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Introduction
Cerebral small vessel disease (CSVD) describes mul-
tiple dynamic pathological processes that impair the 
optimal functioning of perforating arterioles, capillar-
ies, and venules in the brain [1–3]. CSVD is among the 
most common conditions encountered by neurologists in 
clinical practice [4] and a significant contributor to major 
healthcare challenges. CSVD causes 25% of ischaemic 
strokes, the majority of intracerebral haemorrhages in 
individuals over 65 years old, and most cases of vascular 
dementia [2, 3]; contributes to around 45% of all demen-
tia cases worldwide [4]; and leads to mobility and gait 
issues, neurobehavioural changes, and mood disorders 
[5]. �e relationship between CSVD and Alzheimer’s dis-
ease (AD) has been recognised since the earliest days of 
AD research [6], and is now included in the Alzheimer’s 
Society’s most recent revised criteria for diagnosing and 
staging AD [7]. �is coexistence between CSVD and AD 
has taken on a new significance in recent years, as anti-
amyloid monoclonal antibody trials have revealed that 
individuals with cerebral amyloid angiopathy — a form 
of CSVD — are at risk of developing brain swelling or 
haemorrhages during the course of the treatment, mak-
ing CSVD assessments and studies crucial for patient 
stratification and minimising treatment risks [8].

Although direct assessment of the human cerebral 
microvasculature in vivo remains challenging with stan-
dard imaging technologies, its chronic dysfunction 
leads to changes that can be detected through magnetic 
resonance imaging (MRI) and computed tomography 
(Supplementary BOX 1). Assessing CSVD has tradition-
ally focused on evaluating discrete lesions, such as white 
matter hyperintensities (WMH), lacunes, cerebral micro-
bleeds, superficial siderosis, perivascular spaces, and 
small subcortical or cortical microinfarcts, by means of 
clinical visual ratings and increasingly through quantita-
tive methods [1]. However, advancements in neuroimag-
ing technologies have also revealed that these discrete 
lesions are not the only consequence, suggesting instead 
that they often lead to widespread, rather than focal, 
alterations of microstructure and connectivity [9].

�e integration of neuroimaging and machine learn-
ing (ML) techniques (Supplementary BOX 2) presents 
new avenues for understanding the intricate and mul-
tifactorial nature of CSVD and vascular contributors to 

cognitive impairment and dementia [10]. �ese possibili-
ties include not only the computational quantification of 
neuroimaging markers of CSVD (e.g., through segmen-
tation of lesions) [11–13] but also their predictive value 
for neurodegenerative diseases and dementia, which 
could ultimately facilitate early detection and person-
alised treatments. However, the contribution of CSVD 
to dementia and cognitive impairment using ML appears 
to be underdeveloped. According to a recent system-
atic review and meta-analysis conducted by the Imaging 
Working Group of the international Deep Dementia Phe-
notyping Network (DEMON) on the application of neu-
roimaging and ML for dementia diagnosis and prognosis 
[14], only 2 out of 255 studies focused on vascular forms 
of dementia. Whilst that review did not consider cogni-
tive changes other than dementia and most included 
studies leveraged the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI)—a cohort with relatively minimal 
CSVD burden—it is surprising so few studies had been 
conducted in this field.

To map the significance of CSVD in ML-based detec-
tion of dementia and cognitive impairment more gen-
erally, we established a new subgroup of the DEMON 
Imaging Working group dedicated specifically to this 
topic. We conducted a systematic review and meta-analy-
sis to (a) determine the use of CSVD neuroimaging mark-
ers and ML in the diagnosis and prognosis of cognitive 
impairment and dementia; (b) identify methodological 
shifts over time, particularly with recent deep learning 
advancements; and (c) pinpoint methodological barriers 
preventing the development and effective deployment 
of these strategies. Our primary focus was on papers 
addressing dementia-related diagnosis and prognosis 
rather than those solely centred on lesion segmenta-
tion. We aim for this review to inspire the development 
of more accurate and validated methods for predicting 
CSVD-related cognitive impairment, facilitating early 
detection and intervention.

Methods
Protocol registration

We registered this systematic review protocol with the 
International Prospective Register of Systematic Reviews 
(PROSPERO), registration number: CRD42022366767. 
We conducted this work following the Preferred 
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Reporting Items for Systematic Reviews and Meta-Anal-
ysis (PRISMA) Statement [15]. �e associated PRISMA 
checklist can be found in the supplementary material.

Search strategy

A medical librarian (VP) searched databases Medline (via 
Ovid), Embase (via Ovid), Cochrane Library, Emcare (via 
Ovid), Cinahl (via Ebscohost), PsycInfo (via Ebscohost), 
BNI (via ProQuest), Web of Science (Core Collection), 
and Scopus from inception to the date searches were 
conducted. �e search strategy was peer-reviewed using 
the Peer Review of Electronic Search Strategies (PRESS) 
checklist [16], and evaluated against the PRISMA-S 
guidelines [17]. Databases were searched separately, 
rather than multiple databases being searched on the 
same platform. �e search syntax was adapted for each 
database, and to account for variation between thesau-
rus terms/controlled vocabulary across each database. 
Results were limited to the English language in all data-
bases. Results were exported to Endnote 20 for dedupli-
cation, using the method outlined by Bramer et al. [18].

All searches were originally conducted on Septem-
ber 20, 2023 and rerun on September 9, 2024 to include 
any papers published between the initial search and final 
submission.

PICOS framework

�e parameters of this systematic review, as defined by 
the PICOS framework, were as follows:

  • Participants: Persons with cognitive impairment or a 

clinical diagnosis of dementia, as well as people with 

incident cognitive impairment or dementia.

  • Index: Neuroimaging-derived CSVD data analysed 

with ML for diagnosis or prognosis.

  • Comparator:

  – For diagnostic studies: persons without cognitive 

impairment or dementia.

  – For prognostic studies: prognostic factor 

(conversion to cognitive impairment or dementia 

vs. no conversion).

  • Outcome: Accuracy of diagnosis or prognosis of 

cognitive impairment or dementia based on CSVD 

burden.

