
tDCS in young (YA, between 18 and 35 years) and older adults (OA, ≥60 
years) using identical stimulation parameters and tasks, (b) involved 
only healthy participants to minimize variability related to pathological 
conditions, (c) included both an active (treatment) and a sham (placebo) 
group, (d) examined motor and/or cognitive functions operationalized 
by behavioral outcomes (e) single- and multisession tDCS studies, (f) 
that employed either cross-over or between-subject designs, (g) were 
published in peer-reviewed journals, (h) were written in English, and (i) 
were not case reports, case series, reviews or opinion pieces.

2.2. Data extraction

Following the PRISMA guidelines [43], two independent researchers 
(A.E.F and D.A.) conducted the literature search, study assessment and 
data extraction. We extracted the mean and standard deviation for 
motor and cognitive outcomes for both the active and sham stimulation 
conditions post-intervention, and the sample size. When numerical 
values were not provided in the manuscript, the “metaDigitise” R 
package (version 1.0.1) [46] was used to extract values from figures. 
Otherwise, authors were contacted directly (4, with all responding). 
Additionally, we extracted information on the study design, participant 
characteristics, stimulation parameters and electrode placement 
(Table 1). The final sample included 19 studies: 7 investigated motor 
and 12 cognitive functions. Please note that we used additional infor
mation from the following 2023 publication [16] to extract the contrast 
between older and young adults for Meinzer and colleagues (2012). The 
systematic review was not pre-registered.

2.3. Age-related response variability

Using the formula below, we calculated the log coefficient of varia
tion ratio (lnCVR), which adjusts for mean differences between groups 
[39,44,45]. A lnCVR below 0 suggests higher variability in older 
compared to young adults, a lnCVR of 0 implies equal variability be
tween young and older adults, and a value above 0 suggests lower 
variability in older compared to young adults. To facilitate 

interpretation, we converted the lnCVR into a percentage-based vari
ability score using an exponential function [45]. 

lnCVR= ln
syoung
xyoung

sold
xold

+
1

2
(
nyoung − 1

) −
1

2 (nold − 1)

Note. lnCVR = Log coefficient of variation ratio; s = Standard devi
ation; x = Mean; n = sample size.

We pooled the lnCVR across all domains and conditions, with con
trasting young and older adults to account for age-related variability in 
response to active and sham tDCS conditions. For additional exploratory 
analyses, we performed meta-regressions using mixed-effects models, 
including the task domain (cognitive or motor) as moderator in the 
lnCVR analysis. This approach allowed us to specifically assess the effect 
of task domain on response variability. We report the moderator esti
mates along with a 95 % confidence interval and the corresponding p- 
value.

We used the Higgins and Green I2 test to assess heterogeneity, which 
quantifies heterogeneity as a percentage from 0 % to 100 %. According 
to guidelines, I2 values of 25 %, 50 %, and 75 % correspond to low, 
moderate, and high heterogeneity levels, respectively [47,48].

2.4. Variability and stimulation effect within age groups

We conducted additional analyses within each age group. To inves
tigate the link between variability and stimulation effects across 
different age groups, we calculated the lnCVR and the standardized 
mean difference (SMD) by comparing active and sham conditions for 
each study. A lnCVR below 0 indicates reduced variability under active 
stimulation, values around 0 indicate no difference, and values above 
0 indicate increased variability under active stimulation. SMD values 
below 0 indicate a reduced effect under active stimulation, 0 reflects no 
difference, and values above 0 indicate a higher effect under active 
stimulation. Finally, we used the extracted effect sizes for a Pearson 
correlation analysis to explore potential associations between variability 
and stimulation effects within each age group.

All analyses were conducted in R (4.4.1, https://www.R-project.org/
), using the “metafor” package for lnCVR and SMD analyses [45,49]. All 
effects are reported with 95 % confidence intervals.

