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Tau PET positivity in individuals with and 
without cognitive impairment varies with 
age, amyloid-β status, APOE genotype and sex

 

Tau positron emission tomography (PET) imaging allows in vivo 
detection of tau proteinopathy in Alzheimer’s disease, which is associated 
with neurodegeneration and cognitive decline. Understanding how 
demographic, clinical and genetic factors relate to tau PET positivity will 
facilitate its use for clinical practice and research. Here we conducted an 
analysis of 42 cohorts worldwide (N = 12,048), including 7,394 cognitively 
unimpaired (CU) participants, 2,177 participants with mild cognitive 
impairment (MCI) and 2,477 participants with dementia. We found that from 
age 60 years to 80 years, tau PET positivity in a temporal composite region 
increased from 1.1% to 4.4% among CU amyloid-β (Aβ)-negative participants 
and from 17.4% to 22.2% among CU Aβ-positive participants. Across the same 
age span, tau PET positivity decreased from 68.0% to 52.9% in participants 
with MCI and from 91.5% to 74.6% in participants with dementia. Age, Aβ 
status, APOE ε4 carriership and female sex were all associated with a higher 
prevalence of tau PET positivity across groups. APOE ε4 carriership in CU 
individuals lowered the age at onset of both Aβ positivity and tau positivity 
by decades. Finally, we replicated these associations in an independent 
autopsy dataset (N = 5,072 from 3 cohorts).

Alzheimer’s disease (AD) is the most common cause of dementia, with 
a worldwide prevalence of ~32 million in 2023, which is expected to 
double by 2060 because of increased life expectancy1. AD is neuro-
pathologically characterized by the aggregation of amyloid-β (Aβ) 
proteins into extracellular plaques and of tau proteins into intracellular 
neurofibrillary tangles. Since the 2000s (Aβ)2 and 2010s (tau)3, both 
proteinopathies can be visualized and quantified in the living human 
brain using positron emission tomography (PET). This has led to pivotal 
insights into the progression of AD over time. For example, amyloid-PET 
studies have consistently shown that Aβ proteinopathy is an early event 
in the AD pathophysiological process and typically emerges decades 
before symptom onset4. As such, many elderly cognitively unimpaired 
(CU) individuals exhibit considerable Aβ proteinopathy without 
manifest cognitive deficits (that is, at age 70 years, PET-assessed Aβ 
positivity is ~23%, which increases to ~48% when carrying at least one 
APOE ε4 allele)5,6. Consequently, the temporal association between 

Aβ proteinopathy and cognitive decline is moderate7,8. Also, major 
reductions of Aβ proteinopathy achieved by monoclonal antibody 
therapy have led to statistically significant but modest clinical benefits 
in symptomatic AD9,10. In contrast, the presence and amount of tau 
proteinopathy are strongly associated with neurodegeneration, cogni-
tive impairment, rate of clinical progression and treatment response 
to amyloid-lowering therapies11,12. Even in CU individuals, the presence 
of tau proteinopathy as measured by PET profoundly increases the risk 
of short-term clinical progression13,14.

Based on the recognition of tau proteinopathy as a key manifesta-
tion of AD, tau PET tracers are increasingly used in both the clinic and 
trials15 and are now incorporated into the core diagnostic criteria for 
AD16,17. One tau PET tracer (that is, [18F]flortaucipir/Tauvid) has received 
approval from the US Food and Drug Administration for clinical use to 
support a clinical diagnosis of AD18, because it (and other tau PET trac-
ers) can accurately distinguish between AD dementia and most other 
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(non-AD) neurodegenerative disorders19,20. Furthermore, several tau 
PET tracers have been implemented into clinical trials for participant 
selection, stratification and/or as a secondary or exploratory outcome 
measure. This includes application in anti-tau trials21,22, but also in 
anti-Aβ trials9,10. To optimize the future use of tau PET in clinical settings, 
accurate prevalence estimates of tau PET positivity and understand-
ing of how demographic, clinical and genetic factors are associated 
with these prevalence estimates are essential. This will help clinicians 
and trialists to interpret the clinical importance of tau PET results and 
inform clinical trial design. Most tau PET studies conducted to date are 
single-center studies with insufficient sample sizes for providing reli-
able prevalence estimates of tau PET positivity, especially when these 
samples are stratified to explore the effects of individual risk factors 
for AD-type dementia such as age, sex and APOE genotype.

In the present study, we conducted a large-scale, multicenter 
analysis of 42 cohorts worldwide (N = 12,048). The present study aimed 
to estimate the prevalence of tau proteinopathy as measured by PET 
in CU participants and in individuals with mild cognitive impairment 
(MCI) or dementia. We investigated whether and how Aβ positivity, age, 
sex and APOE genotype are associated with tau PET-positivity preva-
lence estimates. We also compared the estimated tau PET-positivity 
prevalence against gold standard assessment of tau pathology, that 
is, the prevalence of neocortical tau proteinopathy in an independent 
postmortem dataset (n = 5,072).

Results
We included 12,048 participants with tau PET from 42 cohorts world-
wide, of whom 7,394 were CU participants (mean age: 68.7 ± 11.1 years, 
55.9% women, 30.9% Aβ positive), 2,177 with MCI (mean age: 71.3 ± 8.8, 
45.0% women, 59.3% Aβ positive) and 2,477 with dementia (mean age: 
69.9 ± 9.0, 50.9% women, 76.8% Aβ positive; Table 1). Participant charac-
teristics stratified by Aβ status are presented in Supplementary Table 1. 
In addition, we included 5,072 participants from 3 independent autopsy 
cohorts (1,026 CU, 661 MCI and 3,385 dementia; Extended Data Table 1). 
Throughout the text, the term ‘tau positivity’ refers to a positive (abnor-
mal) tau PET scan based on suprathreshold (cohort-specific threshold 
of mean + 2 s.d. in Aβ-negative CU individuals who were aged ≥50 years) 
tracer uptake in a previously established AD-specific region of interest 
(ROI), covering medial and lateral parts of the temporal cortex4,19, or the 
presence of Braak stage V–VI for neurofibrillary tangle pathology on 
neuropathological examination (that is, ‘B3’ according to the AD neuro-
pathological scoring system23). In secondary analyses, we assessed tau 
PET positivity in alternative ROIs (entorhinal cortex and a whole-brain 
ROI), using alternative thresholds (mean + 1 s.d. and mean + 1.5 s.d.) 
and alternative methods of threshold definition (Gaussian mixture 
modeling; see Methods for further details). The term ‘prevalence’ refers 
to the frequency of tau PET positivity in the current dataset.

