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Abstract

Background Cerebral small vessel disease (CSVD) is a common neurological condition that contributes to strokes,
dementia, disability, and mortality worldwide. We conducted a systematic review and meta-analysis to investigate the
use of neuroimaging CSVD markers in machine learning (ML) based diagnosis and prognosis of cognitive impairment
and dementia, and identify both methodological changes over time and barriers to clinical translation.

Methods Following the PRISMA guidelines, we systematically searched for original studies that used both
neuroimaging CSVD markers and ML methods for diagnosing and prognosing neurodegenerative diseases
(preregistration in PROSPERO: CRD42022366767). Each paper was independently reviewed by a pair of reviewers at
all stages, with a third consulted to resolve conflicts. We meta-analysed the effectiveness of ML models to distinguish
healthy controls from Alzheimer's dementia and cognitive impairment, using area under the curve (AUC) as the
performance metric.

Results We identified 75 studies: 43 on diagnosis, 27 on prognosis, and 5 on both. Nearly 60% of studies were
published in the past two years, reflecting a growing interest in using CSVD markers in ML-based diagnosis and
prognosis of neurodegenerative diseases, especially Alzheimer’s dementia. This rising interest may be linked to the
strong performance of such models: according to our meta-analysis, ML approaches using CSVD markers perform
well in differentiating healthy controls from Alzheimer's dementia (AUC 0.88 [95%-Cl 0.85-0.92]) and cognitive
impairment (AUC 0.84 [95%-Cl 0.74-0.95]). However, the growing interest has not been matched by methodological
rigour: only 16 studies met the criteria for inclusion in the meta-analysis due to inconsistent reporting, only five
assessed the generalisability of their models on external datasets, and six lacked clear diagnostic criteria.
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Conclusions Interest in incorporating CSVD markers into ML models for neurodegenerative disease classification
is on the rise, and their performance suggests that this is worth further exploration. Serious methodological issues,
including inconsistent reporting, limited generalisability testing, and other potential biases, are unfortunately
common and hinder further adoption. Our targeted recommendations provide a roadmap to accelerate the

integration of ML into clinical practice.

Keywords Machine learning, Dementia, Cerebral small vessel disease, Artificial intelligence, Neuroimaging, Cognitive
impairment, Alzheimer’s dementia, Neurodegenerative diseases

Introduction

Cerebral small vessel disease (CSVD) describes mul-
tiple dynamic pathological processes that impair the
optimal functioning of perforating arterioles, capillar-
ies, and venules in the brain [1-3]. CSVD is among the
most common conditions encountered by neurologists in
clinical practice [4] and a significant contributor to major
healthcare challenges. CSVD causes 25% of ischaemic
strokes, the majority of intracerebral haemorrhages in
individuals over 65 years old, and most cases of vascular
dementia [2, 3]; contributes to around 45% of all demen-
tia cases worldwide [4]; and leads to mobility and gait
issues, neurobehavioural changes, and mood disorders
[5]. The relationship between CSVD and Alzheimer’s dis-
ease (AD) has been recognised since the earliest days of
AD research [6], and is now included in the Alzheimer’s
Society’s most recent revised criteria for diagnosing and
staging AD [7]. This coexistence between CSVD and AD
has taken on a new significance in recent years, as anti-
amyloid monoclonal antibody trials have revealed that
individuals with cerebral amyloid angiopathy — a form
of CSVD — are at risk of developing brain swelling or
haemorrhages during the course of the treatment, mak-
ing CSVD assessments and studies crucial for patient
stratification and minimising treatment risks [8].

Although direct assessment of the human cerebral
microvasculature in vivo remains challenging with stan-
dard imaging technologies, its chronic dysfunction
leads to changes that can be detected through magnetic
resonance imaging (MRI) and computed tomography
(Supplementary BOX 1). Assessing CSVD has tradition-
ally focused on evaluating discrete lesions, such as white
matter hyperintensities (WMH), lacunes, cerebral micro-
bleeds, superficial siderosis, perivascular spaces, and
small subcortical or cortical microinfarcts, by means of
clinical visual ratings and increasingly through quantita-
tive methods [1]. However, advancements in neuroimag-
ing technologies have also revealed that these discrete
lesions are not the only consequence, suggesting instead
that they often lead to widespread, rather than focal,
alterations of microstructure and connectivity [9].

The integration of neuroimaging and machine learn-
ing (ML) techniques (Supplementary BOX 2) presents
new avenues for understanding the intricate and mul-
tifactorial nature of CSVD and vascular contributors to

cognitive impairment and dementia [10]. These possibili-
ties include not only the computational quantification of
neuroimaging markers of CSVD (e.g., through segmen-
tation of lesions) [11-13] but also their predictive value
for neurodegenerative diseases and dementia, which
could ultimately facilitate early detection and person-
alised treatments. However, the contribution of CSVD
to dementia and cognitive impairment using ML appears
to be underdeveloped. According to a recent system-
atic review and meta-analysis conducted by the Imaging
Working Group of the international Deep Dementia Phe-
notyping Network (DEMON) on the application of neu-
roimaging and ML for dementia diagnosis and prognosis
[14], only 2 out of 255 studies focused on vascular forms
of dementia. Whilst that review did not consider cogni-
tive changes other than dementia and most included
studies leveraged the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI)—a cohort with relatively minimal
CSVD burden—it is surprising so few studies had been
conducted in this field.

To map the significance of CSVD in ML-based detec-
tion of dementia and cognitive impairment more gen-
erally, we established a new subgroup of the DEMON
Imaging Working group dedicated specifically to this
topic. We conducted a systematic review and meta-analy-
sis to (a) determine the use of CSVD neuroimaging mark-
ers and ML in the diagnosis and prognosis of cognitive
impairment and dementia; (b) identify methodological
shifts over time, particularly with recent deep learning
advancements; and (c) pinpoint methodological barriers
preventing the development and effective deployment
of these strategies. Our primary focus was on papers
addressing dementia-related diagnosis and prognosis
rather than those solely centred on lesion segmenta-
tion. We aim for this review to inspire the development
of more accurate and validated methods for predicting
CSVD-related cognitive impairment, facilitating early
detection and intervention.

Methods

Protocol registration

We registered this systematic review protocol with the
International Prospective Register of Systematic Reviews
(PROSPERO), registration number: CRD42022366767.
We conducted this work following the Preferred
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Reporting Items for Systematic Reviews and Meta-Anal-
ysis (PRISMA) Statement [15]. The associated PRISMA
checklist can be found in the supplementary material.

