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In Parkinson’s disease (PD), continuous sensor-based evaluation of motor symptom severity, e.g., 
using accelerometry, has become an emerging field of interest in clinical research. Continuous 
symptom monitoring would also be of interest in preclinical disease models; however, such devices 
are far less established in animal models, most likely due to additional requirements in size, energy 
consumption, and impairment-free attachment. In contrast, accelerometers manufactured in micro-
electro-mechanical systems (MEMS) technology are promising sensor devices, which allow for space-
saving and energy-efficient monitoring of movements. In the present study, we aim to extend the 
state of the art by establishing wireless accelerometer measurements as a simple and energy-efficient 
method to distinguish between healthy rats and the 6-hydroxydopamine (6-OHDA) PD animal 
model. Male Wistar-Han rats were assessed either three weeks after unilateral 6-OHDA or sham 
lesioning within their home cages with an extracorporeal accelerometer placed in a rodent backpack 
for 12 h during their active phase. The data was transmitted wirelessly to a computer, preprocessed, 
and a statistical analysis was performed to find differences between the datasets of 6-OHDA and 
sham-lesioned rats. The statistical analysis showed significant differences in the variances of the 
magnitude of the acceleration vectors between the two classes. In conclusion, accelerometry is a 
valid method to distinguish between 6-OHDA-lesioned rats with unilateral dopaminergic deficiency 
and their healthy counterparts. The presented method represents a first step towards automated 
symptom severity monitoring and provides a framework to expand the application to on-implant 
integrated accelerometers for continuous monitoring of symptom manifestations in rodent models of 
neurodegenerative diseases. Future studies are required to expand accelerometry to assess symptom 
severity to ultimately utilize it for preclinical research on adaptive therapies.
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Advanced Parkinson’s disease (PD) is still associated with a significant disease burden and an impaired quality of 
life, e.g., due to motor complications such as wearing-off, sudden-off, and dyskinesia1–3. Therefore, much effort 
has been put into the development of digital biomarkers from sensor-based devices to further optimise symptom 
control based on quasi-continuous assessments of symptom severities4–9. In addition, such devices might aid 
with diagnosis and have been shown to even identify prodromal PD years ahead of clinical diagnosis10,11. 
However, when thinking about advancements in adaptive PD therapies, e.g., adaptive deep brain stimulation 
(aDBS12,13;) or closed-loop systems for continuous drug application (reviewed in14), there is still a need for 
preclinical studies in animal models of the disease to further advance these therapeutic approaches. While there 
have been first attempts in monitoring acceleration in healthy animals15,16 or in PD mouse models17, their head-
mounted approaches, especially the wired approaches in15,16, impair free movement of the animals and therefore 
can distort the results of motion sensing. In order to address this limitation, a possible monitoring solution could 
be based on wireless sensors worn as backpacks or even implantable wireless sensors18. However, continuous 
symptom monitoring with wireless sensors faces special challenges. Due to its mobile character, the sensor 
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system is required to be battery-driven. In addition, the wireless sensor system, as well as its battery, have to be 
small enough to allow unimpeded movement of the animal. This, however, causes an even more constrained 
energy budget of the wireless sensor system, which necessitates ultra-low-power techniques for the sensing and 
wireless transmission of sensor signals19. In order to tackle these challenges, micro-electro-mechanical systems 
(MEMS) based accelerometers20 pose a promising alternative to capture motor symptoms in Parkinsonian rats 
in an energy efficient way. This stems from their small device size of, e.g., less than 4  mm321, which allows 
integration into miniature sensor devices and even into implantable devices like STELLA+18, on the one hand, 
and due to their low current consumption of as low as 850 nA21, on the other hand. Consequently, low-power 
wireless standards, e.g., bluetooth low energy (BLE), need to be utilized in an energy efficient way, in order to 
allow for longer monitoring periods. In addition to the constrained energy budget, monitoring of small animals, 
e.g., rodents, by accelerometers poses further challenges. Due to the small body size, movements are more subtle. 
This introduces additional complexities in identifying corresponding movements in accelerometer signals which 
are inherently subject to noise. Compared to studies that involve larger animals22–25, the movement of rodents 
create smaller amplitudes which increases the significance of noise in accelerometer signals.

Ultimately, despite the aforementioned challenges, preclinical monitoring with on-implant accelerometers 
could represent a method for the automated identification of motor symptom severity of 6-hydroxydopamine 
(6-OHDA)-lesioned Parkinsonian rats with a very low restriction of movement and behavior. In order to 
advance the current research, it is crucial to evaluate in a first step, whether accelerometry is capable of capturing 
movements that distinguish healthy from 6-OHDA-lesioned Parkinsonian rats. For this purpose, we used 
wireless sensor nodes equipped with a MEMS accelerometer and a BLE wireless transceiver module, carried in 
a rodent backpack for continuous movement monitoring of up to 24 h.