3. Results

3.1. Descriptive statistics

A total of 19 studies were included in this meta-analysis, with 7 
studies investigating motor functions [24,50–55] and 12 studies exam
ining cognitive functions [29,56–66]. Motor functions included learning 
new skills [24], eye-movement testing [50] or visuomotor tracking [54], 
Go/NoGo tasks [51,53], postural control tasks, [52], proprioceptive 
assessment task [55] and treadmill walking [63]. Cognitive functions 
included memory paradigms, such as language learning [29,58,60,64,
66,67], visual working memory tasks [56] or naming tasks [57,61,62,
65].

Two were multisession studies [24,29], while the remaining studies 
applied active tDCS once. Five studies were between-subject studies [24,
29,59,63,64] and the remaining 19 were cross-over designs. All partic
ipants were healthy, with no history of neurological or psychiatric dis
orders or use of psychoactive medications. For older adults, normal 
cognitive functioning was confirmed using standard screening tools (e. 
g., Montreal Cognitive Assessment, Mini-Mental-Status-Test) with 
established cut-off scores.

Overall, 774 subjects were included, comprising 384 young adults 
(mean ± SD age: 24 ± 3 years) and 390 old participants (67 ± 5 years). 
For an overview of the study characteristics of the included studies, see 
Table 1. For further information on the extracted mean and standard 
deviation, see Table S1.
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Table 1 
Study characteristics of included studies for quantitative synthesis.

Study Parameters Design and 
Domain

Task Outcome Sample

Study 1: Arciniega et al., 2018 
10.3389/fnagi.2018.00057

2 mA CrossS 
ingle-sessionC 
ognitive 

visual working memory accuracy (%) Young 
22 ± 3

20 min frontoparietal 
cortex

Old 
67 ± 5

Study 2: Chen & Machado 2017 
10.16910/jemr.10.3.5

1 mA Cross 
Single-session 
Motor

eye movement testing (prosaccade + antisaccade 
blocks)

RT (ms) Young 
23 ± 1

10 min dorsolateral 
prefrontal cortex

Old 
67 ± 2

Study 3: Conley et al., 2016 
10.3389/fnhum.2016.00384

1 mA Cross 
Single-session 
Motor

Go/NoGo task RT (ms) Young 
22 ± 3

20 min motor cortex Old 
60 ±
11

Study 4: Craig & Doumas 2017 
10.1371/journal.pone.0170331

2 mA Cross 
Single-session 
Motor

postural control task length (cm) Young 
21 ± 3

20 min primary motor 
cortex

Old 
73 ± 5

Study 5: Fertonani et al., 2014 
10.3389/fnagi.2014.00131

2 mA Cross 
Single-session 
Cognitive

picture-naming task RT (ms) Young 
22 ± 1

5 min dorsolateral 
prefrontal cortex

Old 
67 ±
11

Study 6: Fiori et al., 2017 
10.1016/j.bbr.2016.12.044

2 mA Cross 
Single-session 
Cognitive

language learning (pseudoword-picture pairs) correct response 
(%)

Young 
29 ± 6

20 min temporal cortex Old 
72 ± 6

Study 7: Fujiyama et al., 2022 
10.1016/j. 
neurobiolaging.2021.09.014

1.5 mA Cross 
Single-session 
Motor

Flashing grid task combined with perceptual decision- 
making task and Stop Signal Task

RT (ms) Young 
25 ± 5

20 min pre-supplementary 
motor area

Old 
66 ± 6

Study 8: Goodwill et al., 2015 
10.1016/j.clinph.2015.01.006

1 mA Cross 
Single-session 
Motor

visuomotor tracking task MEP (%) Young 
26 ± 2

15 min motor cortex Old 
66 ± 1

Study 9: Habich et al., 2020 
10.1155/2020/8896791

1 mA Cross 
Single-session 
Cognitive

verbal episodic memory task correct response 
(#)

