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Kupffer cell programming by maternal 
obesity triggers fatty liver disease
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Lukas Kenner5,6,7,8,9,10, Thomas Ulas11,12,13, Stephan Grein2, Joachim L. Schultze11,12,13, 
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Kupffer cells (KCs) are tissue-resident macrophages that colonize the liver early 
during embryogenesis1. Upon liver colonization, KCs rapidly acquire a tissue-specific 
transcriptional signature, mature alongside the developing liver and adapt to its 
functions1–3. Throughout development and adulthood, KCs perform distinct core 
functions that are essential for liver and organismal homeostasis, including supporting 
fetal erythropoiesis, postnatal erythrocyte recycling and liver metabolism4. However, 
whether perturbations of macrophage core functions during development contribute 
to or cause disease at postnatal stages is poorly understood. Here, we utilize a mouse 
model of maternal obesity to perturb KC functions during gestation. We show that 
offspring exposed to maternal obesity develop fatty liver disease, driven by aberrant 
developmental programming of KCs that persists into adulthood. Programmed KCs 
promote lipid uptake by hepatocytes through apolipoprotein secretion. KC depletion in 
neonate mice born to obese mothers, followed by replenishment with naive monocytes, 
rescues fatty liver disease. Furthermore, genetic ablation of the gene encoding 
hypoxia-inducible factor-α (HIF1α) in macrophages during gestation prevents  
the metabolic programming of KCs from oxidative phosphorylation to glycolysis, 
thereby averting the development of fatty liver disease. These results establish 
developmental perturbation of KC functions as a causal factor in fatty liver disease  
in adulthood and position fetal-derived macrophages as critical intergenerational 
messengers within the concept of developmental origins of health and diseases5.

Early-life environmental factors strongly influence the risk of devel-
oping non-communicable diseases in adulthood, a concept known 
as developmental origins of health and diseases (DOHaDs)5. Mater-
nal malnutrition, obesity, infection, environmental pollutants and 
psychosocial stress have been associated with metabolic disorders, 
neurological diseases, cancer and dysregulated immune responses in 
offspring6–11. At the cellular level, maternal immune activation can alter 

fetal haematopoietic stem and progenitor cells (HSPCs), contributing 
to neonatal sepsis12. A maternal high-fat diet (HFD) or viral infection 
can also program microglia, the brain-resident macrophages, leading 
to neuronal disorders9,13. However, it remains elusive whether mac-
rophages outside the brain can act as intergenerational messengers and 
causally contribute to disease onset, serving as cellular components 
in DOHaDs7,8.
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Tissue-resident macrophages, including KCs in the liver, are long- 
lived, yolk sac-derived cells that support tissue development and 
homeostasis via production of growth factors, signalling molecules, 
and phagocytosis of waste products and apoptotic cells4. The liver, one 
of the first organs colonized by macrophages1, exposes fetal KCs early 
to maternal blood components from the placenta14. Whether maternal 
environmental factors, particularly diet, influence KC development and 
functions, thereby leading to liver disease, remains unknown.

Metabolic dysfunction-associated fatty liver disease (MAFLD) 
is rising with global obesity15. MAFLD can progress to metabolic 
dysfunction-associated steatohepatitis, fibrosis and hepatocellular 
carcinoma. In diet-induced MAFLD, yolk sac-derived KCs can lose 
self-renewal and are, at least partially, replaced by monocyte-derived 
KC-like cells, diversifying the macrophage pool16–19. These macrophages 
adapt to the fatty liver environment, altering their epigenome and tran-
scriptome, and contribute to disease progression through the secre-
tion of inflammatory and non-inflammatory mediators19,20. Although 
our understanding of MAFLD and the role of KCs in disease progression 
to metabolic dysfunction-associated steatohepatitis is growing, it 
remains unclear how KCs respond to maternal obesity-induced fatty 
liver disease (FLD) in the offspring and whether they drive disease 
onset.

Here we show that maternal obesity induces a HIF1α-dependent 
metabolic reprogramming of yolk sac-derived KCs, persisting into 
adulthood and driving FLD. Using fate-mapping, depletion and condi-
tional knockout (KO) models, combined with multi-omic profiling, we 
identified KCs as intergenerational messengers that translate mater-
nal nutritional cues into long-lasting hepatic dysfunction. Our study 
uncovers a causal link between developmental KC perturbation and 
adult-onset FLD, positioning yolk sac-derived macrophages as central 
players in DOHaDs.

Maternal obesity causes fatty liver
Maternal obesity is associated with obesity and liver disease in offspring 
in humans and animal models21, yet mechanisms remain unclear. We 
hypothesized that KCs may contribute to FLD due to their early liver 
colonization and metabolic roles4. To test this hypothesis, C57BL/6Jrcc 
female mice were fed a HFD for 8 weeks, leading to increased body 
weight and homeostatic model for insulin resistance (HOMA-IR; 
Extended Data Fig. 1a,b). These diet conditions did not lead to maternal 
inflammation as assessed by serum cytokine and chemokine measure-
ments, with only interleukin-1α (IL-1α), C-C motif chemokine ligand 7 
(CCL7) and leptin being upregulated (Extended Data Fig. 1c,d). Females 
were then bred to control diet (CD)-fed males. To dissect gestational 
versus lactational effects, newborn mice were cross-fostered and/or 
weaned onto a CD or HFD (Fig. 1a, maternal obese groups). As maternal 
lean control groups, we analysed offspring born to CD females and fed 
with a CD throughout life or weaned on a HFD (Fig. 1a). At 11 weeks, 
the maternal obese groups fed with a CD after birth (HFDMCDLCD;  
M denotes maternal diet during gestation and L refers to foster mother 
diet during lactating phase) or weaning (HFDMHFDLCD) showed no 
differences in body weight or white adipose tissue (WAT) weight com-
pared with the maternal lean group on a CD (CDMCDLCD; Extended Data 
Fig. 1e). Only groups on a HFD postnatally (CDMCDLHFD, HFDMCDLHFD 
and HFDMHFDLHFD) developed obesity (Extended Data Fig. 1e), indicat-
ing that a post-weaning diet, not maternal obesity alone, determines 
overall body and WAT weight.

By contrast, liver lipid content increased in all maternal obese 
groups, as shown in the Oil-red-O (ORO) and haematoxylin and eosin 
(H&E) stainings, although the liver weight was similar in all conditions 
(Fig. 1b,c and Extended Data Fig. 1e,f). Both principal component analy-
sis (PCA; Fig. 1d) and hierarchical clustering of lipidomics analyses 
(Extended Data Fig. 1g) indicated that maternal obese groups with 
a CD as their final diet (HFD>CD) were distinct from all animals fed a 

HFD as their final diet (CD>HFD and HFD>HFD), all of which diverge 
from CDMCDLCD (CD>CD). Indeed, the HFDMCDLCD and HFDMHFDLCD 
groups showed a significant increase of lipid species, such as satu-
rated triacylglycerols, diacylglycerols and cholesterol esters, whereas 
maternal lean CDMCDLHFD as well as maternal obese HFDMCDLHFD 
and HFDMHFDLHFD groups showed only a moderate increase of lipid 
accumulation compared with CDMCDLCD livers.

We next performed serum metabolomics profiling of more than 900 
metabolites and lipids to test whether the observed FLD phenotype 
of offspring born to obese mothers is also associated with systemic 
alterations, which might even serve as specific biomarkers. Group 
differences primarily reflected final dietary status (CD versus HFD; 
Extended Data Fig. 1h and Supplementary Table 1). Comparing CDM-

CDLCD with HFDMCDLCD offspring, in which body composition was 
similar but the FLD phenotype was most prominent in HFDMCDLCD 
livers, revealed 129 significantly altered metabolites (Supplementary 
Table 2), which were enriched in the metabolic pathways ‘taurine and 
hypotaurine metabolism’, ‘arginine biosynthesis’ and ‘histidine metabo-
lism’ (Extended Data Fig. 1i). In particular, the glutamine:glutamate 
ratio, two amino acids that feed into arginine biosynthesis, was sig-
nificantly increased in HFDMCDLCD mice (Supplementary Table 2). 
Although generally decreased in FLD22, a maternal obesity model has 
reported an increased ratio correlating with liver metabolic state23, 
suggesting a biomarker for maternal obesity-driven FLD. In summary, 
maternal obesity induces a distinct FLD phenotype in offspring com-
pared with postnatal diet-induced FLD.

Maternal obesity reprograms KCs
We next characterized the maternal obesity-induced FLD phenotype 
focusing on hepatic myeloid cells, which have a critical role in FLD 
initiation and propagation24. Quantification confirmed increased neu-
trophils, monocytes and classical dendritic cells (cDC1 and cDC2) in 
HFDMCDLCD offspring (Extended Data Fig. 2a,b). KC numbers were 
increased across maternal obese groups, whereas liver capsular mac-
rophages were unaffected. Post-weaning HFD in maternal lean con-
trols (CDMCDLHFD) did not induce myeloid cell influx (Extended Data 
Fig. 2b). RNA sequencing (RNA-seq) on sorted KCs (Extended Data 
Fig. 2c) revealed clustering according to their in utero exposure to 
either lean (CD>) or obese (HFD>) mothers (Fig. 1e). Co-expression 
network analysis (hCo-Cena)25 identified five modules (Fig. 1f and Sup-
plementary Table 3). The steelblue module represented genes upregu-
lated by maternal obesity. Pathway enrichment analyses using Gene 
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and HALLMARK databases revealed an upregulation of genes related 
to ‘cell activation involved in immune response’. Among these genes 
was Trem2, which has been previously described to be upregulated 
in KCs during FLD17, and which was accompanied by its downstream 
signalling cascade molecules Tyrobp and Syk in the same module 
(Fig. 1g). In addition, Myd88, Gpnmb and the monocyte-specific genes 
Ccr2 and Cx3cr1 were found in the steelblue module with the highest 
expression in HFDMCDLCD KCs (Fig. 1g). Moreover, we found the term 
‘glycolysis/gluconeogenesis’ to be enriched in the steelblue module 
(Fig. 1f). By contrast, the turquoise and lightgreen modules indicated 
that metabolic processes such as ‘oxidative phosphorylation’, ‘cellular 
respiration’ and ‘xenobiotic metabolism’ were downregulated upon 
maternal obesity (Fig. 1f). Thus, maternal obesity causes an inflam-
matory response of KCs, and leads to an alteration of their metabolic 
status on a transcriptional level. To validate the transcriptional changes 
of KCs at the protein level, we performed spectral flow cytometry-based 
metabolic profiling26 of KCs from CDMCDLCD and HFDMCDLCD offspring 
(Extended Data Fig. 2d). Although most nutrient transporters and meta-
bolic enzymes involved in the glucose and lipid metabolic pathways 
remained unchanged, the enzyme succinate dehydrogenase (SDHA), a 
key component of the tricarboxylic acid cycle, and glucose transporter 1  
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(GLUT1) were reduced in HFDMCDLCD KCs compared with CDMCDLCD 
(Extended Data Fig. 2e). These findings indicate that maternal obesity 
impairs the metabolic capacity of offspring KCs.

To determine systemic effects, we assessed serum cytokines and bone 
marrow compartment cellularity. No systemic cytokine elevation or 
progenitor changes were observed (Extended Data Fig. 3a–c). Together, 
maternal obesity-induced FLD is accompanied by local inflammation 
and a switch of KCs from oxidative phosphorylation to glycolysis.

KCs retain yolk sac origin
Diet-induced FLD models show increased monocyte influx and 
replacement of yolk sac-derived KCs16–18. Our RNA-seq data hinted 
at a monocyte signature in KCs from maternal obesity offspring. To 
address KC ontogeny, we generated Tnfrsf11aCre;Rosa26LSL-YFP;Ms4a3FlpO; 
Rosa26FSF-tdTomato mice. This double fate mapper allows to follow ontog-
eny of yolk sac-derived pre-macrophages and bone marrow-derived 
monocytes simultaneously using a combination of conventional 
recombinase approaches (Fig. 2a,b). We have previously shown that 
Tnfrsf11aCre mice label pre-macrophages and their progeny efficiently1. 

However, Tnfrsf11a is a core macrophage gene1 whose expression is 
induced once monocytes differentiate into macrophages27,28 whereby 
fetal-derived and bone marrow-derived macrophages remain undis-
tinguishable. Thus, we additionally took advantage of the newly 
developed Ms4a3FlpO mice (Extended Data Fig. 4a), as we previously 
have shown that the Ms4a3 locus specifically targets monocytes and, 
thus, all monocyte-derived macrophages29. First, we confirmed that 
the fate-mapping efficiency of Ms4a3FlpO mice was as efficient as in 
Ms4a3Cre mice, with more than 95% Ly6C+ blood monocytes being 
labelled with tdTomato (tdT; Extended Data Fig. 4b,c). Among these 
monocytes, we observed a small fraction (approximately 13%) that 
already expressed YFP, suggesting that these cells already start to 
express a core macrophage program. However, none of the mono-
cytes was only YFP+, demonstrating that the double fate mapper can 
unequivocally distinguish between the yolk sac-derived and adult bone 
marrow-derived waves of haematopoiesis (Extended Data Fig. 4c). 
High YFP labelling was also confirmed in microglia that are yolk sac 
derived30,31 (Extended Data Fig. 4b,c). In 11–12-week-old CDMCDLCD 
livers, more than 96% of KCs were YFP+, with minimal tdT labelling 
(less than 1% for YFP+tdT+ and approximately 3% for tdT+; Fig. 2c and 
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Extended Data Fig. 4d), consistent with yolk sac origin1,29. Similarly, 
HFDMCDLCD KCs retained high YFP labelling (approximately 96%), 
despite the FLD phenotype and monocyte gene upregulation. Thus, 
KCs remain of yolk sac origin despite experiencing maternal obesity 
and a FLD environment during adulthood, and therefore can serve 
as intergenerational messengers conveying information that they 
experience in utero to adult life.

KC-derived factors cause lipid accumulation
We hypothesized that developmental programming of KCs by maternal 
obesity impairs their homeostatic function and promotes FLD via parac-
rine signalling. To test this hypothesis, we co-cultured hepatocytes with 
KCs from CDMCDLCD or HFDMCDLCD livers without direct cell contact, 
ensuring that only paracrine signalling occurred (Fig. 2d). Real-time 
lipid accumulation in hepatocytes was monitored using LD540 labelling 
to visualize neutral lipids via live-cell imaging. Hepatocytes co-cultured 
with HFDMCDLCD KCs exhibited significantly greater lipid accumula-
tion, as indicated by increased LD540 intensity after 4 h, compared with 
those co-cultured with CDMCDLCD KCs (Fig. 2e). Thus, KCs that have 
experienced dietary factors from obese mothers during embryogenesis 
exert their FLD-promoting function via paracrine signalling.