Search strategy
A medical librarian (VP) searched databases Medline (via
Ovid), Embase (via Ovid), Cochrane Library, Emcare (via
Ovid), Cinahl (via Ebscohost), PsycInfo (via Ebscohost),
BNI (via ProQuest), Web of Science (Core Collection),
and Scopus from inception to the date searches were
conducted. The search strategy was peer-reviewed using
the Peer Review of Electronic Search Strategies (PRESS)
checklist [16], and evaluated against the PRISMA-S
guidelines [17]. Databases were searched separately,
rather than multiple databases being searched on the
same platform. The search syntax was adapted for each
database, and to account for variation between thesau-
rus terms/controlled vocabulary across each database.
Results were limited to the English language in all data-
bases. Results were exported to Endnote 20 for dedupli-
cation, using the method outlined by Bramer et al. [18].
All searches were originally conducted on Septem-
ber 20, 2023 and rerun on September 9, 2024 to include
any papers published between the initial search and final
submission.

PICOS framework
The parameters of this systematic review, as defined by
the PICOS framework, were as follows:

« Participants: Persons with cognitive impairment or a
clinical diagnosis of dementia, as well as people with
incident cognitive impairment or dementia.

+ Index: Neuroimaging-derived CSVD data analysed
with ML for diagnosis or prognosis.

+ Comparator:

— For diagnostic studies: persons without cognitive
impairment or dementia.

— For prognostic studies: prognostic factor
(conversion to cognitive impairment or dementia
VS. N0 conversion).

+ Outcome: Accuracy of diagnosis or prognosis of
cognitive impairment or dementia based on CSVD
burden.

«+ Study design: Original cross-sectional or prospective
observational studies.

Inclusion and exclusion criteria

To be included, studies had to report on the model per-
formance of the ML methods for the diagnosis or prog-
nosis of cognitive impairment or dementia using imaging
markers of CSVD and ML. We deemed eligible original
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studies published in English in peer-reviewed journals
and excluded in vitro studies or animal studies. We also
excluded studies that employed ML solely for image pro-
cessing such segmentation.

Study selection

Study selection had two stages. First, each report was
screened for eligibility by pairs of independent review-
ers based on title and abstract using the screening tool
Rayyan (https://www.rayyan.ai/). Second, each report
that passed the initial filtering was reviewed by pairs of
reviewers who independently conducted full-text screen-
ing. Conflicts arising at any of these two stages were
resolved through discussions, with the assistance of a
third independent senior reviewer when necessary.

Data extraction

Data from each included study were extracted indepen-
dently by pairs of reviewers using a standard template.
Once again, conflicts were resolved through discus-
sion, with a third senior reviewer solving any remaining
disagreements. The data extraction form captured (a)
article information (first/last author, year, journal, coun-
try of first/last author’s affiliated institution, study type);
(b) characteristics of the study population (sample size,
age, sex, race/ethnicity, criteria for cognitive impair-
ment and dementia, inclusion and exclusion criteria of
study); (c) data analysis (ML approach used, covariates
included in model, vascular neuroimaging features used;
outcome measure); (d) results (measures of model per-
formance (accuracy, sensitivity, specificity, area under the
curve (AUC), positive predictive value, negative predic-
tive value), other metrics reported (e.g. hazard or odds
ratios), follow-up period (for prognostic studies only);
and (e) risk of bias assessment.

Assessment of risk of bias

We assessed the quality of all individual studies using
the QUality Assessment of Diagnostic Accuracy Studies
(QUADAS-2) for diagnostic studies [19] and the Predic-
tion model Risk Of Bias ASsessment Tool (PROBAST)
for prognostic studies [20]. Pairs of reviewers indepen-
dently conducted the critical appraisal of each paper
and certainty of evidence rating. Disagreements were
resolved through discussion.

Meta-analysis

We conducted a meta-analysis to provide a targeted
evaluation of the ML models using vascular neuroimag-
ing features. This meta-analysis focused on the two most
common diagnostic tasks identified in the literature we
reviewed: distinguishing between healthy controls and
AD-dementia or all-cause dementia, as well as between
healthy controls and cognitive impairment. Thus, we
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compared the performance of the various approaches
using the AUC obtained from Receiver Operating Char-
acteristic analyses.

We employed a random-effects model with the Der-
Simonian and Laird estimation method to calculate the
pooled AUC values and confidence intervals. In cases of
missing data, such as absent variability measures for the
AUC, we reached out to the corresponding authors. In
instances where authors did not respond to our inqui-
ries and studies failed to report any measures of vari-
ability for the AUC, we estimated the standard error for
the AUC based on Hanley and McNeil [21]. If different
ML approaches were considered for the same database,
we included the analysis utilising the ML model with the
best model fit and the largest sample size. We quantified
heterogeneity using Cohen’s Q statistics and I? statistics.
The meta-analysis was performed in R version 4.2.1 [22]
using the package metafor [23].
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Results

Search results

Our initial search on September 20, 2023, identified
4,956 potentially relevant records across all databases
(Fig. 1). After deduplication using Endnote and Rayyan,
we retained 2,630 records. Of these, 256 passed the title
and abstract screening, and 62 went on to pass full-text
screening and were included in the systematic review
[24-85]. On September 9, 2024, we conducted a rerun
and identified 845 potentially new relevant records
across the same databases (Fig. 1). A total of 546 records
remained after deduplication. Screening by title and
abstract led to 35 eligible papers, of which 13 passed full-
text screening and were included in the systematic review
[86-98]. This brought the total number of included
records to 75 [24—98]. We contacted the corresponding
authors of 36 studies via email to request missing data.
Of these, six responded: three provided additional data,
while the other three were unable to do so. Finally, a total
of 16 studies was suitable for meta-analysis [30, 32, 33,
47, 51, 58, 65, 79, 84, 85, 89, 91, 96, 98], of which seven
classified healthy controls versus AD-dementia [30, 32,

