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Abstract
Atypical frontotemporal lobar degeneration with ubiquitin-positive inclusions (aFTLD-U) is a rare cause of frontotemporal 
lobar degeneration (FTLD), characterized postmortem by neuronal inclusions of the FET family of proteins (FTLD-FET). 
The recent discovery of TAF15 amyloid filaments in aFTLD-U brains represents a significant step toward improved diag-
nostic and therapeutic strategies. However, our understanding of the etiology of this FTLD subtype remains limited, which 
severely hampers translational research efforts. To explore the transcriptomic changes in aFTLD-U, we performed bulk RNA 
sequencing on the frontal cortex tissue of 21 aFTLD-U patients and 20 control individuals. Cell-type deconvolution revealed 
loss of excitatory neurons and a higher proportion of astrocytes in aFTLD-U relative to controls. Differential gene expression 
and co-expression network analysis, adjusted for the shift in cell-type proportions, showed dysregulation of mitochondrial 
pathways, transcriptional regulators, and upregulation of the Sonic hedgehog (Shh) pathway, including the GLI1 transcrip-
tion factor, in aFTLD-U. Overall, oligodendrocyte and astrocyte-enriched genes were significantly over-represented among 
the differentially expressed genes. Differential splicing analysis confirmed the dysregulation of non-neuronal cell types 
with significant splicing alterations, particularly in oligodendrocyte-enriched genes, including myelin basic protein (MBP), 
a crucial component of myelin. Immunohistochemistry in frontal cortex brain tissue also showed reduced myelin levels in 
aFTLD-U patients compared to controls. Together, these findings highlight a central role for glial cells, particularly astrocytes 
and oligodendrocytes, in the pathogenesis of aFTLD-U, with disruptions in mitochondrial activity, RNA metabolism, Shh 
signaling, and myelination as possible disease mechanisms. This study offers the first transcriptomic insight into aFTLD-U 
and presents new avenues for research into FTLD-FET.
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svPPA	� Semantic variant primary progressive aphasia
nfvPPA	� Nonfluent variant primary progressive aphasia
PSP	� Progressive supranuclear palsy
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TDP-43	� TAR DNA-binding protein 43

FUS	� Fused in sarcoma
aFTLD-U	� Atypical FTLD with ubiquitin inclusions
NIFID	� Neuronal intermediate filament inclusion 
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BIBD	� Basophilic inclusion body disease
hnRNP	� Heterogeneous nuclear ribonucleoprotein
TNPO1	� Transportin 1
EWS	� Ewing’s sarcoma protein
TAF15	� TATA-binding protein-associated factor 15
Cryo-EM	� Cryogenic electron microscopy
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Shh	� Sonic hedgehog
RPKM	� Reads per kilobase per million mapped reads
RIN	� RNA integrity number
PPI	� Protein–protein interaction
DEG	� Differentially expressed genes
WGCNA	� Weighted gene co-expression network 

analysis
nTPM	� Normalized expression values
OPCs	� Oligodendrocyte precursor cells
qPCR	� Quantitative PCR
ΔPSI	� Delta percent spliced in
LFB/HE	� Luxol fast blue stain with hematoxylin and 

eosin counterstain

Introduction

Frontotemporal lobar degeneration (FTLD) is an umbrella 
term that groups several neurodegenerative diseases charac-
terized by progressive nerve cell loss, primarily affecting the 
frontal and temporal lobes [51, 69]. Clinically, these disor-
ders manifest as frontotemporal dementia (FTD) with three 
distinct presentations: behavioral-variant frontotemporal 
dementia (bvFTD) [87], semantic variant primary progres-
sive aphasia (svPPA), and nonfluent variant primary pro-
gressive aphasia (nfvPPA) [29, 85]. FTD can also present 
with an extrapyramidal movement disorder, leading to clini-
cal diagnoses of progressive supranuclear palsy (PSP), cor-
ticobasal syndrome (CBS) [43], or the combined phenotype 
of bvFTD and amyotrophic lateral sclerosis (FTLD-ALS) 
[37, 72].

Beyond its clinical heterogeneity, FTLD is neuropatho-
logically classified based on the accumulation of specific 
protein inclusions. The three major subtypes are character-
ized by inclusions of tau (FTLD-tau), TAR DNA-binding 
protein 43 (TDP-43) (FTLD-TDP), and the FET family of 
proteins (FTLD-FET), with wide variation in clinical pres-
entation and prognosis [66]. FTLD-FET is the least common 
subtype, accounting for 5–10% of all FTLD patients; how-
ever, its exact frequency remains unknown, as neuropatho-
logical subtypes can only be diagnosed at autopsy [75, 92].

While the field has historically referred to the FTLD-
FET subtype as FTLD-FUS, it has been known for several 
years that FTLD-FUS inclusions also display immunore-
activity against transportin 1 (TNPO1), along with several 
other DNA/RNA-binding proteins that use TNPO1 as their 
import receptor, including Ewing’s sarcoma protein (EWS) 
and TATA-binding protein-associated factor 15 (TAF15), 
which together with FUS make up the FET family of pro-
teins [24, 73, 108]. FET proteins are multifunctional het-
erogeneous nuclear ribonucleoproteins (hnRNP) that shuttle 
between the nucleus and cytoplasm, playing essential roles 
in RNA transcription, splicing, and DNA repair [60, 91]. 

In addition, cytoplasmic mislocalization and aggregation of 
other hnRNPs were also reported in FTLD-FET [26]. Cryo-
genic electron microscopy (cryo-EM) recently solved the 
structure of the amyloid filaments extracted from the brains 
of four FTLD-FET patients, which were found to be TAF15, 
lending additional support to refer to this FTLD pathological 
subtype as FTLD-FET [65, 108]. The extent to which the 
pathogenic mechanism underlying FTLD-FET is related to 
TAF15, FUS, or a combination of dysfunctional hnRNPs is 
unknown.

Three subtypes have been identified within FTLD-FET: 
atypical FTLD with ubiquitin inclusions (aFTLD-U), neu-
ronal intermediate filament inclusion body disease (NIFID), 
and basophilic inclusion body disease (BIBD) [64, 74]. 
These subtypes differ in the morphology, subcellular locali-
zation, and anatomic distribution of FET inclusions, as well 
as immunoreactivity for other aggregating proteins, such as 
α-internexin (in the case of NIFID). Among the FTLD-FET 
subtypes, aFTLD-U is the most common, and it stands out 
for its characteristic clinical presentation of severe and pro-
gressive early-onset bvFTD, often with psychiatric symp-
toms, without language or motor problems [63, 90, 102]. 
Pathogenic variants in FUS and TAF15 are known causes of 
ALS but have not been identified in aFTLD-U patients [11, 
16, 52, 88, 111]. In fact, nearly all aFTLD-U patients appear 
sporadic, suggesting a complex disease etiology.