To further validate KC-dependent lipid accumulation in hepatocytes 
in vivo, we utilized the KC–diphtheria toxin receptor (DTR) mouse  

model32, in which human DTR is expressed under the control of the 
KC-specific Clec4f promoter, enabling targeted depletion of KCs 
within 24 h following a single dose of diphtheria toxin (Extended 
Data Fig. 5a,b). We generated HFDMCDLCD offspring with either the 
Clec4f DTR/+ or Clec4f +/+ genotype. At postnatal day 0 (P0), diphtheria 
toxin was injected to deplete KCs in Clec4f DTR/+, followed by transplan-
tation of tdT+ bone marrow monocytes and HSPCs from naive mice 
at P1 to replenish the KC niche (Fig. 2f and Extended Data Fig. 5c). 
We confirmed the presence of tdT+ KC-like cells in the adult liver of 
Clec4f DTR/+ mice, despite a large fraction of KC-like cells originating 
also from endogenous tdT− progenitors (Extended Data Fig. 5d). This 
treatment effectively rescued the fatty liver phenotype in Clec4f DTR/+ 
HFDMCDLCD mice, as evidenced by reduced lipid droplet accumula-
tion in hepatocytes, demonstrated by ORO and H&E staining (Fig. 2g,h 
and Extended Data Fig. 5e). By contrast, Clec4f +/+ littermates receiving 
the same diphtheria toxin injection and cell transfer retained lipid 
accumulation, consistent with observations in C57BL/6Jrcc mice 
(Fig. 1b,c). Moreover, replenishment of the empty KC niche solely 
by endogenous monocytes or HSPCs and residual KCs (Clec4f DTR/+ 
mice injected with diphtheria toxin but without any cell transfer from 
a naive source), did not rescue the fatty liver phenotype (Fig. 2g,h 
and Extended Data Fig. 5e), indicating that HSPCs themselves may 
be developmentally programmed, as previously reported33,34. 
In summary, we demonstrate that KC-derived paracrine factors 
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on 2 experimental days) mice. The bar graphs show the mean ± s.d. d, Schematic 
of hepatocyte culture isolated from chow diet-fed mice with KC addition 
isolated from CDMCDLCD or HFDMCDLCD mice, respectively, which were 
recorded for lipid accumulation for a 4-h time course. e, Lipid accumulation 
shown by normalized LD540 intensity through live imaging in ex vivo-cultured 
hepatocytes co-cultured for 4 h with KCs from CDMCDLCD or HFDMCDLCD mice. 
n = 3 for CDMCDLCD or HFDMCDLCD mice with technical duplicates. Two-way 

ANOVA with Sidak’s multiple comparison test on biological samples was  
used. f, Generation of KC depletion and cell transfer maternal obesity  
model. Diphtheria toxin (DT) indicated by the skull symbol. Monocyte and 
haematopoietic stem and progenitor cells (Mono/HSPCs) indicated by the red 
cell. g, Liver ORO staining in HFDMCDLCD offspring generated as shown in panel f. 
n = 4, 5 and 9 mice for Clec4f +/+ with DT and Mono/HSPCs, Clec4f DTR/+ with DT, 
Clec4f DTR/+ with DT and Mono/HSPCs, respectively, on 7 experimental days. 
Scale bars, 200 µm. h, ORO staining quantification of panel g by QuPath. Violin 
plots were created from n = 10 images per mouse, and the median and quartile 
of all images are shown. Each triangle represents the mean of all images per 
mouse. A two-tailed Mann–Whitney test was used, comparing the mean of  
all biological samples. The illustrations of the mice in panel a, the schematics  
in panels b,d, the model in panel f, and the illustrations of the skull and red cell 
in panels g,h were created in BioRender. Mass, E. (2025) https://BioRender.
com/5hrtyf4; https://BioRender.com/hh2dq2m; https://BioRender.com/
hgceyko; https://BioRender.com/1don7ps.

https://BioRender.com/5hrtyf4
https://BioRender.com/5hrtyf4
https://BioRender.com/hh2dq2m
https://BioRender.com/hgceyko
https://BioRender.com/hgceyko
https://BioRender.com/1don7ps
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drive lipid accumulation in hepatocytes in the offspring of obese  
mothers.

HIF1α drives KC programming
As HIF1α regulates the metabolic switch of macrophages from oxida-
tive phosphorylation to glycolysis35,36, we tested whether preventing 
HIF1α-dependent developmental programming of KCs by maternal 
obesity would rescue the FLD phenotype. We used LysM Cre;Hif1a f/f mice, 
in which Hif1a is depleted in macrophages and other myeloid cells37. 
As maternal diet during lactation showed minimal impact (Fig. 1), we 
focused on the dietary switch after birth in the maternal obese groups 
and used HFD-fed animals after weaning as control groups (Fig. 3a). 
Both Hif1a f/f (wild type (WT)) and LysM Cre;Hif1a f/f (KO) littermates gained 

body weight and WAT weight when the end diet was a HFD (CDMHFD 
and HFDMHFD), indicating that myeloid-specific loss of HIF1α does not 
prevent diet-induced obesity (Extended Data Fig. 6a).

Next, we focused on the liver phenotype. As in the C57BL/6Jrcc mice, 
the total liver weight remained unaltered (Extended Data Fig. 6a), and 
Hif1a f/f offspring born to obese mothers (HFDMCD WT) developed a 
FLD, as observed by ORO staining (Fig. 3b,c) and lipidomics (Fig. 3d and 
Extended Data Fig. 6b). Similar to the lipidomics results in C57BL/6Jrcc 
mice, HFDMCD WT offspring showed an increase of saturated triacyl-
glycerols and cholesterol esters. However, HFDMCD KO offspring was 
rescued from developing a FLD (Fig. 3b–d and Extended Data Fig. 6b,c), 
indicating that depletion of HIF1α in KCs during embryogenesis is suf-
ficient to prevent their metabolic programming, which ultimately 
drives lipid accumulation in hepatocytes. This effect was diminished 
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when KO offspring was kept on a HFD after birth (HFDMHFD KO), as they 
showed a similar development of FLD as HFDMHFD WT with high lipid 
accumulation (Fig. 3b,c) and significant increase of triacylglycerols, 
diacylglycerols, monoacylglycerol and cholesterol esters (Extended 
Data Fig. 6b). Hepatocyte transcriptomes reflected these differences 
(Extended Data Fig. 6d,e).

To assess a possible transient activation of HIF1α by maternal obesity 
specifically during gestation that may have long-lasting effects, we 
performed RNA-seq of KCs isolated from C57BL/6Jrcc mice at P0 born 
to CD-fed or HFD-fed mothers. Comparing differentially expressed 
genes (DEGs) from CD and HFD conditions resulted in 54 regulated 
genes (Extended Data Fig. 7a). To investigate gene regulation patterns, 
we inferred transcription factor activity on the basis of all DEGs and a 
collection of transcriptional regulatory interactions38, indicating that 
DEGs were downstream of HIF1α, among other transcription factors 
(Extended Data Fig. 7b). Indeed, a total of five HIF1α target genes (Hif3a, 
S100a8, S100a9, Tgfb3 and Vegfa) were among the 29 upregulated DEGs 
(Extended Data Fig. 7c), and HALLMARK analysis of these 29 upregu-
lated DEGs revealed that they fall into the term ‘hypoxia’ (Extended 
Data Fig. 7d). Of note, only Hif3a expression was regulated, whereas 
genes encoding other HIF proteins were not transcriptionally regulated 
(Extended Data Fig. 7e). To validate that HIF1α is transiently active in 
KCs, we evaluated HIF1α protein expression in KCs of P0 neonate mice 
born to either HFD or CD mothers (Extended Data Fig. 7f). Quantifica-
tion of immunofluorescence staining in the nucleus compared with the 
cytoplasm showed an increase of HIF1α translocation to the nucleus 
in maternal obese neonate mice when compared with maternal lean 
neonate mice (Extended Data Fig. 7g). These data indicate that KCs react 
to maternal obesity by increased HIF1α translocation to the nucleus, 
leading to the upregulation of HIF1α target genes at birth.

Together, our results show that the development of KCs from the off-
spring is perturbed by maternal obesity in a HIF1α-dependent manner, 
and that ablation of HIF1α function in fetal KCs rescues the development 
of FLD during adulthood caused by maternal obesity.

Maternal obesity rewires crosstalk
As FLD induced by maternal obesity was only rescued by Hif1a deletion 
if the offspring was kept on a CD, we asked whether additional fac-
tors, such as inflammation, may add to the hepatic lipid accumulation 
at postnatal stages when the offspring is fed with a HFD. To address 
whether hepatocytes may attract immune cells and cause a slowly 
increasing local inflammation in the liver when experiencing a HFD 
throughout life, we used the hepatocyte transcriptome data and inves-
tigated expression of chemoattractant factors. Indeed, we found Agt 
(encoding angiotensin), C3 (encoding complement C3), Lect2 (encoding 
leukocyte cell-derived chemotaxin 2) and Cxcl12 (encoding C-X-C motif 
chemokine 12) to be particularly upregulated in hepatocytes isolated 
from HFDMHFD WT and/or HFDMHFD KO groups, which are involved 
in attracting monocytes and neutrophils39–41 (Extended Data Fig. 8a).  
In line with these findings, flow cytometry analyses showed an, albeit 
not always significant, increase in the number of recruited myeloid cells 
(monocytes, neutrophils, cDC1 and cDC2; Extended Data Fig. 8b). Of 
note, deletion of Hif1a did not decrease myeloid cell numbers compared 
with WT littermates in any of the dietary conditions (Extended Data 
Fig. 8b), suggesting that the recruitment and/or proliferation of all 
myeloid cells is independent of HIF1α function at this early stage of FLD.

To investigate how HIF1α-dependent developmental programming 
in KCs causes FLD, we analysed the transcriptomes of WT and KO KCs 
from maternal lean and maternal obese conditions. PCA showed that 
maternal obesity, not the end diet, was the main driver of the KC tran-
scriptional program (Fig. 3e), similar to the C57BL/6Jrcc model (Fig. 1e). 
Only KCs from HFDMCD KO mice clustered with maternal lean condi-
tions (Fig. 3e), demonstrating that developmental programming events 
caused by maternal obesity are HIF1α dependent. Focusing specifically 

on HIF1α-dependent gene regulation, comparing HFDMCD WT versus 
HFDMCD KO KCs, yielded 409 DEGs (adjusted P value of 0.1; Supple-
mentary Table 4). GO term analysis of DEGs downregulated in HFDMCD 
KO KCs revealed terms such as ‘fatty acid metabolic process’, ‘cellular 
response to xenobiotic metabolism’ and ‘blood coagulation, fibrin 
clot formation’ (Extended Data Fig. 8c and Supplementary Table 5). 
As ex vivo culture data indicated that KCs cause lipid accumulation via 
paracrine factors (Fig. 2d,e), we searched for secreted ligands with cor-
responding hepatocyte receptors. Among 25 differentially expressed 
ligands, the majority were upregulated in HFDMCD WT compared with 
HFDMCD KO KCs (Fig. 3f). Among them, we detected apolipoproteins 
(Apob and Apoa1) and many coagulation factors, such as Fga, Fgb, Fgg, 
F2, F8 and F9, which encode fibrinogen, thrombin and coagulation 
factors VIII and IX, respectively.

To validate HIF1α-dependent upregulation of KC-derived ligands 
at the protein level, we performed proteomics on isolated KCs from 
CDMCD WT, CDMCD KO, HFDMCD WT and HFDMCD KO offspring. First, 
we compared HFDMCD WT with CDMCD WT to identify proteins induced 
by maternal obesity (WT list). Next, we compared HFDMCD WT with 
HFDMCD KO to identify HIF1α-dependent proteins in the context of 
maternal obesity (HFDMCD list). These analyses identified 66 and 59 dif-
ferentially expressed proteins, respectively, as well as 147 proteins that 
were both HIF1α dependent and induced by maternal obesity (Cross list; 
Fig. 3g and Extended Data Fig. 8d). GO, HALLMARK and KEGG analyses 
of these proteins revealed pathways such as ‘triglyceride catabolic 
process’, ‘complement and coagulation cascades’, ‘insulin-like growth 
factor receptor signalling pathway’ and ‘ECM receptor interaction’ 
among the Cross proteins. In addition, lipid transport pathways were 
enriched in the WT and HFDMCD lists, whereas immune-related terms 
were specifically enriched in the HFDMCD list (Extended Data Fig. 8e and 
Supplementary Table 6). A heatmap visualizing Cross proteins (Fig. 3h) 
showed that HIF1α deficiency in KCs prevented the upregulation of 
many proteins, including apolipoproteins and coagulation factors, 
in response to maternal obesity. Together, these transcriptional and 
proteomic analyses identified several HIF1α-dependent candidates 
induced by maternal obesity, potentially acting as KC-derived paracrine 
signals driving lipid accumulation in hepatocytes.

To determine whether maternal obesity-induced changes persist 
into adulthood and to avoid potential contamination from sorted 
KCs42, we performed single-nucleus RNA (snRNA)-seq–assay for 
transposase-accessible chromatin using sequencing (ATAC-seq) 
on nuclei isolated from 12-week-old C57BL/6Jrcc HFDMCDLCD and  
CDMCDLCD offspring. This allowed for the epigenetic and transcrip-
tomic analysis of individual cells. Integration of RNA-seq and ATAC-seq 
data resulted in various hepatic cell types, including KCs and hepato-
cytes (Extended Data Fig. 9a,b). Subclustering the KCs revealed five 
distinct KC states (Fig. 4a,b), with clusters 0, 1 and 4 expressing high 
levels of Adgre1, Timd4 and Clec4f. Clusters 2 and 3, which increased rela-
tively to the total KC numbers in the HFDMCDLCD condition, exhibited 
high levels of the MHC class II-related genes (H2-Aa, H2-Ab1 and Cd74) 
in cluster 2 and immune-regulation and metabolic-response genes 
(Pparg, Lilr4b and Lgals3) in cluster 3 (Fig. 4b). Increased MHC class II 
expression was validated in the HFDMCDLCD liver parenchyma, whereas 
CDMCDLCD mice showed restricted MHC class II expression around 
the periportal and central veins of the liver (Extended Data Fig. 9c).