Identification of studies via databases and registers Identification of studies via databases and registers
Initial search (September 20, 2023) Rerun (September 09, 2024)
Records identified from: Records identified from:
Medline (n = 612) Medline (n = 112)
c Embase (n=1021) Embase (n=178)
2 Cochrane Library (n = 122) Recorc{s removed before Cochrane Library (n = 23) Record}s removed before
3 Emcare (n =221) screening: Emcare (n = 27) screening:
= Cinahl (n=137) Duplicate records removed (n = Cinahl (n = 5) Duplicate records removed (n =
5 Psyclnfo (n=134) 2326) Psyclnfo (n=16) 875)
3 BNI(n=1) BNI(n=0)
Scopus (n = 1833) Scopus (n =362)
Web of Science (n = 875) Web of Science (n = 122)
—
—
Records screened .| Records excluded Records screened Records excluded
(n=2630) (n=2474) (n = 546) (n=511)
Reports sought for retrieval Reports not retrieved Reports sought for retrieval Reports not retrieved
= (n=256) (n=0) (n=35) (n=0)
=
¢
&
Reports excluded: Reports excluded:
Wrong outcome (n=118) Included in initial search (n = 16)
Wrong population (n= 39) Wrong outcome (n = 2)
Reports assessed for eligibility J| Wrong study design (n = 33) Reports assessed for eligibility Wrong population (n = 2)
(n=256) No ML (n = 33) (n=35) Wrong study design (n=1)
No CSVD (n = 25) NoML(n=1)
Wrong publication type (n = 25) No CSVD(n=3)
No neuroimaging (n = 2) Wrong publication type (n= 1)
- J
—
Studies included during initial Studies included during rerun
search (n=13)
(n=62)
3 - -
° Studies included in review -
=} d
3 (n=75)
=
v
Studies included in meta-analysis
(n=16)
—

Fig. 1 PRISMA flow chart outlining the number of studies identified, included, and excluded at each stage of the systematic review and meta-analysis
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47, 58, 65, 84, 89], and nine healthy controls versus cog-
nitive impairment [32, 33, 51, 58, 79, 85, 91, 96, 98]. A
flow chart of the identification and screening process is
provided in Fig. 1. Data extraction results can be found in
Supplementary data 2.

Study characteristics

Comprehensive details on data extraction related to
study characteristics are available in Supplementary Data
2, under the sections “description / metrics paper” and
“general description of the study population”.

Origin of studies

According to the affiliations of the first and last authors,
the majority of included studies were from China (n =24)
and the United States of America (USA) (n=16). The
remaining studies originated primarily from Europe
(n=33), followed by Asia (n=7, excluding China), and
North America (n=3, excluding the USA). No studies
were affiliated with institutions in South America, Africa,
or Australia (Fig. 2).

Canada

Category # studies
.Diagnosis 24
.Prognosis

Diagnosis &

Prognosis 11
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Study focus

Among the 75 included studies, 43 (57%) focused on
diagnosis, 27 (36%) on prognosis, and five (7%) on both
(Supplementary Table 1). More than two-thirds (70%) of
the studies used private or local datasets (n=35 diagno-
sis, n=16 prognosis, n=2 both). When publicly available
datasets were used (n =12 for diagnosis, n =14 for prog-
nosis, n =4 for both), ADNI was the most frequent choice
(n=17/30). Only 14 studies included two or more cohorts
in their analyses (n=7 for diagnosis, n=5 for prognosis,
n =2 for both). ADNI was the most commonly used data-
set in these cases (n=9/14).

Participant demographics

The mean age of participants was 71.7 years (standard
deviation (SD) 8.5), with a mean age of 69.9 years (SD 9.3)
in diagnostic studies and 72.1 years (SD 8.3) at baseline in
prognostic studies. There was a relatively balanced rep-
resentation of men and women across the studies, with
women making up 54% of participants overall (48.1% in
diagnostic studies and 55% in prognostic studies).

UK Netherlands Norway Finland Germany

HOMO,

China
\

R [V \C

South Korea

0

Taiwan

nO,

Singapore
O

Fig. 2 Countries of institutional affiliation for the first and last authors of each included publication. Note that the first and last authors had different af-
filiations in eight papers. The numbers on the map thus sum to 83 rather than 75 (total number of included studies)
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Only six studies (8%) provided race or ethnicity infor-
mation (n=3 diagnosis, n=3 prognosis). In those stud-
ies, 6217 (79%) participants were reported as White (n=1
diagnosis, 7 =3 prognosis), 209 (3%) as Asian (n=2 diag-
nosis), 934 (12%) as Black (n=1 prognosis), and 476 (6%)
as “other” (n =2 diagnosis, n =2 prognosis).

ML methods

Detailed information on the ML methods used in each
study can be retrieved from Supplementary Data 2, spe-
cifically from the section “ML method used”

Application of ML methods
A total of 23 different ML methods were employed for
the diagnosis or prognosis of cognitive impairment and
dementia based on vascular neuroimaging features
(Fig. 3). These methods spanned eight categories (Sup-
plementary BOX 2). For diagnosis (Fig. 3A), the most
popular ML categories were instance-based, regression,
and ensemble algorithms, with support vector machines
(SVM, instance-based), logistic regression (regression),
and random forest (ensemble) being the most com-
monly used models. For prognosis (Fig. 3B), the top
three categories remained the same, with Cox regression
(regression), SVM (instance-based), and random forest
(ensemble) being the most frequently used models.
Logistic regression, was the most popular ML method,
appearing in 28 (37%) of the 75 papers reviewed [24, 27,
41, 44, 50, 53, 54, 58-60, 63, 64, 66, 67, 72, 74-76, 81-83,
86, 87, 91, 93, 94, 96, 98]. It was followed closely by SVM
which was used in 26 (35%) papers [25, 28, 33, 35-40,
45, 46, 48-52, 72,79, 82, 84, 85, 90, 93, 94, 97, 98]. These
two methods were applied almost twice as often as the
next most common methods, namely Cox regression and
random forest, which were featured in 15 (20%) [42, 55,
62, 68-70, 73, 75, 77, 78, 80, 88, 89, 92, 99] and 14 (19%)
papers [32, 34, 50, 56, 57, 61, 72, 76, 82, 89, 91, 93, 97, 98],
respectively. Other methods were much less common.
Strikingly, despite the growing prominence of deep learn-
ing over the past decade, its application in diagnosing
and predicting cognitive impairment and dementia based
on vascular neuroimaging features remains limited. Only
four (5%) of the papers employed deep learning [29, 30,
43, 47], with three of them using convolutional neural
networks (CNNs) [30, 43, 47]. Three studies employed
Bayesian methods [39, 91, 98] and three discriminant
analysis [45, 71, 91], all exclusively applied for diagnostic
purposes.

Popularity over time

The application of ML techniques for diagnosis and pre-
diction of cognitive impairment and dementia based
on vascular neuroimaging features has experienced a
significant growth over the past decade (Fig. 3C). Cox
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regression was the first technique we identified that used
any CSVD feature, namely WMH, to predict dementia
[99]. Logistic regression and SVM have remained popular
and widely used since their first application in 2007 and
2010, respectively. The application of random forests, on
the other hand, was first identified in 2015 and has only
recently reached its highest level of usage, as it was used
in around one-third of the works in 2023 (36%). Neural
networks and eXtreme Gradient Boosting (XGBoost)
appeared only in 2022.