  • Study design: Original cross-sectional or prospective 

observational studies.

Inclusion and exclusion criteria

To be included, studies had to report on the model per-
formance of the ML methods for the diagnosis or prog-
nosis of cognitive impairment or dementia using imaging 
markers of CSVD and ML. We deemed eligible original 

studies published in English in peer-reviewed journals 
and excluded in vitro studies or animal studies. We also 
excluded studies that employed ML solely for image pro-
cessing such segmentation.

Study selection

Study selection had two stages. First, each report was 
screened for eligibility by pairs of independent review-
ers based on title and abstract using the screening tool 
Rayyan (https://www.rayyan.ai/). Second, each report 
that passed the initial filtering was reviewed by pairs of 
reviewers who independently conducted full-text screen-
ing. Conflicts arising at any of these two stages were 
resolved through discussions, with the assistance of a 
third independent senior reviewer when necessary.

Data extraction

Data from each included study were extracted indepen-
dently by pairs of reviewers using a standard template. 
Once again, conflicts were resolved through discus-
sion, with a third senior reviewer solving any remaining 
disagreements. �e data extraction form captured (a) 
article information (first/last author, year, journal, coun-
try of first/last author’s affiliated institution, study type); 
(b) characteristics of the study population (sample size, 
age, sex, race/ethnicity, criteria for cognitive impair-
ment and dementia, inclusion and exclusion criteria of 
study); (c) data analysis (ML approach used, covariates 
included in model, vascular neuroimaging features used; 
outcome measure); (d) results (measures of model per-
formance (accuracy, sensitivity, specificity, area under the 
curve (AUC), positive predictive value, negative predic-
tive value), other metrics reported (e.g. hazard or odds 
ratios), follow-up period (for prognostic studies only); 
and (e) risk of bias assessment.

Assessment of risk of bias

We assessed the quality of all individual studies using 
the QUality Assessment of Diagnostic Accuracy Studies 
(QUADAS-2) for diagnostic studies [19] and the Predic-
tion model Risk Of Bias ASsessment Tool (PROBAST) 
for prognostic studies [20]. Pairs of reviewers indepen-
dently conducted the critical appraisal of each paper 
and certainty of evidence rating. Disagreements were 
resolved through discussion.

Meta-analysis

We conducted a meta-analysis to provide a targeted 
evaluation of the ML models using vascular neuroimag-
ing features. �is meta-analysis focused on the two most 
common diagnostic tasks identified in the literature we 
reviewed: distinguishing between healthy controls and 
AD-dementia or all-cause dementia, as well as between 
healthy controls and cognitive impairment. �us, we 
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compared the performance of the various approaches 
using the AUC obtained from Receiver Operating Char-
acteristic analyses.

We employed a random-effects model with the Der-
Simonian and Laird estimation method to calculate the 
pooled AUC values and confidence intervals. In cases of 
missing data, such as absent variability measures for the 
AUC, we reached out to the corresponding authors. In 
instances where authors did not respond to our inqui-
ries and studies failed to report any measures of vari-
ability for the AUC, we estimated the standard error for 
the AUC based on Hanley and McNeil [21]. If different 
ML approaches were considered for the same database, 
we included the analysis utilising the ML model with the 
best model fit and the largest sample size. We quantified 
heterogeneity using Cohen’s Q statistics and I2 statistics. 
�e meta-analysis was performed in R version 4.2.1 [22] 
using the package metafor [23].

Results
Search results

Our initial search on September 20, 2023, identified 
4,956 potentially relevant records across all databases 
(Fig.  1). After deduplication using Endnote and Rayyan, 
we retained 2,630 records. Of these, 256 passed the title 
and abstract screening, and 62 went on to pass full-text 
screening and were included in the systematic review 
[24–85]. On September 9, 2024, we conducted a rerun 
and identified 845 potentially new relevant records 
across the same databases (Fig. 1). A total of 546 records 
remained after deduplication. Screening by title and 
abstract led to 35 eligible papers, of which 13 passed full-
text screening and were included in the systematic review 
[86–98]. �is brought the total number of included 
records to 75 [24–98]. We contacted the corresponding 
authors of 36 studies via email to request missing data. 
Of these, six responded: three provided additional data, 
while the other three were unable to do so. Finally, a total 
of 16 studies was suitable for meta-analysis [30, 32, 33, 
47, 51, 58, 65, 79, 84, 85, 89, 91, 96, 98], of which seven 
classified healthy controls versus AD-dementia [30, 32, 

Fig. 1 PRISMA flow chart outlining the number of studies identified, included, and excluded at each stage of the systematic review and meta-analysis

 



Page 5 of 19Lohner et al. Alzheimer's Research & Therapy          (2025) 17:183 

47, 58, 65, 84, 89], and nine healthy controls versus cog-
nitive impairment [32, 33, 51, 58, 79, 85, 91, 96, 98]. A 
flow chart of the identification and screening process is 
provided in Fig. 1. Data extraction results can be found in 
Supplementary data 2.

Study characteristics

Comprehensive details on data extraction related to 
study characteristics are available in Supplementary Data 
2, under the sections “description / metrics paper” and 
“general description of the study population”.

Origin of studies

According to the affiliations of the first and last authors, 
the majority of included studies were from China (n = 24) 
and the United States of America (USA) (n = 16). �e 
remaining studies originated primarily from Europe 
(n = 33), followed by Asia (n = 7, excluding China), and 
North America (n = 3, excluding the USA). No studies 
were affiliated with institutions in South America, Africa, 
or Australia (Fig. 2).

Study focus

Among the 75 included studies, 43 (57%) focused on 
diagnosis, 27 (36%) on prognosis, and five (7%) on both 
(Supplementary Table 1). More than two-thirds (70%) of 
the studies used private or local datasets (n = 35 diagno-
sis, n = 16 prognosis, n = 2 both). When publicly available 
datasets were used (n = 12 for diagnosis, n = 14 for prog-
nosis, n = 4 for both), ADNI was the most frequent choice 
(n = 17/30). Only 14 studies included two or more cohorts 
in their analyses (n = 7 for diagnosis, n = 5 for prognosis, 
n = 2 for both). ADNI was the most commonly used data-
set in these cases (n = 9/14).