Comparisons of ATAC-seq peak-related genes between HFDMCDLCD 
and CDMCDLCD KCs identified 28 downregulated and 60 upregulated 
gene loci (Extended Data Fig. 9d). Despite the relatively low numbers, 
GO term analyses of downregulated genes indicated enrichment of 
lipid metabolic processes (Extended Data Fig. 9e). Of note, ATAC-seq 
peaks were differentially present within the Pck1 locus, a gene encoding 
phosphoenolpyruvate carboxykinase 1, which is an enzyme that typi-
cally has an antagonistic role to glycolysis. Plotting the gene expression 
validated the loss of Pck1 expression across all HFDMCDLCD KC states 
(Extended Data Fig. 9f), aligning with the metabolic switch described 
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earlier (Fig. 1f,g and Extended Data Fig. 2d,e). Furthermore, we observed 
epigenetic changes within the Gpnmb locus where ATAC-seq peaks 
increased significantly. Of note, Gpnmb has been previously described 
as a biomarker for steatohepatitis43. Consistent with bulk RNA-seq 
results, this epigenetic change was accompanied by upregulation of 
Gpnmb gene expression (Extended Data Fig. 9d,f). However, this upreg-
ulation was restricted only to clusters 2 and 3, which expand proportion-
ally under maternal obesity conditions. To investigate whether these 
distinct KC states are differentially regulated at the transcriptional 
level, we performed DEG analysis comparing the clusters (Supplemen-
tary Table 7), combined with DecoupleR transcription factor activity 
analysis. This revealed that KC states clustered by dietary condition 
rather than identity, indicating that persistent changes in transcrip-
tion factor activity were driving the observed DEGs in HFDMCDLCD 
KCs (Fig. 4c). Transcription factor activity analysis identified HIF1α 
to be mainly active in clusters 1, 2 and 3 in the HFDMCDLCD condition. 
Transcription factors, such as Jun, Ets1 and Esr2, were more active in 
most HFDMCDLCD clusters, with PPARα and PPARγ showing increased 
activity across all HFDMCDLCD clusters (Fig. 4c). These findings suggest 
that, in addition to HIF1α, other persistent transcriptional changes stem 
from altered transcription factor activity in offspring born to obese  
mothers.

Next, we leveraged the snRNA-seq data to assess signalling pathways 
that are activated in HFDMCDLCD KCs using CellChat analysis. In line 
with the bulk RNA-seq data, KCs demonstrated increased intercel-
lular communication via APOE and APOA1 signalling pathways under 
maternal obesity conditions (Extended Data Fig. 9g). Gene expression 
analyses confirmed upregulation of Apoe and Apoa1 in all HFDMCDLCD 
states (Fig. 4d), consistent with increased transcription factor activity 
of PPARα and PPARγ, which are known regulators of apolipoproteins44. 
In addition, ATAC-seq analysis revealed an increase in peaks at puta-
tive regulatory elements located upstream of the Apoe promoter in  
HFDMCDLCD cluster 3 compared with CDMCDLCD, which harbour PPARα 
and PPARγ–RXRα transcription factor-binding sides (Fig. 4e).

Together, our data show that maternal obesity induces persistent 
changes in KCs. Of note, we identified new KC states (clusters 2 and 3) 
that probably account for the immune-related signature observed in 
the bulk RNA-seq data. These clusters expand in response to maternal 
obesity and specifically upregulate inflammatory genes. Furthermore, 
the snRNA–ATAC-seq approach corroborates our findings from bulk 
RNA-seq and proteomics approaches, highlighting the significant 
upregulation of apolipoproteins in KCs.

To investigate whether apolipoproteins contribute to lipid accumu-
lation in the liver, we utilized the hepatocyte live-imaging cell culture 
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approach, adding APOE or APOA1 to the medium. As a positive control, 
we used tumour necrosis factor (TNF), which has been previously identi-
fied as a KC-derived driver of lipid storage in hepatocytes45. In all con-
ditions, the LD540 signal intensity increased, with APOE inducing the 
highest lipid accumulation compared with control hepatocytes (Fig. 4f).

In summary, our findings provide evidence that HIF1α-dependent 
developmental programming by maternal obesity leads to the upregu-
lation of apolipoproteins in adult KCs, which can induce lipid accumula-
tion in hepatocytes, thereby contributing to the onset of FLD.

Discussion
This work supports the hypothesis that yolk sac-derived tissue-resident 
macrophages are cellular components within the concept of DOHaDs, 
as developmental perturbations of hepatic macrophages result in 
postnatal liver pathophysiology. This is in line with previous studies 
showing that microglia can contribute to neurodevelopmental and 
behavioural disorders8,9,46–48. Our data indicate that continuous expo-
sure to a maternal HFD during gestation induces a HIF1α-dependent 
metabolic switch in KCs from oxidative phosphorylation to glycolysis, 
detrimentally affecting adult hepatic lipid metabolism. Unlike most 
maternal immune activation studies, in which cytokines such as IL-6 
and IL-17a influence offspring development49,50, our model does not 
indicate a maternal immune activation phenotype or systemic inflam-
mation. Instead, maternal metabolites and lipids probably cross the 
placenta and modulate macrophage function. For instance, stearic acid, 
enriched in obese mice, has been proposed to reprogram macrophages 
via Toll-like receptor 4 (TLR4)9,51. An intriguing question for future 
research is to administer defined fatty acids to pregnant dams and trace 
their effect on fetal KC development in a HIF1α-dependent manner.

Using the LysMCre mouse model to delete Hif1a specifically in myeloid 
cells excludes developmental programming of oocytes, hepatocytes and 
their progenitors as primary driver of FLD, as the promotor controlling 
expression of the Cre recombinase only becomes active during early fetal 
macrophage differentiation1,52. However, indirect effects via inter-organ 
communication, such as adipose-derived signals, cannot be ruled out. 
Our double fate mapper model showed that KCs remain of yolk sac origin 
upon maternal obesity, contrasting with diet-induced FLD models in 
which bone marrow-derived cells replace KCs16–18. Thus, in accordance 
with DOHaDs, KCs can serve as intergenerational messengers that sense 
maternal-derived factors during gestation and convey this informa-
tion into a long-lasting transcriptional program during adulthood. Our 
transcriptomic, epigenetic and metabolic analyses demonstrate that 
maternal obesity functionally programs KCs, promoting lipid accumula-
tion in neighbouring hepatocytes via persistent transcriptional changes. 
KC depletion experiments further confirmed this: replenishment with 
monocyte-derived cells from animals that never experienced a HFD 
rescues the developmental programming effects, providing a potential 
cellular target for treating FLD caused by maternal obesity. Replenish-
ment with monocytes from maternal obesity-experienced animals did 
not rescue the phenotype, suggesting that neonatal monocytes or HSPCs 
undergo developmental programming33,34. These findings highlight the 
resilience of the KC niche to maternal obesity-induced programming, 
as the origin of KC-like cells determines FLD pathogenesis.

A previous study has shown that upon a postnatal HFD, KCs secrete 
pro-inflammatory factors, such as IL-1β, IL-6 and TNF, with TNF induc-
ing lipid accumulation in hepatocytes45. By contrast, in maternal 
obesity-induced FLD, we observed no upregulation of these particular 
factors. Instead, genes associated with lipid metabolism (for example, 
Trem2, Tyrobp, Syk and Lpr1) were upregulated, partially resembling the 
phenotype of hepatic lipid-associated macrophages (LAMs)17. Recent 
work has also shown that TREM2+ LAMs expand during injury and can 
originate from both resident KCs and monocyte-derived macrophages53. 
In our model, however, LAM-like KCs remain of yolk sac origin, suggest-
ing that functional adaptation to lipid-rich environments, rather than a 

change in cellular origin, drives their phenotype. This distinction high-
lights the unique nature of maternal obesity-induced FLD compared 
with postnatal HFD models. Notably, maternal obesity upregulates 
apolipoproteins such as APOE and APOA1 in a HIF1α-dependent manner, 
aligning with previous findings linking apolipoproteins with FLD54,55.

In summary, our study establishes KCs as active players in liver 
metabolism, demonstrating distinct responses to a maternal-derived 
versus postnatal diet-derived HFD. We showed that a maternal HFD 
during gestation programs KCs metabolically and transcriptionally in a 
HIF1α-dependent manner, leading to persistent changes that promote 
FLD. These findings offer a therapeutic time window to manipulate 
the metabolic status of KCs, and thereby prevent the development of 
FLD in the offspring.
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Methods

Mice
All investigations concerning mouse work had local approval and all 
procedures conformed to the guidelines from Directive 2010/63/EU of 
the European Parliament on protecting animals used for scientific pur-
poses. In detail, all animal experiments were conducted according to the 
German law of animal protection and in agreement with the approval 
of the local institutional animal care committee (Landesamt für Natur, 
Umwelt und Verbraucherschutz (LANUV), North Rhine-Westphalia, 
Az 81-02.04.2019.A146 and Az 2024-A314). Mice were housed under 
specific pathogen-free conditions with 12-h light–dark cycle, at 21 °C, 
55% relative humidity, and with food and water provided ad libitum. 
Animals were euthanized using liver or heart perfusion after anaes-
thesia injection. C57BL/6JRcc was used as the WT strain. To generate 
the double fate mapper Tnfrsf11aCre (ref. 56); Rosa26LSL-YFP ( JAX stock 
#006148)57; Ms4a3FlpO;Rosa26FSF-tdT ( JAX stock #032864)58, we bred 
Tnfrsf11aCre/+;Rosa26FSF-tdT/FSF-tdT animals with Ms4a3FlpO;Rosa26LSL-YFP/LSL-YFP 
animals (see Extended Data Fig. 4a for description of the Ms4a3FlpO 
locus). KC-DTR (Clec4f DTR/+) mice have been previously described32. 
All mice were originally of the C57BL/6J background and crossed to 
C57BL/6Jrcc for 2–5 generations. To generate Hif1a flox/flox;LysMCre/+, the 
Hif1a flox/flox ( JAX stock #007561)59 and LysMCre/+ ( JAX stock #004781)37 
were used (both kept on the C57BL/6J background after import). All 
lines were back-crossed to their respective WT line (C57BL/6J for 
LysMCre/+;Hif1a flox/flox and C57BL/6Jrcc for all other lines) once per year. 
Mice were genotyped according to protocols provided by JAX or donat-
ing researchers. For all experiments, male mice were analysed with 
the exception of the double fate mapper, where both male and female 
mice were used, and ex vivo-isolated hepatocytes, where only young 
female mice were used to assure a lean and metabolically healthy state.

Mouse maternal obesity model
For WT cohorts, 3–4-week-old C57BL/6JRcc female mice were put on 
a CD (sniff, E15748-047) for 2 weeks. Subsequently, female mice were 
separated into two groups and received either a HFD (sniff, E15742-347) 
or a CD for 8 weeks. For metabolic assessment, the HOMA-IR was used60. 
Glucose was measured using GlucoCheck GOLD with stripes (11864873 
and 11864933), and insulin was measured via ELISA (EMINS, Thermo 
Fisher). Only mice with significantly higher HOMA-IR were used to 
generate offspring. Females were mated with males fed with a CD over-
night. The day of vaginal plug formation was estimated as embryonic 
developmental day 0.5 (E0.5) post-coitum. Females were always placed 
back in their cages with a HFD after overnight mating. All offspring were 
cross-fostered to females on the respective diet. The litter size was 
standardized to a maximum of six pups per foster mother on the day of 
birth. In addition, whenever possible, litters from different biological 
mothers were cross-fostered to the same foster mother to ensure con-
sistency and minimize maternal variability. Cross-fostering took place 
also between mothers on the same diet to exclude stress-mediated 
effects of cross-fostering. After 3 weeks of lactation at postnatal day 
21 (P21), offspring were weaned into their post-weaning cage (CD or 
HFD). Here offspring from maternal lean and maternal obese groups 
were mixed to minimize effects caused by cage-specific microbiome 
differences. In addition, during the post-weaning diet, bedding stem-
ming from cages with the same diet was mixed weekly between cages 
(typically 10–20 cages at any time) to further reduce cage-specific 
effects related to the microbiome.

Mice were euthanized and used in the experiment at weeks 11–13, 
unless otherwise stated.

Adoptive transfer of KCs for KC-DTR mice
Maternal obese KC-DTR male offspring were injected at P0 with 50 ng 
diphtheria toxin and injected at P1 through the temporal vein under 
ice-induced anaesthesia with 106 bone marrow monocytes and HSPCs 

isolated from Rosa26mTmG mice. Bone marrow monocytes and HSPCs 
were isolated as following: Rosa26mTmG mice were killed through cervical 
dislocation, and their tibias and femurs from the hindlimbs were freed. 
Bone marrow was flushed out with DMEM (Pan Biotech) and filtered 
through a 70-μm strainer on ice. Cells were then blocked with FACS 
buffer (0.5% BSA and 2 mM EDTA in PBS) containing 2% rat serum and 
stained with biotinylated antibodies (anti-Ly6G, CD19, CD3, Ter119, 
Nkp45 and F4/80) for 30 min at 4 °C. Monocytes and HSPCs were then 
negatively selected using MojoSort Streptavidin Nanobeads (Bio
Legend) following the manufacturer’s manual.