Validation and generalisation

A rigorous evaluation of both performance and general-
isability of ML prediction algorithms is essential for the
translation into real-world clinical settings, as even the
most promising models may fail when exposed to previ-
ously unseen data. The authors” approaches to validation
are outlined in Supplementary Data 2, under the section
“Validation strategy” A representative illustration of the
importance of using an independent hold-out test set is
provided in a paper included in this review [91], where
the authors showed that the model with the highest per-
formance on the training set al.so exhibited the poorest
generalisation, with an AUC of 100 [95% CI: 100, 100] in
training and 50.0 [95% CI: 50.0, 50.0] in an independent
test set. Despite this, only five out of 75 studies assessed
the generalisation capabilities of their models using held-
out external datasets (n=4 diagnosis; n=1 prognosis)
[47, 48, 61, 88, 91]. Although limited access to multiple
datasets clearly presents a challenge for assessing gener-
alisability, a total of ten studies had data from multiple
sources and were therefore well-positioned to validate
their models on independent cohorts (n=>5 diagnosis [31,
47, 48, 90, 91]; n=3 prognosis [88, 93, 94]; n=2 both [76,
89]).

When reported clearly, studies relied to a large extent
on cross-validation (n=28 diagnosis; n=10 prognosis).
Some studies also split a single or pooled dataset into
training and testing sets from the start (n=3 diagnosis;
n =3 prognosis) [43, 47, 48, 61, 69, 88, 91] and one diag-
nostic study also used bootstrapping [71]. Unfortunately,
the absence of any form of validation—or a lack of clear
reporting on whether it was conducted—was strikingly
common, especially in prognostic analyses, where over
55% of studies were affected by this issue (n=12 diagno-
sis; n=18 prognosis).

Neuroimaging modalities and features

Data extracted regarding neuroimaging modalities
and features can be found in Supplementary Data 2,
under the sections “specific details for datasets” and
“vascular neuroimaging features used” Studies lever-
aged structural, diffusion, and functional MRI (fMRI),
as well as computed tomography and positron emission
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percentages in A) and B) may not sum up to 100%. Kernel (others) =Kernel methods other than SVM; NN (others) =Neural networks other than CNN

tomography (Fig. 4). Structural MRI was by far the most =~ MRI were the most common combination, used in 19 out
widely used neuroimaging modality, appearing in 67  of 27 (70%) papers.

(89%) studies, whereas computed tomography was the

least used, appearing in only one (1%) paper. A total of 27  Diagnosis

(36%) studies leveraged two or more imaging modalities. ~ Around 40% of the diagnostic studies (n=20) leveraged
When this occurred, structural MRI and diffusion-based  vascular neuroimaging features obtained from structural
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sMRI

Fig. 4 Neuroimaging techniques used to extract vascular neuroimaging
features in the studies included in the review. Abbreviations: CT=com-
puted tomography; dMRI=diffusion-based MRI; fMRI=functional MRI,
sMRI=structural MRI; PET = positron emission tomography

MRI sequences. Every study that used structural MRI
quantified WMH. Other neuroimaging features were less
frequently considered: perivascular spaces (n=2) [41, 82],
cerebral microbleeds (z=2) [41, 82], lacunes (n=3) [41,
81, 82], and stroke lesion volume or subtype (n=2) [54,
67].

Non-lesion measurements were also common in many
diagnostic studies. These included assessments of micro-
structural integrity from regional white matter (n=13)
[32, 34, 36-39, 51, 54, 61, 65, 71, 79, 83], fMRI or diffu-
sion MRI-based connectivity (n=8) [33, 35, 45, 49, 51,
76, 84, 85], or other, less conventional imaging features
(n=7), such as tissue textures (n=2) [56, 89], white
matter density (n=1) [65], fMRI-derived amplitude of
low-frequency fluctuation (n=3) [53, 61, 96], '*F-fluo-
rodeoxyglucosepositron emission tomography derived
“metabolic cognitive signature” (n=1) [47], and iron
deposition (n =1) [40].

Of the 48 studies reporting diagnostic analyses, most
used quantitative assessments of vascular neuroimaging
features (1 =40). Nine (19%) employed clinical visual rat-
ings, of which two relied solely on visual ratings.

Prognosis
Twenty-four (75%) prognostic studies used vascular neu-
roimaging features derived from structural MRI. WMH
were assessed in every study. Other neuroimaging fea-
tures, including lacunes (1 =7) [42, 46, 55, 63, 80, 94, 95],
perivascular spaces (n=>5) [42, 80, 86, 92, 95], cerebral
microbleeds (n=5) [42, 72, 92, 94, 95], and stroke lesion
volume or subtype (n=2) [24, 25], were less relatively
common.

Non-lesion measurements were less common in prog-
nostic than in diagnostic studies. Five studies used
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diffusion tensor imaging [29, 62, 78, 88, 94] and no stud-
ies investigated other diffusion-based signal model-
ling. Two studies investigated connectivity measures:
one using diffusion-based structural connectivity [76],
and one using WMH-based disconnectome measures
[50]. Other vascular markers used in prognosis studies
included tissue texture analysis (n=2) [69, 70], and sus-
ceptibility-weighted imaging-based markers such as iron
deposition (n =1) [40].

Visual ratings were used in half of studies report-
ing prognostic results (16 out of 32). Most ratings were
conducted on WMH burden, with one study reporting
solely perivascular space ratings. Nine studies included
additional quantitative measures alongside visual ratings,
while the remaining relied solely on visual ratings (n=7).
There was significant variation in the rating scales used
across studies. For example, the six prognostic publica-
tions that used visual ratings of WMH employed a range
of methods, including binary measures with different cut-
offs as well as grading scales with 3, 4, 10, and 11 points.

Temporal changes in vascular neuroimaging features
Studies using diffusion-based indices (e.g., fractional
anisotropy and mean diffusivity) have decreased in recent
years. Before 2020, diffusion imaging studies made up
41% of studies (n=16), compared to just 17% of studies
published between 2020 and 2024 (n=6). Recent years
have witnessed the adoption of novel techniques includ-
ing graph theory, pattern analyses, and other methods
of connectivity assessment, amplitude of low-frequency
fluctuation, and composite brain signatures, making up
a fifth (19%; n=7) of studies published in 2020-2024.
Studies relying solely on clinical visual ratings have not
changed in recent years (n=5 before 2020, n=4 since
2020).