Tau positivity according to diagnosis and Aβ status
The observed prevalence of tau PET positivity in the temporal cor-
tex was 7.6% (558 of 7,394) in CU individuals, 36.8% (801 of 2,177) in 
participants with MCI and 64.4% (1,595 of 2,477) in participants with 
all-cause dementia (Extended Data Fig. 1a). When stratifying for Aβ 
status and syndrome diagnosis, the prevalence of tau positivity in 
the temporal cortex was 2.1% (102 of 4,968) in Aβ-negative CU par-
ticipants versus 20.0% (443 of 2,218) in Aβ-positive CU participants, 
6.4% (55 of 863) in Aβ-negative participants with MCI versus 58.1%  
(731 of 1,258) in Aβ-positive participants with MCI and 10.0% (52 of 
522) in participants with Aβ-negative dementia versus 83.5% (1,445 of  
1,730) in participants with Aβ-positive dementia (Extended Data 
Fig. 1b,c). When stratifying for Aβ status and clinical dementia diag-
nosis, the prevalence of tau positivity in the temporal cortex was 
23.7% (36 of 152) and 88.5% (1,366 of 1,544) for Aβ-negative versus 
Aβ-positive participants with AD-type dementia, 7.4% (9 of 121) and 
13.0% (3 of 23) for Aβ-negative versus Aβ-positive participants with 
frontotemporal dementia (FTD), 1.4% (1 of 71) and 11.8% (2 of 17) for 
Aβ-negative versus Aβ-positive participants with progressive supra-
nuclear palsy (PSP), 2.9% (2 of 69) and 27.8% (5 of 18) for Aβ-negative 
versus Aβ-positive participants with corticobasal syndrome (CBS), 
3.3% (1 of 30) and 41.0% (16 of 39) for Aβ-negative versus Aβ-positive 
participants with dementia with Lewy bodies (DLB), 7.1%% (1 of 14) 
and 33.3% (1 of 3) for Aβ-negative versus Aβ-positive participants 
with Parkinson’s disease dementia (PDD), 4.6% (1 of 22) and 0.0%  
(0 of 9) for Aβ-negative versus Aβ-positive participants with vascular 
dementia (VaD) and 2.3% (1 of 43) and 67.5% (52 of 77) for Aβ-negative 
versus Aβ-positive participants with dementia–not otherwise speci-
fied (Extended Data Fig. 1b,c). The observed prevalence of tau posi-
tivity in the entorhinal cortex and a whole-brain ROI by (syndrome 
and clinical) diagnosis and Aβ status is presented in Supplementary 
Figs. 1 and 2, respectively.

Tau positivity according to age and Aβ status
Logistic generalized estimating equation (GEE) models showed sig-
nificant interactions between age and biomarker-defined Aβ status on 
tau positivity in the temporal cortex in CU participants and those with 
MCI and dementia (β, the estimated regression coefficient, = −0.06 
for CU, β = −0.09 for MCI and β = −0.09 for dementia, all P < 0.001; 
Fig. 1a,c). From age 60 years to 80 years, the estimated prevalence of tau 
positivity in the temporal cortex increased from 1.1% (95% confidence 
interval (CI) 0.7–1.4%) to 4.4% (95% CI 3.2–5.6%) among Aβ-negative CU 

Table 1 | Participant characteristics

CU MCI Dementiaa

n 7,394 2,177 2,477

Age, years 68.7 ± 11.1 71.3 ± 8.8 69.9 ± 9.0

Sex, n women (%) 4,136 (55.9) 980 (45.0) 1,255 (50.9)

APOE ε4 status, n carrier (%) 2,322 (35.9) 879 (47.5) 1,096 (57.0)

Aβ status, n positive (%) 2,218 (30.9) 1,258 (59.3) 1,730 (76.8)

Aβ modality, n PET (%) 6,584 (95.3) 1,892 (90.3) 1,651 (73.3)

Education, years 14.7 ± 3.7 13.5 ± 4.3 13.1 ± 4.2

MMSE 28.7 ± 1.7 26.7 ± 2.4 20.9 ± 6.0

Race/Ethnicity, n self-report (% of total)

  Non-Hispanic white 3,744 (80.5) 879 (80.8) 603 (72.1)

  Asian 276 (5.9) 131 (12.0) 187 (22.4)

  Black/African American 286 (6.2) 47 (4.3) 26 (3.1)

  Hispanic 317 (6.8) 27 (2.5) 14 (1.7)

 � American Indian or  
Alaskan Native

9 (0.2) 0 (0.0) 2 (0.2)

  Hawaiian/Pacific Islander 1 (0.0) 0 (0.0) 0 (0.0)

  More than one 13 (0.3) 3 (0.3) 3 (0.4)

  Other 4 (0.1) 1 (0.1) 1 (0.1)

Tau PET tracer, n (%)

  [18F]flortaucipir 4,118 (55.7) 1,125 (51.7) 1,237 (49.9)

  [18F]MK6240 2,066 (27.9) 587 (27.0) 503 (20.3)

  [18F]RO948 1,111 (15.0) 434 (19.9) 439 (17.7)

  [18F]PI2620 99 (1.3) 31 (1.4) 298 (12.0)

Shown are mean ± s.d. unless specified otherwise. Sex was missing for 10 participants 
(0.1%), APOE ε4 status for 1,796 participants (14.9%), Aβ status for 489 participants (4.1%), Aβ 
modality for 789 participants (6.5%), education for 1,114 participants (9.3%), Mini-Mental State 
Examination (MMSE) for 792 participants (6.6%) and race for 5,593 participants (46.4%). Aβ 
modality refers to the method used to determine Aβ status, which could include either PET or 
cerebrospinal fluid markers. aPatients with a syndromic dementia diagnosis met diagnostic 
criteria for AD-type dementia (n = 1,804) or non-AD neurodegenerative disorders including 
FTD (n = 162), PSP (n = 141), CBS (n = 101), DLB (n = 76), PDD (n = 39), VaD (n = 32) or dementia–not 
otherwise specified (n = 122).
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participants, and from 17.4% (95% CI 12.1–22.8%) to 22.2% (95% CI 19.9–
24.5%) among Aβ-positive CU participants (Fig. 1a and Table 2). Among 
Aβ-negative participants with MCI and dementia, from age 60 years 
to 80 years, the estimated prevalence of tau positivity increased from 
4.1% (95% CI 1.9–6.2%) to 11.0% (95% CI 6.0–16.0%) in MCI and from 9.7% 
(95% CI 6.1–13.2%) to 14.4% (95% CI 6.3–22.5%) in dementia (Fig. 1b,c 
and Table 2). In contrast, among Aβ-positive participants with MCI 

and dementia, from age 60 years to 80 years, the estimated preva-
lence of tau positivity decreased from 68.0% (95% CI 60.4–75.6%) to 
52.9% (95% CI 46.3–59.5%) in MCI and from 91.5% (95% CI 88.8–94.3%) 
to 74.6% (95% CI 69.4–79.7%) in dementia (Fig. 1b,c, Table 2 and Sup-
plementary Table 2). Next, we separately assessed tau positivity in two 
additional ROIs, that is, the entorhinal cortex and the whole-brain ROI. 
Across all groups, we observed that, at the same age, the prevalence 
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Fig. 1 | Prevalence estimates of tau PET positivity according to age, Aβ and 
cognitive status. a–i, Tau PET positivity in CU (a,d,g), MCI (b,e,h) and dementia 
(c,f,i) modeled using age, Aβ status and an interaction between age and Aβ 
status as determinants. Models were stratified by syndrome diagnosis. Tau PET 
positivity was assessed in the temporal cortex (a–i) as well as in the entorhinal 
cortex and whole brain (d–i). The figure includes 7,186 CU, 2,121 MCI and 2,252 

dementia participants for tau PET positivity in the temporal cortex and whole-
brain region and 7,174 CU, 2,117 MCI and 2,234 dementia participants for tau PET 
positivity in the entorhinal cortex. The y axes reflect estimated probabilities of 
tau PET positivity (prevalence estimates) generated from GEEs. Shaded areas 
indicate the 95% CIs.
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of tau positivity was highest for the entorhinal cortex, followed by  
the temporal cortex and then the whole-brain ROI (Fig. 1d,i and 
Extended Data Tables 2 and 3). For example, in Aβ-positive CU par-
ticipants aged 80 years, the estimated prevalence of tau positivity 
was 30.0% (95% CI 26.9–33.0%) for the entorhinal cortex, 22.2% (95% 
CI 19.9–24.5%) for the temporal cortex and 11.0% (95% CI 9.5–12.5%) 
for the whole-brain ROI. An additional analysis, including individu-
als with clinically diagnosed AD-type dementia, yielded very similar 
results compared with the analysis in the all-cause dementia group 
(Extended Data Fig. 2 and Extended Data Table 4). The proportion of 
tau positivity across ROIs for early onset (age at PET < 66 years) versus 
late-onset (age at PET > 65 years) AD is provided in Supplementary Fig. 3 
and Supplementary Table 2.