Young 
25 ± 3

20 min dorsolateral 
prefrontal cortex

Old 
68 ± 5

Study 10: Kaminski et al., 2021 
10.1038/s41598-021-82275-4

1 mA Between 
Multisession 
Motor

arc pointing task accuracy (%) Young 
28 ± 4

20 min primary motor 
cortex

Old 
68 ± 6

Study 11: Leach et al., 2019 
10.1093/geronb/gby003

1.5 mA Between Single- 
session 
Cognitive

Associative memory (face-name) task correct response 
(SDT)

Young 
23 ± 5

25 min dorsolateral 
prefrontal cortex

Old 
68 ± 5

Study 12: Manenti et al., 2013 
10.3389/fnagi.2013.00049

1.5 mA Cross 
Single-session 
Cognitive

verbal episodic memory task RT (ms) Young 
24 ± 3

6 min dorsolateral 
prefrontal cortex

Old 
68 ± 5

Study 13: Martin et al., 2017 
10.1162/jocn_a_01166

1 mA Cross 
Single-session 
Cognitive

semantic word generation task errors (#) Young 
27 ± 4

30 min primary motor 
cortex

Old 
69 ± 6

Study 14: Meinzer et al., 2012 
10.1523/ 
JNEUROSCI.4812–11.2012 
Meinzer et al., 2013 
10.1523/ 
JNEUROSCI.5743–12.2013 

1 mA Cross 
Single-session 
Cognitive

semantic word generation task RT (ms) Young 
27 ± 4

20 min inferior frontal 
gyrus

Old 
68 ± 6

Study 15: Muffel et al., 2019 
10.3389/fnagi.2019.00264

1 mA Cross 
Single-session 
Motor

proprioceptive assessment task (KINARM) error (degree) Young 
27 ± 3

15 min primary 
somatosensory cortex

Old 
70 ± 5

Study 16: Orcioli-Silva et al., 2021 
10.3389/fnagi.2021.739998

0.6 mA Between Single- 
session 
Cognitive

Treadmill walking task errors (%) Young 
21 ± 3

20 min prefrontal cortex 
and vertex

Old 
67 ± 6

Study 17: Perceval et al., 2020 
10.1016/j.bandl.2020.104788

1 mA Between 
Multisession

language learning (pseudoword-picture pairs) correct response 
(#)

Young 
22 ± 4

20 min inferior frontal 
gyrus

Cognitive Old 
68 ± 6

(continued on next page)
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Table 1 (continued )

Study Parameters Design and 
Domain 

Task Outcome Sample

Study 18: Peter et al., 2019 
10.1007/s00429-019-01946-1

1 mA Between Single- 
session

verbal episodic memory task correct response 
(#)

Young 
25 ± 3

15 min dorsolateral 
prefrontal cortex

Cognitive Old 
69 ± 6

Study 19: Ross et al., 2011 
10.3389/fnagi.2011.00016

1.5 mA Cross 
Single-session 
Cognitive 

name recall task correct response 
(%)

Young 
19–37

15 min anterior temporal 
lobe

Old 
65 ± 4

Note. The table summarizes the characteristics of the studies for quantitative synthesis, including key parameters and outcomes for the transcranial direct current 
stimulation (tDCS) intervention. The reference, including the DOI, is listed in the “study.” “Parameters” contains information regarding the stimulation intensity (in 
mA), stimulation duration (in minutes) and the stimulation location. “Design and Domain” contain information regarding the study design, hence cross-over studies 
(cross) or between-subject studies (between), the number of sessions (single- or multisession studies) and the task domain (cognitive or motor). More information on 
the paradigm can be found in “Task” and the corresponding extracted variable in “Outcome.” The sample describes the age distribution of the young and older 
participants. The Age is described with mean ± standard deviation or age range if there was no information on the mean.