MRI scanner strength

MRI scanner strength details were reported in 65 (84%)
studies (n=40 diagnostic, n=26 prognostic, n=>5 both).
Diagnostic studies were primarily carried out on 3 Tesla
(T) scanners. Most studies used a consistent scanner
strength across participants and scans (n=33), with 3T
being the most common (n =27), followed by 1.5T (n=5),
and one study using a 4T scanner. A few studies (n=7)
used scanners of different field strengths; six of these
combined 1.5T and 3T scanners, while one study used
both 1T and 1.5T scanners.

Most prognostic studies, on the other hand, were con-
ducted on 1.5T scanners. Among the 27 prognostic stud-
ies that reported scanner strength, the majority used only
1.5T scanners (n=15), with about half as many relying
exclusively on 3T scanners (n=7). A few studies (n=5)
employed a mix of scanner strengths; two combined 0.5T
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and 1.5T scanners, and three studies used both 1.5T and
3T scanners.

The use of higher field strength scanners has increased
over time. Before 2020, more than half of the studies
(59%) relied predominantly on 1.5T scanners (n=23).
Since 2020, reliance on 1.5T scanners has declined, with
only 14% of studies using 1.5T scanners (n =4), while 62%
(n=18) used 3T scanners exclusively.

Harmonisation

Since data acquisition often takes place across multiple
sites using potentially different MRI scanners and proto-
cols, harmonisation becomes crucial to deal with inter-
scanner variability and ensure comparability across sites.
We identified 19 studies that, in principle, would have
benefited from harmonisation due to the use of different
MRI scanners [25, 27, 32, 34, 39, 42, 48, 56-58, 69, 73, 77,
86, 88-91, 93]. Among these, five studies reported imple-
menting any form of harmonisation: intensity normalisa-
tion across scanners [32], principal component analysis
to isolate disease-relevant principal components while
reducing scanner effects [39], manual correction of seg-
mentation maps to mitigate inter-scanner variability [56,
57], and statistical harmonisation using ComBat [90].

Dementia

Extracted data relevant to dementia diagnosis and prog-
nosis are available in Supplementary Data 2, under the
sections “diagnosis or prognosis” and “general descrip-
tion of the study population” We identified 47 studies
that focused on dementia, with 26 (55%) targeting diag-
nosis, 17 (36%) prognosis, and four (9%) both. Remark-
ably, despite the review’s strong emphasis on vascular
aspects, diagnostic studies predominantly concentrated
on AD (n=24) [27, 28, 30, 32, 34, 36, 39, 47, 48, 52, 56—
58, 60, 65, 66, 71, 74, 76, 82, 84, 89, 90, 97]. Other forms
of dementia were also examined but with less frequency:
vascular dementia (n=4) [43, 45, 66, 82], frontotemporal
dementia (n=3) [82, 83, 90], Lewy body dementia (n=3)
[56, 57, 90], behavioural variant frontotemporal dementia
(n=1) [83], post-stroke dementia (n=1) [47], progressive
non-fluent aphasia (n=1) [83], and semantic dementia
(n=1) [83]. Prognostic studies also focused largely on AD
(n=13) [26, 50, 52, 55, 59, 60, 63, 68—70, 76, 89, 94], with
vascular dementia following (n=6) [26, 46, 55, 73, 78, 94].
Mixed dementias were each examined by four prognostic
studies [59, 63, 73, 75], and a single prognostic study also
explored frontotemporal dementia [73].

Assessment criteria

Dementia diagnosis was primarily relied on published
clinical criteria or via consensus diagnosis by experienced
neurologists based on clinical evaluations, including cog-
nitive tests, general neurological exams, and collateral

Page 9 of 19

information. Studies of AD employed no less than six dif-
ferent diagnostic criteria, namely Diagnostic and Statisti-
cal Manual of Mental Disorders (DSM versions III-R, IV
or V) [100], National Institute of Neurological and Com-
municative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association (NINCDS or
NINCDS-ADRDA) [101], National Institute on Aging
and Alzheimer’s Association (NIA-AA) [102, 103],
National Institute on Aging—Alzheimer’s Disease Centers
(NIA-ADRC), National Institute of Neurological Disor-
ders and Stroke and Association Internationale pour la
Recherche et 'Enseignement en Neurosciences (NINDS-
AIREN) [104], and Alzheimer’s Disease Diagnostic and
Treatment Centers (ADDTC) [105].

In addition to the diagnostic variability, six studies did
not specify the criteria for diagnosing dementia (n=4
diagnosis, n=2 prognosis) and six diagnostic studies
determined dementia diagnoses without adhering to
standard criteria. Instead, they relied on specific thresh-
olds from cognitive tests, including the Mini-Mental
State Examination (MMSE) (#z=1), the Clinical Demen-
tia Rating scale (CDR) (n=1), the Montreal Cognitive
Assessment (MoCA) scores (n=1), and various combina-
tions of these test (1= 3).

Cognitive impairment

Information related to the diagnosis and prognosis of
cognitive impairment, as extracted from the included
studies, is provided in Supplementary Data 2 under the
sections “diagnosis or prognosis” and “general descrip-
tion of the study population” We identified 45 articles
addressing cognitive impairment (without a specific
dementia diagnosis), with 26 (58%) focusing on diagno-
sis, 14 (31%) on prognosis, and five (11%) assessing both
diagnosis and prognosis. The definition, subtype, and
potential aetiology of cognitive impairment varied sub-
stantially across the studies.

Most diagnostic studies (52%) that studied cognitive
impairment examined cognitive impairment linked to
CSVD (n=11) [32, 33, 35, 38, 53, 54, 61, 71, 81, 91, 96],
such as WMH (n=4) [33, 35, 85, 91], subcortical isch-
emic vascular disease (n=4) [32, 53, 71, 81], and vascu-
lar cognitive impairment (n=3) [38, 54, 81]. However, a
notable proportion of them (62%) also targeted mild cog-
nitive impairment (MCI) (n=12) [32, 37, 40, 41, 45, 49,
51, 58, 76, 87, 89, 98] or its amnestic and non-amnestic
subtypes (n=3) [27, 34, 79]. Cognitive impairment asso-
ciated with Parkinson’s disease (n=1) [44] and coronary
artery disease (m=1) [51] was also examined. Prognos-
tic studies mainly investigated either the progression of
MCI to dementia (n=14) [40, 50, 52, 55, 59, 60, 69, 73,
76, 86, 89, 92, 93, 95], including progression to vascular
dementia (n=1) [73], mixed dementia (n=1) [73], and
AD (n=6) [50, 52, 60, 69, 76, 86].
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Assessment criteria