Participant demographics

�e mean age of participants was 71.7 years (standard 
deviation (SD) 8.5), with a mean age of 69.9 years (SD 9.3) 
in diagnostic studies and 72.1 years (SD 8.3) at baseline in 
prognostic studies. �ere was a relatively balanced rep-
resentation of men and women across the studies, with 
women making up 54% of participants overall (48.1% in 
diagnostic studies and 55% in prognostic studies).

Fig. 2 Countries of institutional affiliation for the first and last authors of each included publication. Note that the first and last authors had different af-
filiations in eight papers. The numbers on the map thus sum to 83 rather than 75 (total number of included studies)
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Only six studies (8%) provided race or ethnicity infor-
mation (n = 3 diagnosis, n = 3 prognosis). In those stud-
ies, 6217 (79%) participants were reported as White (n = 1 
diagnosis, n = 3 prognosis), 209 (3%) as Asian (n = 2 diag-
nosis), 934 (12%) as Black (n = 1 prognosis), and 476 (6%) 
as “other” (n = 2 diagnosis, n = 2 prognosis).

ML methods

Detailed information on the ML methods used in each 
study can be retrieved from Supplementary Data 2, spe-
cifically from the section “ML method used”.

Application of ML methods

A total of 23 different ML methods were employed for 
the diagnosis or prognosis of cognitive impairment and 
dementia based on vascular neuroimaging features 
(Fig.  3). �ese methods spanned eight categories (Sup-
plementary BOX 2). For diagnosis (Fig.  3A), the most 
popular ML categories were instance-based, regression, 
and ensemble algorithms, with support vector machines 
(SVM, instance-based), logistic regression (regression), 
and random forest (ensemble) being the most com-
monly used models. For prognosis (Fig.  3B), the top 
three categories remained the same, with Cox regression 
(regression), SVM (instance-based), and random forest 
(ensemble) being the most frequently used models.

Logistic regression, was the most popular ML method, 
appearing in 28 (37%) of the 75 papers reviewed [24, 27, 
41, 44, 50, 53, 54, 58–60, 63, 64, 66, 67, 72, 74–76, 81–83, 
86, 87, 91, 93, 94, 96, 98]. It was followed closely by SVM 
which was used in 26 (35%) papers [25, 28, 33, 35–40, 
45, 46, 48–52, 72, 79, 82, 84, 85, 90, 93, 94, 97, 98]. �ese 
two methods were applied almost twice as often as the 
next most common methods, namely Cox regression and 
random forest, which were featured in 15 (20%) [42, 55, 
62, 68–70, 73, 75, 77, 78, 80, 88, 89, 92, 99] and 14 (19%) 
papers [32, 34, 50, 56, 57, 61, 72, 76, 82, 89, 91, 93, 97, 98], 
respectively. Other methods were much less common. 
Strikingly, despite the growing prominence of deep learn-
ing over the past decade, its application in diagnosing 
and predicting cognitive impairment and dementia based 
on vascular neuroimaging features remains limited. Only 
four (5%) of the papers employed deep learning [29, 30, 
43, 47], with three of them using convolutional neural 
networks (CNNs) [30, 43, 47]. �ree studies employed 
Bayesian methods [39, 91, 98] and three discriminant 
analysis [45, 71, 91], all exclusively applied for diagnostic 
purposes.

Popularity over time

�e application of ML techniques for diagnosis and pre-
diction of cognitive impairment and dementia based 
on vascular neuroimaging features has experienced a 
significant growth over the past decade (Fig.  3C). Cox 

regression was the first technique we identified that used 
any CSVD feature, namely WMH, to predict dementia 
[99]. Logistic regression and SVM have remained popular 
and widely used since their first application in 2007 and 
2010, respectively. �e application of random forests, on 
the other hand, was first identified in 2015 and has only 
recently reached its highest level of usage, as it was used 
in around one-third of the works in 2023 (36%). Neural 
networks and eXtreme Gradient Boosting (XGBoost) 
appeared only in 2022.

Validation and generalisation

A rigorous evaluation of both performance and general-
isability of ML prediction algorithms is essential for the 
translation into real-world clinical settings, as even the 
most promising models may fail when exposed to previ-
ously unseen data. �e authors’ approaches to validation 
are outlined in Supplementary Data 2, under the section 
“Validation strategy”. A representative illustration of the 
importance of using an independent hold-out test set is 
provided in a paper included in this review [91], where 
the authors showed that the model with the highest per-
formance on the training set al.so exhibited the poorest 
generalisation, with an AUC of 100 [95% CI: 100, 100] in 
training and 50.0 [95% CI: 50.0, 50.0] in an independent 
test set. Despite this, only five out of 75 studies assessed 
the generalisation capabilities of their models using held-
out external datasets (n = 4 diagnosis; n = 1 prognosis) 
[47, 48, 61, 88, 91]. Although limited access to multiple 
datasets clearly presents a challenge for assessing gener-
alisability, a total of ten studies had data from multiple 
sources and were therefore well-positioned to validate 
their models on independent cohorts (n = 5 diagnosis [31, 
47, 48, 90, 91]; n = 3 prognosis [88, 93, 94]; n = 2 both [76, 
89]).

When reported clearly, studies relied to a large extent 
on cross-validation (n = 28 diagnosis; n = 10 prognosis). 
Some studies also split a single or pooled dataset into 
training and testing sets from the start (n = 3 diagnosis; 
n = 3 prognosis) [43, 47, 48, 61, 69, 88, 91] and one diag-
nostic study also used bootstrapping [71]. Unfortunately, 
the absence of any form of validation—or a lack of clear 
reporting on whether it was conducted—was strikingly 
common, especially in prognostic analyses, where over 
55% of studies were affected by this issue (n = 12 diagno-
sis; n = 18 prognosis).