Results
Three-dimensional acceleration signals of Dall = 18 animals, of which 5 were sham- and 13 6-OHDA-lesioned, 
were recorded over a period of 12  hours. A single continuous dataset was recorded per animal. Afterwards 
apomorphine-induced rotation was used to quantify the extent of the PD phenotype of each subject: while sham 
animals displayed a mean of 0.16 ± 0.20 rpm, 6-OHDA Parkinsonian animals showed 7.18 ± 0.30 rpm (p < 
0.0001, unpaired t-test with Welch´s correction; see Table 1), indicating a significant dopaminergic deficit three 
weeks after initial lesioning (data already published in26). The corresponding experimental design and schedule 
are visualized in Fig. 1. The magnitudes m of the three-dimensional acceleration vectors were calculated and used 
for all further evaluation. The magnitude signals were then inspected by calculating several statistical measures, 
as described in the following sections, in order to identify differences between the two classes. During the 
investigation, 3 datasets (all belonging to the PD class) were classified as outliers and removed from the datasets, 
bringing the final dataset number to Dfinal = 15. Each dataset Md = (md,1, . . . , md,i, . . . , md,I), where 
1 ≤ d ≤ Dfinal and i denoting the individual samples with 1 ≤ i ≤ I , has a length of I = 1080000 samples. 
This equals 12 h of recorded data, considering that one timestep i → i + 1 equals 0.04 s for the used sampling 

Day Animal ID Condition Sensor ID Apomorphine-induced rotation in rpm

1

1 Control S3 −0.01

2 Control S4 −0.14

3 Control S1 0.99

4 Control S2 0.27

5 Control S5 −0.32

6 6-OHDA S6 9.00

7* 6-OHDA S7/S7 5.71

8 6-OHDA S8 7.56

2

9 6-OHDA S5 5.48

10 6-OHDA S6 7.08

11§ 6-OHDA S1 9.40

12 6-OHDA S2 6.58

13+ 6-OHDA S3 −0.16

14 6-OHDA S4 7.76

3

15 6-OHDA S1 7.58

16 6-OHDA S2 7.69

17 6-OHDA S3 7.55

18 6-OHDA S4 6.03

19 6-OHDA S6 7.21

20 6-OHDA S8 5.82

Table 1.  Overview of in vivo data acquisition. Sensor allocation by date and animal number. *Data from 
animal 7 on day 1 was excluded due to problems with the animal’s backpack and repeated on day 2. §The 
dataset from animal 11 was omitted due to sensor failure during data acquisition. +Data from animal 13 was 
excluded due to insufficient lesioning.
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rate of fs = 25Hz. All individual datasets are combined into the data-matrix M = (M1, . . . , Md, . . . , MD)T  
of D × I  dimensions.

The histogram of the acceleration magnitudes of the sham (d ≤ 5) and PD datasets (d > 5), which is shown 
in Fig. 3, indicates differences between the two classes to be mostly in the form of higher relative occurrences 
of magnitudes above 1 g = 9.81 m

s2  for the sham class. Note that the configured range of ± 4 g applies to each 
individual axis of the acceleration sensor. As a result, the magnitude of the acceleration vector may be higher, 
which can be observed in Figure 3. In order to assess the differences between the two classes, segmental statistics 
were calculated, i.e., the data was segmented and for each individual segment the mean µd, variance σ2

d , skewness 
γd, and kurtosis κd were computed. An overview of the signal processing is given in Fig. 2. To gain insights into 
the class-related differences between these statistical distributions, the statistics of the segments were pooled for 
each class. Then, superimposed histograms of both classes were plotted for all four statistical moments. These 
are presented in Fig. 4. Differences between classes in the histogram of the segmental means (Fig. 4a) are small 
with most means at approximately 1 g. Differences in the histogram of segmental variances (Fig. 4b) mostly 
occur above 0.01, where the sham group’s distribution is more present. The distribution of segmental skewness 

Fig. 2.  Overview of the signal processing for the evaluation of the segmental statistics. The magnitude md is 
calculated from the three acceleration axis xd, yd, zd, each of length I = 1080000 per dataset d (Note that the 
actual signal presented here is trimmed to only 8000 samples for better visualization). md is then segmented 
into N = 720 segments md,n of length S = 1500. From these segments the first four statistical moments are 
computed.