While there was some consistency across studies, the
diagnostic criteria consisted of a variety of definitions
of cognitive impairment. Most papers that focused on
cognitive impairment relied on neuropsychological tests
(n=18 diagnosis, n=11 prognosis. For example, perfor-
mance below 1.5 standard deviations from the mean on
cognitive tests was deemed indicative of MCI. A signifi-
cant variability in the choice of cognitive tests was noted.
Some papers adopted established clinical criteria, such as
those proposed by Petersen et al. [106, 107] or the DSM-5
[100], or utilised consensus diagnoses from multiple neu-
rologists (n=1 diagnosis, n=4 prognosis). In the other
instances, a combination of neuropsychological tests and
clinical criteria was used (n=5 diagnosis, n=2 progno-
sis) with some studies also incorporating vascular neu-
roimaging measures, such as including WMH burden to
support MCI diagnosis (n=>5 diagnosis, #=1 prognosis).
Three papers did not specify the criteria used to identify
MCL

Results meta-analysis

Healthy controls versus Alzheimer’s dementia

Seven studies reported AUC measures for classifying
AD-dementia versus healthy controls (see Fig. 5A). Of
these, five did not report any measures of variability;
the standard error for these AUC values was therefore
estimated. The pooled AUC was 0.88 [95% confidence
interval (CI) 0.85-0.92] (Fig. 5A), with significant hetero-
geneity across studies.

Healthy controls versus cognitive impairment

Nine studies used ML algorithms to classify cognitive
impairment versus healthy controls (see Fig. 5B). Only
two of these studies reported measures of variability,
therefore all other standard errors for the AUC were esti-
mated. The pooled AUC was 0.84 [95% CI 0.74-0.95],
with significant heterogeneity among studies (Fig. 5B)
[32, 33, 51, 58, 79, 85, 91, 96, 98].

Healthy controls versus all-cause dementia

Nine studies utilised ML methods to diagnose all-cause
dementia versus healthy controls, of which two stud-
ies (Chan et al. 2023 [32] and Lee et al. 2022 [47]) made
multiple comparisons. Here we selected the comparisons
with the largest sample sizes included. Of these stud-
ies, three reported measures of variability for the AUC,
the standard error for all remaining AUC values were
therefore estimated. The pooled AUC was 0.88 [95% CI
0.83-0.93] (Supplementary Fig. 1A), with significant het-
erogeneity across studies. Including the other two com-
parisons of Chan et al. 2023 [32] and Lee et al. 2022 [47]
in the meta-analysis yielded similar results (Supplemen-
tary Fig. 1B).
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Risk of bias assessment

Diagnosis

For diagnostic studies, we conducted risk of bias assess-
ment using the QUADAS-2 framework to establish
potential biases regarding patient selection, index
method bias, reference accuracy, blinding, consistency of
references, participant inclusion, and method applicabil-
ity (Supplementary Fig. 2A and Table 2A). Approximately
40% of the papers exhibited a low risk of bias across the
aforementioned domains (flow and timing: n=21; ref-
erence standard: n=28; index test: n=31; patient selec-
tion=32). The patient selection domain had by far the
highest risks of bias (n=19), with studies either using
case-control designs or failing to adequately disclose
patient selection details. Concerns about method appli-
cability in diagnostic studies were minimal, with 83% of
studies having low risk of bias.

Prognosis

For prognostic studies, we conducted risk of bias assess-
ment using the PROBAST framework to establish
potential biases in prediction models regarding patient
selection, predictor measurement, outcome measure-
ment, and analysis and model evaluation (Supplementary
Fig. 2B and Table 2B). Nine out of the 32 prognostic stud-
ies were rated as having a low risk of bias across all evalu-
ated domains (participants: n=23; predictors: n=29;
outcome: n=26; analysis: n=11). The analysis domain
stood out as the most frequent source of concern, with
14 studies rated as having a high risk of bias. The pri-
mary reasons were unclear exclusion criteria from prog-
nostic analyses and lack of clarity regarding how model
overfitting and optimism in model performance were
addressed. Concerns about applicability were minimal,
with 94% of the studies showing low concerns.

Discussion

This systematic review and meta-analysis summarised
75 studies examining the role of CSVD neuroimaging
markers in ML-based diagnosis and prognosis of cog-
nitive impairment and dementia. The field has grown
substantially over the past two decades, with nearly
60% of studies being published in the last two years.
Key findings reveal a mix of insights. Positively, most
studies used datasets with balanced sex representation.
Negatively, even though ML models leveraging CSVD
features achieved high diagnostic performance, many
lacked external validation and showed limited transpar-
ency regarding overfitting. Unexpectedly, most studies
focused on AD rather than vascular dementia. Addition-
ally, while XGBoost and neural networks are gaining
traction, traditional methods like Cox regression, logistic
regression, and SVM remain dominant. The following
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A: Healthy controls versus Alzheimers Dementia

Study

Weight Area under the

curve [95% CI]
Bordin et al. 2022 9.91% 0.82[0.74, 0.90]
Chan et al. 2023 - 18.74% 0.92[0.90, 0.94]
Crystal et al. 2023 . 18.37% 0.87 [0.85, 0.89]
Lee etal 2022 — 1529% 0.94 [0.89, 0.99)]
Park et al. 2021 10.37% 0.75[0.67, 0.83]
Schouten et al. 2016 —. 16.96% 0.95[0.92, 0.99]
Zhao et al. 2019 10.37% 0.85[0.77, 0.93]
RE Model (Q = 42.38, df = 6, p < .01: I = 85.8%) et 100% 0.88[0.85,0.92]

06 07 08 0.9 3

B: Healthy controls versus cognitive impairment

Area under the

Study Weight curve [95% CI]
Chan et al. 2023 ™ 11.69% 0.69 [0.67, 0.70]
Chen et al. 2019 — 10.99% 0.86 [0.78, 0.94]
Feng et al. 2024 - 10.15% 0.90[0.78, 1.02]
Lin etal. 2014 —a 11.53% 0.99[0.95, 1.03]
Park et al. 2021 [ — 11.06% 0.67 [0.59, 0.75]
Shi et al. 2024 —— 11.02% 0.81[0.74, 0.89]
Xie et al. 2015 —ie 11.23% 0.86 [0.80, 0.93]
Zhuetal. 2019 — 10.67% 0.87[0.77,0.97]
Zhu et al. 2024 i 11.65% 0.94[0.92, 0.97]
RE Model (Q = 534.01, df = 8, p < .01: I = 98.5%) —— 100% 0.84 [0.74, 0.95]
05 06 07 08 09 1

Fig. 5 Meta-analysis of studies targeting the classification of (A) Alzheimer's dementia versus healthy controls and (B) cognitive impairment versus
healthy controls. Pooled AUC values and their corresponding confidence intervals (Cl) were computed using a random-effects model. Weights represent
each study’s relative contribution to the overall pooled estimate. Confidence intervals might exceed 1.00 because standard errors have been estimated

due to missing data

sections expand on these findings and place them within
a broader context.