Fig. 2. Age-related response variability. Left panel: Forest plot illustrates the log coefficient of variation ratio (lnCVR) comparing the active young sample to the 
active older sample. Values below 0 indicate greater variability in the older sample under active transcranial direct current stimulation (tDCS). Effects are displayed 
as squares (black representing motor domain, while white represent cognitive domain) with 95 % confidence intervals. The overall effect was: lnCVRactive = − 0.24 
[-0.43, − 0.04], p = 0.02. The lnCVR was converted into a percentage-based variability score using an exponential function to facilitate its interpretation: 21.3 % (95 
%CI: [4.3, 35.2]). Additional analyses on the task domain revealed a more consistent pattern of age-related variability for motor tasks respectively (lnCVRactive_motor 
= − 0.19, 95 % CI: [-0.38, 0.00], p = 0.053; lnCVRactive_cognition = − 0.25, 95 % CI: [-0.56, 0.06], p = 0.11). Right Panel: Forest plot illustrates the lnCVR comparing 
the sham young sample to the sham older sample. Values below 0 indicate greater variability in the older sample under sham tDCS. Effects are displayed as squares 
(black representing motor domain, while white represents cognitive domain) with 95 % confidence intervals. The overall effect was: lnCVRsham = − 0.18 [-0.42, 
0.05], p = 0.13. Additional analyses on the task domain revealed no difference between motor and cognitive tasks (lnCVRsham_motor = − 0.04, 95 % CI: [-0.23, 0.15], 
p = 0.70, Cognition: lnCVRsham_cognition = − 0.27, 95 % CI: [-0.63, 0.08], p = 0.13). Studies were ordered according to the degree of variability under active tDCS. 
tDCS, Transcranial direct current stimulation. lnCVR, log coefficient of variation ratio.
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3.2. Age-related response variability

Under active tDCS, older adults exhibited higher variability 
compared to young adults (lnCVRactive = − 0.24 [− 0.43, − 0.04], p =
0.02), although moderate heterogeneity was detected (I2 = 62.30 % 
[31.21, 83.93]). This finding represents a 21 % higher variability in 
older adults compared to young adults (95 % CI: [4.3, 35.2]). In 
contrast, no age-related difference in variability was observed under the 
sham condition (lnCVRsham = − 0.18 [− 0.42, 0.05], p = 0.13). Again, the 
heterogeneity was moderate (I2 = 73.39 % [50.56, 87.51]), indicating 
that the observed variability may differ across studies. See Fig. 2 for the 
forest plots.

Subgroup analyses on task domain (cognitive versus motor) revealed 
a more reliable pattern of increased age-related variability in motor 
tasks compared to cognitive tasks (for more information see 
Supplements).

To further assess potential publication bias, we performed the 
Egger’s test, which indicated no significant funnel plot asymmetry (z =
0.5, p = 0.62), with the intercept estimate supporting symmetry (b =
− 0.38, 95 % CI: [− 0.98, 0.22]). Complementary Trim and Fill analysis 
identified five potentially missing studies on the left side of the funnel 
plot, suggesting underrepresentation of smaller studies with negative or 
null effects. After adjustment, the effect size remained directionally 
consistent and slightly stronger (lnCVRactive = − 0.41, 95 % CI: [− 0.63, 
− 0.19], p = 0.0002), indicating that any publication bias may have led 
to an underestimation of age-related variability. High heterogeneity 
persisted (I2 = 75.5 %), indicating that methodological variation across 
studies was the likely source of variability rather than publication bias 
(see Supplementary Fig. 1 for the funnel plot).

3.3. Variability and stimulation effect within age groups

In older adults, effect and variability did not differ substantially 
between active tDCS and sham (effect: SMDOA = 0.14 [− 0.02, 0.31], p 
= 0.09, variability: lnCVROA = − 0.07 [− 0.18, 0.05], p = 0.27), showing 
a small heterogeneity (effect: I2 = 24.95 % [0, 73.28] variability: I2 = 0 
% [0, 66.84]). In young adults, effect and variability differed between 
active tDCS and sham (effect: SMDYA = 0.27 [0.1, 0.45], p = 0.02, 
variability: lnCVRYA = − 0.11 [− 0.22, 0.01], p = 0.06), showing mod
erate heterogeneity (effect: I2 = 32.16 % [0, 80.72]), variability: I2 = 0 
% [0, 46.17]). Overall, a higher stimulation effect was associated with 
reduced variability in both age groups, but was statistically significant 
only for older adults (rOA = − 0.78 [− 0.77, − 0.03], p = 0.04, rYA =

− 0.38 [− 0.71, 0.08], p = 0.1).