Neuroimaging modalities and features

Data extracted regarding neuroimaging modalities 
and features can be found in Supplementary Data 2, 
under the sections “specific details for datasets” and 
“vascular neuroimaging features used”. Studies lever-
aged structural, diffusion, and functional MRI (fMRI), 
as well as computed tomography and positron emission 
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tomography (Fig. 4). Structural MRI was by far the most 
widely used neuroimaging modality, appearing in 67 
(89%) studies, whereas computed tomography was the 
least used, appearing in only one (1%) paper. A total of 27 
(36%) studies leveraged two or more imaging modalities. 
When this occurred, structural MRI and diffusion-based 

MRI were the most common combination, used in 19 out 
of 27 (70%) papers.

Diagnosis

Around 40% of the diagnostic studies (n = 20) leveraged 
vascular neuroimaging features obtained from structural 

Fig. 3 Number of papers using each machine learning (ML) method in our review, faceted by A) diagnosis or B) prognosis, and C) use of different ML 
categories over time. Different colours correspond to different ML categories. Note that as one paper may use multiple ML methods/categories, the 
percentages in A) and B) may not sum up to 100%. Kernel (others) = Kernel methods other than SVM; NN (others) = Neural networks other than CNN
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MRI sequences. Every study that used structural MRI 
quantified WMH. Other neuroimaging features were less 
frequently considered: perivascular spaces (n = 2) [41, 82], 
cerebral microbleeds (n = 2) [41, 82], lacunes (n = 3) [41, 
81, 82], and stroke lesion volume or subtype (n = 2) [54, 
67].

Non-lesion measurements were also common in many 
diagnostic studies. �ese included assessments of micro-
structural integrity from regional white matter (n = 13) 
[32, 34, 36–39, 51, 54, 61, 65, 71, 79, 83], fMRI or diffu-
sion MRI-based connectivity (n = 8) [33, 35, 45, 49, 51, 
76, 84, 85], or other, less conventional imaging features 
(n = 7), such as tissue textures (n = 2) [56, 89], white 
matter density (n = 1) [65], fMRI-derived amplitude of 
low-frequency fluctuation (n = 3) [53, 61, 96], ¹8F-fluo-
rodeoxyglucosepositron emission tomography derived 
“metabolic cognitive signature” (n = 1) [47], and iron 
deposition (n = 1) [40].

Of the 48 studies reporting diagnostic analyses, most 
used quantitative assessments of vascular neuroimaging 
features (n = 40). Nine (19%) employed clinical visual rat-
ings, of which two relied solely on visual ratings.

Prognosis

Twenty-four (75%) prognostic studies used vascular neu-
roimaging features derived from structural MRI. WMH 
were assessed in every study. Other neuroimaging fea-
tures, including lacunes (n = 7) [42, 46, 55, 63, 80, 94, 95], 
perivascular spaces (n = 5) [42, 80, 86, 92, 95], cerebral 
microbleeds (n = 5) [42, 72, 92, 94, 95], and stroke lesion 
volume or subtype (n = 2) [24, 25], were less relatively 
common.

Non-lesion measurements were less common in prog-
nostic than in diagnostic studies. Five studies used 

diffusion tensor imaging [29, 62, 78, 88, 94] and no stud-
ies investigated other diffusion-based signal model-
ling. Two studies investigated connectivity measures: 
one using diffusion-based structural connectivity [76], 
and one using WMH-based disconnectome measures 
[50]. Other vascular markers used in prognosis studies 
included tissue texture analysis (n = 2) [69, 70], and sus-
ceptibility-weighted imaging-based markers such as iron 
deposition (n = 1) [40].

Visual ratings were used in half of studies report-
ing prognostic results (16 out of 32). Most ratings were 
conducted on WMH burden, with one study reporting 
solely perivascular space ratings. Nine studies included 
additional quantitative measures alongside visual ratings, 
while the remaining relied solely on visual ratings (n = 7). 
�ere was significant variation in the rating scales used 
across studies. For example, the six prognostic publica-
tions that used visual ratings of WMH employed a range 
of methods, including binary measures with different cut-
offs as well as grading scales with 3, 4, 10, and 11 points.

Temporal changes in vascular neuroimaging features

Studies using diffusion-based indices (e.g., fractional 
anisotropy and mean diffusivity) have decreased in recent 
years. Before 2020, diffusion imaging studies made up 
41% of studies (n = 16), compared to just 17% of studies 
published between 2020 and 2024 (n = 6). Recent years 
have witnessed the adoption of novel techniques includ-
ing graph theory, pattern analyses, and other methods 
of connectivity assessment, amplitude of low-frequency 
fluctuation, and composite brain signatures, making up 
a fifth (19%; n = 7) of studies published in 2020–2024. 
Studies relying solely on clinical visual ratings have not 
changed in recent years (n = 5 before 2020, n = 4 since 
2020).

MRI scanner strength

MRI scanner strength details were reported in 65 (84%) 
studies (n = 40 diagnostic, n = 26 prognostic, n = 5 both). 
Diagnostic studies were primarily carried out on 3 Tesla 
(T) scanners. Most studies used a consistent scanner 
strength across participants and scans (n = 33), with 3T 
being the most common (n = 27), followed by 1.5T (n = 5), 
and one study using a 4T scanner. A few studies (n = 7) 
used scanners of different field strengths; six of these 
combined 1.5T and 3T scanners, while one study used 
both 1T and 1.5T scanners.

Most prognostic studies, on the other hand, were con-
ducted on 1.5T scanners. Among the 27 prognostic stud-
ies that reported scanner strength, the majority used only 
1.5T scanners (n = 15), with about half as many relying 
exclusively on 3T scanners (n = 7). A few studies (n = 5) 
employed a mix of scanner strengths; two combined 0.5T 

Fig. 4 Neuroimaging techniques used to extract vascular neuroimaging 
features in the studies included in the review. Abbreviations: CT = com-
puted tomography; dMRI = diffusion-based MRI; fMRI = functional MRI, 
sMRI = structural MRI; PET = positron emission tomography
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and 1.5T scanners, and three studies used both 1.5T and 
3T scanners.

�e use of higher field strength scanners has increased 
over time. Before 2020, more than half of the studies 
(59%) relied predominantly on 1.5T scanners (n = 23). 
Since 2020, reliance on 1.5T scanners has declined, with 
only 14% of studies using 1.5T scanners (n = 4), while 62% 
(n = 18) used 3T scanners exclusively.