Despite significant progress in characterizing the neuro-
pathological features of FTLD-FET, a basic understanding 
of its etiology remains lacking, thereby severely hampering 
translational research efforts. To gain deeper insight into the 
molecular underpinnings of FTLD-FET, we performed bulk 
short-read RNA sequencing of frontal cortex tissue to inves-
tigate gene expression and splicing alterations. Notably, our 
findings indicate that most expression and splicing changes 
occur not in neurons but in astrocytes and oligodendrocytes. 
We also observed dysregulation of the Sonic Hedgehog sign-
aling pathway and the GLI1 transcription factor, which have 
not been previously implicated in aFTLD-U. This suggests a 
previously underappreciated role for glial dysfunction in the 
pathogenesis of aFTLD-U and potentially within the broader 
FTLD-FET spectrum.

Materials and methods

RNA sequencing

RNA was extracted from frontal-cortex tissue using the 
RNeasy Plus mini kit (Qiagen), and RNA quality and quan-
tity were assessed using an Agilent 2100 Bioanalyzer and 
the RNA Nano Chip (Agilent Technologies). Only samples 
with an RNA integrity number (RIN) above seven were 
included in the study. Samples from 21 aFTLD-U patients 
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and 20 neuropathologically normal controls passed qual-
ity control and were designated as the discovery cohort for 
downstream analysis (Supplementary Table 1). Patients were 
ascertained from multiple sites, including Erasmus Medi-
cal Center (n = 6), Ludwig-Maximilians University (n = 2), 
Mayo Clinic Brain Bank (n = 5), the University of Sydney 
(n = 3), the University of California San Francisco (n = 3), 
and the University of British Columbia (n = 2); all controls 
were ascertained at the Mayo Clinic Brain Bank (n = 20). 
Due to limited sample availability, the final study cohort 
was not systematically matched for age and sex (aFTLD-U: 
17 male/4 female, mean age at death 49.2 years; controls: 
7 male/13 female, mean age at death 82.4 years). Library 
preparation was performed using Illumina TruSeq mRNA 
v2 kit and sequenced at 10 samples/lane as paired-end 101 
base pair reads on the Illumina HiSeq4000. Read quality was 
assessed with FastQC, followed by read trimming and filter-
ing with Trimmomatic (with parameters: HEADCROP:10, 
MINLEN:36) before spliced alignment to the reference 
genome (GRCh38) using HISAT2 [44]. Gene-level expres-
sion was quantified using HTSeq count, in unstranded mode, 
using the GTF file for GRCh38 from Ensembl [3].

Cell‑type proportion estimation

The CIBERSORTx cell-type deconvolution method was 
used to estimate the proportions of different brain cell types 
in bulk RNA-Seq data [77]. The input for CIBERSORTx 
was read counts converted to Reads Per Kilobase per Mil-
lion mapped reads (RPKM), normalized with the conditional 
quantile normalization (CQN) method [78]. We used expres-
sion data of 10,319 human adult frontal cortex nuclei (10× 
snRNA-seq) from the study of Lake et al. for the CIBER-
SORTx signature matrix to represent the expression pro-
files of the major brain cell types [53]. The signature matrix 
contained 9576 genes distinguishing six human brain cell 
types (astrocytes, endothelial cells, microglia, oligodendro-
cytes, excitatory and inhibitory neurons) [53, 105]. Since 
CIBERSORTx is known to have difficulties estimating lowly 
abundant cell types [80], we did not use the estimated micro-
glial proportion for the downstream analyses. We used the 
Wilcoxon rank-sum test with Bonferroni adjusted P value to 
test whether the cell type proportions differed significantly 
between aFTLD-U patients and controls. The distribution 
of cell-type proportions was visualized using ggplot2 [116].

Differential expression analyses

Statistical analyses and plots were generated using R pack-
ages from CRAN and Bioconductor. Differential expression 
analysis was performed using DESeq2 [61]. The genes with 
fewer than 20 samples containing at least 10 supporting 
reads were excluded, leaving 17,929 genes for analysis. To 

assess global transcriptional differences between aFTLD-
U and control samples, we performed principal compo-
nent analysis (PCA) using variance-stabilized counts from 
DESeq2.

To test for differential expression, the first model included 
RIN, sex, age at death, experimental batch, and disease 
group as covariates. To account for differences in cell-type 
compositions in our model, a PCA was performed on the 
estimated cell-type proportions obtained from CIBER-
SORTx. The first three principal components (PCs), which 
together explained over 90% of the variance, were included 
as covariates in a second model, in addition to the covariates 
mentioned above. Shrinkage was applied to the fold changes 
using the apeglm method for effect size shrinkage [119], 
and adjusted P values were determined based on multiple 
testing corrections with the Benjamini–Hochberg procedure. 
Genes were considered significantly differentially expressed 
genes (DEGs) when their adjusted P value was below 0.05. 
We considered the genes with log2FC > 0.3 upregulated and 
those with log2FC < − 0.3 as downregulated. DEGs were 
subsequently used in a pathway analysis separately for up- 
and downregulated genes with the enrichR package [50], 
using “GO Biological Process 2023” gene sets to determine 
pathway enrichment [2]. All expressed genes were used 
as the background set. DEGs were also used as input for a 
STRING protein–protein interaction (PPI) network analysis 
[107]. We used text-mining, experiments, databases, and co-
expression as interaction sources to construct a full STRING 
network. Interacting proteins with a high confidence of 0.7 
were used and unconnected nodes and nodes with only two 
connections were excluded. The visualizations were gener-
ated using the ggplot2 and plotEnrich packages.

Weighted gene co‑expression network analysis

We used the R package weighted gene co-expression net-
work analysis (WGCNA) to identify sets of highly correlated 
genes (modules) [54], using residual expression values as 
input. These residuals were obtained after CQN normali-
zation [32], followed by adjustment for covariates through 
a multivariable linear regression model. Only cell type 
composition (using the first three PCs of the proportions 
of cell types), RIN, and experimental batch could be used 
as covariates; age and gender were too unbalanced between 
the groups and could not be included in the generation of 
residual values for this specific analysis. We selected a 
power of 14 to achieve a scale-free topology. We used the 
blockwiseModules function with a minimum module size 
of 30 genes, a merge height of 0.35, a Pearson correlation 
coefficient, and the signed hybrid network type. Modules 
generated using these settings were represented by their first 
PC (module eigengene) and a unique color. Genes that did 
not fulfill the criteria for any of the modules were assigned 
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to the gray module. To assess the correlation of modules 
to aFTLD-U, we defined the controls as 1 and the aFTLD-
U group as 2. Highly correlated modules associated with 
aFTLD-U were annotated using the enrichR package [50], 
using “GO Biological Process 2023” gene sets to determine 
pathway enrichment.