4. Discussion

This meta-analysis aimed to systematically assess age-related dif
ferences in tDCS response variability across motor and cognitive do
mains. Our results revealed that older adults exhibited substantially 
higher response variability than young adults during active, but not 
sham, tDCS. This effect was consistent across motor and cognitive do
mains. Moreover, lower response variability was associated with 
enhanced treatment efficacy. These results highlight the critical need to 
understand and address variability in tDCS applications to maximize 
their therapeutic potential.

Research investigating response variability in noninvasive brain 
stimulation remains limited [41,68]. Our findings diverge from previous 
meta-analyses, which indicated minimal response variability under 
active stimulation for disease-related outcome variables in psychiatric 
populations [41] or showed no variability in response inhibition among 
healthy and pathological participants [68]. Such discrepancy may arise 
from differences in study populations [41] and methodological focus, as 
previous analyses emphasized task type and stimulation protocols rather 
than biological factors such as age, sex and health status [68]. Homan 
et al. (2021) investigated treatment variability in psychiatric disorders 

by using questionnaires focused on symptom reduction, primarily for 
transcranial magnetic stimulation (TMS, which comprised 82 % of the 
included studies) and tDCS. Most participants received additional 
medication. Their results showed consistently low variability in treat
ment effects, except for schizophrenia, suggesting a potential need for 
personalized approaches in pathological populations. However, they did 
not consider moderators such as age or sex, which limited their ability to 
identify biological contributors to variability [41]. Similarly, a recent 
meta-analysis examined tDCS effects on response inhibition and found 
no difference in variability between active tDCS and sham conditions, 
indicating that inter-individual variability may not significantly 
contribute to the heterogeneity observed in this domain [68]. Again, this 
study primarily focused on methodological variations, such as differ
ences in stimulation intensity and duration, rather than on biological 
characteristics of participants, like age and sex [69].

In contrast, our findings revealed an increased variability with age, 
which likely reflects an interaction between stimulation effects and age- 
related structural and functional brain changes [3,23,70,71]. Compared 
to young adults, older individuals may show greater within-group dif
ferences in skull thickness, sulcal morphology, and brain tissue 
composition, which can result in more variable electric field distribu
tions under identical stimulation settings [35,36,72]. For example, 
increased cerebrospinal fluid (CSF) volume disperses current away from 
the cortex, reducing field intensity at the target site [36,69,73] and also 
creates more diffuse and inconsistent field patterns in older adults [36,
69]. Moreover, CSF amplifies the impact of sulcal morphology on cur
rent flow, further increasing current-flow variability between in
dividuals [35]. This interaction between stimulation application and 
age-related anatomical heterogeneity may amplify variability in 
stimulation-induced behavioral outcomes in older adults, challenging 
the reliability and effectiveness of standard stimulation protocols [74,
75].

Domain-specific variability in stimulation outcomes likely reflects 
age-related neurobiological changes that alter brain network function. 
Structural decline is often accompanied by functional reorganization to 
maintain performance, often through compensatory mechanisms such 
as bilateral activation or the recruitment of alternative networks 
[76–78]. This reorganization complicates the identification of optimal 
stimulation targets [72,79], as – in addition to more variable neural 
networks in older adults – older compared to young adults may engage 
different networks for the same task [23,80]. Age-related differences in 
network integration are further supported by studies showing that 
identical tDCS targets can produce opposing changes in functional 
connectivity across different age groups [16,61,81]. Moreover, indi
vidual connectivity profiles have been linked to behavioral outcomes in 
older adults [12,82]. These findings underscore the importance of 
individualized stimulation approaches, which may be informed by 
functional connectivity analyses [81,83,84].