The same analyses presented above but now using cohort-specific 
thresholds of mean + 1 s.d. and 1.5 s.d. in Aβ-negative CU individu-
als yielded largely similar results (Extended Data Fig. 3), as well as 
 analyses in which tau PET thresholds derived from tracer-specific 
Gaussian mixture modeling (instead of a cohort-specific mean + 2 s.d. 
in the Aβ-negative CU individual threshold used in the primary analy-
ses; Supplementary Fig. 4). The observed tau PET-positivity preva-
lence by age, diagnosis and Aβ status is presented in Supplementary 
Table 3, to allow comparison against the estimated prevalence presented  
in Table 2.

Tau positivity by age and APOE ε4 status in CU individuals
In CU individuals, APOE ε4 status (APOE ε4+ versus APOE ε4−, β = 1.04, 
P < 0.001; Fig. 2a and Extended Data Table 5) and the number of APOE 
ε4 alleles (APOE ε4 homozygous versus APOE ε4 noncarrier, β = 2.06, 
P < 0.001, APOE ε4 heterozygous versus APOE ε4 noncarrier, β = 0.94, 
P < 0.001 and APOE ε4 homozygous versus APOE ε4 heterozygous, 
β = 1.12, P < 0.001; Fig. 2b and Supplementary Table 4) were associated 
with a higher estimated prevalence of tau positivity in the temporal 
cortex. At the median age of 71 years, the prevalence estimates of tau 
positivity in the temporal cortex were higher in APOE ε4/ε4 compared 
with all other genotypes (mean difference ε4/ε4 versus ε2/ε3: 24.1% 
(95% CI 15.5–32.6%); ε4/ε4 versus ε2/ε4: 20.9% (95% CI 10.6–31.2%); 
ε4/ε4 versus ε3/ε3: 23.7% (95% CI 15.3–32.2%); and ε4/ε4 versus ε3/ε4: 
16.8% (95% CI 9.4–24.2%); all P < 0.001) and higher in ε3/ε4 compared 
with ε2/ε3 and ε3/ε3 genotypes (mean difference ε3/ε4 versus ε2/
ε3: 7.3% (95% CI 3.1–11.5%), P < 0.001; ε3/ε4 versus ε3/ε3: 6.9% (95% CI 
2.8–11.0%); P < 0.001; Fig. 2c and Supplementary Table 5). No signifi-
cant differences were found between the other genotypes and none 
of the 22 CU participants with an ε2/ε2 genotype were tau positive in 
any of the ROIs.

Aβ and tau positivity by age and APOE ε4 in CU individuals
Next, we aimed to estimate the timing of biomarker positivity for both 
Aβ and tau pathology as a function of age and APOE status or genotype 
in CU individuals to capture the earliest stages of AD pathophysiology. 
Figure 2d,e and Extended Data Table 6 illustrate that an increasing 
APOE ε4 dose is associated with both Aβ and tau positivity occurring 
at a substantially younger age. The estimated age for 10% Aβ-positivity 
prevalence is 40.5 years in APOE ε4/ε4 carriers, 49.0 years in APOE ε3/ε4 
carriers and 56.5 years in APOE ε4 noncarriers. The estimated age for 10% 
tau-positivity prevalence in the entorhinal cortex is 44.5 years in APOE 
ε4/ε4 carriers, 63.5 years in APOE ε3/ε4 carriers and 77.5 years in APOE ε4 
noncarriers (Fig. 2d). The estimated age for 10% tau-positivity prevalence 
in the temporal cortex is 54.5 years in APOE ε4/ε4 carriers, 69.0 years 
in APOE ε3/ε4 carriers and 81.0 years in APOE ε4 noncarriers (Fig. 2e). 
These results imply that, at a group level, APOE ε4/ε4 CU individuals 
become tau positive in the entorhinal cortex at a younger age than APOE 
ε4 noncarriers become Aβ positive (Fig. 2d), whereas the prevalence 
curves for tau positivity in the temporal cortex in APOE ε4/ε4 carriers 
versus Aβ positivity in APOE ε4 noncarriers largely overlap (Fig. 2e).

Aβ and tau positivity by age and sex in CU individuals
In CU individuals, female sex was associated with a higher estimated 
prevalence of Aβ positivity (β = 0.13, P = 0.005), tau positivity in the 
entorhinal cortex (β = 0.41; P < 0.001) and tau positivity in the tempo-
ral cortex (β = 0.27, P < 0.001; Fig. 2f,g) compared with male sex. The 
estimated age for 10% Aβ-positivity prevalence is 48.5 years for women 
and 50.0 years for men, the estimated age for 10% tau positivity in the 
entorhinal cortex is 67.5 years for women and 73.5 years for men (Fig. 2f) 
and the estimated age for 10% tau positivity in the temporal cortex is 
73.0 years for women and 77.5 years for men (Fig. 2g and Extended Data 
Table 7). These results imply that, at a group level, CU women become 
Aβ positive and tau positive at a younger age than CU men.

Tau positivity by age, APOE ε4 status and Aβ status
Given that the age effect on tau positivity was strongly modulated by 
Aβ status (for example, positive associations in Aβ-negative individu-
als with MCI or dementia versus negative associations in Aβ-positive 
individuals with MCI or dementia), we next modeled age, Aβ status 
and APOE ε4 status simultaneously. In models adjusting for age and 
Aβ pathology, APOE ε4 carriership was associated with a higher preva-
lence of tau positivity in the temporal cortex in all diagnostic groups 
(β = 0.55 for CU, β = 0.64 for MCI and β = 0.59 for dementia; all P < 0.001; 
Fig. 3a,c and Supplementary Table 6). For example, at the median age 
of 71 years, the prevalence estimates of tau positivity in the temporal 

Table 2 | Prevalence estimates of tau PET positivity in the temporal cortex according to age, Aβ and cognitive status

Age, years CU, % (95% CI) MCI, % (95% CI) Dementia, % (95% CI)

Total Aβ negative Aβ positive Total Aβ negative Aβ positive Total Aβ negative Aβ positive

50 2.4 (1.6–3.1) 0.5 (0.2–0.8) 15.3 (8.3–22.4) 32.0 (24.2–39.7) 2.4 (0.8–4.1) 74.5 (64.9–84.1) 74.5 (65.2–83.9) 7.8 (4.0–11.7) 95.4 (93.3–97.6)

55 3.2 (2.3–4.1) 0.7 (0.4–1.1) 16.3 (10.1–22.6) 33.7 (26.7–40.6) 3.2 (1.3–5.0) 71.3 (62.7–80.0) 73.0 (64.4–81.6) 8.7 (5.1–12.3) 93.8 (91.3–96.2)