Vascular neuroimaging and its contributions to
neurodegeneration

Most studies on dementia diagnosis and prognosis
focused on AD (23/30 diagnostic; 10/21 prognostic)
rather than vascular dementia (4/30 diagnostic; 6/21
prognostic). For example, seven of the nine studies that
compared all-cause dementia with healthy controls in the

meta-analysis focused on AD-related dementia. These
seven studies that incorporated vascular features in ML
models demonstrated strong performance (AUC 0.88
[95%-CI 0.85, 0.92]). This indicates not only the benefit
of including CSVD in AD diagnostic classifiers, but also
reflects a growing interest in the role of CSVD and vascu-
lar neuroimaging in dementia, particularly in AD-related
dementia.

The focus on AD surprised us, given the review’s
emphasis on vascular neuroimaging and CSVD, though
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aspects discussed in the literature may help explain this
trend. AD is the leading cause of dementia, and CSVD
is one of the most common conditions in clinics [4]. It
is therefore expected that CSVD co-occurs and inter-
acts with AD as well as other neurodegenerative disor-
ders [108—113]. The role of vascular risk factors in the
pathogenesis and progression of AD is well established
[114], extending beyond their mere coexistence [115].
Potential mechanisms include impairment of the neu-
rovascular unit [116, 117], disruption of the glymphatic
system [118], and hypoperfusion and hypoxia [116, 119].
This coexistence is now formally recognised in the most
recently proposed AD diagnostic and staging criteria,
where vascular biomarkers are identified as indicators of
non-AD co-pathology that may accelerate symptom pro-
gression [7].

Considering vascular risk factors in the progression
of neurological conditions such as vascular dementia
and AD creates opportunities for prevention [116, 120].
Modifiable CSVD risk factors, including diabetes, hyper-
tension, smoking, obesity, and high low-density lipo-
protein cholesterol, can be addressed with cost-effective
treatments, such as hypertensive medications and life-
style changes [121]. These measures may reduce vascular
risks and delay or prevent cognitive decline, potentially
alleviating the societal burden of dementia. Recent stud-
ies in birth cohorts show a decline in cerebrovascular
pathology [122], which may explain the decrease in age-
adjusted dementia incidence [123—125]. Understanding
and identifying CSVD features associated with AD using
ML approaches may therefore support early diagnosis
and risk prediction, permitting early effective preventive
strategies.

Underuse of CSVD markers beyond WMH

WMH—whether assessed through clinical visual ratings
or computational methods—was by far the most consis-
tently utilised CSVD marker, appearing in all structural
MRI-based diagnostic and prognostic studies. While
the emphasis on WMH is not inherently problematic,
it represents a clear missed opportunity. The marked
underrepresentation of other clinically relevant CSVD
markers—such as lacunes, perivascular spaces, cerebral
microbleeds, cortical superficial siderosis, and cortical
cerebral microinfarcts—limits the capacity of ML mod-
els to fully capture the complexity of vascular contribu-
tions to neurodegenerative diseases. This overreliance
on WMH may stem from the widespread availability of
tools for its automated segmentation, combined with the
lack of openly validated systems—either commercial or
research-based—that offer comprehensive analysis of all
neuroimaging CSVD markers [126].
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BOX 1 Recommendations to move toward clinically useful,
machine learning methods applied to vascular neuroimaging for
cognitive impairment and dementia

Reporting:

- Inclusion of measures of variance and/or confidence intervals for all
performance metrics

- Full disclosure of all results, including those that do not reach statisti-
cal significance

Generalisability:

- Use of external independent datasets for validation

From curated to real-world datasets

- Inclusion of diverse populations

- Investigation of a broad spectrum of neurodegenerative diseases,
including a greater focus on vascular dementia

Fairness and representativeness

- Exploration of sex-specific and race/ethnicity-specific contributions of
vascular features for neurodegeneration

Recommendations

We have identified several limitations of the field and
present corresponding recommendations, as summarised
in BOX 1.

Reporting

Many studies did not report variances or confidence
intervals for model performance, making it challenging
to combine their findings in a meta-analysis. For future
studies, we strongly recommend the inclusion of confi-
dence intervals for all performance metrics, following
established reporting standards such as the TRIPOD + Al
guideline [127]. Careful consideration should also be
given to the choice of metrics. For instance, in cases of
pronounced class imbalance, reporting sensitivity and
specificity alongside AUC can be crucial. Additionally,
we advocate for the full disclosure of all results, includ-
ing those that do not achieve statistical significance, to
enhance the completeness and unbiased representation of
study findings.

Generalisability

Despite achieving high accuracy metrics, the translation
of predictive ML algorithms to real-world clinical settings
requires extensive external validation. Despite this, our
systematic review suggests that generalisability remains
largely neglected, with less than 10% of the studies
included in this review evaluating their models on hold-
out external datasets. It is clear that datasets containing
subjects with the exact pathology of interest are limited
in availability. However, we also identified five additional
studies that, despite having access to multiple datasets—
and thus the opportunity to assess generalisability—
chose to train and test their models on the pooled data
instead of using separate datasets for independent valida-
tion. Many studies leveraged cross-validation, a method
for evaluating model performance by dividing data into
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subsets, training on some and testing on others. While
this approach helps estimate a model’s performance on
unseen data, inherent similarities between the train-
ing and test sets mean it does not entirely eliminate the
risk of overfitting. A recent study by Chekround and col-
leagues found that, even with adequately cross-validated
algorithms, the performance of these ML models was
consistently lower in external datasets [128]. We thus rec-
ommend the validation on external datasets to properly
assess the true performance of these algorithms. An ML
model, whether simple or complex, could still become
“tuned” to the specific folds in the cross-validation pro-
cess and fail to generalise to genuinely new data beyond
the validation set.