Harmonisation

Since data acquisition often takes place across multiple 
sites using potentially different MRI scanners and proto-
cols, harmonisation becomes crucial to deal with inter-
scanner variability and ensure comparability across sites. 
We identified 19 studies that, in principle, would have 
benefited from harmonisation due to the use of different 
MRI scanners [25, 27, 32, 34, 39, 42, 48, 56–58, 69, 73, 77, 
86, 88–91, 93]. Among these, five studies reported imple-
menting any form of harmonisation: intensity normalisa-
tion across scanners [32], principal component analysis 
to isolate disease-relevant principal components while 
reducing scanner effects [39], manual correction of seg-
mentation maps to mitigate inter-scanner variability [56, 
57], and statistical harmonisation using ComBat [90].

Dementia

Extracted data relevant to dementia diagnosis and prog-
nosis are available in Supplementary Data 2, under the 
sections “diagnosis or prognosis” and “general descrip-
tion of the study population”. We identified 47 studies 
that focused on dementia, with 26 (55%) targeting diag-
nosis, 17 (36%) prognosis, and four (9%) both. Remark-
ably, despite the review’s strong emphasis on vascular 
aspects, diagnostic studies predominantly concentrated 
on AD (n = 24) [27, 28, 30, 32, 34, 36, 39, 47, 48, 52, 56–
58, 60, 65, 66, 71, 74, 76, 82, 84, 89, 90, 97]. Other forms 
of dementia were also examined but with less frequency: 
vascular dementia (n = 4) [43, 45, 66, 82], frontotemporal 
dementia (n = 3) [82, 83, 90], Lewy body dementia (n = 3) 
[56, 57, 90], behavioural variant frontotemporal dementia 
(n = 1) [83], post-stroke dementia (n = 1) [47], progressive 
non-fluent aphasia (n = 1) [83], and semantic dementia 
(n = 1) [83]. Prognostic studies also focused largely on AD 
(n = 13) [26, 50, 52, 55, 59, 60, 63, 68–70, 76, 89, 94], with 
vascular dementia following (n = 6) [26, 46, 55, 73, 78, 94]. 
Mixed dementias were each examined by four prognostic 
studies [59, 63, 73, 75], and a single prognostic study also 
explored frontotemporal dementia [73].

Assessment criteria

Dementia diagnosis was primarily relied on published 
clinical criteria or via consensus diagnosis by experienced 
neurologists based on clinical evaluations, including cog-
nitive tests, general neurological exams, and collateral 

information. Studies of AD employed no less than six dif-
ferent diagnostic criteria, namely Diagnostic and Statisti-
cal Manual of Mental Disorders (DSM versions III-R, IV 
or V) [100], National Institute of Neurological and Com-
municative Disorders and Stroke and the Alzheimer’s 
Disease and Related Disorders Association (NINCDS or 
NINCDS-ADRDA) [101], National Institute on Aging 
and Alzheimer’s Association (NIA-AA) [102, 103], 
National Institute on Aging–Alzheimer’s Disease Centers 
(NIA-ADRC), National Institute of Neurological Disor-
ders and Stroke and Association Internationale pour la 
Recherche et l’Enseignement en Neurosciences (NINDS-
AIREN) [104], and Alzheimer’s Disease Diagnostic and 
Treatment Centers (ADDTC) [105].

In addition to the diagnostic variability, six studies did 
not specify the criteria for diagnosing dementia (n = 4 
diagnosis, n = 2 prognosis) and six diagnostic studies 
determined dementia diagnoses without adhering to 
standard criteria. Instead, they relied on specific thresh-
olds from cognitive tests, including the Mini-Mental 
State Examination (MMSE) (n = 1), the Clinical Demen-
tia Rating scale (CDR) (n = 1), the Montreal Cognitive 
Assessment (MoCA) scores (n = 1), and various combina-
tions of these test (n = 3).

Cognitive impairment

Information related to the diagnosis and prognosis of 
cognitive impairment, as extracted from the included 
studies, is provided in Supplementary Data 2 under the 
sections “diagnosis or prognosis” and “general descrip-
tion of the study population”. We identified 45 articles 
addressing cognitive impairment (without a specific 
dementia diagnosis), with 26 (58%) focusing on diagno-
sis, 14 (31%) on prognosis, and five (11%) assessing both 
diagnosis and prognosis. �e definition, subtype, and 
potential aetiology of cognitive impairment varied sub-
stantially across the studies.

Most diagnostic studies (52%) that studied cognitive 
impairment examined cognitive impairment linked to 
CSVD (n = 11) [32, 33, 35, 38, 53, 54, 61, 71, 81, 91, 96], 
such as WMH (n = 4) [33, 35, 85, 91], subcortical isch-
emic vascular disease (n = 4) [32, 53, 71, 81], and vascu-
lar cognitive impairment (n = 3) [38, 54, 81]. However, a 
notable proportion of them (62%) also targeted mild cog-
nitive impairment (MCI) (n = 12) [32, 37, 40, 41, 45, 49, 
51, 58, 76, 87, 89, 98] or its amnestic and non-amnestic 
subtypes (n = 3) [27, 34, 79]. Cognitive impairment asso-
ciated with Parkinson’s disease (n = 1) [44] and coronary 
artery disease (n = 1) [51] was also examined. Prognos-
tic studies mainly investigated either the progression of 
MCI to dementia (n = 14) [40, 50, 52, 55, 59, 60, 69, 73, 
76, 86, 89, 92, 93, 95], including progression to vascular 
dementia (n = 1) [73], mixed dementia (n = 1) [73], and 
AD (n = 6) [50, 52, 60, 69, 76, 86].
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Assessment criteria

While there was some consistency across studies, the 
diagnostic criteria consisted of a variety of definitions 
of cognitive impairment. Most papers that focused on 
cognitive impairment relied on neuropsychological tests 
(n = 18 diagnosis, n = 11 prognosis. For example, perfor-
mance below 1.5 standard deviations from the mean on 
cognitive tests was deemed indicative of MCI. A signifi-
cant variability in the choice of cognitive tests was noted. 
Some papers adopted established clinical criteria, such as 
those proposed by Petersen et al. [106, 107] or the DSM-5 
[100], or utilised consensus diagnoses from multiple neu-
rologists (n = 1 diagnosis, n = 4 prognosis). In the other 
instances, a combination of neuropsychological tests and 
clinical criteria was used (n = 5 diagnosis, n = 2 progno-
sis) with some studies also incorporating vascular neu-
roimaging measures, such as including WMH burden to 
support MCI diagnosis (n = 5 diagnosis, n = 1 prognosis). 
�ree papers did not specify the criteria used to identify 
MCI.