Preparation of cell suspension for flow cytometry and cell 
sorting
Adult mice were anaesthetized and perfused with ice-cold PBS. P0 mice 
were killed by decapitation. For flow cytometry analysis of hepatic 
myeloid cells, 200–300 mg of adult or half of a P0 liver was collected, 
cut into small pieces and incubated in a digestion mix (PBS contain-
ing 1 mg ml−1 collagenase D (11088858001, Roche), 100 U ml−1 DNase I 
(DN25, Sigma-Aldrich), 2.4 mg ml−1 of dispase (17105041, Gibco) and 3% 
fetal calf serum (FCS; Invitrogen) for 30 min at 37 °C before mechanical 
disruption through a 100-μm filter. The cell suspension was diluted in 
3 ml of FACS buffer (0.5% BSA and 2 mM EDTA in PBS) and centrifuged 
at 50g for 3 min to remove hepatocytes. Then, the supernatant con-
taining myeloid cells was collected and centrifuged at 370g for 7 min 
at 4 °C. For bone marrow, one leg was isolated, and both the tibia and 
the femur were cleaned from surrounding tissues and cut at the ends. 
The bones were flushed with 5 ml of ice-cold FACS buffer. Cells were 
centrifuged at 370g for 7 min at 4 °C. Pellet was resuspended in red 
blood cell lysis buffer (155 mM NH4Cl, 12 mM NaHCO3 and 0.1 mM EDTA) 
and incubated for 3 min on ice. Then, 5 ml FACS buffer was added, cells 
were resuspended and centrifuged at 370g for 7 min at 4 °C. Cell pellet 
was resuspended in FACS buffer containing purified anti-CD16/32 and 
2% rat serum (liver) or 2% rat serum only (bone marrow) and incubated 
for 15 min at 4 °C. Samples were immune-stained with antibody mixes 
for 30 min at 4 °C. The complete list of antibodies used can be found in 
Supplementary Table 8. Data were acquired with FACSymphony A5 (BD 
Biosciences) or LSRII and analysed in FlowJo Software. For sorting of 
KCs and hepatocytes, liver cell suspension was prepared as described 
above with the following modifications: first, 1 ml twice-concentrated 
digestion mix was used for tissue digestion; second, digestion was 
performed at room temperature and centrifugation at 50g for 3 min 
was omitted to retain hepatocytes; and last, all steps were performed 
with buffers containing 1 mM of flavopiridol (F3055, Sigma-Aldrich). 
Cells were stained by antibody mixes and sorted using FACS ARIA III 
cell sorter (BD Biosciences) directly into 500 μl lysis buffer (79306, 
Qiagen). For KC metabolic flow cytometry assays, single-cell suspen-
sions were blocked with anti-CD16/32 (1%) and rat serum (2%) in FACS 
buffer, followed by surface marker staining for 30 min at 4 °C. Cells 
were washed and fixed in 1% paraformaldehyde for 5 min and then 
permeabilized for 15 min with PBS supplemented with 0.4% Triton 
X-100 (X100, Sigma-Aldrich). Intracellular staining was performed 
for 1 h at 4 °C. Intracellular antibodies were conjugated in-house using 
lightning-link conjugation kits (Abcam) as previously described26. 
Cells were analysed on an ID7000 7-laser Spectral Cell Analyzer (Sony 
Cooperation).

Histology
For neutral lipid staining, cryo-preserved liver blocks were cut at 10 µm 
thickness and dried for 1 h at room temperature. Lipid staining was 
performed using an Oil-red-O Stain Kit (O0625, Sigma-Aldrich) accord-
ing to the manufacturer’s instructions. The sections were then stained 
with haematoxylin for 5–10 min to visualize nuclei, rinsed with distilled 
water and mounted with Kaiser’s glycerol gelatine (pre-heated at 55 °C; 
6474.1, Carl Roth). Images were taken with an Axio Lab.A1 microscope 
(Zeiss). For ORO staining quantification, 2–10 images of each sample 
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with a ×40 objective were taken and quantification was performed 
using QuPath software (v0.5.1). For haematoxylin and eosin (H&E) stain-
ing, paraffin-embedded liver blocks were cut at 5 µm thickness and 
heated for 1 h at 65 °C before staining. Sections were deparaffinized 
by two steps of xylol and descending series of alcohol and rinsed in 
distilled water. Next, sections were stained with haematoxylin solution 
for 1.5 min and neutralized by running tap water, followed by alco-
holic eosin staining for 2 min. Sections were then dehydrated by an 
ascending series of alcohol and two steps of xylol and mounted with 
Entellan (1.07961.0100, Millipore). Images were taken with the Axio 
Lab.A1 microscope. Quantification of droplet adiposity in liver cells 
in H&E-stained histological sections was performed manually using a 
light microscope without the support of digital imaging or software 
tools. From each section, 10 random high-power fields were selected at 
×10 magnification to ensure a representative selection of liver paren-
chyma while avoiding areas of artefacts or tissue damage. Hepatocytes 
were analysed for the presence of lipid droplets. All hepatocytes in 
each selected field were counted and classified as either normal (with-
out lipid droplets) or lipid laden (with lipid droplets recognizable as 
intracellular vacuoles). The percentage of lipid-laden hepatocytes 
was calculated for each field by dividing the number of hepatocytes 
with lipid droplets by the total number of hepatocytes in the field and 
multiplying the result by 100. The percentages of all analysed fields 
were averaged to obtain a representative value for each sample. For 
immunofluorescence staining, cryo-preserved liver blocks were cut 
at 10 µm thickness, dried for 1 h at room temperature and permea-
bilized with PBS-T (0.4% Triton X-100; X100, Sigma-Aldrich) for 1 h at 
room temperature. Thereafter, tissue was blocked with PBS-T contain-
ing 2% BSA (37525, Thermo Scientific) and 2% donkey serum (D9663, 
Sigma-Aldrich) for 2 h at room temperature, followed by primary anti-
body staining overnight at 4 °C, and secondary antibodies hosted in 
donkey for 2 h at room temperature. Nuclei were stained with DAPI 
(42281, BioLegend). Immunofluorescence images were acquired with 
a Zeiss LSM Airyscan 880 microscope (Zeiss) and processed with Fiji61.

Direct infusion lipidomics
Livers were isolated from ice-cold PBS-perfused mice and snap-frozen 
in liquid nitrogen. Ten milligrams were homogenized in ddH2O using 
a Precellys homogenizer (Peqlab Biotechnology). For lipid extrac-
tion, 50 µl of the homogenate was added to 500 µl extraction mix 
(CHCl3:MeOH 1:5 containing the following internal standards: 210 pmol 
phosphatidylethanolamine (PE)(31:1), 396 pmol phosphatidylcho-
line (PC)(31:1), 98 pmol phosphatidylserine(31:1), 84 pmol phos-
phatidylinositol(34:0), 56 pmol phosphatidic acid(31:1), 51 pmol 
phosphatidylglycerol(28:0), 28 pmol cardiolipin(56:0), 39 pmol 
lysophosphatidic acid(17:0), 35 pmol lysophosphatidylcholine (LPC)
(17:1), 38 pmol lysophosphatidylethanolamine(17:0), 32 pmol cera-
mide(17:0)), 99 pmol sphingomyelin(17:0), 55 pmol glucosylcera-
mide(12:0), 14 pmol monosialodihexosylganglioside(18:0-D3), 
339 pmol triacylglycerol(50:1-d4), 111 pmol cholesteryl ester(17:1), 
64 pmol diacylglycerol(31:1), 103 pmol monoacylglycerol(17:1), 
724 pmol cholesterol(D6) and 45 pmol carnitine(15:0)) and subse-
quently sonicated for 2 min and centrifugated at 20,000g for 2 min. 
The supernatant was collected into a new tube, and 200 µl chloro-
form and 800 µl 1% AcOH water were added. The sample was shaken 
and centrifuged for 2 min at 20,000g. The upper aqueous phase was 
discarded and the lower phase was transferred into a new tube and 
evaporated in a speed vacuum concentrator (45 °C at 10 min). Spray 
buffer (500 µl of 8:5:1 2-propanol:MeOH:H2O and 10 mM ammonium 
acetate) was added to the sample and sonicated for 5 min, infused at 
10 µl min−1 into a Thermo Q Exactive Plus spectrometer equipped with 
the heated electrospray ionization II ion source for direct infusion 
lipidomics. MS1 spectra (resolution of 280,000) were recorded in 
100-m/z windows from 250 to 1,200 m/z (positive) and 200 to 1,700 m/z 
(negative) followed by recording tandem mass spectrometry spectra 

(resolution of 70,000) by data-independent acquisition in 1-m/z win-
dows from 200 to 1,200 (positive) and 200 to 1,700 (negative) m/z. Raw 
files were converted to .mzml files and imported into and analysed by 
LipidXplorer software (v1.2.8.1)62 using custom mfql files to identify 
sample lipids and internal standards.

Lipidomics analysis
Raw measurements of the lipidome were quantified in relation to inter-
nal standards measured simultaneously on the same instrument. The 
resulting values were normalized by the amount of tissue to obtain 
measurements in pmol mg−1. All lipid species that remained constant 
across all samples were removed from the dataset. In addition, species 
belonging to the triacylglycerol class with odd numbers of double 
bonds were excluded, as they were unlikely to originate from mice. 
This resulted in a set of 19 lipid classes: cholesteryl ester, ceramide, 
diacylglycerol, dihexosylceramide, hexosylceramide, LPC, ether-linked 
LPC, lysophosphatidylethanolamine, monoacylglycerol, phosphatidic 
acid, PC, ether-linked PC, PE, ether-linked PE, phosphatidylglycerol, 
phosphatidylserine, sphingomyelin, unsaturated fatty acyl tails of 
triacylglycerol (unsat) and saturated fatty acyl tails of triacylglycerol 
(sat). Following the selection process, the dataset consisted of 476 
metabolites for C57BL/6Jrcc mice (69 dropped) and 443 metabolites for 
the HIF1α model (31 dropped). Within each sample, the species belong-
ing to the same class were aggregated by calculating the mean. The 
results were then summarized by computing the mean per condition. 
Log2 fold changes were calculated by comparing each condition to the 
control condition CDMCDLCD. For each lipid class, the conditions were 
assessed for significant deviations from the control condition using the 
lm function in R. Subsequently, a hierarchical clustering analysis was 
performed on the resulting dataset, both row wise and column wise, 
based on the Euclidean distance with complete linkage. The colour leg-
end for the HIF1α mouse model is not evenly spaced around zero. This 
deviation arose from significant changes with low-effect sizes. To still 
indicate the direction of change, the space around zero was adjusted 
accordingly. The colour histogram shown represents the entire set of 
lipid species, not just the selected species shown in the main figure. 
The value of 1 was added to the data before performing the logarithmic 
transformation (log2) and performing PCA.

Multiplexed cytokine and chemokine assay
The Immune Monitoring 48-Plex Mouse ProcartaPlex Panel (EPX480-
20834-901, Invitrogen) was used. Of sera, 25 µl was thawed and analytes 
were evaluated using Luminex xMAP system. All reagents were prepared 
and used according to the manufacturer’s instructions. Cytokines that 
were below the detection threshold in more than 80% of the samples 
were not plotted.

The values displayed within the heatmap are log10 + 1 transformed 
and ordered by decreasing overall mean.

Library preparation and RNA-seq
cDNA library for sequencing was prepared as described in the 
SMART-Seq2 protocol63. The mRNA was extracted and primed uti-
lizing poly-T oligonucleotides and converted into cDNA by SMART 
reverse transcription. Pre-amplification was performed by SMART 
ISPCR, followed by fragmentation using the Nextera XT DNA Library 
Preparation kit (Illumina), amplification and indexing. Library frag-
ments were then selected by size (300–400 bp) and purified using 
SPRIBeads (Beckman-Coulter). The Agilent high-sensitivity D5000 
assay was used to measure the size distribution of cDNA libraries 
on a Tapestation 4200 system (Agilent). Quantifying cDNA libraries 
was performed using a Qubit high-sensitivity dsDNA assay (Thermo 
Fisher). Sequencing was performed using a 75-bp single-end setup on 
the NextSeq500 system (Illumina), applying NextSeq 500/550 High 
Output Kit (v2.5; Illumina). Library fragments were then selected by 
size (300–400 bp) and purified using SPRIBeads (Beckman-Coulter). 



The Agilent high-sensitivity D5000 assay was used to measure the size 
distribution of cDNA libraries on a Tapestation 4200 system (Agilent). 
The cDNA libraries were quantified using a high-sensitivity dsDNA 
assay (Qubit). To quantify the abundances of transcripts from the bulk 
RNA-seq data, Kallisto pseudo alignment was applied64.

Transcriptomics analysis
The raw transcriptome files were prepared for Kallisto import to DESeq2 
using the genecode annotation M16 (https://www.gencodegenes.org/
mouse/release_M16.html) to correct for library size based on the pro-
vided average transcript length. Outliers (eight from the C57BL/6Jrcc 
dataset and three from the Hif1a dataset) were identified on the basis 
quality assessment and filtering of low-quality samples. The set of 
genes was further refined to include only protein-coding genes that 
were non-constant across all present samples. Low-expressed genes, 
defined as those with less than 10 counts in 25% of the samples, were 
also removed. PCA was performed on the variance-stabilized counts. 
DESeq2 (ref. 65) analysis was conducted to identify DEGs within each 
cell type. The default settings in DESeq2 were used. A gene was called 
differentially expressed if its corresponding Benjamini–Hochberg 
adjusted P value was less than 0.1 for the tested contrast. For the KC 
P0 DEGs subjected to transcription factor inference analysis, the 
absolute LFC threshold was set to 2. The DEGs were separated into two 
sets based on the sign of the LFC. Each set of DEGs was subjected to an 
over-representation analysis to identify enriched GO terms, HALLMARK 
pathways and KEGG pathways using the respective functions in clus-
terProfiler66. To reduce observed redundancy in the GO terms, the 
‘simplify’ function in clusterProfiler was used, which calculates the simi-
larity among enriched terms based on their information content and 
selects a representative term with the lowest adjusted P value67. The uni-
verse for the over-representation analysis consisted of all genes used for 
the differential expression analysis. For the ligand–receptor analysis, 
DEGs with an absolute LFC greater than 2 in the KC set were subsetted 
to include ligands recorded in the CellTalk database68. For the hepato-
cyte dataset, all expressed genes (more than 10 counts in Hif1a-WT or 
Hif1a-KO HFDMCD conditions; not necessarily differentially expressed) 
were subsetted to include recorded receptors within the same database. 
Interactions between differentially expressed ligands from KCs and 
expressed receptors from hepatocytes were extracted from the CellTalk 
database and plotted. The order of ligands was based on their LFC from 
lowest to highest. A co-expression network analysis using hCoCena25 
was conducted on the filtered and DESeq2 normalized counts, follow-
ing the provided showcase Notebook25. hCoCena calculates pairwise 
correlations among the top most varying genes (the number needs to 
be user-specified) and constructs a network where vertices represent 
genes with at least one edge characterized by a correlation above a 
specified threshold. Here hCoCena was performed using the top 5,000 
genes as input and all edges were kept with a correlation above 0.7. 
The resulting network, with 4,214 nodes and 286,853 edges, was then 
clustered using the Leiden algorithm69. Clustering was performed with 
100 iterations. Each node that was advised to more than three clusters 
during the process was disregarded in the proceeding cluster analysis. 
The identified gene sets were summarized using Group Fold Change25 
for each condition and displayed on a heatmap. Each cluster set was 
subjected to an over-representation analysis, with the hCoCena-input 
genes specified as the universe for testing. Manually selected terms 
from GO, KEGG and HALLMARK sets are displayed for each cluster to 
avoid term cluttering. For selected enriched terms, their intersection 
with the cluster genes was recovered, namely, ‘oxidative phospho-
rylation’ with turquoise and lightgreen, ‘glycolysis’ and ‘cell activation 
involved in immune response’ with steelblue. The resulting set of genes 
was further manually reduced. The mean expression values for those 
intersectional genes were displayed and scaled across each condition. 
The columns were hierarchically clustered on the basis of the Euclidean 
distance with complete linkage. Transcription factor inference analysis 

was conducted using the CollecTRI38 framework, which integrates 
information from multiple sources, including RegNetwork70, ChEA3 
(ref. 71), Pathway Commons72 and DoRothEA73. Within this analysis, a 
linear model was used to estimate the transcription factor activity. The 
model predicts the value of the DEGs solely based on the interaction 
weights between transcription factors and their respective target genes 
derived from CollecTRI. The final score was the t-value of the slope 
of the fitted model. A positive value indicates an active transcription 
factor. This analysis was conducted using decoupler’s74 functionality.