60 4.2 (3.2–5.2) 1.1 (0.7–1.4) 17.4 (12.1–22.8) 35.4 (29.1–41.8) 4.1 (1.9–6.2) 68.0 (60.4–75.6) 71.4 (63.6–79.3) 9.7 (6.1–13.2) 91.5 (88.8–94.3)

65 5.6 (4.5–6.7) 1.5 (1.1–1.9) 18.5 (14.1–22.9) 37.2 (31.3–43.1) 5.3 (2.7–7.8) 64.4 (57.9–71.0) 69.8 (62.7–76.9) 10.7 (6.8–14.6) 88.7 (85.6–91.7)

70 7.4 (6.2–8.7) 2.2 (1.7–2.7) 19.7 (16.3–23.1) 39.0 (33.2–44.8) 6.8 (3.7–9.8) 60.7 (54.8–66.6) 68.1 (61.5–74.7) 11.8 (7.0–16.6) 84.9 (81.5–88.4)

75 9.8 (8.4–11.2) 3.1 (2.4–3.8) 20.9 (18.4–23.5) 40.9 (34.9–46.9) 8.6 (4.8–12.5) 56.9 (51.0–62.7) 66.4 (60.1–72.6) 13.1 (6.8–19.3) 80.3 (76.2–84.3)

80 12.8 (11.1–14.4) 4.4 (3.2–5.6) 22.2 (19.9–24.5) 42.8 (36.2–49.4) 11.0 (6.0–16.0) 52.9 (46.3–59.5) 64.6 (58.3–70.9) 14.4 (6.3–22.5) 74.6 (69.4–79.7)

85 16.5 (14.4–18.7) 6.2 (4.0–8.4) 23.5 (20.6–26.4) 44.7 (37.2–52.2) 13.9 (7.2–20.6) 48.9 (40.9–56.9) 62.8 (56.1–69.5) 15.8 (5.4–26.2) 67.9 (61.0–74.7)

90 21.1 (18.1–24.1) 8.7 (5.0–12.5) 24.9 (20.7–29.1) 46.6 (38.1–55.1) 17.4 (8.5–26.3) 45.0 (35.3–54.6) 60.9 (53.4–68.4) 17.4 (4.3–30.5) 60.4 (51.5–69.3)

The prevalence estimates of tau positivity in the temporal cortex were generated from logistic GEE models stratified by syndrome diagnosis. Prevalence estimates in the total group were 
modeled using age as a determinant. Prevalence estimates according to Aβ status were modeled using age, Aβ status and an interaction between age and Aβ status. The analyses presented in 
this table are based on 7,394 CU participants (68.7 ± 11.1 years, 55.9% women), of whom 7,186 had Aβ status available (68.7 ± 11.1 years, 56.0% women), 2,177 participants with MCI (71.3 ± 8.8 years, 
45.0% women), of whom 2,121 had Aβ status available (71.4 ± 8.8 years, 44.8% women) and 2,477 participants with dementia (69.9 ± 9.0 years, 50.9% women), of whom 2,252 had Aβ status 
available (69.9 ± 9.0 years, 51.2% women).
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Fig. 2 | Prevalence estimates of tau PET and Aβ positivity by age, APOE and  
sex in CU individuals. a–c, The models including age and APOE ε4 status  
(a, n = 6,476), APOE ε4 dosage (b, n = 6,288) or APOE genotype (c, n = 5,963).  
d,e, The models including age and APOE ε4 dosage, with an additional interaction 
term between age and APOE ε4 dosage in the model estimating the prevalence of 
Aβ positivity (n = 6,184). f,g, The models including age and sex (n = 7,173). For the 
models presented in d–g, we included only individuals who had both Aβ status 
and entorhinal tau PET status and/or temporal cortex tau PET status available. 
Separate models were performed for estimating the prevalence of Aβ positivity 

and tau positivity. Note that d and f depict Aβ positivity or tau PET positivity in 
the entorhinal cortex, whereas e and g depict Aβ positivity or tau PET positivity 
in the temporal cortex. In a–c, the y axes reflect estimated probabilities of tau 
PET positivity (prevalence estimates) generated from GEEs. In d–g, the y axes 
reflect estimated probabilities of Aβ positivity or tau PET positivity (prevalence 
estimates) generated from GEEs. Shaded areas indicate the 95% CIs. In c, none of 
the participants with APOE ε2/ε2 were tau positive, hence no 95% CI was provided 
for this group.
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cortex were higher in Aβ-positive APOE ε4 carriers compared with 
Aβ-positive APOE ε4 noncarriers in CU individuals (mean difference 
8.4% (95% CI 3.0–13.8%), P < 0.001), individuals with MCI (mean dif-
ference 15.6% (95% CI 4.7–26.5%), P = 0.001) and those with dementia 
(mean difference 7.5% (95% CI 3.1–11.9%), P < 0.001).

Tau positivity according to age, sex and Aβ status
In line with the previous section, we simultaneously modeled age, Aβ 
status and sex as predictors of tau positivity. There was a significant 
interaction between sex and Aβ status on the prevalence of tau posi-
tivity in the temporal cortex for CU (β = 0.34, P = 0.02) participants, 
indicating that, in the presence of Aβ pathology, CU women showed 
a higher prevalence of tau positivity than men (Fig. 3d,e and Supple-
mentary Table 7). The interaction between sex and Aβ status on the 
prevalence of tau positivity was not significant in the MCI and dementia 
groups, but there were significant main effects of sex on tau positivity in 
the MCI (β = 0.34, P < 0.001) and dementia (β = 0.59, P < 0.001) groups 
(Fig. 3f and Supplementary Table 7). At the median age of 71 years, 

the prevalence estimates of tau positivity in the temporal cortex were 
higher in Aβ-positive women compared with Aβ-positive CU men (mean 
difference 5.2% (95% CI 1.7–8.8%), P = 0.001), MCI (mean difference 8.2% 
(95% CI 2.1–14.3%), P = 0.003) and dementia (mean difference 8.1% (95% 
CI 4.6–11.6%), P < 0.001).

Tau positivity using tau PET versus postmortem examination
Although neuropathological studies have shown that the vast majority 
of older individuals harbor some degree of tau tangle pathology in the 
temporal cortex, antemortem tau PET versus postmortem comparisons 
indicated that tau PET scans typically become positive when tau tangle 
pathology is observed in the Braak V–VI regions18,24–28. Although preva-
lence estimates of tau positivity were generally higher when assessed 
using tau PET (temporal cortex) compared with neuropathology, we 
found comparable effects of age and Aβ status on tau positivity in 
autopsy versus PET datasets (Fig. 4). In line with the tau PET results, 
from age 60 years to age 80 years the estimated prevalence of neuro-
pathologically defined Braak stages V–VI increased from 0.0% (95% CI 
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Fig. 3 | Tau PET positivity in association with age, Aβ status, APOE ε4 status 
and sex. a–c, Models including age, Aβ status, APOE ε4 status and an interaction 
between age and Aβ status for CU (a), MCI (b) and dementia (c). d,e, Models 
including age, Aβ status, sex and interaction terms between age and Aβ status 
(d) and between sex and Aβ status (e). f, Models including age, Aβ status, sex 
and an interaction term between age and Aβ status. Models were stratified 