From curated to real-world datasets

Neuropathological studies often show a complex con-
stellation of brain pathologies across neurodegenera-
tive dementias [129], which may exist to varying degrees
alongside cerebrovascular disease [130]. These mixed
or multiple pathologies can make it challenging for ML
algorithms to accurately classify cases and predict dis-
ease progression, in turn lowering the robustness and
generalisability of ML models. Hence, training ML algo-
rithms that assess cerebrovascular disease in the pres-
ence of other neuropathological indicators, using features
derived from well-characterised, multimodal datasets
across neurodegenerative dementias, is highly desirable.
This underscores the importance of leveraging more rep-
resentative, deeply phenotyped, real-world datasets that
include diverse types of dementias. As we move closer
towards individualised, precision medicine approaches,
such a strategy will optimise the translation of ML algo-
rithms in clinical settings while ensuring their applica-
bility across ethnically and socioeconomically diverse
populations worldwide.

Fairness and representativeness

Many included studies used case-control designs, which,
while useful for comparisons, often introduce selec-
tion bias, especially when controls are not well-matched
to cases [19]. Additionally, several studies lacked clear
inclusion/exclusion criteria, undermining replicability
and generalisability. Six studies also failed to clearly spec-
ify diagnostic criteria, further impacting repeatability
and reliability. Although there was a balanced represen-
tation of men and women in the included studies, only
one study assessed sex differences in the classification
of dementia [72]. It is well-established that women are
at higher risk of developing dementia and WMH [131,
132]. Similarly, while ethnicity can modulate develop-
ing dementia [133], only six studies reported the race or
ethnicity of their participants. The inconsistent reporting
of demographic factors, such as race or ethnicity, raises
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concerns about diversity in dementia research, given
that most dementia cohorts tend to be well educated,
and of higher socioeconomic status than what would
be expected based on census data [134, 135]. This has
important implications for accurately predicting demen-
tia risk, especially since race, ethnicity, socioeconomic
background, and education are important factors that
can modulate an individual’s cumulative risk for devel-
oping dementia [136—138]. Non-representative samples
may limit the applicability of the findings to broader,
more diverse populations. We recommend that future
cohort studies seek to collect and consistently report data
from diverse populations, and that studies explore sex-
and race/ethnicity-specific classifications of dementia.

Strengths and limitations

This work has major strengths. We performed a system-
atic search across nine databases to provide a comprehen-
sive summary of the existing evidence on the application
of vascular neuroimaging in ML-based diagnosis and
prognosis of cognitive impairment and dementia. Our
approach followed a carefully structured methodology
to ensure both transparency and reproducibility. This
included pre-registering our protocol and adhering to
PRISMA guidelines. All papers included in the title and
abstract screening, full-text screening, data extraction,
and risk of bias assessment phases—during both the ini-
tial review and the re-run—were independently reviewed
by multiple reviewers, with each paper evaluated by two
reviewers and a third consulted to resolve any outstand-
ing conflicts. We systematically assessed the risk of bias
and the overall quality of the studies using established
quality assessment tools, specifically QUADAS-2 and
PROBAST, to ensure a robust evaluation of the evidence
included in our review. Through these rigorous stan-
dards, we aimed to synthesise high-quality evidence that
can guide future research to accelerate the integration of
ML into clinical practice.

This work has three main limitations. First, a limitation
of our meta-analysis is the significant variation in covari-
ates and sample sizes across studies, which may have led
to heterogeneity in the predictive models and potentially
affected AUC comparability (see Supplementary data 2).
Second, we did not assess the added value of neuroimag-
ing markers of CSVD in diagnosing or predicting demen-
tia, as only a few studies compared the performance of
ML models with and without CSVD markers. Third, the
risk of bias assessment tools used here were not designed
for Al studies, and while recent efforts have been made,
such tools are still in their infancy [127, 139]—the ratio-
nale for using accepted risk of bias tools for the tasks,
QUADAS-2 and PROBAST.
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Future of ML and vascular neuroimaging

Neuroimaging

The majority of studies in our review relied on struc-
tural MRI data, with only a single study using computed
tomography. A significant shift in this trend is unlikely
in the coming years, though it is probable that new and
advanced imaging methods will begin to appear more
frequently in the literature. While assessing the human
cerebral microvasculature in vivo using conventional
imaging technologies remains challenging, advancements
in MRI with higher field strengths (7T and above) as
well as other imaging technologies help us get closer to
detecting subtle vascular changes and visualising small-
calibre blood vessels [140, 141].

The recent incorporating of non-lesional outcomes into
the assessment of CSVD in the STRIVE II criteria (Stan-
dards for Reporting Vascular Changes on Neuroimag-
ing) will likely enrich our understanding of CSVD and
its contributions to neurodegenerative diseases. Inves-
tigating functional markers, such as those derived from
fMRI [142], could enable determining the extent to which
CSVD leads to impaired neurovascular coupling and
neural network communication, and ultimately contrib-
utes to cognitive decline [143].

Harmonisation

A major challenge in developing large multimodal data-
sets lies in harmonising data. This is important because
data acquired from different MRI scanners or imaging
sites can introduce systematic variability—such as dif-
ferences in intensity scaling, resolution, or noise charac-
teristics—that is unrelated to the condition of interest.
Without appropriate harmonisation, these scanner- or
site-specific effects can confound statistical analyses,
reduce model generalisability, compromise reproducibil-
ity and comparability across studies or cohorts. The fact
that only a quarter (26%) of studies using data from mul-
tiple scanners or sites applied any form of harmonisation
indicates that there is still considerable scope for wider
adoption of such techniques to improve the reliability
and translational impact of neuroimaging research.

Treatments

Identifying and quantifying CSVD is relevant for the
selection and stratification of dementia treatments, as
illustrated in anti-amyloid therapies (e.g. Lecanemab
or Donanemab). As CSVD markers play a pivotal role
in the diagnosis of cerebral amyloid angiopathy [144], a
major risk factor for adverse treatment outcomes [144—
147], accurate identification of patients who are not at
increased risks of adverse events and therefore will ben-
efit most from treatment is crucial. Al-based predic-
tions could provide clinicians with valuable tools to tailor
therapeutics, thus enhancing safety and efficacy while
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facilitating precision medicine approaches for patients
[148].

Conclusion

CSVD markers are playing an increasing role in ML-
based diagnosis and prognosis of dementia and cogni-
tive impairment, with models leveraging these markers
already demonstrating strong performance in distin-
guishing individuals with and without cognitive impair-
ment and dementia. However, challenges remain of
reporting standards, generalisability, and fairness that
hinder the widespread adoption of these approaches.
As the cerebrovascular interest subgroup of the interna-
tional DEMON Network Imaging Working Group, we
have collaboratively developed a set of targeted recom-
mendations to drive progress in this field over the next
decade. We firmly believe that adopting these recom-
mendations will greatly accelerate the integration of ML
methods into clinical practice, delivering meaningful
benefits for patients.
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