 

Fig. 1.  Experimental design. Animals received either sham (healthy control animals) or 6-hydroxydopamine 
(6-OHDA) injections into the right median forebrain bundle (MFB). After 20 days, animals underwent 
accelerometer experiments overnight in their active phase (lights off) and were subjected to apomorphine-
induced rotational testing to quantify the dopaminergic deficit the next day. (Created in BioRender. Statz, M. 
(2025) https://BioRender.com/o44t967).
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Fig. 4.  Histograms of segmental mean µd,n, variance σ2
d,n, skewness γd,n, and kurtosis κd,n. All values are 

normalized by powers of g.

 

Fig. 3.  Histogram of amplitudes of sham and Parkinson’s disease (PD) model datasets.
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(Fig. 4c) displays a peak above 0.005 for sham datasets, deviating from the distribution of PD segments. The 
same deviation can be seen in the distribution of segmental kurtosis (Fig. 4d), although to a much lesser extent. 
In addition to the evaluation of class-related differences, these histograms are also available with the individual 
animals distinguished by color in Supplementary Figure S 1.

The results of the mean segmental statistics per dataset M̂d are shown in Fig. 5. The mean segmental mean 
µ̄d,n (Fig. 5a) equals approximately 1 g for all individuals, with a decrease of 0.04 % from 9.822 m

s2  for sham to 
9.818 m

s2  for 6-OHDA-lesioned animals. The mean segmental variance σ̄2
d,n (Fig. 5b) shows differences between 

sham and PD animals. The majority of variances in the sham group seem to be higher than for 6-OHDA animals. 
The mean variance across the two classes is decreased by 41.5 % from 0.279 m2

s4  for sham to 0.163 m2

s4  for PD 
animals. Similar results can be seen for the mean segmental skewness γ̄d,n (Fig. 5c), with a decrease of 39.9 % 
from 0.569 m3

s6  to 0.342 m3

s6 . The mean segmental kurtosis κ̄d,n (Fig. 5d) shows almost no difference, with a 

very small increase of 1.07 % between the sham group with 50.258 m4

s8 , and 6-OHDA-lesioned animals with 

50.798 m4

s8 . In addition to the evaluation on acceleration magnitudes as described in this section, histograms 
were furthermore calculated for each individual axis x, y, and z of the acceleration sensor signal, to its first 
integration (velocity), its second integration (position), and for their combination as spherical coordinates ϕ and 
θ in order to reveal possible asymmetries or directional bias in movements due to the unilateral dopaminergic 
deficiency. These evaluations did not lead to statistically relevant results. However, for the sake of completeness, 
their corresponding histograms are available as supplementary information in Supplementary Figure S 2, S 3, 
and S 4.

Three hypothesis tests have been performed for the null hypothesis H0,σ̄2
d

, that the mean segmental variances 
for sham and PD datasets have the same underlying distribution. Although the group sizes are limited due to 
technical and regulatory reasons in our study, the hypothesis tests still provide valuable insights since the group 
sizes of our study are in line with similar reports in the literature15,17 as well as the fact that the utilized statistical 
tests take groups sizes inherently into account. In order to provide conservative measures, three statistical tests 
have been performed and their p-values have been adapted with Holm-Bonferroni adjustment27 to further 

Fig. 5.  Means of segmental mean µ̄d, variance σ̄2
d , skewness γ̄d, and kurtosis κ̄d. The black error bars depict 

the standard error.
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correct for skewed results due to multiple testing. Both their Holm-Bonferroni-adjusted p-values p̃ and the un-
adjusted p-values p are reported. The results are sorted according to the Holm-Bonferroni algorithm.