Differential splicing analysis using LeafCutter

LeafCutter (v0.2.6) was used to identify differentially 
spliced genes between conditions [56]. It is optimized for 
finding novel splicing by clustering overlapping splice junc-
tion reads and comparing the contribution of each junction 
between conditions. Importantly, LeafCutter does not esti-
mate isoform abundance or exon inclusion levels but instead 
captures changes in local splicing events through the con-
struction of intron clusters, wherein overlapping introns 
are connected by the splice junction(s) they share. In this 
analysis, splice junctions from the STAR [21] aligner were 
extracted using Regtools [15]. STAR was selected over 
HISAT2 due to its enhanced sensitivity in detecting novel 
splice junctions [5, 21]. Junctions were extracted with the 
following parameters: minimum anchor length of 8 bp, mini-
mum intron length of 50 bp, and maximum intron length 
of 500,000 bp. To identify differential splicing events, a 
Dirichlet-Multinomial generalized linear model was applied 
using two separate models: one adjusting for the covariates 
of age, sex, RIN, and experimental batch, and the second 
model additionally included the first three PCs of the propor-
tions of cell types.

Originally, cell-type proportions were estimated using 
CIBERSORTx on HISAT2-aligned read counts. However, 
to ensure consistency with the STAR-aligned reads used for 
splicing analysis, we re-ran CIBERSORTx on STAR-aligned 
read counts. To assess the consistency between aligners, we 
computed pairwise correlations between cell-type propor-
tion estimates derived from HISAT2- and STAR-aligned 
reads. The normality of the data was assessed using the 
D’Agostino–Pearson omnibus test, and accordingly, either 
Pearson or Spearman correlation coefficients were computed 
(Supplementary Fig. 1a–e). PCs were then recalculated 
from the updated STAR-based estimates, and the first three 
PCs, which explained over 90% of the variance in cell-type 
proportions, were included as covariates in the extended 
splicing model. The annotation of the intron junctions was 
performed using the GENCODE v42 reference transcrip-
tome and subsequently classified into one of the following 
categories: annotated, novel annotated pair, novel acceptor 
(cryptic 3’), novel donor (cryptic 5’), novel acceptor and 
novel donor (cryptic_unanchored), ambiguous gene and 
unannotated (“unknown_strand”). In downstream analyses, 
junctions that mapped to more than one gene (“ambiguous 
gene”) and unannotated events were not considered.

The intron clusters were defined to be differentially 
spliced if they had an FDR < 0.05 and at least one intron 
excision event with a percentage spliced in difference 
|ΔPSI|≥ 5%. Significant clusters were classified as cassette 
exons, using leafviz, based on whether the cluster contained 
three splice junctions in the correct orientation, with two 
junctions flanking a central exon (inclusion junctions) and 
a third junction spanning the length of the cluster (skipping 
junction), and whether the inclusion and/or skipping junc-
tions were annotated in GENCODE (v42).

Pathway and STRING PPI network analyses were con-
ducted using the same methodology as those used for the 
differential expression analyses.

Assignment of genes to brain cell types based 
on expression specificity

To assess whether differentially expressed or spliced genes 
were enriched in expression in specific brain cell types, we 
performed a cell type enrichment analysis using publicly 
available data from the Human Protein Atlas (https://​www.​
prote​inatl​as.​org/) [42, 99]. For each analysis, two gene sets 
were defined: (1) a background list comprising all genes 
detected in the respective analysis and (2) a list of statis-
tically significant genes (e.g., differentially expressed or 
spliced).

Normalized expression values (nTPM) were used to quan-
tify gene expression across annotated brain cell types. A 
gene was classified as cell type-enriched if it exhibited a 
z-score ≥ 2 in a single cell type, and a log2FC > 0.3 between 
the top two most highly expressing cell types for that gene. 
This approach identified genes showing strong relative 
expression enrichment in a particular cell type.

Using a hypergeometric test, we determined whether 
there was an enrichment of genes assigned to a specific cell 
type among the significantly expressed or spliced genes. For 
each cell type, the number of enriched genes in the signifi-
cant list was compared against the number of enriched genes 
in the background list. P values were computed using the 
hypergeometric distribution, and multiple testing corrections 
were performed using the Bonferroni method.

Additionally, to visualize cell-type expression patterns, 
we generated heatmaps displaying the expression of the 
top 50 differentially expressed and spliced genes across six 
major brain cell types: excitatory neurons, inhibitory neu-
rons, astrocytes, microglia, oligodendrocytes, and oligoden-
drocyte precursor cells (OPCs). Heatmaps were generated 
using the R package pheatmap [48].

Quantitative PCR

Two independent cohorts of postmortem frontal cortex tis-
sue from aFTLD-U patients and controls were included 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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(Supplementary Table 1). The validation cohort consisted 
of 11 aFTLD-U patients and 8 neuropathologically nor-
mal control individuals, already included in the bulk RNA 
sequencing data. The replication cohort comprised 11 addi-
tional aFTLD-U patients and 10 controls from different sites, 
including Erasmus Medical Center (n = 3 aFTLD-U, n = 4 
controls), Mayo Clinic Brain Bank (n = 1 aFTLD-U, n = 1 
control), London Health Sciences Center (n = 1 aFTLD-
U), University of California San Francisco (n = 1 aFTLD-
U), University of California San Diego (n = 1 aFTLD-U), 
University of Pittsburgh (n = 1 aFTLD-U), University of 
Texas Southwestern (n = 2 aFTLD-U, n = 1 controls), and 
the University of British Columbia (n = 1 aFTLD-U, n = 4 
controls). Similar to the discovery cohort, aFTLD-U and 
controls were not matched for age at death and sex (Sup-
plementary Table 1).

RNA was extracted from the selected samples using the 
RNeasy Mini kit (Qiagen). Quality control was performed 
using a fragment analyzer (Agilent), and the concentra-
tion was measured with a Qubit (ThermoFisher Scientific). 
Samples above RIN 5 were included for qPCR. 500 ng of 
RNA were reverse transcribed using the iScript™ comple-
mentary DNA (cDNA) (Bio-Rad) synthesis kit. Real-time 
quantitative PCRs (qPCRs) were performed using the Power 
SYBR™ Green PCR Master Mix (Applied Biosystems) on 
a QuantStudioTM 6 Flex Real-time PCR system (Applied 
Biosystems). The primer sequences can be found in Sup-
plementary Table 2.