for CU (a (n = 6,384) and d (n = 7,185)), MCI (b (n = 1,823) and e (n = 2,121)) and 
dementia (c (n = 1,869) and f (n = 2,252)) participants. The y axes reflect estimated 
probabilities of tau PET positivity in the temporal cortex (prevalence estimates) 
from GEEs. Shaded areas indicate the 95% CIs. Note that in d, the estimated 
probabilities and 95% CIs for the Aβ-negative men and Aβ-negative women are 
fully overlapping.
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0.0–0.0%) to 0.1% (95% CI 0.0–0.3%) among Aβ-negative CU partici-
pants and from 2.6% (95% CI 0.0–7.9%) to 8.6% (95% CI 0.2–16.9%) among 
Aβ-positive CU participants (Fig. 4a,d and Supplementary Table 8). 
Among Aβ-negative participants with MCI and dementia, from age 
60 years to 80 years, the estimated prevalence of Braak stages V–VI 
increased from 0.4% (95% CI 0.1–0.6%) to 1.7% (95% CI 1.3–2.1%) in MCI 
and from 2.4% (95% CI 0.0–9.5%) to 3.7% (95% CI 0.0–8.5%) in dementia 
(Fig. 4e,f and Supplementary Table 8). In contrast, among Aβ-positive 
participants with MCI and dementia, from age 60 years to 80 years, the 
estimated prevalence of Braak stages V–VI decreased from 45.6% (95% 
CI 0.0–98.0%) to 39.6% (95% CI 13.4–65.8%) in MCI and from 78.9% (95% 
CI 71.2–86.5%) to 69.4% (95% CI 61.1–77.8%) in dementia (Fig. 4b,c and 
Supplementary Table 8). A sensitivity analysis comparing tau posi-
tivity in neuropathologically defined Braak stages V–VI with tau PET 
positivity in a whole-brain ROI showed comparable results, although 
in Aβ-positive CU, the prevalence of tau PET positivity decreased with 
advancing age as opposed to postmortem Braak V–VI regions and tau 
PET positivity in the temporal cortex (Fig. 4a and Supplementary Fig. 5).

Discussion
This large multicenter study aimed to estimate the prevalence of tau 
pathology as measured by PET as a function of Aβ status, age, APOE 
genotype and sex in CU individuals, individuals with MCI and individu-
als with dementia. Age and Aβ status showed the strongest associations 
with tau positivity. We found that age was positively associated with 
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Fig. 4 | Prevalence of tau positivity on PET (temporal cortex) versus 
neuropathological examination (Braak V–VI). a–f, Tau positivity on PET or 
neuropathology in Aβ-positive (a) and Aβ-negative (d) CU individuals and 
Aβ-positive (b) and Aβ-negative (e) participants with MCI and Aβ-positive (c) 
and Aβ-negative dementia (f), modeled using age, Aβ status and an interaction 
between age and Aβ status as determinants. The models were stratified by 

syndrome diagnosis. The y axes reflect estimated probabilities of tau positivity 
on PET (temporal cortex) or neuropathology (Braak V–VI) (prevalence estimates) 
generated from GEEs. Prevalence estimates for PET are based on 7,186 CU, 2,121 
MCI and 2,252 dementia participants. Prevalence estimates for neuropathology 
are based on 1,026 CU, 661 MCI and 3,385 dementia participants.

tau positivity in CU (irrespective of Aβ status) and showed a negative 
relationship with tau positivity in Aβ-positive individuals with MCI 
and Aβ-positive individuals with all-cause dementia. APOE ε4 carrier-
ship and female sex were associated with a higher prevalence of tau 
positivity across diagnostic groups. APOE ε4 carriership in CU indi-
viduals was associated with a lower age at onset of both Aβ positivity 
and tau positivity by decades in a dose-dependent fashion. Finally, the 
observed associations between age and Aβ status with tau pathology, 
as measured by PET, were validated in an independent autopsy dataset. 
Altogether, our study provides robust prevalence estimates of tau PET 
positivity across syndrome diagnoses and biomarker profiles, which 
can aid the interpretation of tau PET in the clinic and inform prevention 
studies and clinical trial designs.

One of the key findings of the present study is that carrying an APOE 
ε4 allele was associated with a lower age at onset of both Aβ positivity 
and tau positivity in CU individuals by decades in a dose-dependent 
fashion5,6,29. This shift is so pronounced that individuals with the APOE 
ε4/ε4 genotype exhibit tau PET positivity in the entorhinal cortex at a 
younger average age than APOE ε4 noncarriers become Aβ positive. To 
exemplify, the estimated ages at which 10% of CU APOE ε4/ε4 individu-
als show Aβ positivity (global) versus tau positivity (entorhinal cortex 
and temporal cortex) are 41, 45 and 55 years, respectively. In contrast, 
these estimated ages are 57, 78 and 81 years, respectively, for CU APOE 
ε4 noncarriers. Another key correlate of tau positivity in CU was Aβ 
status, because only 2.1% of Aβ-negative CU individuals were tau PET 
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positive in the temporal cortex, whereas the prevalence was ~10-fold 
higher in Aβ-positive CU individuals. Also, the prevalence of entorhinal 
tau positivity was higher compared with the temporal tau positivity, 
which is in line with established neuropathological and PET-based 
staging schemes proposing this topography of tau progression27,30,31. 
Collectively, these data support a model where Aβ pathology triggers 
the spread of tau pathology from the medial temporal lobe to the 
neocortex, which is a critical harbinger of neurodegeneration and 
cognitive impairment in the near future32,33.

Age was also strongly associated with an increased prevalence of 
tau positivity in the entorhinal cortex and the temporal cortex in CU 
individuals, even among individuals who were Aβ negative. The latter 
can be explained by Aβ-independent tau accumulation (for example, 
primary age-related tauopathy (PART)), off-target binding of tau PET 
tracers (for example, to monoamine oxidase B, neuromelanin, iron 
accumulation and/or microhemorrhages, which all become more 
pronounced with advancing age), increased false-negative Aβ status 
and/or false-positive tau PET scans, partial volume effects resulting 
from atrophy or an atypical neurobiological phenotype (for example, 
a tau-first subtype)34–39. Among Aβ-positive CU individuals, contrary 
to entorhinal and temporal cortex tau positivity, tau positivity in the 
whole-brain ROI decreased in older age. This observation might be 
explained by a survival effect or a potentially increased susceptibility, in 
older participants, to the downstream neurotoxic effects of widespread 
tau pathology, for example, through less efficient compensatory neu-
ronal mechanisms with age40. This reduced resilience might render 
older individuals more vulnerable to developing cognitive symptoms 
when tau aggregates are present in the neocortex, resulting in progres-
sion from CU to MCI or dementia at lower global levels of tau pathology. 
Consequently, a decrease of whole-brain tau positivity is observed in 
the CU group at older age. Longitudinal studies are essential to formally 
test the above proposed hypotheses.

At symptomatic AD stages (that is, Aβ-positive MCI and dementia), 
age was negatively associated with the prevalence of tau positivity in 
the entorhinal cortex, temporal cortex and whole-brain ROI. This find-
ing is consistent with previous observations from both neuropathologi-
cal and tau PET studies and this pattern has also been firmly established 
for Aβ pathology29,41,42. This observation can be explained in at least four 
distinct but not mutually exclusive ways. First, older individuals are 
more prone to co-occurring neuropathology like α-synuclein, TDP-43 
or vascular injury43. According to the ‘double-hit’ hypothesis, even at 
lower (subthreshold) levels of tau pathology, this cumulative pathologi-
cal burden may be sufficient to cause an MCI or dementia syndrome. 
Second, related to the above, decreased resilience to tau pathology 
with advanced age may lead to cognitive impairment at lower levels of 
tau pathological burden44. Third, individuals with advanced AD pathol-
ogy in addition to substantial comorbid pathology are probably too 
cognitively impaired to participate in research studies and were thus 
potentially not included in our analyses. Fourth, misfolded tau pro-
teins may spread or amplify faster in younger individuals with higher 
degrees of functional connectivity45. Also, younger individuals may be 
more susceptible to early deposition of tau pathology in hub network 
regions, which further accelerates the rate of tau accumulation46.