Results meta-analysis

Healthy controls versus Alzheimer’s dementia

Seven studies reported AUC measures for classifying 
AD-dementia versus healthy controls (see Fig.  5A). Of 
these, five did not report any measures of variability; 
the standard error for these AUC values was therefore 
estimated. �e pooled AUC was 0.88 [95% confidence 
interval (CI) 0.85–0.92] (Fig. 5A), with significant hetero-
geneity across studies.

Healthy controls versus cognitive impairment

Nine studies used ML algorithms to classify cognitive 
impairment versus healthy controls (see Fig.  5B). Only 
two of these studies reported measures of variability, 
therefore all other standard errors for the AUC were esti-
mated. �e pooled AUC was 0.84 [95% CI 0.74–0.95], 
with significant heterogeneity among studies (Fig.  5B) 
[32, 33, 51, 58, 79, 85, 91, 96, 98].

Healthy controls versus all-cause dementia

Nine studies utilised ML methods to diagnose all-cause 
dementia versus healthy controls, of which two stud-
ies (Chan et al. 2023 [32] and Lee et al. 2022 [47]) made 
multiple comparisons. Here we selected the comparisons 
with the largest sample sizes included. Of these stud-
ies, three reported measures of variability for the AUC, 
the standard error for all remaining AUC values were 
therefore estimated. �e pooled AUC was 0.88 [95% CI 
0.83–0.93] (Supplementary Fig. 1A), with significant het-
erogeneity across studies. Including the other two com-
parisons of Chan et al. 2023 [32] and Lee et al. 2022 [47] 
in the meta-analysis yielded similar results (Supplemen-
tary Fig. 1B).

Risk of bias assessment

Diagnosis

For diagnostic studies, we conducted risk of bias assess-
ment using the QUADAS-2 framework to establish 
potential biases regarding patient selection, index 
method bias, reference accuracy, blinding, consistency of 
references, participant inclusion, and method applicabil-
ity (Supplementary Fig. 2A and Table 2A). Approximately 
40% of the papers exhibited a low risk of bias across the 
aforementioned domains (flow and timing: n = 21; ref-
erence standard: n = 28; index test: n = 31; patient selec-
tion = 32). �e patient selection domain had by far the 
highest risks of bias (n = 19), with studies either using 
case-control designs or failing to adequately disclose 
patient selection details. Concerns about method appli-
cability in diagnostic studies were minimal, with 83% of 
studies having low risk of bias.

Prognosis

For prognostic studies, we conducted risk of bias assess-
ment using the PROBAST framework to establish 
potential biases in prediction models regarding patient 
selection, predictor measurement, outcome measure-
ment, and analysis and model evaluation (Supplementary 
Fig. 2B and Table 2B). Nine out of the 32 prognostic stud-
ies were rated as having a low risk of bias across all evalu-
ated domains (participants: n = 23; predictors: n = 29; 
outcome: n = 26; analysis: n = 11). �e analysis domain 
stood out as the most frequent source of concern, with 
14 studies rated as having a high risk of bias. �e pri-
mary reasons were unclear exclusion criteria from prog-
nostic analyses and lack of clarity regarding how model 
overfitting and optimism in model performance were 
addressed. Concerns about applicability were minimal, 
with 94% of the studies showing low concerns.

Discussion
�is systematic review and meta-analysis summarised 
75 studies examining the role of CSVD neuroimaging 
markers in ML-based diagnosis and prognosis of cog-
nitive impairment and dementia. �e field has grown 
substantially over the past two decades, with nearly 
60% of studies being published in the last two years. 
Key findings reveal a mix of insights. Positively, most 
studies used datasets with balanced sex representation. 
Negatively, even though ML models leveraging CSVD 
features achieved high diagnostic performance, many 
lacked external validation and showed limited transpar-
ency regarding overfitting. Unexpectedly, most studies 
focused on AD rather than vascular dementia. Addition-
ally, while XGBoost and neural networks are gaining 
traction, traditional methods like Cox regression, logistic 
regression, and SVM remain dominant. �e following 
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sections expand on these findings and place them within 
a broader context.

Vascular neuroimaging and its contributions to 

neurodegeneration

Most studies on dementia diagnosis and prognosis 
focused on AD (23/30 diagnostic; 10/21 prognostic) 
rather than vascular dementia (4/30 diagnostic; 6/21 
prognostic). For example, seven of the nine studies that 
compared all-cause dementia with healthy controls in the 

meta-analysis focused on AD-related dementia. �ese 
seven studies that incorporated vascular features in ML 
models demonstrated strong performance (AUC 0.88 
[95%-CI 0.85, 0.92]). �is indicates not only the benefit 
of including CSVD in AD diagnostic classifiers, but also 
reflects a growing interest in the role of CSVD and vascu-
lar neuroimaging in dementia, particularly in AD-related 
dementia.

�e focus on AD surprised us, given the review’s 
emphasis on vascular neuroimaging and CSVD, though 

Fig. 5 Meta-analysis of studies targeting the classification of (A) Alzheimer’s dementia versus healthy controls and (B) cognitive impairment versus 
healthy controls. Pooled AUC values and their corresponding confidence intervals (CI) were computed using a random-effects model. Weights represent 
each study’s relative contribution to the overall pooled estimate. Confidence intervals might exceed 1.00 because standard errors have been estimated 
due to missing data
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aspects discussed in the literature may help explain this 
trend. AD is the leading cause of dementia, and CSVD 
is one of the most common conditions in clinics [4]. It 
is therefore expected that CSVD co-occurs and inter-
acts with AD as well as other neurodegenerative disor-
ders [108–113]. �e role of vascular risk factors in the 
pathogenesis and progression of AD is well established 
[114], extending beyond their mere coexistence [115]. 
Potential mechanisms include impairment of the neu-
rovascular unit [116, 117], disruption of the glymphatic 
system [118], and hypoperfusion and hypoxia [116, 119]. 
�is coexistence is now formally recognised in the most 
recently proposed AD diagnostic and staging criteria, 
where vascular biomarkers are identified as indicators of 
non-AD co-pathology that may accelerate symptom pro-
gression [7].