The gene expression levels were quantified using the 
comparative Ct (2–ΔΔCt) method. The expression of the target 
genes was normalized to the geometric mean of two house-
keeping genes, RPLP0 and UBE2DE, and the results are 
presented as relative quantity (RQ) values compared to those 
of the control group. For genes associated with alternative 
splicing events, two sets of event-specific primers were 
designed for each gene to distinguish between alternative 
events of interest. To enable a direct comparison between 
qPCR-based splicing estimates and PSI values from Leaf-
cutter, Percentage Spliced-In (PSI) was calculated for each 
sample. PSI was determined by dividing the RQ value of one 
event by the sum of the RQ values of both events of a gene. 
This approach enabled a quantitative assessment of event 
abundance and validated the splicing changes observed in 
transcriptomic analyses.

In all experiments, data are represented as mean ± SD. 
The normality of the data was assessed using the 
D’Agostino–Pearson omnibus test. For comparisons between 
the two groups, as appropriate, either Student’s t test (for 
normally distributed data) or the Mann–Whitney U test 
(for non-normally distributed data) was used. Correlation 
analyses were performed using either Pearson’s correlation 
coefficient (for normally distributed data) or Spearman’s 
correlation coefficient (for non-normally distributed data), 

based on the normality test results. Statistical analyses were 
conducted using GraphPad Prism (GraphPad Software, San 
Diego, CA). A P value < 0.05 was considered statistically 
significant.

MBP immunohistochemistry

Immunohistochemistry was performed on four micrometer 
thick sections of formalin fixed, paraffin embedded post-
mortem brain tissue from deep frontal lobe white matter 
(level of the genu of the corpus callosum) from 9 individu-
als with aFTLD-U, 7 neuropathologically normal controls, 
and 9 FTLD-TDP patients obtained from the University 
of British Columbia brain bank (Supplementary Table 1). 
Immunostaining was performed using the DAKO automated 
immunostainer, with a primary antibody that recognizes 
myelin basic protein (MBP) (Sigma Aldrich, anti-MBP, 
1:200). Slides were digitally scanned at 40× magnification 
and the amount of specific staining within a representative 
7 mm2 region (3 mm diameter circle) in the center of the 
section was quantified using the Leica Aperio ImageScope 
Positive Pixel Count algorithm. The percentage of stained 
surface area was determined by calculating the propor-
tion of total pixels within the area of interest with at least 
medium positivity. Statistical analysis was performed using 
Kruskal–Wallis test, followed by Dunn’s multiple com-
parisons with Bonferroni correction. Data are reported as 
median, with 95% confidence intervals.

Luxol fast blue myelin staining

Standard Luxol fast blue stain with hematoxylin and eosin 
counter stain (LFB/HE) was performed on six micrometer 
thick sections of formalin-fixed, paraffin-embedded mate-
rial to visualize overall myelin distribution [62]. The stained 
sections were from the same region as used for the MBP 
immunohistochemistry and performed on selected individu-
als, chosen to have MBP staining levels closest to the group 
mean.

Results

Altered cell‑type composition and dysregulated 
gene expression in mitochondrial and Sonic 
hedgehog (Shh) pathways in aFTLD‑U

We performed RNA sequencing on the frontal cortex tis-
sue of 21 aFTLD-U patients and 20 neuropathologically 
normal controls (Supplementary Table 1). The selection of 
patients was based on tissue availability at the time of the 
experiment and RIN, with representation of patients from 
multiple sites and only including aFTLD-U patients with 
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Caucasian ethnicity and with the classical clinical presen-
tation of bvFTD. PCA revealed global transcriptional dif-
ferences between aFTLD-U patients and controls (Fig. 1a). 
Since an altered cellular proportion resulting from neuro-
degeneration was expected, we first used CIBERSORTx to 
perform cell-type deconvolution for major cell types in the 
brain. Relative to controls, we found a significant loss of 
excitatory neurons (mean ± SD: 0.03 ± 0.06 in aFTLD-U vs. 

0.24 ± 0.03 in controls, Wilcoxon rank-sum test, Bonferroni 
adjustment-p value = 0.0002) as well as a larger proportion 
of astrocytes in aFTLD-U patients as compared to controls 
(mean ± SD: 0.41 ± 0.18 in aFTLD-U vs. 0.17 ± 0.12 in 
controls, Wilcoxon rank-sum test, Bonferroni adjustment-p 
value = 0.00008) (Fig. 1b).

Without adjustment for cell type proportions, 3998 
genes were differentially expressed between aFTLD-U 
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patients and controls (adjusted p value < 0.05), including 
2096 genes upregulated (log2FC > 0.3) and 1902 genes 
downregulated (log2FC < − 0.3) (Supplementary Fig. 2 
and Supplementary Table 3). However, when adjusting 
for cell-type proportions by using the first three PCs of 
the cell-type proportions estimated by CIBERSORTx, 271 
genes were significantly different (adjusted p value < 0.05), 
including 134 genes upregulated (log2FC > 0.3), and 137 
genes downregulated (log2FC < − 0.3) (Fig. 1c and Sup-
plementary Table 4). SYTL4 and SEMA3D (log2FC = 2.29, 
adjusted p value = 1.60E−05 and log2FC = 2.55, adjusted p 
value = 3.30E-06, respectively) were the most significantly 
upregulated genes in aFTLD-U. To further investigate the 
expression changes, we generated a heatmap for the top 30 
DEGs based on the adjusted P value. The heatmap showed 
a clear separation between aFTLD-U and control samples, 
supporting the presence of condition-specific transcriptional 
signatures (Fig. 1d).

Pathway enrichment analyses were performed on DEGs 
identified after correction for cell type proportions. Upregu-
lated genes were enriched for terms related to transcription 
regulation including DNA-templated transcription (adjusted 
p value = 8.12E−05), regulation of transcription by RNA 
Polymerase II (adjusted p value = 1.63E−04), and signal-
ing pathways including regulation of Smoothened signaling 

pathway (adjusted p value = 5.52E−03), while downregu-
lated genes showed enrichment for terms related to mito-
chondrial electron transport including aerobic electron trans-
port chain (adjusted p value = 2.16E−13), and mitochondrial 
respiratory chain (adjusted p value = 9.88E−08) (Supple-
mentary Table 6, Supplementary Fig. 3a, b, respectively). 
The results of pathway enrichment analyses without cell type 
correction are included in the supplementary results (Sup-
plementary Table 5, Supplementary Fig. 3c, d, respectively). 
As an alternative approach, we also performed module-level 
analyses using WGCNA, which identified similar dysregu-
lated pathways. The top negatively correlated module with 
aFTLD-U was enriched for terms focusing on cellular respi-
ration and proton motive force-driven ATP synthesis (green, 
Pearson Cor = − 0.43, p value = 0.006). A second module, 
negatively correlated with aFTLD-U, was enriched for terms 
related to synaptic signaling (blue, Pearson Cor = − 0.41, 
p value = 0.008). The highest positively correlated module 
was enriched for terms related to the regulation of gene 
transcription and translation (red, Pearson Cor = 0.41, p 
value = 0.008) (Supplementary Table 7, Supplementary 
Fig. 4a–c, respectively).