In CU individuals, we observed a lower age at onset for women rela-
tive to men for tau positivity in the entorhinal cortex and, more subtly, 
for Aβ positivity and tau positivity in the temporal cortex. Furthermore, 
in the CU group, we found that female sex was associated with a higher 
prevalence of temporal cortex tau positivity in the presence of Aβ 
pathology. This observation is in line with previous literature showing 
that clinical as well as biological AD are more common in women than in 
men: women exhibit a greater tau burden (particularly in the entorhi-
nal cortex) at similar levels of Aβ pathology and Aβ-positive women 
show faster tau accumulation over time compared with Aβ-positive 
men45,47,48. Mechanisms relating to biological sex or social implications 
of gender could contribute to this difference, including (premature or 

early) menopause, late initiation of hormone therapy, differences in 
depression rates and educational attainment, as well as sex-specific 
innate and adaptive immune responses, synapse biology, mitochon-
drial functioning, neurotrophic factors and epigenetic alterations49,50.

An indirect comparison between tau positivity defined using PET in 
the temporal cortex versus neuropathological Braak stages V–VI showed 
similar associations with age and Aβ status across syndrome diagnostic 
groups. As a potential consequence of selecting advanced Braak stages 
as the primary neuropathological outcome measure in our study, the 
PET-based prevalence estimates were generally higher, particularly 
for Aβ-negative participants. This was still the case when we assessed 
a whole-brain ROI versus postmortem Braak stages V–VI. This may be 
related to differences in how the two modalities measure Aβ and tau 
pathology (for example, varying sensitivity and detection thresholds), 
differences in participants enrolled in PET versus autopsy studies or 
modality-specific measurement errors (for example, off-target binding 
in PET). There have been relatively few direct antemortem PET versus 
postmortem neuropathology comparison studies to date. Most of these 
showed a good correlation between tau PET signal and neuropatho-
logical Braak stages, and this correlation is further strengthened when, 
rather than the rather crude Braak staging, a more quantitative measure 
of postmortem tau pathology was used, such as the percentage of tissue 
stained by AT8 immunohistochemistry18,25,51. More multimodal studies 
are needed to better understand the overlap and differences between 
tau pathology as detected by PET versus at neuropathological examina-
tion, preferably assessed in the same individuals.

The main strength of this work is the large sample size (N = 12,048 
for the PET sample and an additional n = 5,072 for postmortem vali-
dation) which allowed sufficient statistical power to provide robust 
prevalence estimates of tau PET positivity as a function of Aβ pathology 
and other individual risk factors for AD-type dementia such as age, 
APOE genotype and sex. Several limitations need to be considered 
when interpreting the present study. First, even though we include 
a global sample, generalizability is still limited because participants 
were, overall, highly educated (~14 years), mainly non-Hispanic white 
(79.5% of individuals had available data on race or ethnicity) and there 
were relatively few individuals aged >80 years, although this age range 
represents the largest segment of individuals with dementia in the 
community. Furthermore, data on race and/or ethnicity were available 
in only 54.6% of participants, which, combined with the overrepresen-
tation of non-Hispanic white individuals, did not provide sufficient 
statistical power for conducting stratified analyses. Second, we pooled 
data from many cohorts. Although we used study-specific thresholds in 
the primary analyses and accounted for study effects within our statisti-
cal models, this may still have resulted in reduced internal validity as 
a result of differences in study designs. Third, owing to the absence of 
histopathological data in participants with tau PET (this was compared 
only in independent datasets), the present study lacked a gold standard. 
Fourth, we pooled data from four tau PET tracers that share similar 
properties but also show differences in tracer kinetics, selectivity and 
affinity, as well as differences in the degree and type of off-target bind-
ing patterns. Efforts are ongoing to harmonize tau PET data across trac-
ers along common scales such as CenTauR52 or uniτ (that is, equivalent 
to the Centiloid approach for amyloid-PET53), which will improve future 
multicenter studies and trials that include tau PET. Fifth, there is no 
broad consensus on the most optimal way of operationalizing tau PET 
positivity quantitatively54. We acknowledge that several of our meth-
odological decisions have impacted the reported prevalence estimates. 
In line with previous work19 we focused on AD-specific regions, which 
has potentially resulted in an underestimation of tau PET positivity in 
primary tauopathies characterized by differential tau patterns55. Also, 
we used the mean + 2 s.d. in Aβ-negative CU individuals aged >50 years 
as a threshold, whereas more liberal (for example, mean + 1.5 s.d.) or 
conservative (for example, mean + 2.5 s.d.) approaches could be con-
sidered for detecting early stage versus later-stage tau pathology56, 
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respectively. Cohort-specific selection of reference regions, brain 
atlases and processing methods also all influence tau PET quantifica-
tion. We have partially addressed these potential confounding factors 
by adjusting all statistical analyses for cohort and validating the main 
results using an alternative threshold method (that is, Gaussian mixture 
modeling or lower thresholds). However, some residual variability and 
imprecision probably remain. Sixth, although, to our knowledge, this 
is one of the largest tau PET studies to date, the sample size for some 
specific subgroup analyses was relatively small and resulted in wide CIs. 
In particular, the prevalence estimates associated with age and APOE 
genotype in MCI and dementia at the lower and higher age extremes 
should be interpreted with caution.

In conclusion, among people with and without cognitive impair-
ment, the prevalence of tau pathology as determined by PET imaging 
was associated with Aβ status, age, sex and APOE genotype. Our find-
ings support the clinical utility of tau PET for differential diagnosis 
and inform trial designs that utilize tau PET for participant selection 
and stratification. In terms of future directions, it will be important 
to (1) compare the tau PET prevalence estimates against biofluid (cer-
ebrospinal fluid or plasma) markers of soluble tau pathology such as 
p-tau217 or MTBR-243 (refs. 57,58), (2) conduct a similar study with 
adjusted ROIs in other populations such as primary tauopathies (for 
example, globus pallidus in PSP55) or atypical variants of AD (for exam-
ple, occipital cortex in posterior cortical atrophy41), (3) assess genetic 
effects beyond APOE genotype on tau PET prevalence59 and (4) repeat  
the current analyses once approaches of harmonization across  
different tau PET tracers are more advanced.
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Methods
Written informed consent was obtained from all participants or their 
designated caregiver and all data collection protocols were approved 
by each cohort’s respective institutional ethical review board. Data 
analysis protocols for this particular study were approved by the Ethics 
Committee of Lund University, Lund, Sweden, in accordance with the 
Declaration of Helsinki, and all methods were carried out in accordance 
with the approved guidelines.