Considering vascular risk factors in the progression 
of neurological conditions such as vascular dementia 
and AD creates opportunities for prevention [116, 120]. 
Modifiable CSVD risk factors, including diabetes, hyper-
tension, smoking, obesity, and high low-density lipo-
protein cholesterol, can be addressed with cost-effective 
treatments, such as hypertensive medications and life-
style changes [121]. �ese measures may reduce vascular 
risks and delay or prevent cognitive decline, potentially 
alleviating the societal burden of dementia. Recent stud-
ies in birth cohorts show a decline in cerebrovascular 
pathology [122], which may explain the decrease in age-
adjusted dementia incidence [123–125]. Understanding 
and identifying CSVD features associated with AD using 
ML approaches may therefore support early diagnosis 
and risk prediction, permitting early effective preventive 
strategies.

Underuse of CSVD markers beyond WMH

WMH—whether assessed through clinical visual ratings 
or computational methods—was by far the most consis-
tently utilised CSVD marker, appearing in all structural 
MRI-based diagnostic and prognostic studies. While 
the emphasis on WMH is not inherently problematic, 
it represents a clear missed opportunity. �e marked 
underrepresentation of other clinically relevant CSVD 
markers—such as lacunes, perivascular spaces, cerebral 
microbleeds, cortical superficial siderosis, and cortical 
cerebral microinfarcts—limits the capacity of ML mod-
els to fully capture the complexity of vascular contribu-
tions to neurodegenerative diseases. �is overreliance 
on WMH may stem from the widespread availability of 
tools for its automated segmentation, combined with the 
lack of openly validated systems—either commercial or 
research-based—that offer comprehensive analysis of all 
neuroimaging CSVD markers [126].

Recommendations

We have identified several limitations of the field and 
present corresponding recommendations, as summarised 
in BOX 1.

Reporting

Many studies did not report variances or confidence 
intervals for model performance, making it challenging 
to combine their findings in a meta-analysis. For future 
studies, we strongly recommend the inclusion of confi-

dence intervals for all performance metrics, following 

established reporting standards such as the TRIPOD + AI 

guideline [127]. Careful consideration should also be 
given to the choice of metrics. For instance, in cases of 
pronounced class imbalance, reporting sensitivity and 
specificity alongside AUC can be crucial. Additionally, 
we advocate for the full disclosure of all results, includ-

ing those that do not achieve statistical significance, to 

enhance the completeness and unbiased representation of 

study findings.

Generalisability

Despite achieving high accuracy metrics, the translation 
of predictive ML algorithms to real-world clinical settings 
requires extensive external validation. Despite this, our 
systematic review suggests that generalisability remains 
largely neglected, with less than 10% of the studies 
included in this review evaluating their models on hold-
out external datasets. It is clear that datasets containing 
subjects with the exact pathology of interest are limited 
in availability. However, we also identified five additional 
studies that, despite having access to multiple datasets—
and thus the opportunity to assess generalisability—
chose to train and test their models on the pooled data 
instead of using separate datasets for independent valida-
tion. Many studies leveraged cross-validation, a method 
for evaluating model performance by dividing data into 

BOX 1 Recommendations to move toward clinically useful, 
machine learning methods applied to vascular neuroimaging for 
cognitive impairment and dementia
Reporting:

- Inclusion of measures of variance and/or confidence intervals for all 
performance metrics
- Full disclosure of all results, including those that do not reach statisti-
cal significance

Generalisability:

- Use of external independent datasets for validation

From curated to real-world datasets

- Inclusion of diverse populations
- Investigation of a broad spectrum of neurodegenerative diseases, 
including a greater focus on vascular dementia

Fairness and representativeness

- Exploration of sex-specific and race/ethnicity-specific contributions of 
vascular features for neurodegeneration
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subsets, training on some and testing on others. While 
this approach helps estimate a model’s performance on 
unseen data, inherent similarities between the train-
ing and test sets mean it does not entirely eliminate the 
risk of overfitting. A recent study by Chekround and col-
leagues found that, even with adequately cross-validated 
algorithms, the performance of these ML models was 
consistently lower in external datasets [128]. We thus rec-

ommend the validation on external datasets to properly 

assess the true performance of these algorithms. An ML 
model, whether simple or complex, could still become 
“tuned” to the specific folds in the cross-validation pro-
cess and fail to generalise to genuinely new data beyond 
the validation set.

From curated to real-world datasets

Neuropathological studies often show a complex con-
stellation of brain pathologies across neurodegenera-
tive dementias [129], which may exist to varying degrees 
alongside cerebrovascular disease [130]. �ese mixed 
or multiple pathologies can make it challenging for ML 
algorithms to accurately classify cases and predict dis-
ease progression, in turn lowering the robustness and 
generalisability of ML models. Hence, training ML algo-
rithms that assess cerebrovascular disease in the pres-
ence of other neuropathological indicators, using features 
derived from well-characterised, multimodal datasets 
across neurodegenerative dementias, is highly desirable. 
�is underscores the importance of leveraging more rep-

resentative, deeply phenotyped, real-world datasets that 

include diverse types of dementias. As we move closer 
towards individualised, precision medicine approaches, 
such a strategy will optimise the translation of ML algo-
rithms in clinical settings while ensuring their applica-
bility across ethnically and socioeconomically diverse 
populations worldwide.