To better visualize the overrepresented pathways and 
identify protein networks dysregulated in aFTLD-U, we 
generated STRING PPI networks using the 271 dysregu-
lated genes. This analysis showed a large cluster of proteins 
involved in mitochondrial function (e.g., COX8A, COX7B, 
COX6C, NDUFA6, ATP5MG) weakly linked to a group of 
proteins related to cytoskeletal organization, cell adhesion, 
and migration (e.g., KANK1, TLN1, AHNAK, SYNM). The 
second largest protein network was related to various signal-
ing pathway regulators (e.g., KIF7, GLI1, PTCH1, SMAD4, 
and YAP1) (Fig. 1e). Interestingly, this network included 
KIF7, GLI1, and PTCH1, which are all crucial elements 
of the Shh signaling pathway in line with the enrichment 
term associated with the regulation of smoothened signaling 
pathway identified above (smoothened is a transmembrane 
protein that is a key component of the Shh pathway). In fact, 
the transcription factor GLI1 was among the most upregu-
lated genes in all our analyses (log2FC = 2.74, adjusted p 
value = 1.09E−07 without correction for cell type propor-
tions; and log2FC = 1.90, adjusted p value = 0.007 with cor-
rection for cell type proportions) (Fig. 1f).

To validate these findings, we performed qPCR in a sub-
set of aFTLD-U patients and controls included in the RNA-
seq study. This analysis confirmed the significant increase of 
GLI1 in aFTLD-U patients (p value = 0.0042) (Fig. 1g), with 
a strong correlation of expression values between both tech-
niques (Spearman Cor = 0.81, p value = 0.00003) (Supple-
mentary Fig. 5). Next, we evaluated GLI1 expression in an 
independent cohort that included an additional 11 aFTLD-U 
and 10 controls, replicating the significant increase in GLI1 
in aFTLD-U patients (p value = 0.02) (Fig. 1h). Analysis of 

Fig. 1   Transcriptomic analyses in aFTLD-U versus controls. (a) Prin-
cipal component (PC) analyses of frontal cortex bulk transcriptome 
data in 21 aFTLD-U patients (orange) and 20 control individuals 
(purple). Females are indicated with a circle, and males with a trian-
gle. (b) Cell-type deconvolution shows estimated proportions of five 
cell types by CIBERSORTx (astrocytes, endothelial cells, excitatory 
neurons, inhibitory neurons, and oligodendrocytes).  Wilcoxon rank-
sum test, Bonferroni adjustment-p value (***P ≤ 0.001) (c) Volcano 
plot representing the differentially expressed genes in aFTLD-U 
patients versus controls, with adjustment for cell-type proportions. 
The fold change is presented in a log2 scale at the x-axis, while the 
adjusted P value is presented on the y-axis on a − log10  scale. (d) 
Heat map of the top 30 most significant genes from the differential 
gene expression analyses with adjustment for cell-type proportions. 
(e) STRING protein–protein interaction (PPI) network analysis on 
the DEGs. Disconnected nodes and nodes with only two connec-
tions are removed. We used a full STRING network; the edges rep-
resent both functional and physical protein associations. Line color 
indicates the type of interaction evidence. All colored nodes rep-
resent query proteins and the first shell of interactors. (f) Variance-
stabilized transformed (VST) expression values of GLI1 from bulk 
RNA sequencing data showed significantly higher expression in 
aFTLD-U patients compared to controls (t test, p value < 0.0001). (g) 
Relative quantification (RQ) values from qPCR validation for GLI1 
showed an increased level of GLI1 in aFTLD-U patients compared 
to the controls (t test, p value = 0.0042). (h) Relative quantification 
(RQ) values from qPCR replication of GLI1 expression, confirming 
increased expression in aFTLD-U patients (Mann–Whitney U test, p 
value = 0.0295). (i) A combined analysis of the validation and replica-
tion cohorts for GLI1 expression confirmed increased expression in 
aFTLD-U patients (Mann–Whitney U test, p value = 0.0003). In all 
plots, each dot represents an individual sample, and the data are rep-
resented as mean ± SD

◂
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the combined cohort further supported a robust upregulation 
of GLI1 in aFTLD-U (p value = 0.0003) (Fig. 1i).

Finally, we performed a cell type enrichment analy-
sis to determine whether DEGs were disproportionately 
associated with specific brain cell types based on their cell 
type–specific expression pattern. Among the 32 DEGs 
with cell type–enriched expression, genes associated with 
both oligodendrocytes and astrocytes were enriched com-
pared to their proportions in the background set of 1356 
cell–type–enriched genes. Astrocyte-enriched genes showed 
a 2.17-fold enrichment among DEGs (a total of 11/32 from 
DEGs vs. 214/1356 from the background; Bonferroni-
adjusted p value = 0.04). Also, oligodendrocyte-enriched 
genes exhibited a significant 1.96-fold enrichment (a total of 
14/32 from DEGs vs. 302/1356 from the background; Bon-
ferroni-adjusted p value = 0.03) (Supplementary Table 8). 
Visualization of the top 50 DEGs, using the nTPM values 
from the major brain cell types in Human Protein Atlas data, 
revealed many genes with high expression in astrocytes and 
oligodendrocytes, including 4 astrocyte- and 5 oligodendro-
cyte-enriched genes (Supplementary Fig. 6, Supplementary 
Table 8).

Dysregulation of gene splicing 
in oligodendrocyte‑enriched genes in aFTLD‑U

In a differential splicing analysis using LeafCutter, we iden-
tified 3509 differentially spliced events distributed across 
1432 clusters (FDR < 0.05, |ΔPSI|≥ 5%) corresponding 
to 1230 unique genes without adjusting for cell type pro-
portions (Supplementary Table 9, Supplementary Figs. 7 
and 8a). Of these clusters, 399 were categorized as cas-
sette exons with primary skipped (74.93%), 19.54% were 
included, and 5.26% were categorized as complex. We also 
identified 306 novel splicing events, including novel anno-
tated pair (n = 123), cryptic 5’ (n = 88), cryptic 3’ (n = 85), 
and cryptic unanchored (n = 10) (Supplementary Table 9, 
Supplementary Fig. 8b).

Pathway enrichment analysis on these gene sets revealed 
associations with neuronal development process, regulation 
of GTPase activity, and regulation of RNA splicing (Sup-
plementary Table 10, Supplementary Fig. 8c).