Data collection and operationalization
We searched the MEDLINE and Web of Science databases for tau 
PET studies published before 15 November 2023. The search terms 
used were ‘PET’ and ‘tau’ in combination with the four most widely 
used tau PET tracers to date (that is, ‘AV1451/flortaucipir/Tauvid’, 
‘MK6240’, ‘RO948’ or ‘PI2620’). Based on titles and abstracts we iden-
tified 42 unique cohorts that had previously published tau PET data in 
peer-reviewed journals. These cohorts represented a mix of secondary 
and tertiary care research studies, population-based studies and the 
placebo arm of a clinical trial. We approached study contact people 
to request participant-level data: 38 cohorts accepted and 4 declined;  
4 additional cohorts (that is, Barcelona Beta, UCL, Gothenburg Univer-
sity and the Chinese Preclinical Alzheimer’s disease Study) provided 
currently unpublished tau PET data, totaling participant-level data 
from 42 cohorts for analysis. Tau PET data were shared through trans-
fer of raw PET images to be centrally processed at Lund University in 
line with previous procedures (16 cohorts, n = 4,296)19 or transfer of 
spreadsheets containing regional standardized uptake value (SUVR) 
data (26 cohorts, n = 7,752). In addition, data were shared regarding 
clinical diagnosis (42 cohorts), Aβ status (41 cohorts), Aβ modality 
(39 cohorts), PET (938 cohorts) and/or cerebrospinal fluid (CSF) (10 
cohorts), age (42 cohorts), sex (42 cohorts), education (36 cohorts), 
race or ethnicity (21 cohorts), APOE ε4 status (38 cohorts), APOE geno-
type (35 cohorts) and Mini-Mental State Examination (MMSE) score (42 
cohorts). Cohort-specific methods for defining Aβ status are presented 
in Supplementary Table 9. We excluded participants with missing tau 
PET SUVR in the temporal cortex (n = 8), missing syndrome diagnosis 
(n = 234) and genetic mutations associated with dementia (n = 8) and 
participants with MCI or dementia who were aged <40 years (n = 7).

Participants
Informed consent was obtained from all participants or their assigned 
surrogate decision-makers and the institutional review boards for 
human research of the participating centers approved all studies. CU 
individuals performed cognitive testing within normal limits and did 
not exhibit any major psychiatric disorder60. MCI was defined accord-
ing to published criteria61,62. These criteria include a decline in memory 
or another cognitive domain reported by the patient, informant or 
both, that is, objectively verified by neuropsychological testing, in 
combination with no or minimal impairment in activities of daily living  
and not meeting criteria for dementia. Patients with a syndromic 
dementia diagnosis met diagnostic criteria for AD-type dementia63 
(n = 1,804) or non-AD neurodegenerative disorders including FTD 
(n = 162, that is, behavioral variant FTD and the semantic and nonflu-
ent variants of primary progressive aphasia combined), PSP (n = 141), 
CBS (n = 101), DLB (n = 76), PDD (n = 39), VaD (n = 32) and dementia–not 
otherwise specified (NOS) (n = 122). Note that we reported results for 
‘all-cause dementia’ (that is, all types of dementia combined) in the 
main text, whereas results for the specific dementia types are reported 
in Extended Data Fig. 1 and Supplementary Information. In addition, 
we repeated the main analyses presented in Figs. 1 and 3 specifically 
for individuals clinically diagnosed with AD-type dementia (Extended 
Data Fig. 2 and Extended Data Table 4). In addition, for an (indirect) 
comparison between tau-positivity rates derived from tau PET versus 
neuropathological examination, we included 5,072 participants from 
3 autopsy cohorts (that is, the National Alzheimer’s Coordinating 

Center database (NACC, n = 1,638)64, the Religious Orders Studies and 
Rush Memory and Aging Project (ROSMAP, n = 1,941)65 and the Arizona 
Study of Aging and Neurodegenerative Disorders (AZSAND)/Brain and 
Body Donation Program (AZSAND/BBDP, n = 1,672)66). The combined 
autopsy dataset consisted of 1,026 CU individuals, 661 individuals 
with MCI and 3,385 with dementia (Extended Data Table 1). In line with 
previous work29, participants who met the Consortium to Establish a 
Registry for Alzheimer’s Disease criteria (CERAD)67 for definite, prob-
able or possible AD (indicating the presence of moderate-to-frequent 
neuritic plaques) were considered Aβ positive. Based on previous 
results of antemortem tau PET versus postmortem examination in the 
same individuals, participants in Braak stage V–VI for neurofibrillary 
tangle pathology were considered tau positive18,24–27. We compared the 
prevalence of postmortem Braak stage V–VI against tau PET positivity 
in the temporal cortex (Fig. 4) and a whole-brain ROI (Supplementary 
Fig. 5). Participants with missing antemortem diagnosis, age, CERAD 
score or Braak stage were excluded from the autopsy dataset.

Tau PET procedures
[18F]Flortaucipir was used in most patients (n = 6,480, 25 cohorts), 
followed by [18F]MK6240 (n = 3,156, 11 cohorts), [18F]RO948 (n = 1,984, 
3 cohorts) and [18F]PI2620 (n = 428, 4 cohorts). Cohort-specific infor-
mation on tau PET tracers, scanning procedures and data processing 
can be found in Supplementary Table 10. For the primary analysis, we 
focused on a composite temporal meta-ROI (referred to as ‘temporal 
cortex’ throughout the text for readability purposes), consisting of the 
entorhinal cortex, amygdala, parahippocampus, fusiform gyrus and 
inferior and middle temporal cortices68. In addition, we determined 
tau PET positivity in the entorhinal cortex (missing for n = 35) and 
in a whole-brain ROI (missing for n = 2; see Supplementary Table 11 
for cohort-specific ROI compositions). Tau PET scans were dichoto-
mized (positive or negative) using quantitative thresholds. For the 
primary analyses, we defined the cut-off based on cohort-specific 
thresholds calculated as the mean + 2 s.d. in Aβ-negative CU individu-
als aged >50 years from the same cohort (see Supplementary Table 12 
for cohort-specific thresholds). In sensitivity analyses, we also showed 
the results when determining the threshold based on the mean + 1 s.d. 
and 1.5 s.d. in Aβ-negative CU individuals aged >50 years from the same 
cohort (Extended Data Fig. 3). Furthermore, we defined the cut-off 
based on tracer-specific Gaussian mixture modeling ([18F]flortaucipir: 
SUVR = 1.40; [18F]MK6240: SUVR = 1.43; [18F]RO948: SUVR = 1.41; [18F]
PI2620: SUVR = 1.41 in the temporal cortex; see Supplementary Table 12 
for tracer-specific thresholds for the entorhinal and whole-brain ROIs).

Statistical analysis
Baseline characteristics were compared using analysis of variance 
(ANOVA) and Fisher’s exact tests, where appropriate. GEEs were used 
to estimate probabilities of tau PET positivity. GEEs were selected 
because they allowed the modeling of subject-level data from all stud-
ies simultaneously while accounting for the clustering of participants 
within studies. Furthermore, GEEs provided population-averaged 
estimates (that is, coefficients representing the average effect on 
tau PET positivity across the dataset population) as opposed to 
subject-specific estimates, where coefficients represented the effect 
on tau PET positivity for the average individual in the dataset. We 
assumed a logit link function for binary outcomes with an exchange-
able correlation structure to account for within-study correlations 
related to, for example, site-specific PET scanners and study popu-
lations. All data were visually inspected and data distribution was 
assumed to be normal, but this was not formally tested. The main 
analyses were performed stratified for syndrome diagnosis and 
included Aβ status (±), age, sex and/or APOE ε4 status (±) as independ-
ent variables. Age was entered as a continuous measure centered at the 
median (that is, 71 years). We tested two-way and three-way interac-
tions between variables and these terms were retained in the model if 
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they appeared significant by Wald’s statistic (indicated in table foot-
notes and figure legends). We used estimated probabilities and 95% 
CIs from the GEE analyses in tables and figures. These GEE-estimated 
probabilities were compared with observed probabilities to determine 
the goodness of fit between GEE-estimated and actual data and these 
comparisons are presented in Supplementary Table 3. In addition, 
we modeled Aβ positivity and tau PET positivity as a function of age 
and APOE ε4 dose (that is, homozygous versus heterozygous versus 
noncarrier) and as a function of age and sex, and we compared the 
estimated tau-positivity prevalence as determined in tau PET versus 
postmortem datasets. The significance level was set at α = 0.05 and 
the analyses were performed using R v.4.2.1.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
As a result of the multicenter design of the study, individual participant 
data from each cohort will have to be made available through the princi-
pal investigators of the respective cohorts. Generally, anonymized data 
can be shared by request from qualified academic investigators for the 
purpose of replicating procedures and results presented in the Article, 
if the data transfer is in agreement with the data protection regulation 
at the institution and approved by the local ethics review board.