Fairness and representativeness

Many included studies used case-control designs, which, 
while useful for comparisons, often introduce selec-
tion bias, especially when controls are not well-matched 
to cases [19]. Additionally, several studies lacked clear 
inclusion/exclusion criteria, undermining replicability 
and generalisability. Six studies also failed to clearly spec-
ify diagnostic criteria, further impacting repeatability 
and reliability. Although there was a balanced represen-
tation of men and women in the included studies, only 
one study assessed sex differences in the classification 
of dementia [72]. It is well-established that women are 
at higher risk of developing dementia and WMH [131, 
132]. Similarly, while ethnicity can modulate develop-
ing dementia [133], only six studies reported the race or 
ethnicity of their participants. �e inconsistent reporting 
of demographic factors, such as race or ethnicity, raises 

concerns about diversity in dementia research, given 
that most dementia cohorts tend to be well educated, 
and of higher socioeconomic status than what would 
be expected based on census data [134, 135]. �is has 
important implications for accurately predicting demen-
tia risk, especially since race, ethnicity, socioeconomic 
background, and education are important factors that 
can modulate an individual’s cumulative risk for devel-
oping dementia [136–138]. Non-representative samples 
may limit the applicability of the findings to broader, 
more diverse populations. We recommend that future 

cohort studies seek to collect and consistently report data 

from diverse populations, and that studies explore sex- 

and race/ethnicity-specific classifications of dementia.

Strengths and limitations

�is work has major strengths. We performed a system-
atic search across nine databases to provide a comprehen-
sive summary of the existing evidence on the application 
of vascular neuroimaging in ML-based diagnosis and 
prognosis of cognitive impairment and dementia. Our 
approach followed a carefully structured methodology 
to ensure both transparency and reproducibility. �is 
included pre-registering our protocol and adhering to 
PRISMA guidelines. All papers included in the title and 
abstract screening, full-text screening, data extraction, 
and risk of bias assessment phases—during both the ini-
tial review and the re-run—were independently reviewed 
by multiple reviewers, with each paper evaluated by two 
reviewers and a third consulted to resolve any outstand-
ing conflicts. We systematically assessed the risk of bias 
and the overall quality of the studies using established 
quality assessment tools, specifically QUADAS-2 and 
PROBAST, to ensure a robust evaluation of the evidence 
included in our review. �rough these rigorous stan-
dards, we aimed to synthesise high-quality evidence that 
can guide future research to accelerate the integration of 
ML into clinical practice.

�is work has three main limitations. First, a limitation 
of our meta-analysis is the significant variation in covari-
ates and sample sizes across studies, which may have led 
to heterogeneity in the predictive models and potentially 
affected AUC comparability (see Supplementary data 2). 
Second, we did not assess the added value of neuroimag-
ing markers of CSVD in diagnosing or predicting demen-
tia, as only a few studies compared the performance of 
ML models with and without CSVD markers. �ird, the 
risk of bias assessment tools used here were not designed 
for AI studies, and while recent efforts have been made, 
such tools are still in their infancy [127, 139]—the ratio-
nale for using accepted risk of bias tools for the tasks, 
QUADAS-2 and PROBAST.
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Future of ML and vascular neuroimaging

Neuroimaging

�e majority of studies in our review relied on struc-
tural MRI data, with only a single study using computed 
tomography. A significant shift in this trend is unlikely 
in the coming years, though it is probable that new and 
advanced imaging methods will begin to appear more 
frequently in the literature. While assessing the human 
cerebral microvasculature in vivo using conventional 
imaging technologies remains challenging, advancements 
in MRI with higher field strengths (7T and above) as 
well as other imaging technologies help us get closer to 
detecting subtle vascular changes and visualising small-
calibre blood vessels [140, 141].

�e recent incorporating of non-lesional outcomes into 
the assessment of CSVD in the STRIVE II criteria (Stan-
dards for Reporting Vascular Changes on Neuroimag-
ing) will likely enrich our understanding of CSVD and 
its contributions to neurodegenerative diseases. Inves-
tigating functional markers, such as those derived from 
fMRI [142], could enable determining the extent to which 
CSVD leads to impaired neurovascular coupling and 
neural network communication, and ultimately contrib-
utes to cognitive decline [143].

Harmonisation

A major challenge in developing large multimodal data-
sets lies in harmonising data. �is is important because 
data acquired from different MRI scanners or imaging 
sites can introduce systematic variability—such as dif-
ferences in intensity scaling, resolution, or noise charac-
teristics—that is unrelated to the condition of interest. 
Without appropriate harmonisation, these scanner- or 
site-specific effects can confound statistical analyses, 
reduce model generalisability, compromise reproducibil-
ity and comparability across studies or cohorts. �e fact 
that only a quarter (26%) of studies using data from mul-
tiple scanners or sites applied any form of harmonisation 
indicates that there is still considerable scope for wider 
adoption of such techniques to improve the reliability 
and translational impact of neuroimaging research.

Treatments

Identifying and quantifying CSVD is relevant for the 
selection and stratification of dementia treatments, as 
illustrated in anti-amyloid therapies (e.g. Lecanemab 
or Donanemab). As CSVD markers play a pivotal role 
in the diagnosis of cerebral amyloid angiopathy [144], a 
major risk factor for adverse treatment outcomes [144–
147], accurate identification of patients who are not at 
increased risks of adverse events and therefore will ben-
efit most from treatment is crucial. AI-based predic-
tions could provide clinicians with valuable tools to tailor 
therapeutics, thus enhancing safety and efficacy while 

facilitating precision medicine approaches for patients 
[148].

Conclusion
CSVD markers are playing an increasing role in ML-
based diagnosis and prognosis of dementia and cogni-
tive impairment, with models leveraging these markers 
already demonstrating strong performance in distin-
guishing individuals with and without cognitive impair-
ment and dementia. However, challenges remain of 
reporting standards, generalisability, and fairness that 
hinder the widespread adoption of these approaches. 
As the cerebrovascular interest subgroup of the interna-
tional DEMON Network Imaging Working Group, we 
have collaboratively developed a set of targeted recom-
mendations to drive progress in this field over the next 
decade. We firmly believe that adopting these recom-
mendations will greatly accelerate the integration of ML 
methods into clinical practice, delivering meaningful 
benefits for patients.
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