The results are p̃ = 0.038 (p = 0.013) for the Mann-Whitney-U test, p̃ = 0.035 (p = 0.018) for the 
Baumgartner-Weiß-Schindler test, and p̃ = 0.019 (p = 0.019) for the Kolmogorov-Smirnov test. Considering 
the significance level α = 0.05, all tests are declared significant. The same tests have been performed for the null 
hypothesis H0,γ̄d , that the mean segmental absolute skewness for sham and PD datasets has the same underlying 
distribution. The results are, p̃ = 0.058 (p = 0.019) for the Mann-Whitney-U test, p̃ = 0.063 (p = 0.032) for 
the Baumgartner-Weiß-Schindler test, and p̃ = 0.061 (p = 0.061) for the Kolmogorov-Smirnov test. In this 
case all Holm-Bonferroni corrected p-values are above α, therefore H0,γ̄d  cannot be rejected and non of the 
tests regarding the segmental skewness are declared significant. As a result, among all features that have been 
analyzed in this study, only the variance of the magnitudes of the acceleration vectors is a valid feature to 
distinguish between healthy and 6-OHDA-lesioned rats. In order to test whether the variance of magnitudes 
indicates the severity of 6-OHDA-lesioning, we analyzed their correlation w.r.t. the apomorphine-induced 
rotations, which can be considered a measure of the degree of dopaminergic degeneration. The analyses showed 
no significant correlation. Corresponding data is depicted in Supplementary Figure S 5. As a result, the variance 
of the acceleration magnitudes indicates differences between the two classes sham and 6-OHDA-lesioned rats. 
However, the variance does not represent a biomarker for the severity of the lesioning and further research in 
this direction, potentially with higher sampling frequencies, additional sensor modalities, e.g., magnetometers, 
and more sophisticated signal processing, is necessary.

Discussion
This study utilizes, for the first time, acceleration measurements in a preclinical PD animal model to distinguish 
Parkinsonian rats from their healthy counterparts. It is important to note that, while for larger animals 
accelerometry is a state of the art method for behavioral analysis22, the movement of smaller animal models 
however, i.e., rodents, have a less pronounced amplitude in accelerometer signals w.r.t. to the inherently present 
noise level of sensors. As a result, differences between healthy and Parkinsonian rats are unequally harder to 
identify, which necessitates further research. So far, acceleration measurements have been carried out primarily 
in healthy small animal models in the literature (e.g., in28) and less frequently in rodent PD models, the literature 
of which is discussed in the following. Regarding PD animal models, a very recent study reported quantification 
of dyskinesia in a PD mouse model using wireless inertial measurement unit (IMU) sensors with a recording 
time of 4 h17. However, in their study, sensors were head-mounted, which enables simultaneous recording of 
striatal activity, but might significantly impair free movements. Furthermore, the IMU integrated gyroscopes 
were utilized in addition to accelerometers, which significantly increases the energy consumption of the wireless 
sensor device, due to a higher energy consumption of gyroscopes in comparison to accelerometers29,30. Another 
study used external accelerometers placed on head caps to measure tremor induced by specifically patterned 
deep brain stimulation in healthy rats31. In the present study, only a single accelerometer is used, which allowed 
for a much longer observation time of up to 24 h. Furthermore, the present study shows that accelerometers on 
their own are sufficient to distinguish Parkinsonian rats from their healthy counterparts.

Other existing reports in healthy animals used head-mounted, wired accelerometers15,16, which prevents 
unimpeded movement of the animals even more so. The backpack-worn accelerometers in the present study 
should reduce movement constraints, but will not completely avoid them. In the future, such limitations could 
be fully overcome by implantable devices, such as the recently published STELLA+ device18, which has been 
developed as a preclinical neurostimulator, but also integrates a BMA400 MEMS accelerometer, which allows 
for accelerometer measurements in freely moving animals.

This study is limited in terms of its small animal numbers due to restrictions of the complex experimental 
setup, i.e., limited number of devices due to interference during data transmission with chosen BLE transceivers 
and an imbalance between the group sizes. Nevertheless, the group sizes used in this study are in line with 
similar reports in the literature15,17. Furthermore, the utilized statistical tests take group sizes inherently into 
account. Another limitation of this study arises from the inclusion of animals of one sex, which restricts the 
generalizability and reproducibility of the findings. However, previous studies have indeed demonstrated 
differences in the extent of dopaminergic degeneration as well as in the persistence of motor impairments 
between male and female 6-OHDA-treated rats32,33. In our present study, accelerometry in healthy control 
animals was only performed on the first day of the study (see Table 1 for details), which might influence the data 
regarding external confounders (e.g., noise, vibrations).

The reduced motor activity of 6-OHDA-lesioned animals, which might be interpreted as bradykinesia, 
one of the cardinal motor symptoms of PD34, can be observed in the histogram of the magnitude of the raw 
accelerometer data. As expected, the sham data’s distribution is more pronounced at higher accelerations than 
the PD data. The distribution of statistical moments of the one-minute segments shows differences between 
the classes as well. However, these statistical differences are not sufficient to classify each segment on its own. 
The means of the variances over the whole 12-hour period, however, are a capable classifier, as was proven by 
hypothesis testing.