snRNA–ATAC-seq
Nuclei were isolated from approximately 50 mg of snap-frozen adult 
liver tissue to enable simultaneous snRNA-seq and snATAC-seq, captur-
ing both transcriptional profiles and chromatin accessibility. Nuclei 
were prepared using the Chromium Next GEM Single Cell Multiome 
ATAC + Gene Expression Kit (1000283, 10X Genomics). In detail, 
snap-frozen liver tissue was first cut on dry-ice into small pieces and 
homogenized with a pestle in homogenization buffer containing 
320 mM sucrose, 5 mM CaCl2, 3 mM Mg-acetate, 10 mM Tris, 0.1 mM 
EDTA, 0.1% IGEPAL CA-630 (Sigma), 0.1 mM phenylmethylsulfonyl 
fluoride (Sigma), 0.2 U μl−1 RNase inhibitor (New England Biolabs), 
1 mM flavopiridol and 1 mM β-mercaptoethanol (ITW Reagents) in 
nuclease-free water. Homogenate was then passed through a 70-μM 
cell strainer and mixed with equal volume of gradient medium contain-
ing 50% OptiPrep (StemCell Technologies), 5 mM CaCl2, 3 mM Mg-
acetate, 10 mM Tris-HCl (pH 8), 0.1 mM phenylmethylsulfonyl fluoride 
(Sigma) and 1 mM β-mercaptoethanol (ITW Reagents) in nuclease-free 
water. Diluted homogenate was slowly laid atop a cushion (75% of the 
volume of diluted homogenate) containing 29% OptiPrep, 77.5 mM 
KCl, 15.5 mM MgCl2, 31 mM Tris-HCl (pH 8) and 129.2 mM sucrose in 
UltraPure H2O and centrifuged with low acceleration and maximum 
deceleration at 10,000g at 4 °C for 30 min. The pellet containing nuclei 
was resuspended in 1X PBS containing 1% BSA, 0.2 U μl−1 RNase inhibi-
tor (New England Biolabs) and 1 mM flavopiridol, stained with 7-AAD 
and purified by fluorescence-activated cell sorting using FACS ARIA III 
(BD Biosciences) for high-quality, monoploid and 7-AAD nuclei. For 
nuclei permeabilization, approximately 500,000 sorted nuclei were 
incubated for 2 min in a 0.1× lysis buffer (10 mM Tris-HCl (pH 7.4), 10 mM 
NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630, 0.1% Tween-20, 0.01% digitonin, 
1 mM dithiothreitol, 1% BSA and 1 U μl−1 RNase inhibitor, with 1 μM fla-
vopiridol in nuclease-free water). Following permeabilization and 
washing steps, nuclei concentration was adjusted to 5,000 nuclei per 
microlitre in ice-cold 1× nuclei buffer (2000153/2000207, 10X Genom-
ics) and were incubated in a transposition mix containing a transposase, 
allowing adapter sequences to be added to the ends of DNA fragments. 
Furthermore, 16,000 nuclei were used for analysis with the Next GEM 
Single Cell Multiome ATAC + Gene Expression Kit (PN-1000230, 10X 
Genomics) and Gel Beads in Emulsion (GEMs) using the Chromium 
Next GEM Chip J Single Cell Kit. After GEM reverse transcription 
(GEM-RT) cleanup, pre-amplification of the sample was performed, 
producing material for both ATAC library construction and cDNA ampli-
fication for gene expression library construction. During the reverse 
transcription reaction, cDNA tagging was achieved with 16-nucleotide 
barcodes and 10-nucleotide molecular identifiers. The pre-amplified 
product was split into two aliquots: 40 μl for ATAC library construction 
and 35 μl for further cDNA amplification. For snRNA-seq library prep-
aration, 25% of the total cDNA was used to generate gene expression 
(GEX) libraries. Libraries were prepared and sequenced according to 
the manufacturer’s protocols: snATAC libraries used the 10X Genomics 
Single Index N Set, and snRNA-seq libraries used the Dual Index TT Set 
A. Pooled and barcoded libraries were sequenced on an Illumina Next-
Seq 2000 system with P3 flow cells, achieving an average depth of 
30,000 reads per nucleus for both snRNA-seq and snATAC-seq librar-
ies. The sequencing quality was assessed using FastQC (v0.12.1) exe-
cuted within a containerized environment provided by biocontainers 
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using Podman. All files passed initial quality assessment. Following 
assessment, Cell Ranger ARC (v2.0.0; 10X Genomics) was used for 
simultaneous alignment and quantification of both modalities. The 
cellranger-arc count pipeline was run according to the manufacturer’s 
instructions using the 10X Genomics-provided reference dataset 
refdata-cellranger-arc-mm10-2020-A-2.0.0, which is based on the mm10 
genome assembly and including introns. The automatically obtained 
quality assessment alerted for both conditions that the amount of valid 
ATAC barcodes was at 54% (ideally more than 80%). Despite the low 
proportion, both datasets were used because other critical ATAC qual-
ity metrics, such as fragment count and enrichment scores, met accept-
able thresholds. Single-cell RNA-seq and ATAC-seq data were processed 
using mainly the Seurat and Signac packages in R. Both modalities were 
extracted from the 10X Genomics ‘filtered feature matrix file’, in which 
count data were used for additional filtering of low-quality cells, before 
using MACS3 to perform the peak calling within the remaining cells to 
reduce computational time. Applied thresholds were: cells with RNA 
counts below 500, number of genes less than 200 or more than 2,500, 
and mitochondrial RNA content above 1% (as for single-nucleus 
sequencing, we expected none). Resulting peaks were also used for 
filtering of low-quality cells. Applied thresholds were: ATAC counts 
below 1,000, nucleosome signal more than 2 and transcription start 
site enrichment less than 1. In addition, peaks were removed that over-
lapped with non-standard chromosomes: genomic blacklist regions. 
The preprocessing led to 8,197 total cells for CDMCDLCD and 5,017 cells 
for HFDMCDLCD. Each RNA-seq dataset was pre-processed within each 
condition before integration using SCTransform, regressing out the 
percentage of mitochondrial DNA. The integration of RNA and ATAC 
data across conditions followed the outline from Kim et al.75. Accord-
ingly, RNA data integration began with the selection of 3,000 integra-
tion features using SelectIntegrationFeatures in Seurat. The datasets 
were prepared for integration with PrepSCTIntegration, and integration 
anchors were identified using FindIntegrationAnchors with SCTrans-
form (SCT) normalization. The anchors were then used to integrate 
the datasets across conditions via IntegrateData. ATAC count integra-
tion started by creating a feature matrix for each condition based on 
a unified peak set that was shared across conditions. Dimensionality 
reduction for ATAC data relied on latent semantic indexing, which 
included feature selection of most variable peaks, transformation of 
peak counts and singular value decomposition. To improve the integra-
tion, Harmony was applied (RunHarmony). Harmony aligns datasets 
by projecting them into a shared low-dimensional space while minimiz-
ing the effects of batch-specific biases. For the final integration across 
modalities, multimodal neighbours were identified by combining 
RNA-based PCA and ATAC-based Harmony embeddings (FindMulti-
ModalNeighbors) across 50 dimensions for each modality, without 
the first dimension for Harmony, as commonly done, aiming for addi-
tional batch correction. Clusters were identified using the weighted 
nearest neighbour similarity graph (FindClusters) with a resolution of 
0.5. This approach allowed the simultaneous integration of RNA and 
ATAC data for both conditions while leveraging the complementary 
information from both modalities. Cluster-specific marker genes were 
identified by calculating differential expression for each cluster using 
FindAllMarkers in Seurat. Markers were filtered based on minimum 
expression percentage (0.10), minimum differential expression per-
centage (0.20) and log fold-change threshold (0.20), retaining only 
positive markers. Cell-type annotation was based on the expression of 
a curated gene set within the identified markers. Subclustering was 
performed on the cells annotated as KCs from the integrated dataset. 
Again, multimodal neighbours were identified (FindMultiModalNeigh-
bors) using PCA for RNA and Harmony for ATAC, followed by UMAP 
for dimensionality reduction (RunUMAP) and clustering (FindClusters), 
as done for the dataset using all cell types. Subclusters with fewer than 
50 cells were excluded due to low numbers, and markers for each 
remaining cluster were characterized using the FindAllMarkers 

function in Seurat with the number of neighbours set to 60. Subcluster 
characterization was based on the expression of a curated gene set 
within the identified markers. To analyse intercellular communication 
involving the differing KC subclusters to hepatocytes, a CellChat anal-
ysis was performed. The analysis followed CellChat instructions for 
comparisons and analysis of multiple datasets. Normalized RNA expres-
sion data were used to define communication networks between KC 
subclusters and other cell populations. Overexpressed genes and 
interactions were identified for each condition, identifying 1,366 (CDM-

CDLCD) and 1,458 (HFDMCDLCD) highly variable ligand–receptor pairs 
subsequently used for signalling inference. Communication probabil-
ities were computed using the 10% truncated mean for calculating the 
gene expression per cell group. Interactions with fewer than ten par-
ticipating cells were filtered out to ensure robustness. The KC-specific 
communication networks were compared across conditions using 
rankNet function. A paired Wilcoxon test was performed to determine 
whether there was a significant difference of the signalling information 
flow between two conditions. Potential activated transcription factors 
were investigated using the package decouplR. For the analysis, the 
transformed RNA-count data were subsetted to the union of DEGs 
between the KC subclusters. The resulting set was subjected to the 
unified linear model to identify potential regulators (transcription 
factors). Only regulators were tested, which had at least ten known 
targets among the union differentially expressed set. According to 
decouplR’s vignette, the resulting score matrix, representing regula-
tions strength, was scaled and centred. The 25% trimmed mean activ-
ity per cluster for each condition is displayed to provide a robust 
central tendency measure.

Metabolomics analysis
Metabolomics analysis was conducted using data obtained from Metab-
olon. The Metabolon platform performed preprocessing steps on the 
data, including imputation of missing values and natural log transfor-
mation. In summary, the raw peak area data were median scaled per 
metabolite and then normalized by the value of the extracted volume. It 
was further rescaled to have a median equal to 1. Missing values for each 
metabolite were imputed with the minimum value observed across all 
samples. Finally, a natural logarithm transformation was applied to the 
metabolomic data, as it typically exhibited a log-normal distribution. 
For the PCA, the data were subjected to batch correction based on the 
day of the experiment, which was identified as a significant source of 
variance in the initial PCA analysis. The identified effect was treated as 
a batch factor in the ComBat function of the sva package76 for batch 
correction. The corrected data were then used for PCA analysis. To 
identify metabolites with significant effects of diet, genotypes or their 
interaction on their respective levels, an ANOVA was performed. Specifi-
cally, a contrast77 was applied within the ANOVA to compare metabo-
lite levels between maternal obese (HFDMCDLCD) and maternal lean  
(CDMCDLCD) conditions. The resulting set of 129 metabolites with sig-
nificant raw P values was further analysed using Metaboanalyst (https://
www.metaboanalyst.ca/)78 for pathway over-representation analysis. 
The HMDB IDs provided by Metabolon were used as input, resulting in a 
reduction to 111 metabolites due to missing labels. Furthermore, map-
ping to Metaboanalyst failed for ten additional metabolites. Default 
parameters were used for all remaining settings, except for choosing 
Mus musculus (KEGG) as the pathway library and applying out-degree 
centrality as the topology analysis method.

Hepatocyte and KC isolation for ex vivo experiments
Eight-to-ten-week-old chow diet-fed C57BL/6JRcc female mice were 
used to isolate hepatocytes. Therefore, a two-step collagenase liver 
perfusion was performed. First, 7 min after injecting heparin-sodium 
(Ratiopharm; 30 units per gram body weight), mice were anaesthe-
tized with ketamine–xylazine. Next, a 26 G indwelling venous catheter 
(0.62 mm × 19 mm; 391379, BD Neoflon Pro) was inserted into the portal 
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vein. Perfusion was initiated with 25 ml Hank’s balanced salt solution 
containing 0.5 mM EGTA (pH 7.4) at a rate of 2.5 ml min−1 using a peri-
staltic pump, and subsequently with 25 ml collagenase buffer (William’s 
Medium E, P04-29510, Pan-Biotech) supplemented with 3.6 mM CaCl2, 
0.1 U ml−1 collagenase NB46 (17465, Serva Electrophoresis) and 10 mM 
HEPES at 37 °C at a rate of 1.25 ml min−1. Liver cells were released by 
gentle swirling with forceps into 40 ml suspension medium (William’s 
Medium E supplemented with 10% FCS, 2 mM l-glutamine, 100 units per 
millilitre penicillin and 100 µg ml−1 streptomycin). Hepatocytes were 
pelleted at 50g for 3 min at room temperature. The pellet containing the 
hepatocytes was resuspended in fresh suspension medium and plated 
on collagen-coated 24-well plates for co-culture experiments with 
KCs at a density of 30,000 cells per well or on collagen-coated 96-well 
plates for factor screening experiments at a density of 5,000 cells per 
well. To ensure a viable hepatocyte culture, cells were pre-incubated 
for 3 h at 37 °C and 5% CO2 to allow for attachment. Thereafter, the 
medium was replaced with fresh suspension medium containing LD540 
(0.02 µg ml−1) and vitamin C (1 µg ml−1) for live-cell imaging using the 
IncuCyte SX5 (Sartorius). To isolate KCs, 11–15-week-old mice were 
perfused with the same method as isolating hepatocytes but with-
out the in vivo digestion step. After perfusion, liver was minced and 
digested in a digestion mix (PBS containing 1 mg ml−1 collagenase D, 
100 U ml−1 DNase I, 2.4 mg ml−1 dispase and 3% FCS) for 30 min at 37 °C 
without agitation. Digested liver was further disrupted with gentle 
pipetting, filtered through a 100-µm cell strainer and centrifuged at 
400g for 10 min at 4 °C. Pellet was washed with ice-cold FACS buffer 
(PBS containing 0.5% BSA and 2 mM EDTA) and centrifuged at 50g for  
3 min at 4 °C to remove hepatocytes. The supernatant was then fur-
ther filtered and washed with FACS buffer to obtain a clean, single-cell 
suspension and centrifuged at 400g for 10 min at 4 °C. The resulting  
pellet was then blocked with 1% anti-mouse CD16/32 (101302, Bio
Legend) and 5% rat serum (C13SDZ, Bio-Rad) for 10 min at 4 °C followed 
by incubation with biotinylated CD11b antibody (101204, BioLegend) 
for 30 min at 4 °C. Cells were then washed, incubated with pre-washed 
streptavidin-conjugated magnetic beads (480016, BioLegend), washed 
and enriched in a 12-well untreated cell-culture dish mounted atop a 
magnet. Enriched cells were abundantly washed in FACS buffer and 
subsequently counted using a Neubauer chamber. Cells (3 × 105) 
were plated onto a 13-mm diameter, untreated glass coverslip (VWR; 
co-culture experiments) or 2–4 × 106 cells onto an untreated glass 
slide (Fisher Scientific; proteomics experiments). Cells were attached 
for 2 h in macrophage medium (DMEM, containing 1% penicillin– 
streptomycin, 10% FBS and 1 mM sodium pyruvate) in a cell culture 
incubator at 37 °C with 5% CO2. After attachment, cells were abundantly 
washed with PBS. Macrophages on coverslips were used for co-culture 
experiments as described below. Macrophages for proteomics experi-
ments were scraped off in PBS, centrifuged at 400g at 4 °C for 5 min to 
obtain pellets, snap-frozen in liquid nitrogen and further processed for 
proteomics as described below.