To more accurately capture disease-specific splicing 
changes, we adjusted our model for the first three PCs of 
the cell-type proportions. After this adjustment, we observed 
a notable reduction in the number of significant splicing 
events (Fig. 2a, Supplementary Fig. 8a); however, we still 
identified 624 differentially spliced events distributed across 
249 clusters and 227 unique genes. Among these 249 clus-
ters exhibiting differentially spliced events, 65 were labeled 
cassette exons. 72.30% of these cassette exons were skipped, 
13.84% were included, and 13.84% were complex. Of all 
the 624 differentially spliced events, 85 were categorized as 

novel, with novel annotated pair (n = 27), cryptic 5’ (n = 31), 
cryptic 3’ (n = 20), and cryptic unanchored (n = 7) (Supple-
mentary Table 11, Supplementary Fig. 8b). No significant 
enriched pathways were found for this analysis (Supplemen-
tary Fig. 8d, Supplementary Table 12).

To better identify protein networks dysregulated in 
aFTLD-U, we next generated STRING protein–protein inter-
action (PPI) networks using the 227 differentially spliced 
genes (Fig. 2b). This analysis showed a large cluster of pro-
teins involved in cytoskeletal structure, with FYN interact-
ing with other proteins, including NCAM1, NTRRK2, and 
GRIN1. Additionally, this cluster was linked to the proteins 
involved in cytoskeletal organization and cell adhesion, 
including BCAR1, CTTN, and TLN1, which were con-
nected to the myosin family of proteins, with MYO6 as a 
node. The splicing event in FYN corresponds to intron 9 of 
ENST00000368682.8 and intron 8 of ENST00000368678.8 
(chr6:111,696,456–111,699,515, FDR = 0.002, ΔPSI = 0.11). 
The second cluster from the PPI network was related to pro-
teins that function in splicing, including U2AF1 as a cen-
tral node, interacting with multiple RNA-binding proteins, 
including RBM39, PRPF40A, HNRNPM, ZNF207, SF3A3, 
and SON.

Splicing events in CLDND1 and MBP were the most 
significant, even after adjustment for cell type propor-
tions (Fig.  2a). Specifically, in the aFTLD-U patients, 
we observed an increased inclusion of an annotated 
junction chr3:98,521,442–98,522,849 of CLDND1 
(FDR = 1.84E−16, ΔPSI = 0.30) (Fig.  2c, Supplemen-
tary Fig.  9a,b), that results from the skipping of exon 
2 in ENST00000507874.5, ENST00000394180.6, 
E N ST 0 0 0 0 0 3 9 4 1 8 5 . 6 ,  E N ST 0 0 0 0 0 3 9 4 1 8 1 . 6 , 
ENST00000510545.5. In the case of MBP, we identified sig-
nificantly more skipping of exon 7 of the canonical transcript 
of MBP (chr18:76,984,894–76,988,877, FDR = 5.64E−10, 
ΔPSI = 0.20) (Fig. 2d, Supplementary Fig. 10a, b). We per-
formed qPCR and calculated the PSI values to validate and 
replicate these findings. In the validation cohort, we con-
firmed these splicing events in CLDND1 (p value = 0.001) 
(Supplementary Fig. 9c) and MBP (p value = 0.003) (Sup-
plementary Fig. 10c) with a strong correlation between 
the qPCR and RNA-seq values for CLDND1 (Pearson 
Cor = 0.88, p value = 9.4e−07) (Supplementary Fig. 9e) 
and MBP (Pearson Cor = 0.87, p value = 1.7e−06) (Supple-
mentary Fig. 10e). While these splice changes did not reach 
significance in the replication cohort (CLDND1, p value 
= 0.45; MBP, p value = 0.37) (Supplementary Fig. 9d and 
10d, respectively), statistically significant differential splic-
ing was observed in the combined cohort for both genes 
(CLDND1, p value = 0.007; MBP, p value = 0.008) (Fig. 2e 
and f, respectively).

To further explore the cellular specificity of the differen-
tially spliced genes, we performed a cell-type enrichment 
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analysis. We identified 23 cell type–enriched genes among 
the significant splicing events and 534 cell–type–enriched 
genes within the background gene set. Notably, 15 from the 
23 significantly differentially spliced genes were enriched in 
oligodendrocytes, which represents a 1.65-fold enrichment, 
almost reaching statistical significance after multiple testing 
correction (Bonferroni-adjusted p value = 0.06) (Supplemen-
tary Table 13). Supporting this, visualization of the top 50 
differentially spliced genes using the nTPM values from the 

Human Protein Atlas data showed that many of these genes 
(24 out of the 50) are highly expressed in oligodendrocytes 
with 4 oligodendrocyte-enriched genes (Supplementary 
Fig. 11, Supplementary Table 13).

Significant reduction in MBP staining in aFTLD‑U

As the most differentially spliced genes were key oligo-
dendrocyte genes, including MBP, and most differentially 

Fig. 2   Splicing alteration in aFTLD-U versus controls. (a) Vol-
cano plot of differentially spliced events in aFTLD-U versus con-
trols adjusted by cell type proportions. In dark blue, events within 
a significant cluster (FDR < 0.05) and a |ΔPSI|≥ 5%. (b) STRING 
protein–protein interaction (PPI) network analysis on the signifi-
cantly differentially spliced genes. Disconnected nodes and nodes 
with only two connections are removed. (c, d) Schematic represen-
tation of the splicing events observed in CLDND1 and MBP. Exons 
are represented as dark blue boxes, and splice junctions are shown 
as curved lines. Figure created with Biorender. Below each sche-

matic, tables display the chromosomal coordinates of the splice 
junctions, and PSI values for aFTLD-U patients and controls are 
indicated in the table. (e) Combined data of the validation and repli-
cation cohorts for CLDND1 showed significant differences in splicing 
(chr3:98,521,442–98,522,849) between aFTLD-U patients and con-
trols (t test, p value = 0.0077) (f) Combined data of the validation and 
replication cohorts for MBP showed significant differences in splicing 
(chr18:76,984,894–76,988,877) between aFTLD-U patients and con-
trols (t test, p value = 0.0087). In all plots, each dot represents an indi-
vidual sample, and the data are represented as mean ± SD
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spliced genes were enriched in expression in oligodendro-
cytes, we performed immunohistochemistry to assess myelin 
content in deep cerebral white matter. Immunohistochem-
istry for MBP showed a significant reduction in staining in 
the aFTLD-U group compared to controls and FTLD-TDP 
patients (Fig. 3a–c, respectively). The mean proportion of 
surface area stained for MBP in aFTLD-U patients was 
76.24 ± 10.56%, while controls and FTLD-TDP had signifi-
cantly higher mean values of 88.07 ± 3.32% (p value = 0.02) 
for controls and 87.68 ± 2.96% for FTLD-TDP patients (p 
value = 0.04) (Fig. 3d). LFB/HE staining in representative 
individuals from each group confirmed the marked reduction 
in myelin in an aFTLD-U patient compared to a control and 
FTLD-TDP patient (Supplementary Fig. 12).