Code availability
The codes used for data collection in our study were implemented in R 
v.4.2.1 and can be requested from the corresponding authors (R.O. or 
O.H.). The codes used for data analysis were implemented in R v.4.2.1 
and are available via GitHub at https://github.com/OssenKoppeLab.
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Extended Data Fig. 1 | Observed tau-positivity in the temporal cortex across 
diagnostic groups. Plots show the observed rates of Tau-PET positivity in  
the temporal cortex by (syndromic and clinical) diagnosis for all participants 
(panel a, n = 1,2048) or stratified by Aβ-status (panels b [n = 6,353] and c 
[n = 5,206]). Aβ = Amyloid-beta; AD = Alzheimer’s disease, CBS = Corticobasal 

syndrome, DLB = Dementia with Lewy bodies, FTD = Frontotemporal  
dementia, MCI = Mild cognitive impairment, NOS = Not otherwise specified,  
PDD = Parkinson’s disease dementia, PSP = Progressive supranuclear palsy,  
VaD = Vascular dementia.
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Extended Data Fig. 2 | Prevalence estimates of Tau-PET positivity according  
to age, Aβ, cognitive status and sex in AD-type dementia. Panel a resembles  
Fig. 1f, panel b resembles Fig. 3c and panel c resembles Fig. 3f, but now in 
individuals clinically diagnosed with AD-type dementia instead of all-cause 
dementia. The model presented in panel a included age, Aβ-status and an 
interaction between age and Aβ-status (n = 1,696). The model presented in  
panel b included age, Aβ-status, APOE ε4-status and an interaction between  

age and Aβ-status (n = 1,486) The model presented in panel c included age, 
Aβ-status, sex and an interaction term between age and Aβ-status (n = 1,696). 
The y-axes reflect estimated probabilities of Tau-PET-positivity (prevalence 
estimates) from logistic generalized estimating equations. Shading  
areas indicates the 95% confidence intervals. Aβ = Amyloid-beta;  
APOE = Apolipoprotein E; PET = Positron emission tomography.
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Extended Data Fig. 3 | Prevalence estimates of Tau-PET positivity in the 
temporal cortex using lower thresholds. The plots depict the prevalence 
estimates of Tau-PET positivity in the temporal cortex as a function of age, 
Aβ-status and an interaction between age and Aβ-status in CU (panels a and d, 
n = 7,186), MCI (panels b and e, n = 2,121) and dementia (panels c and f, n = 2,252). 
Models were stratified by syndrome diagnoses. Tau-PET-positivity was defined 

using three different thresholds for Tau-PET positivity (that is, the mean + 1, 1.5 
or 2 s.d. in Aβ-negative CU individuals). The y axes reflect estimated probabilities 
of tau-PET positivity (prevalence estimates) from logistic GEEs. Shaded areas 
indicates the 95% confidence intervals. Aβ = Amyloid-beta; CU = Cognitively 
unimpaired; MCI, mild cognitive impairment; PET = Positron emission 
tomography.
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Extended Data Table 1 | Participant characteristics of the autopsy cohorts

CERAD, Consortium to Establish a Registry for Alzheimer’s Disease criteria.
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Extended Data Table 2 | Prevalence estimates of tau-PET positivity in the entorhinal cortex according to age, Aβ and 
cognitive status

The prevalence estimates of tau positivity in the entorhinal cortex were generated using logistic GEE models stratified by syndrome diagnosis. Prevalence estimates in the total group were 
modeled using age as determinant. Prevalence estimates according to Aβ status were modeled using age, Aβ status and an interaction term between age and Aβ status and models were 
stratified by syndrome diagnosis. The analyses presented in this table are based on 7,381 CU participants (68.7 ± 11.1 years, 56.0% female). of whom 7,174 had Aβ status available (68.7 ± 11.1 years, 
56.0% female), 2,173 participants with MCI (71.3 ± 8.8 years, 45.1% female). of wom 2,117 had Aβ status available (71.3 ± 8.8 years, 44.9% female) and 2,459 participants with dementia 
(69.9 ± 9.0 years, 50.6% female). of whom 2,234 had Aβ status available (69.9 ± 9.0 years, 51.2% female).
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Extended Data Table 3 | Prevalence estimates of tau-PET positivity in the whole-brain ROI according to age, Aβ and 
cognitive status

The prevalence estimates of tau positivity in the whole-brain ROI were generated using logistic GEE models stratified by syndrome diagnosis. Prevalence estimates in the total group were 
modeled using age as determinant. Prevalence estimates according to Aβ status were modelled using age, Aβ status and an interaction term between age and Aβ status, and models were 
stratified by syndrome diagnosis. The analyses presented in this table are based on 7,394 CU participants (68.7 ± 11.1 years, 55.9% female), of whom 7,186 had Aβ status available (68.7 ± 11.1 years, 
56.0% female), 2,177 participants with MCI (71.3 ± 8.8 years, 45.0% female), of whom 2,121 had Aβ status available (71.4 ± 8.8 years, 44.8% female) and 2,475 participants with dementia 
(69.9 ± 9.0 years, 50.7% female), of whom 2,252 had Aβ status available (69.9 ± 9.0 years, 51.2% female).
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Extended Data Table 4 | Prevalence estimates of tau-PET-positivity in amyloid-positive AD-type dementia

The prevalence estimates of tau-PET positivity in the entorhinal cortex, temporal cortex,and whole brain were generated using logistic GEE models according to age and Aβ in participants 
clinically diagnosed with AD-type dementia (n = 1,696).
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Extended Data Table 5 | Age by APOE ε4 status in CU individuals

The prevalence estimates of tau positivity in the temporal cortex were generated from logistic GEE models including age and APOE ε4 status (n = 6,476).
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Extended Data Table 6 | Aβ and tau positivity by age and APOE in CU individuals

The prevalence estimates of Aβ and tau positivity were generated using logistic GEE models including age and APOE ε4 dosage, and only included individuals that had Aβ status, entorhinal 
tau-PET status and temporal cortex tau-PET status available (n = 6,184). Separate models were performed for estimating the prevalence of Aβ positivity and tau positivity. Models estimating the 
prevalence of Aβ positivity and entorhinal tau positivity additionally included an interaction term between age and APOE ε4 dosage.
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Extended Data Table 7 | Aβ and tau positivity by age and sex in CU individuals

The prevalence estimates of Aβ and tau positivity were generated using logistic GEE models including age and sex and models only included individuals that had Aβ status, entorhinal tau-PET 
status and temporal cortex tau-PET status available (n = 7,173). Separate models were performed for estimating the prevalence of Aβ positivity and tau positivity.
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