Live-cell imaging for hepatocyte culture experiments and data 
analysis
For hepatocyte–KC co-culture experiments, a plastic ring (8 mm in 
height × 15 mm in diameter) was placed in each well of hepatocytes 
seeded as described above. A glass coverslip attached with approxi-
mately 3 × 104 KCs (resulted from initially seeded 3 × 105 CD11b 
magnet-enriched cells), isolated from either CDMCDLCD or HFDMCDLCD 
mice, was positioned upside-down on the plastic ring. LD540 was then 
added, and signal was recorded by live imaging hourly for 4 h in the 
IncuCyte SX5, with each mouse represented by multiple replicates and 
nine fields of view (FOVs) per well. For treatment of hepatocytes with 
APOE or APOA1, APOE (1 µg ml−1 recombinant mouse APOE; ab226314, 
Abcam) or APOA1 (2 µg ml−1 recombinant mouse APOA1; 50918-M08H, 
Sino Biological) was pre-incubated with hepatocyte medium at 37 °C 
for 30 min. The pre-incubated medium was then added to hepatocytes 

already containing 1 volume of hepatocyte medium. TNF (0.1 µg ml−1 
recombinant mouse TNF; 130-101-688, Miltenyi)-treated hepatocytes 
were used as positive controls. Non-treated hepatocytes served as 
negative controls. For each mouse, three replicates were prepared, 
LD540 was then added and the signal was recorded by live imaging 
hourly for 4 h in the IncuCyte SX5, with four FOVs imaged per well. 
The LD540-integrated intensity was quantified by multiplying µm2 
per FOV using the IncuCyte SX5 analysis software. A cell area filter 
was applied to ensure single-cell detection. Out-of-focus FOVs were 
excluded from analysis, as indicated by red labelling in the raw data 
spreadsheet. For co-culture data, the mean integrated LD540 signal 
per mouse was calculated following outlier removal by the interquar-
tile range method. Statistical tests included the Shapiro–Wilk test for 
normality, Levene’s test for variance homogeneity, and two-sample 
t-tests to compare CD versus HFD conditions at each time point. For 
screening data, mean LD540 measurements were averaged across 
replicates and normalized to the control measurement mean for each 
mouse after 3 h and 4 h in the co-culture experiment, and after 2 h in 
the screening assay.

KC proteomics analysis
KCs were isolated and pelleted as described above. Pelleted cells were 
thawed and lysed in urea lysis buffer (8 M urea and 50 mM Tris (pH8)), 
DNA was sheared with 28 U ml−1 benzonase (Sigma), and disulfide 
bridges were reduced and alkylated with 10 mM Bond-Breaker TCEP 
solution (Thermo) and 30 mM chloroacetamide. Non-dissolved cellular 
debris was removed by centrifugation at 15,000g for 10 min, and clean 
supernatants were transferred to fresh tubes. Protein concentrations 
were determined with the Pierce 660 nm Protein-Assay-kit (Thermo). 
Of protein input, 25 µg was used for digestion in 2 M urea (diluted with 
50 mM Tris (pH 8)) with a trypsin–LysC mixture (1:50 (enzyme:protein)) 
at 800 rpm for 16 h. Protein digestion was stopped with 1% formic acid, 
peptides were desalted on in-house-produced SDB-RPS Stage Tips and 
loaded onto EvoTip Pure trap columns following the manufacturers’ 
protocol.

A liquid chromatography–tandem mass spectrometry system con-
sisting of an Evosep One liquid chromatograph (Evosep) and a timsTOF 
Pro 2 mass spectrometer (Bruker) was used for peptide separation and 
acquisition. Reversed-phase separation was performed on an Aurora 
Elite analytical column (IonOpticks) using the 40 samples-per-day 
separation method with a 31-min gradient preprogrammed on the liquid 
chromatography system. Eluting peptides were on-line transferred into 
the mass spectrometry via a CaptiveSpray ionisation source operated 
at a constant voltage of 1.5 kV. We used the data-independent acquisi-
tion parallel accumulation-serial fragmentation mode with the TIMS 
analyser operating with 100-ms accumulation and ramping times and 
a 100% duty cycle. Peptide ranges were limited to a mass-to-charge 
range of 350–1,100 m/z and an ion mobility range of 0.63–1.45 Vs cm−2 
with 12 pydiAID-optimized data-independent acquisition parallel 
accumulation-serial fragmentation windows of variable widths79. We 
increased collisional energies stepwise from 24 eV at 0.70 Vs cm−2 and 
49 eV at 1.35 Vs cm−2 for peptide fragmentation. The mass spectrom-
etry proteomics data have been deposited to the ProteomeXchange 
Consortium via the PRIDE partner repository80 with the dataset iden-
tifier PXD058285. Spectral library prediction, peptide identification 
and protein quantification were performed in library-free mode using 
DIA-NN (v1.8.1)81. The SwissProt Mus musculus database was used for 
predicted spectral library (downloaded from UniProt: 2022-12-28). 
In silico digestion was set to trypsin as the digestion enzyme with a 
maximal one miss-cleavage and cysteine carbamidomethylation set 
as fixed modifications. Precursor peptides were filtered at a false dis-
covery rate (FDR) < 1%. The match-between-runs option was enabled. 
Using the DIA-NN main output table, we performed protein group 
intensity normalizations with the MaxLFQ algorithm82 implemented 
in the DIA-NN R-package. Only proteotypic peptides were considered 
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for quantification. Statistical analysis was performed in the Perseus 
software suite (v1.6.15)83. Protein group label-free quantification inten-
sities were log2 transformed and filtered for protein groups with data 
completeness in at least one condition. Missing values were replaced 
by random value drawing from 1.8 standard deviations downshifted 
and 0.3 standard deviations broad normal distributions. Significantly 
regulated proteins between any conditions were identified by ANOVA 
multiple-sample testing (S0 = 0.5, FDR < 0.1 with 250 randomizations) 
and all proteins were z-score normalized. For visualization, the dataset 
was summarized by taking the mean over all samples per group, namely, 
WT and KO in maternal lean, as well as WT and KO in maternal obese. 
The summarized data were objected to k-means clustering using k = 6 
to obtain groups of proteins with varying expression patterns across 
samples from which several interesting representatives were chosen 
to be highlighted.

Statistics and bioinformatic tools
Statistical assessment was performed with one-way ANOVA with 
Tukey’s multiple comparisons method, the Kruskal–Wallis test, the 
unpaired Student’s t-test, the Mann–Whitney test or the Wilcoxon 
rank sum test, depending on the dataset, and following an assessment 
of normality. R-studio and Prism were used for the statistical evalua-
tion and visualization. Statistical significance was represented via the 
probability (P value) as follows: not significant (NS) > 0.05, *P < 0.05, 
**P < 0.01 and ***P < 0.001. All bar graphs represent mean values. In all 
of the aforementioned analyses, PCA was performed using the prcomp 
function in R on centred data. Significance levels were consistently set 
at P < 0.05. Raw P values were adjusted for multiple testing using the 
false discovery rate method and considered significant if the adjusted 
P < 0.1. The analysis was implemented using R (v4.2.0)84 and Bioconduc-
tor (v3.15)85. Detailed information about every package used, including 
all dependencies, along with their respective versions, can be found 
in the renv.lock file located in the GitHub repository (https://github.
com/LeaSeep/MaternalObesity) generated with the renv package86. 
The main analysis and visualization packages used can be found in Sup-
plementary Table 9 that contains all references. All scripts, as well as the 
necessary data files, are available in the GitHub repository to reproduce 
all the results presented in the article, including additional results, by 
running the respective main files or provided RMarkdown Documents 
for the hCoCena. Furthermore, a database file has been provided, 
which presents all the statistical figures and serves as a comprehen-
sive resource for quick reference and independent verification of our 
own hypothesis or results. These resources have been made available 
to facilitate reproducibility and enable researchers to conduct their 
own investigations with ease. A snapshot of the GitHub repository can 
be found on Zenodo87 (https://doi.org/10.5281/zenodo.14287647).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The raw transcriptome files and the count data have been deposited in 
NCBI’s Gene Expression Omnibus (GEO)88 and are accessible through 
GEO Series accession number GSE237408 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE237408). Raw and processed lipid-
omics data are available at Metabolomics Workbench89 where it has 
been assigned study IDs ST002781 and ST002782 within the project 
PR001715. The Metabolome data are available at Metabolomics Work-
bench89 where it has been assigned with the study ID ST002754 within 
the same project as the lipidomics data (https://doi.org/10.21228/
M81D9R). All imaging data used for quantification are available at 
Bonndata (https://doi.org/10.60507/FK2/PP2MPB). Source data are 
provided with this paper.
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Extended Data Fig. 1 | Maternal obesity model and characterization of liver 
metabolic status in the offspring. a, Body weight of mothers on control diet 
(CD, grey) or high-fat diet (HFD, green). n = 15 mice/group. Mean ± SD is shown. 
Two-tailed unpaired Student’s t-test. b, Homeostatic Model Assessment for 
Insulin Resistance (HOMA-IR) of mothers on CD or HFD performed after  
8 weeks on respective diet. n = 15 mice/group. Mean is indicated. Two-tailed 
unpaired Student’s t-test. c, Heatmap showing log-transformed values of 
detected cytokines and chemokines in the sera of mothers on CD and HFD. 
Each column represents one mouse. n = 7 mice/group. Two-tailed unpaired 
Student’s t-test on the individual coefficients after linear fitting model and 
multiple testing correction using false discovery rate <0.05. d, Plots of results 
from c that show significance when using two-tailed unpaired Student’s t-test. 
Mean ± SD. e, Body, white adipose tissue (WAT) and liver weights of offspring at 

11 weeks of age. n = 8, 8, 7, 6, 7, 7 mice for CDMCDLCD, CDMCDLHFD, HFDMCDLCD, 
HFDMHFDLCD, HFDMCDLHFD, HFDMHFDLHFD groups, respectively, on 11 
experimental days. Bar graphs show the means. f, Hematoxilin-eosin (HE) 
staining of liver sections of the offspring. Scale bars, 100 μm. Representative 
pictures for the mice in e. g, Heatmap of liver lipidomics in Fig. 1d showing the 
condition-wise Log-Fold changes (LFC) against the CDMCDLCD of selected lipid 
groups. Two-tailed unpaired Student’s t-test on the individual coefficients 
after linear fitting model and multiple testing correction using false discovery 
rate <0.05 (* = p < 0.05, ** = p < 0.01, *** = p < 0.001). h, Metabolomics of serum 
from all experimental groups visualized by PCA. i, Enriched metabolic pathways 
in HFDMCDLCD compared to CDMCDLCD based on serum metabolomics data.  
h, i, n = 7 mice/group. One-way ANOVA – Tukey’s multiple comparison test.



Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Flow cytometry analysis, FACS gating strategy and 
metabolic profiling of KCs and liver myeloid cells. a, Flow cytometry gating 
strategy for KCs, Liver Capsular Macrophages (LCM), classical Dendritic Cells 1 
and 2 (cDC1, cDC2), monocytes (Mono) and neutrophils (Neu). b, Cell number 
of different myeloid populations per gram of liver tissue quantified by flow 
cytometry. n = 4, 5, 4, 6, 4, 4 mice for CDMCDLCD, CDMCDLHFD, HFDMCDLCD, 
HFDMHFDLCD, HFDMCDLHFD, HFDMHFDLHFD groups, respectively, on 8 
experimental days. Bar graphs show the means. One-way ANOVA – Tukey’s 
multiple comparison test, comparing and showing significances of only 
CDMCDLCD, CDMCDLHFD and HFDMCDLCD groups. c, Fluorescence activated 
cell sorting (FACS) gating strategy for sorting KCs for RNA-seq. d, Schematic 

illustration of metabolite transporters and enzymes assessed for the metabolic 
state of KCs. 1. GLUT1, glucose transporter 1; 2. PKM, pyruvate kinase M; 3. 
SDHA, succinate dehydrogenase A; 4. Cytc, cytochrome c; 5. ATP5A, ATP 
synthase F1 subunit alpha; 6. G6PD, glucose-6-phosphate dehydrogenase; 7. 
CD36, fatty acid translocase; 8. CPT1A, carnitine palmitoyl transferase 1A; 9. 
ACC1, acetyl-CoA Carboxylase 1. The schematic was created in BioRender. 
Mass, E. (2025) https://BioRender.com/axc6avr. e, Mean Fluorescence Intensity 
(MFI) of GLUT1, PKM, SDHA, CytC, ATP5A, G6PD, CD36, CPT1a and ACC1 in KCs 
isolated from 11–13 weeks CDMCDLCD and HFDMCDLCD mice. n = 5 mice/group 
on 1 experimental day. Bar graphs show the means. Two-tailed unpaired 
Student’s t-test.

https://BioRender.com/axc6avr


Extended Data Fig. 3 | Characterization of serum and bone marrow  
immune status in the offspring. a, Heatmap showing log-transformed  
values of detected cytokines and chemokines in the offspring sera. Each 
column represents one mouse. n = 5, 7, 6, 6, 5, 6 mice for CDMCDLCD, 
CDMCDLHFD, HFDMCDLCD, HFDMHFDLCD, HFDMCDLHFD, HFDMHFDLHFD 
groups, respectively, on 11 experimental days. No significance across 
conditions using Kruskal-Wallis test. b, Flow cytometry gating strategy for 
analysis of hematopoietic stem and progenitor cells in the bone marrow.  
LT-HSC, long-term hematopoietic stem cells; ST-HSC, short-term hematopoietic 

stem cells; GMP, granulocyte-macrophage progenitors; MEP, megakaryocyte-
erythroid progenitors; CMP, common myeloid progenitors; CLP, common 
lymphoid progenitors. c, Cell number of different hematopoietic stem and 
progenitor cells quantified by flow cytometry. n = 6, 7, 3, 6, 4, 4 mice for 
CDMCDLCD, CDMCDLHFD, HFDMCDLCD, HFDMHFDLCD, HFDMCDLHFD, HFDM 
HFDLHFD groups, respectively, on 11 experimental days. Bar graphs show the 
means. No significance across conditions using One-way ANOVA – Tukey’s 
multiple comparison test.
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Extended Data Fig. 4 | Analysis of Tnfrsf11aCre; Rosa26LSL-YFP; Ms4a3FlpO; 
Rosa26FSF-tdTomato double fate mapper mouse model. a, Ms4a3 locus indicating 
targeting strategy. b, Flow cytometry gating strategy for blood monocytes and 
microglia. c, Quantification of labelling efficiency of blood monocytes and 

microglia in 11–12 weeks old maternal lean (CDMCDLCD, n = 4 on 2 experimental 
days) and maternal obese (HFDMCDLCD, n = 3 on 2 experimental days) mice.  
Bar graphs show the mean ± SD. d, Flow cytometry gating strategy for KCs.



Extended Data Fig. 5 | KC depletion in Clec4f DTR/+ mouse model.  
a, Representative flow cytometry gating of F4/80+Tim4+ KCs from Clec4f +/+  
and Clec4f DTR/+ mice 14 h, 24 h and 48 h after diphtheria toxin (DT) injection at 
P0. b, Quantification of F4/80+Tim4+ KCs (gating shown in a) in % of CD11b+ cells 
comparing Clec4f +/+ and Clec4f DTR/+ mice 14 h (n = 3 and 2 mice for Clec4f +/+ and 
Clec4f DTR/+, respectively), 24 h (n = 5 and 4 mice for Clec4f +/+ and Clec4f DTR/+, 
respectively) and 48 h (n = 3 and 5 mice for Clec4f +/+ and Clec4f DTR/+, respectively) 
after DT injection at P0. Bar graphs show the mean ± SD. Two-tailed unpaired 
Student’s t-test when sample size is no less than 3. c, Flow cytometry analysis of 

isolated bone marrow monocytes and hematopoietic stem and progenitor cells 
(HSPCs) from Rosa26mTmG mice used for transplanting Clec4f +/+ and Clec4f DTR/+ 
mice 15 h after DT injection. d, Immunofluorescence staining of HFDMCDLCD 
Clec4f DTR/+ liver at the age of 13 weeks showing the partial replacement of 
endogenous KCs by tdT+ bone marrow monocytes and HSPCs from Rosa26mTmG 
mice. KCs are shown as Iba1+ and nuclei as DAPI+. Scale bar: 50 μm. Representative 
image of n = 9 mice on 4 experimental days. e, Representative H&E staining of 
livers in Fig. 2f–h. Scale bar: 200 μm. The illustrations were created in 
BioRender. Mass, E. (2025) https://BioRender.com/1don7ps.

https://BioRender.com/1don7ps
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Extended Data Fig. 6 | Characterization of Hif1α-WT and Hif1α-KO maternal 
lean and obese offspring. a, Body, WAT and liver weight of 11-week-old offspring. 
Each circle/triangle represents one mouse. n = 12, 8, 7, 6, 8, 7, 7, 10 mice for 
CDMCD WT, CDMCD KO, CDMHFD WT, CDMHFD KO, HFDMCD WT, HFDMCD KO, 
HFDMHFD WT, HFDMHFD KO groups, respectively, on 15 experimental days. Bar 
graphs show the means. One-way ANOVA – Tukey’s multiple comparison test.  
b, Heatmap of liver lipidomics in Fig. 3d showing the condition-wise Log-Fold 
changes (LFC) against the CDMCD of selected lipid groups. Two-tailed unpaired 
Student’s t-test on the individual coefficients after linear fitting model and 
multiple testing correction using false discovery rate <0.05 (* = p < 0.05,  

** = p < 0.01, *** = p < 0.001). c, Pathological scoring of liver steatosis performed 
on HE stainings. n = 7, 7, 7, 8, 7, 8, 7, 11 mice for CDMCD WT, CDMCD KO, CDMHFD 
WT, CDMHFD KO, HFDMCD WT, HFDMCD KO, HFDMHFD WT, HFDMHFD KO 
groups, respectively, on 15 experimental days. Bar graphs show the means. 
One-way ANOVA – Tukey’s multiple comparison test. d, FACS-gating strategy to 
sort KCs and hepatocytes for RNA-seq. e, RNA-seq of FACS-sorted hepatocytes 
from all diet groups of Hif1α-WT and Hif1α-KO mice visualized by PCA. n = 5, 5, 5, 
5, 2, 3, 6, 2 mice for CDMCD WT, CDMCD KO, CDMHFD WT, CDMHFD KO, HFDMCD 
WT, HFDMCD KO, HFDMHFD WT, HFDMHFD KO groups, respectively.



Extended Data Fig. 7 | Transcriptome analysis of KCs isolated from P0 pups. 
a, Heatmap showing scaled expression of DEGs of KCs isolated from pups born 
to CD-fed (CDM) or HFD-fed (HFDM) mothers. n = 5 mice/group. b, Transcription 
factor (TF) activity analysis with genes from a. as input. The higher the score is, 
the higher the predicted activity is of the indicated TF in KCs born to obese 
mothers. c. Volcano plot of DEGs (blue: down, red: up) between P0 KCs born to 
HFD- and CD-fed mothers. HIF1α targets are highlighted in red. d. HALLMARK 
pathway overrepresentation-analysis of all upregulated DEGs shown in a.  

e, Variant supporting counts (vsc) of all Hif genes. n = 5 mice/group. Box plots 
show median with interquartile range and min/max. f, Representative images 
of immunofluorescence staining of HIF1α in F4/80+ KCs in P0 livers born to  
CD- and HFD-fed mothers. n = 4, 3 P0 pups born to CD-, HFD-fed mothers, 
respectively, on 3 experimental days. g, Quantification of HIF1α intensity in 
nuclei in % to cytoplasm in F4/80+ KCs comparing P0 pups born to CD- and 
HFD-fed mothers in f. n = 9, 12 cells from P0 pups born to CD-, HFD-fed mothers, 
respectively. Bar graphs show the mean ± SD. Two-tailed Mann-Whitney test.
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Extended Data Fig. 8 | Characterization of myeloid cell immune infiltration 
and ex vivo KC proteomics in Hif1α-WT and Hif1α-KO livers. a, Expression of 
selected chemo-attractants expressed by hepatocytes across diet groups of 
HIF1α mouse model. n = 5, 5, 5, 5, 2, 3, 6, 2 mice for CDMCD WT, CDMCD KO, 
CDMHFD WT, CDMHFD KO, HFDMCD WT, HFDMCD KO, HFDMHFD WT, HFDMHFD 
KO groups, respectively. Box plots show medians with interquartile range and 
min/max. b, Cell number of different myeloid populations per gram of liver 
tissue quantified by flow cytometry. n = 5, 3, 4, 5, 4, 5, 5, 4 mice for CDMCD WT, 
CDMCD KO, CDMHFD WT, CDMHFD KO, HFDMCD WT, HFDMCD KO, HFDMHFD WT, 

HFDMHFD KO groups, respectively, on 15 experimental days. Bar graphs show 
the means. One-way ANOVA – Tukey’s multiple comparison test. c, Dot plot 
showing ORA analysis of DEGs comparing HFDMCD WT versus HFDMCD KO 
conditions. d, Heatmap showing the relative mean expression and hierarchical 
clustering of differentially expressed proteins from isolated KCs comparing 
HFDMCD WT vs. CDMCD WT mice, HFDMCD WT vs. HFDMCD KO mice, and the 
overlapping proteins of the two comparisons. Same experiment as Fig. 3h, 
where selected proteins from the different clusters are displayed. e, Dot plot 
showing enriched pathways of the differentially expressed proteins from Fig. 3g.



Extended Data Fig. 9 | Single nucleus (sn)RNA/ATAC-seq analysis of 
CDMCDLCD and HFDMCDLCD KCs. a, snRNA/ATAC-seq of CDMCDLCD and 
HFDMCDLCD livers visualized by Uniform Manifold Approximation (UMAP) 
showing all liver cell types. b, Dot plot showing the genes determining the  
cell type annotation of identified clusters shown in a. c, Representative 
immunofluorescence (IF) staining showing MHC-II expression in the liver of 
CDMCDLCD and HFDMCDLCD mice. All KCs and macrophages are labelled with 
Iba1. scale bar: 200 μm. Representative pictures of n = 11 CDMCDLCD and n = 7 
HFDMCDLCD mice. d, Volcano plot showing assigned genes to the differentially 

detected snATAC-seq peaks between KCs from CDMCDLCD and HFDMCDLCD 
livers. e, GO term analysis of downregulated genes associated with snATAC-seq 
peaks. f, Violin plots comparing Gpnmb (upper) and Pck1 (lower) expression 
within all KC states comparing CDMCDLCD and HFDMCDLCD groups. Two-tailed 
Wilcoxon Rank Sum test. g, CellChat analysis using differentially expressed 
genes between CDMCDLCD and HFDMCDLCD KCs as sender molecules and all cell 
types as receivers. Coloured genes indicate significant (p < 0.05) differences of 
information flow between the conditions tested with Two-tailed Wilcoxon 
Rank Sum test.
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Flow cytometry data were collected using BD FACSymphony A5 SORP Cytometer with BD FACSDiva version 9.0, ARIA III (BD Bioscience) with 
BD FACSDiva version 9.0, or Sony ID7000 (Sony) with ID7000 Acquisition and Analysis Software version 2.0.2. 
Images were acquired on a Axio Lab.A1 microscope (Zeiss) ,Axio Observer Z1 in Apotome mode (Zeiss), or LSM880 (Zeiss) with Zen Blue 
software. 
Cytokine multiplex assay data were collected using the Luminex xMAP system with xMAP INTELLIFLEX Software version 1.0. 
Bulk and single-cell RNA-Sequencing libraries were sequenced using a NextSeq500 (bulk) or NextSeq2000 (single nucleus sequencing) 
instrument (Illumina). 
Direct infusion lipidomics was performed using a Thermo Q Exactive Plus spectrometer equipped with the HESI II ion source. 

Flow cytometry data were analyzed with FlowJo version v10.9.0. 
Oil-red-O analysis was quantified using QuPath version 0..5.1. 
Quantitative analysis of immunofluorescence images was performed using Fiji version 2.7.0. 
Cytokine multiplex assay results were analyzed with ProcartaPlex Analysis App software version 1.0. 
RNA-Seq data were analyzed in R environment. 
Lipidomics raw files were converted to .mzml files and imported into and analyzed by LipidXplorer software v 1.2.8.1 using custom mfql files 
to identify sample lipids and internal standards. 
Metabolomics data were analyzed in R environment. 
Detailed description of analysis methods as well as all packages and versions used for analyses are provided in the Methods section and Table 
9. 
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Transcriptome data have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number GSE237408 (https:// 
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE237408). 
Lipidomics data is available at Metabolomics Workbench, Study IDs ST002871 and ST002872 within the project PR001715 (DOI: http://dx.doi.org/10.21228/ 
M81D9R). 
Metabolome data are available at Metabolomics Workbench, Study ID ST002754 (DOI: http://dx.doi.org/10.21228/M81D9R). 
All pictures used for quantificaiton are available at Bonndata (https://doi.org/10.60507/FK2/PP2MPB). 
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this study does not include data from human samples 

this study does not include data from human samples 

this study does not include data from human samples 

this study does not include data from human samples 

this study does not include data from human samples 

G*Power was used to estimate the minimum sample size needed. Final sample size was based on the availability of resources and the goal of 
achieving reproducibility across independent experiments. The chosen sample sizes allowed for appropriate statistical analyses and 
demonstrated consistent reproducibility of results across replicates. 

Outliers were identified using the ROUT function in Prism 10. Outliers of RNA-seq samples were excluded due to low quality, here the specific 
outliers and how the data was analyzed are described in the Methods section. 

Cohorts of mice have been generated over several years, always comparing littermates, and have been replicable. Detailed cohort collection is 
indicated in the figure legends. 

The maternal mice used in our study were randomly selected from the available cohort without any pre-selection criteria and put randomly 
into either control diet (CD) or high-fat diet (HFD). To further standardize and minimize potential confounding factors, litters from different 
mothers were cross-fostered to the same foster mother, whenever possible. Additionally, to ensure that offspring within the same dietary 
groups (CD or HFD) maintained a similar microbiome, we collected bedding material with feces from all cages, mixed it thoroughly, and 
redistributed it to all cages within the respective diet group. This approach aimed to harmonize the microbiome across animals within each 
dietary group. These measures, combined with focusing exclusively on male mice, ensured a robust and unbiased experimental design while 
addressing our study’s objectives. 