Discussion

Since the initial description of aFTLD-U as a distinct patho-
logical subtype of FTLD characterized by FUS as the path-
ological protein almost 15 years ago [75], most progress 
has been made in the characterization of the pathological 
aggregates and the comparison with pathology in ALS-
FUS, including the change in designation from FTLD-FUS 
to FTLD-FET and the hypothesis that other mechanisms 
(potentially upstream of the FET proteins) may induce the 
protein aggregation in these patients [24, 65, 73]. In this 
study, we provide insights into the pathophysiological mech-
anisms underlying aFTLD-U by performing the first unbi-
ased transcriptome sequencing study in this disease, compar-
ing gene expression and alternative splicing patterns in an 
affected region, the frontal cortex, of aFTLD-U patients and 
neuropathologically normal individuals.

As expected from the analysis of affected brain tissue, 
we found robust shifts in brain cell-type abundance using 
cell-type deconvolution in aFTLD-U, with a notable selec-
tive loss of excitatory neurons and a strong and significant 
increase in the relative abundance of astrocytic markers 
compared to controls. A similar selective vulnerability of 
excitatory neurons has been identified in other neurode-
generative diseases. The estimated higher proportion of 
astrocytes in aFTLD-U patients may be related to astro-
cyte activation. Astrocytes contribute to the regulation 
of neuronal activity and are involved in clearing debris 
and maintaining brain homeostasis. In response to neuro-
degeneration, they produce pro-inflammatory cytokines, 
chemokines, and reactive oxygen species that contribute 
to the state of neuroinflammation [27, 58, 86]. While this 
may initially be beneficial for removing protein aggregates 
and dying neurons, sustained inflammatory responses can 
damage neurons and synapses, ultimately exacerbating 
neurodegeneration.

Using a differential gene expression approach with cor-
rection for age, sex, and cell type distributions, 271 DEGs 
were identified. The two genes with the most significant 
difference between aFTLD-U and controls were SEMA3D, 
involved in axon guidance and synapse formation through 
cytoskeleton reorganization [12, 22, 84] and SYTL4, which 
regulates synaptic vesicle function and intracellular signal-
ing via interaction with Rab GTPases [76, 106].

Focusing on pathway-enrichment analyses of the DEGs 
and co-expression network analyses, we consistently iden-
tified three distinct dysregulated pathways. In aFTLD-
U patients, we identified a decrease in the expression of 
mitochondrial function-related pathways (as compared to 
controls) and an increase in pathways related to nucleic 

Fig. 3   MBP immunohistochemistry. Immunohistochemistry for deep 
frontal lobe myelin in (a) patient with aFTLD-U pathology, (b) con-
trol, and (c) patient with FTLD-TDP pathology, with values closest to 
the mean for their respective groups. (d) Comparison of the percent-
age surface area of white matter stained for MBP (MBP FC) show-
ing significant reduction in aFTLD-U patients compared to controls 

(Dunn, Bonferroni-adjusted p value = 0.02) and FTLD-TDP patients 
(Dunn, Bonferroni-adjusted p value = 0.04) groups. The greater vari-
ability among aFTLD-U patients suggests heterogeneity in myelin 
loss severity. (a–c) MBP immunohistochemistry; scale bar, 80 μm. 
(d) Each dot represents one individual. Data is shown as median with 
95% confidence interval
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acid transcription and translation and the regulation of the 
smoothened signaling pathway.

The extensive mitochondrial dysfunction observed in the 
aFTLD-U patients included dysregulated genes from the 
NDUFA and COX gene families, which are essential parts of 
Complex I and IV and required for the proper functioning of 
the mitochondrial respiratory chain [81, 98]. Genes encod-
ing for the Mitochondrial ATP synthase (complex V) were 
also downregulated. There is increasing evidence for mito-
chondrial dysfunction in a range of neurological diseases, 
including FTLD-TDP, Alzheimer’s disease, Parkinson’s dis-
ease, Huntington’s disease, anxiety, and depression [4, 7, 10, 
14, 18, 59, 97, 100, 113, 114]. Mislocalization of FUS to the 
cytoplasm, as observed in aFTLD-U, was reported to dam-
age mitochondria by inducing mitochondrial fragmentation, 
and electron microscopy indeed confirmed mitochondrial 
deficits in FTLD-FET brains [19, 20, 71, 109]. Moreover, a 
recent study suggests an essential physiological role for FUS 
in mitochondrial DNA repair through its interaction and 
recruitment of mitochondrial Ligase IIIα to DNA damage 
sites within mitochondria, a process which may be compro-
mised due to the loss of normal FUS function in aFTLD-U 
patients [47].

The second dysregulated pathway, significantly upregu-
lated in aFTLD-U patients, centered around DNA and RNA 
transcription and translation. Given the multifunctional role 
of FET proteins as DNA/RNA-binding proteins involved 
in various cellular processes such as transcription regula-
tion, RNA splicing and transport, DNA repair, and damage 
response, alterations in these pathways were not unexpected 
and likely also relate to the loss of functional (nuclear) FUS, 
TAF15 and other aggregating proteins in disease.

The final dysregulated pathway involved the upregulation 
of GLI1 and PTCH1, key components of the Shh signaling 
pathway. The Shh pathway is critical for cell growth and dif-
ferentiation and has emerged as a modulator in adult neural 
tissues through mechanisms such as neurogenesis, anti-oxi-
dation, anti-inflammation, and autophagy [13]. Some studies 
have additionally suggested that the Shh pathway regulates 
key functional properties of astrocytes and their modulation 
of neuronal activity [23, 36], which aligns with our find-
ings in aFTLD-U, where many of the genes with altered 
expression showed astrocyte-enriched expression. Moreover, 
it has been shown that dysregulation of the Shh signaling 
pathway can contribute to mitochondrial dysfunction and 
neuronal apoptosis [83, 104]. Furthermore, previous studies 
have shown that the activation of the Shh pathway reduces 
mitochondrial damage and protects neurons against oxida-
tive stress and apoptosis in autism, PD, stroke, and Down 
syndrome [1, 17, 25, 39–41, 94, 110], further linking the 
dysregulated pathways we identified in aFTLD-U.