An optimal approach to enhance performance more uniformly in 
older adults likely depends on multiple interacting factors, including 
cognitive domain, baseline performance, and individual network 
integrity [3,23,36]. For instance, individuals with lower baseline 
learning capacity may derive a greater benefit from stimulation, high
lighting the relevance of stratifying participants based on 
pre-intervention performance metrics [29,30,85]. In addition, 
domain-specific compensatory strategies, such as increased reliance on 
executive control in memory tasks, may shape not only behavioral 
outcomes but also the neural susceptibility to tDCS modulation [3,86,
87]. Further fluctuations in alertness, attentional engagement, and 
general health status dynamically influence cortical excitability and, 
consequently, the brain’s responsiveness to stimulation [32,88]. For 
instance, older adults may show more variability in tDCS responses 
because they often experience fluctuations in attention and vigilance [4,
88,89]. Hence, the interaction of state-dependent factors and tDCS adds 
another layer of complexity to its application across diverse populations 
[37,88,90].
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In summary, our meta-analysis demonstrated that tDCS induces 
more heterogeneous responses in older than young adults across motor 
and cognitive domains. Differences in neuroanatomy, functional reor
ganization, and brain state may drive this increased variability between 
age groups. Addressing these multifaceted challenges will require 
innovative, personalized approaches that integrate anatomical, func
tional, and state-dependent factors to optimize tDCS efficacy in aging 
populations [36,81].

4.1. Limitations and future directions

Some limitations of our study should be considered. The limited 
number of studies directly comparing young and older adults within the 
same experimental design constrains our sample size and analytical 
scope. The limitation precluded detailed subgroup analyses of different 
tDCS modalities and paradigms. Direct comparisons are crucial for 
isolating age-related effects on tDCS response, as they help control for 
confounding factors such as variations in study design, stimulation pa
rameters (e.g., intensity, duration, electrode positioning), and task 
paradigms [32,34,91]. In addition, our analysis suggested the possibility 
of publication bias, as indicated by a small number of potentially missing 
studies. However, adjusting for this using a trim-and-fill method did not 
alter the direction of our findings, supporting the robustness of the main 
results. The absence of sex-stratified outcome data in the included 
studies limited our ability to examine potential sex differences in tDCS 
responsiveness. Anatomical factors such as skull thickness and porosity, 
which differ between sexes, can influence current distribution and affect 
stimulation efficacy [69,92]. Future research should address this gap by 
reporting outcomes separately for males and females and incorporating 
sex as a key biological variable. Additionally, research with larger 
datasets is needed to explore how stimulation modalities and task do
mains influence variability in response patterns across age groups, 
providing deeper insights into the factors driving age-related differences 
in tDCS efficacy.

This study offers a novel contribution as the first meta-analysis to 
systematically quantify age-related variability in tDCS responses. Our 
findings suggest that lower response variability is generally linked to 
greater stimulation efficacy, aligning with theoretical assumptions [23,
35]. This may indicate that tDCS induces a more uniform and robust 
response in young adults, potentially explaining age-related differences 
in variability, though further empirical validation is needed. We 
encourage future research to adopt the lnCVR as a variability effect size 
in meta-analyses across cognitive domains such as working memory, 
attention, and learning. To reduce response variability in older adults, 
future research should investigate personalized strategies that consider 
age-related anatomical and functional changes. One approach might be 
to increase electric field strength to compensate for atrophy and altered 
current distribution in aging brains [36,82,93]. Increasing regional 
precision through individualized electrode positioning may further 
improve accuracy in targeting and stimulation effectiveness [94,95]. 
Additionally, combining structural modeling with functional connec
tivity analyses may help to identify task-relevant network nodes for 
more effective stimulation in older adults [12,83,84].

5. Conclusion

Our findings showed that behavioral responses during active tDCS 
were more variable in older than young participants, providing the first 
quantitative evidence for previous theoretical frameworks on increased 
response variability in older adults. Our study highlights the importance 
of personalized approaches to optimizing tDCS interventions, particu
larly in aging populations, to increase their benefit.
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