Due to the objective manner of analysis, researchers were not blinded in these studies. 
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Materials & experimental systems Methods 

 Antibodies  
Antibodies used Antibodies for myeloid cell flow cytometry for WT and Hif1α-KO mice 

Antigen Conjugate Clone Source Cat# Final dilution (μg/mL) 
CD45 BUV805 30-F11 BD Bioscience 748370 0.25 
CD11b PE-Cy7 M1/70 BioLegend 101216 0.25 
Tim-4 AF647 RMT4-54 BioLegend 130008 1.25 
F4/80 BV421 BM8 BioLegend 123132 0.5 
NKp46 PE 29A1.4 BioLegend 137604 1 
CD3 PE 145-2C11 BioLegend 100308 1 
CD19 PE 1D3/CD19 BioLegend 152408 0.5 
Ly6C BV510 HK1.4 BioLegend 128033 0.5 
Ly6G PerCP/Cy5.5 1A8 BioLegend 127616 1 
Cx3cr1 PE-Dazzle594 SA011F11 BioLegend 149014 0.5 
CD11c BV605 N418 BioLegend 117333 1 
CD206 BV711 C068C2 BioLegend 141727 1 
MHC-II AF700 M5/114.15.2 BioLegend 107622 1.125 
CD172a FITC P84 BioLegend 144006 2.5 
Xcr1 APC-Cy7 ZET BioLegend 148224 1 

Antibodies for HSC flow cytometry for WT and Hif1a KO mice 
Antigen Conjugate Clone Source Cat# Final dilution (μg/mL) 
CD11b Biotin M1/70 BioLegend 101204 0.625 
NKp46 Biotin 29A1.4 BioLegend 137616 2.5 
CD3 Biotin 145-2C11 BioLegend 100304 2.5 
CD19 Biotin 6D5 BioLegend 115504 1.125 
Gr1 Biotin RB6-8C5 BioLegend 108404 1.125 
Ter119 Biotin TER-119 BioLegend 116204 2.5 
c-Kit (CD117) BV711 2B8 BioLegend 105835 1 
Sca-1 BV510 D7 BioLegend 108129 0.5 
CD48 AF647 HM48-1 BioLegend 103416 2.5 
CD150 PE-Cy7 TC15-12F12.2 BioLegend 115914 0.5 
CD16/32 APC-Cy7 93 BioLegend 101328 2 
CD34 BV421 MEC14.7 BioLegend 119321 2 
CD135 PE A2F10 BioLegend 135306 2 
CD127 PerCP/Cy5.5 A7R34 BioLegend 135022 2 
Streptavidin FITC BioLegend 405201 5 

Antibody for KC sorting for WT and Hif1a KO mice 
Antigen Conjugate Clone Source Cat# Final dilution (μg/mL) 
CD45 APC-Cy7 30-F11 BioLegend 103116 0.5 
CD11b PE-Cy7 M1/70 BD Bioscience 552850 0.25 
Tim4 BV786 21H12 BD Bioscience 742778 1 
F4/80 AF700 BM8 BioLegend 123130 1.67 
NKp46 PE 29A1.4 BioLegend 137604 1 
CD3 PE 145-2C11 BioLegend 100308 1 
CD19 PE 1D3/CD19 BioLegend 152408 0.5 
CD31 AF488 MEC13.3 BioLegend 102514 5 

Antibody for blood monocyte flow cytometry for double-fate mapper mice 
Antigen Conjugate Clone Source Cat# Final dilution (μg/mL) 
CD19 BV421 6D5 BioLegend 115537 1 
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TCRβ Biotin H57-597 BioLegend 109204 1.125 
CD172a PE-Cy7 P84 BioLegend 144008 0.5 
CD11b BUV661 M1/70 BD Bioscience 612977 1 
Ly6G PerCP-Cy5.5 1A8 BioLegend 127616 1 
Xcr1 APC-Cy7 ZET BioLegend 148224 1 
Ly6C BV510 HK1.4 BioLegend 128033 1 
CD115 APC AFS98 BioLegend 135510 1 
Streptavidin BV785 BioLegend 405249 1 

Antibody for KC flow cytometry for double-fate mapper mice 
Antigen Conjugate Clone Source Cat# Final dilution (μg/mL) 
CD31 APC-Cy7 MEC13.3 BioLegend 102534 1 
CD45 BUV805 30-F11 BD Bioscience 748370 0.25 
CD11b BUV737 OX-42 BD Bioscience 612800 1 
Ter119 Biotin TER-119 BioLegend 116204 2.5 
TCRβ Biotin H57-597 BioLegend 109204 1.125 
CD19 Biotin 6D5 BioLegend 115504 1.125 
Siglec-F Biotin S17007L BioLegend 155512 2.5 
Nkp46 Biotin 29A1.4 BioLegend 137616 2.5 
Cx3cr1 PE-Dazzle594 SA011F11 BioLegend 149014 0.5 
CD206 BV711 C068C2 BioLegend 141727 1 
F4/80 BV421 BM8 BioLegend 123132 0.5 
Tim-4 BV786 21H12 BD Bioscience 742778 1 
Streptavidin BUV496 BD Bioscience 612961 0.25 

Antibody for microglia flow cytometry for double-fate mapper mice 
Antigen Conjugate Clone Source Cat# Final dilution (μg/mL) 
CD45 BUV805 30-F11 BD Bioscience 748370 0.25 
CD11b BUV737 OX-42 BD Bioscience 612800 1 
Ly6C BV510 HK1.4 BioLegend 128033 1 
Ly6G PerCP/Cy5.5 1A8 BioLegend 127616 1 
Cx3cr1 PE-Dazzle594 SA011F11 BioLegend 149014 0.5 
F4/80 BV421 BM8 BioLegend 123131 0.5 

Antibody for KC metabolic profiling panel 
Antigen Conjugate Clone Source Cat# Final dilution (μg/mL) 
CD45 BUV805 30-F11 BD Biosciences 568336 0.5 
CD11b BUV737 M1/70 BD Biosciences 612800 0.5 
F4/80 BUV395 BM8 eBioscience 363-4801-82 0.5 
CD64 BV711 X54-5/7.1 Biolegend 139311 2 
Tim4 BUV496 RMT4-54 BD Biosciences 750515 0.5 
Vsig4 PE-efluor 610 NLA14 eBioscience 61-5752-82 0.125 
Clec2 APC 17D9 Biolegend 146106 0.125 
CD36 AF700 HM36 eBioscience 56-0362-82 2 
CD98 BUV615 H202-141 BD Biosciences 752360 2 
CD31 BUV661 390 BD Biosciences 741505 1 
MHC-II SparkBlue550 M5/114.15.2 Biolegend 128033 0.5 
Ly6C BV510 HK1.4 Biolegend 128033 0.5 
Glut1 DL405 DyLight® 405 Conjugation Kit (Fast) - Lightning-Link® Abcam ab201798 

EPR3915 Abcam ab252403 1.25 
PKM PE PE / R-Phycoerythrin Conjugation Kit - Lightning-Link® Abcam ab102918 

EPR10138(B) Abcam ab206129 0.625 
SDHA AF647 Alexa Fluor® 647 Conjugation Kit (Fast) - Lightning-Link® Abcam ab269823 

EPR9043(B) Abcam ab240098 0.625 
CPT1a PE-Cy5 PE/Cy5® Conjugation Kit - Lightning-Link® Abcam ab102893 

EPR21843-71-2F Abcam ab235841 0.625 
Acc1 AF488 Alexa Fluor® 488 Conjugation Kit (Fast) - Lightning-Link® Abcam ab236553 

EPR23235-147 Abcam ab272704 2.5 
CytC Pe-Cy7 PE/Cy7® Conjugation Kit - Lightning-Link® Abcam ab102903 

7H8.2C12 Abcam ab237966 1.25 
ATP5a PerCP-Cy5.5 PerCP/Cy5.5® Conjugation Kit - Lightning-Link® Abcam ab102911 

EPR13030(B) Abcam ab231692 5 
G6PD APC-Cy7 APC/Cy7® Conjugation Kit - Lightning-Link® Abcam ab102859 

EPR20668 Abcam ab231828 1.25 

Antibody for immunofluorescence staining 
Antigen Conjugate Clone Source Cat# Final dilution (μg/mL) 
Hif1α Purified Polyclonal Novus Biologicals NB100-479SS 10 
Tim-4 PE RMT4-54 Biolegend 130005 2 
Iba1 Purified Polyclonal Novus Biologicals NB100-1028 0.5 
RFP Purified Polyclonal Rockland 600-401-379 1 
F4/80 Purified BM8 Biolegend 123101 5 
Iba1 Purified EPR16589 Abcam ab178847 
MHC-II Purified M5/114.15.2 Biolegend 107601 
Donkey anti-rabbit AF488 Invitrogen A-21206 2 
Donkey anti-rabbit AF555 Invitrogen A-31572 2 
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Reporting on sex 
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Note that full information on the approval of the study protocol must also be provided in the manuscript. 

 Flow Cytometry  

Plots 
Confirm that: 

 The axis labels state the marker and fluorochrome used (e.g. CD4-FITC). 

 The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers). 

 All plots are contour plots with outliers or pseudocolor plots. 

A numerical value for number of cells or percentage (with statistics) is provided. 

Methodology 

Sample preparation 

Donkey anti-goat AF647 Invitrogen A-21447 2 
Donkey anti-rat AF647 Invitrogen A-78947 2 
DAPI Biolegend 422801 0.5 

Antibody for enrichment and flow cytometry analysis of monocyte and HSPCs 
Antigen Conjugate Clone Source Cat# Final dilution (μg/mL) 
Ly-6G Biotin 1A8 BioLegend 127603 2.5 
CD3 Biotin 145-2C11 BioLegend 100304 2.5 
CD19 Biotin 6D5 BioLegend 115504 1.125 
Ter119 Biotin TER-119 BioLegend 116204 2.5 
Nkp46 Biotin 29A1.4 BioLegend 137616 2.5 
F4/80 Biotin BM8 BioLegend 123105 2.5 
c-Kit (CD117) APC-Cy7 2B8 BioLegend 105826 1 
CD45 APC 30-F11 BioLegend 103112 0.5 
CD11b PE-Cy7 M1/70 BD Bioscience 552850 0.25 
Ter119 BUV615 Ter-119 BD Bioscience 751534 0.5 
Ly6C BV510 HK1.4 Biolegend 128033 0.5 

5 

All antibodies for flow cytometry used in this study were purchased from BD Bioscience and BioLegend. All antibodies used were 
characterized and validated by providers. 

As wildtype strain, C57BL/6JRcc was used from the in-house mouse facility. To generate Hif1aflox/flox; LysMCre/+ the Hif1aflox/flox 
(JAX stock #007561) and LysMCre/+ (JAX stock #004781) were used. To generate the double fate-mapper Tnfrsf11aCre (from 
Yasuhiro Kobayashi); Rosa26LSL-YFP (JAX stock #006148); Ms4a3FlpO (from Florent Ginhoux); Rosa26FSF-tdTomato (JAX stock 
#032864), we bred Tnfrsf11aCre/+; Rosa26FSF-tdTomato/FSF-tdTomato animals with Ms4a3FlpO; Rosa26LSL-YFP/LSL-YFP animals. 
All mice were analyzed between 11-13 weeks of age. 

The study did not involve wild animals 

For all experiments of the offspring, males were analyzed with the exception of the double fate-mapper and ex vivo isolated 
hepatocytes and macrophages where both males and females were used at the age of 11-12 weeks. 

No field-collected samples are included 

All investigations concerning mouse work have local approval and all procedures conform to the guidelines from Directive 2010/63/ 
EU of the European Parliament on protecting animals used for scientific purposes. In detail, all animal experiments were conducted 
according to the German law of animal protection and in agreement with the approval of the local institutional animal care 
committee (Landesamt für Natur, Umwelt und Verbraucherschutz (LANUV), North Rhine-Westphalia, Az 81-02.04.2019.A146 and Az 
2024.A314). Mice were housed under specific pathogen-free conditions with 12-h light/dark cycle, at 21°C, 55% relative humidity, 
and with food and water provided ad libitum. 

Adult mice were anesthetized and perfused with ice-cold PBS. Postnatal day (P)0 mice were killed by decapitation. For flow 
cytometry analysis of hepatic myeloid cells, 200 to 300 mg of adult or half or P0 liver was collected, cut into small pieces, and 
incubated in a digestion mix (PBS containing 1 mg/ml collagenase D (Roche, Cat# 11088858001), 100 U/ml DNase I (Sigma- 
Aldrich, Cat# DN25), 2.4 mg/ ml of dispase (Gibco Cat# 17105041) and 3% fetal calf serum (FCS) (Invitrogen) for 30 min at 37 ° 
C before mechanical disruption through a 100 μm filter. The cell suspension was diluted in 3 ml of FACS buffer (0.5 % BSA, 2 
mmol EDTA in PBS) and centrifuged at 50 x g for 3 min to remove hepatocytes. Then, the supernatant was collected and 
centrifuged at 370 x g for 7 min, 4 °C. For bone marrow, one leg was isolated, and both the tibia and femur were cleaned 
from surrounding tissues and cut at the ends. The bones were flushed with 5 ml of ice-cold FACS buffer. Cells were 
centrifuged at 370 x g for 7 min, 4 °C. Pellet was resuspended in red blood cell lysis buffer (155 mM NH4Cl, 12 mM NaHCO3 
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Instrument 

 
Software 

Cell population abundance 

Gating strategy 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This checklist template is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in 
the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ 

and 0.1 mM EDTA) and incubated for 3 min on ice. Then, 5 ml of FACS buffer were added, cells were resuspended and 
centrifuged at 370 x g for 7 min, at 4 °C. Tissue pellet was resuspended in FACS buffer containing purified anti-CD16/32 and 
2% rat serum (liver) or 2% rat serum only (bone marrow) and incubated for 15 min at 4 °C. Samples were immunostained with 
antibody mixes for 30 min at 4 °C. The complete list of antibodies used can be found in the "Material and Methods" session 
of the manuscript. Data were acquired with FACSymphonyTM A5 (BD Biosciences) or LSRII and analyzed in FlowJoTM 
Software. For sorting of Kupffer cells and hepatocytes, the liver cell suspension was prepared as described above with the 
following modifications: First, 1 ml of twice-concentrated digestion mix was used for tissue digestion. Second, digestion was 
performed at room temperature, and centrifugation at 50 x g for 3 min was omitted to retain hepatocytes. Finally, all steps 
were performed with buffers containing 1 mM of flavopiridol (Sigma-Aldrich, F3055). 
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Flow cytometry samples were analysed at BD FACSymphony A5 SORP Cytometer or Sony ID7000. 
For sorting experiments, cells were sorted at FACSAria III (BD Bioscience) cell sorter. 

Data were collected with BD Diva software (BD Biosciences) or Sony ID7000 system software (Sony) and analyzed with FlowJo 

The purity of sorted samples was analyzed by flow cytometry on the same instruments used for sorting. 

Gating strategies for all populations can be found in the Extended Data Figures. 
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