Importantly, proteins of the GLI family are translocated 
to the nucleus by TNPO1 upon Shh activation [31, 45, 95], 

resulting in the transcriptional activation of their target 
genes. These transcription factors also autoregulate PTCH1 
and GLI1 [8]. Moreover, TNPO1 itself is transcriptionally 
activated by the active form of GLI proteins [67, 79], and 
GLI1 and FUS were suggested to be transcriptional targets 
of each other [6, 117]. Thus, GLI, FET proteins, and TNPO1 
are interconnected, and defects in any of the steps in the Shh-
PTCH-GLI pathway could potentially lead to the accumula-
tion of TNPO1 and the proteins that depend on TNPO1 for 
nuclear import, including the FET proteins, which are found 
to accumulate in aFTLD-U. A suggested disease mechanism 
would be that GLI proteins are retained in the cytoplasm in 
aFTLD-U patients where TNPO1 is dysfunctional, leading 
to increased transcription of PTCH1 and an expected further 
increase in GLI1 expression to compensate for the insuffi-
cient nuclear GLI1 protein levels, placing TNPO1 dysfunc-
tion at a key regulatory position in FTLD-FET pathogenesis. 
Dysregulation of the Shh pathway may also contribute to the 
astrocytic changes we observed, increasing neuronal vulner-
ability and degeneration in aFTLD-U. Due to the feedback 
loops in this pathway, it is difficult to distinguish cause from 
consequence, and further experiments are necessary to test 
this hypothesis.

In addition to altered expression we also observed dif-
ferential splicing in aFTLD-U patients versus controls, in 
line with the important role of FET proteins in RNA pro-
cessing and splicing [57, 91]. While no significant path-
ways were identified based on the 227 unique differentially 
spliced genes, splicing changes were observed in multiple 
genes involved in myelination and cytoskeletal organization, 
including CLDND1, MBP, and FYN. Moreover, a near sig-
nificant increase was identified for oligodendrocyte-enriched 
genes among the differentially spliced genes. Specifically, 
from the 23 differentially spliced genes that were found to 
be enriched in a specific cell-type, 15 were enriched in oligo-
dendrocytes. This unexpected finding highlights the potential 
vulnerability of oligodendrocytes to FET protein dysfunc-
tion and suggests a possible role for these cells in the patho-
genesis of FTLD-FET. This is particularly interesting, as in 
all types of FTLD-FET, including aFTLD-U, there are glial 
cytoplasmic inclusions in cerebral white matter in cells with 
the morphology of oligodendrocytes [66, 75], further high-
lighting the significance of these findings. CLDND1, highly 
expressed in oligodendrocytes [118], was the most signifi-
cantly differentially spliced gene in our analysis. Although 
its precise function in the brain remains poorly understood, 
CLDND1 is known to contribute to the structural integrity 
of the blood–brain barrier [68, 96]. The altered splicing of 
CLDND1 may reflect changes in oligodendrocyte-endothe-
lial interactions or blood–brain barrier homeostasis, a phe-
nomenon that has been implicated in the pathophysiology of 
neurodegenerative disorders. We also observed significant 
alternative splicing in Myelin basic protein (MBP), encoding 
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a key structural protein of the myelin sheath, synthesized by 
oligodendrocytes in the central nervous system [30]. Alter-
native splicing of the MBP transcript results in different iso-
forms of myelin proteins, which are differentially expressed 
during development and myelination [9, 33, 89]. MBP also 
regulates the glial cytoskeleton and functions similarly to 
microtubule-associated proteins such as tau [35]. This sug-
gests that MBP dysregulation may contribute to cytoskeletal 
instability, which is a hallmark of neurodegenerative dis-
eases. Supporting this, the PPI network revealed a cluster of 
proteins involved in cytoskeletal structure, with FYN serving 
as a central node. Additionally, MBP has been shown to bind 
to FYN [82, 101]. FYN is involved in several signaling path-
ways during oligodendrocyte development and myelination 
[55, 70, 103]. In particular, FYN has been postulated to be 
a key regulatory element in the myelination process, trig-
gering the phosphorylation of hnRNPs responsible for the 
efficient transport of MBP mRNA to the site of developing 
oligodendrocyte processes in contact with neurons [38, 55, 
70, 93, 115]. Given that hnRNP dysfunction is implicated 
in aFTLD-U, disruptions in MBP mRNA transport may also 
contribute to disease pathology. While FYN is important 
for MBP mRNA transport, it also regulates additional pro-
cesses essential for oligodendrocyte growth and myelina-
tion through three major downstream pathways, influencing 
Rho-family GTPase signaling, microtubule cytoskeleton 
dynamics, and MBP translation [46, 49, 112]. These inter-
connected processes highlight the central role of FYN in 
maintaining oligodendrocyte function and myelin integrity. 
Immunohistochemistry for MBP also showed a significant 
reduction in myelin staining in the aFTLD-U patients, which 
was confirmed by LFB/HE staining, possibly reflecting a 
primary white matter involvement in disease pathogenesis.

Together, these findings reinforce the evolving under-
standing of glial cell functions. For a long time, glial cells 
have been considered supportive of neurons in the mam-
malian brain [34]. However, extensive research has revealed 
their diverse roles in neural function, development, and dis-
ease, and defects in glial cells are already implicated in many 
neurological diseases [28]. Dysregulation of astrocytes and 
oligodendrocytes in various pathological conditions may 
reflect a compensatory response to neuronal damage or 
broader disruptions in the central nervous system; however, 
it is also possible that the pathological process may origi-
nate within glial cells, highlighting their potential as primary 
drivers of neurodegeneration. Future functional studies are 
needed to investigate how alterations in astrocytes and oligo-
dendrocytes may modulate neuron-glial interactions in dis-
ease, including in aFTLD-U. Understanding these complex 
glial interactions is essential for developing targeted thera-
pies for neurodegenerative and neuroinflammatory diseases.

A limitation of our study is that bulk RNA sequencing 
lacks the resolution to fully capture cell-type specific gene 

expression or splicing events. Although we adjusted for dif-
ferences in the cell-type composition of our samples, this 
approach cannot entirely resolve such effects. Furthermore, 
aFTLD-U patients and control cohorts were not matched for 
age and sex. While we included these variables as covariates 
in our differential gene expression and differential splicing 
studies, we cannot exclude that these differences may have 
impacted our results. Moreover, short-read RNA sequencing 
has limitations in accurately resolving complex alternative 
splicing events. Long-read sequencing technologies can help 
in identifying and interpreting alternative splicing events. 
Therefore, future studies should investigate the expression 
levels of the identified pathways in specific cell types to 
elucidate which cell populations drive the detected associa-
tions (e.g., using purified cell populations or single-nuclei 
sequencing), preferably with long-read sequencing.

To conclude, transcriptional analyses confirmed altera-
tions in genes involved in DNA binding and transcriptional 
regulation, as well as in mitochondrial pathways, highlight-
ing the crucial roles of FET proteins in these biological pro-
cesses. We further report a novel link between aFTLD-U and 
alterations in key regulators of the Shh signaling pathway, 
as well as the involvement of astrocytes and oligodendro-
cytes in the disease process. Additionally, we observed a 
significant reduction in myelin levels in aFTLD-U patients 
compared to those in the control group. Overall, this study 
highlighted transcriptional changes in non-neuronal cell 
types in patients with aFTLD-U.
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