Methods
Animals
All procedures were approved by responsible authorities (Landesamt für Landwirtschaft, Lebensmittelsicherheit 
und Fischerei, Mecklenburg-Vorpommern, Germany; reference number 7331.3-1.011/21) and performed in 
accordance with the relevant guidelines and regulations (ARRIVE guidelines and EU Directive 2010/63/EU). 
We used 20 male Wistar-Han rats (260-280 g at the time of arrival; Charles River Laboratories, Germany) of 

Scientific Reports |        (2025) 15:31883 6| https://doi.org/10.1038/s41598-025-17278-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


which 18 were included into final analyses (two drop-outs due to device failures or insufficient lesioning; as 
detailed in Figure 1 and Table 1). All animals were housed in pairs in a 12 h-light-dark cycle and had ad libitum 
access to food and water. A subset of rats (n  =  15) underwent right-sided unilateral 6-OHDA lesioning to 
generate a reliable dopaminergic degeneration as described previously in detail26,35. Briefly, rats were placed in 
a stereotaxic frame (Stoelting Neuroscience, Ireland) anesthetized with isoflurane (5% in 1 l/min O2 for 1 min, 
reduced to 2-2.5% during procedures) followed by weight-adapted ketamine/xylazine administration (1.4 ml/
kg bodyweight of 25 mg/ml ketamine (Pfizer, Germany) and 20 mg/ml xylazine (Rompun, Bayer Healthcare, 
Germany)) and injected with a total of 4 µl 6-OHDA (6 µg/µl in 0.9% NaCl with 0.02% ascorbic acid; Sigma-
Aldrich, UK) into the right median forebrain bundle (MFB) at the following coordinates: anterior-posterior (AP) 
−2.3 mm; medial-lateral (ML) −1.5 mm, dorsal-ventral (DV) −9.0 mm relative to bregma and dura according to 
the rat brain atlas36. Control animals (n = 5) underwent the same procedure except that they were injected with 
4 µl 0.9% NaCl with 0.02% ascorbic acid. Three weeks after lesioning, animals were singularized and equipped 
with a rodent backpack overnight, in which the wireless sensor nodes were placed. In order to reduce stress and 
detect animals’ natural behavior, backpacks were already pulled on several hours before data acquisition, which 
started at 7:45 p.m. and was continued until 7:45 a.m. with lights switched off (active phase of the animals). 
Successful 6-OHDA lesioning was quantified by apomorphine-induced rotational behavior three weeks after 
lesioning. We used 0.25 mg/kg body weight apomorphine (0.2 mg/ml in 0.9% NaCl; Teclapharm, Germany) and 
quantified rotational behavior for a total of 50 min (results have already been published in26).

Accelerometry
Eight custom wireless sensor nodes equipped with a BHI160 sensor hub37 (Bosch Sensortec GmbH, Germany) 
were used. Three-axis acceleration measurements were acquired at a rate of 25 Hz with 16 bit resolution over a 
range of ± 4 g for each axis. The sensor nodes were further equipped with a DA14583 system-on-chip (Dialog 
Semiconductor plc., UK) with an integrated BLE radio transceiver and baseband processor that was used to 
transmit acceleration data wirelessly to a data aggregating device. A CR1225 lithium coin cell with 3 V supply 
voltage and 50 mAh capacity was used to power the sensor nodes. This setup allowed a continuous acquisition 
of acceleration data up to 24 h. A Raspberry Pi 438 single-board computer was used as data aggregating device, 
allowing acquisition of acceleration data from eight sensor nodes simultaneously via BLE with the specified 
settings. The nodes were housed in a 3D printed encapsulation using polylactic acid and placed in a rodent 
backpack. Sensors were used on three consecutive nights as detailed in Table  1. In addition, animals were 
continuously video-monitored with a 5 mega-pixel infrared camera with integrated infrared spotlight. The 
camera was connected to the above-mentioned Rasberry Pi 4, which recorded and stored the videos with 1080p 
in horizontal orientation in H.264 format on an external solid-state-drive.

Data analyses
Preprocessing
In order to reduce the dimensionality of the data, the magnitude md,i of the acceleration vector was computed 
from the raw three-dimensional acceleration measurements

	
md,i =

√
x2

d,i + y2
d,i + z2

d,i� (1)

with 1 ≤ d ≤ Dall being the animal ID, i denotes the discrete time index and xd,i, yd,i, zd,i the raw samples of 
the acceleration measurements of the three axes.

The datasets Md are then trimmed to a consistent length of I = 1080000 or 12 h, respectively, starting at a 
consistent time of 7:45 p.m. During this time, artificial lighting was switched off and daylight was blocked out. 
This 12 h period of darkness is considered the active phase of the animals.

Quality measures
To be able to visualize differences between the datasets, a principal component analysis (PCA) was performed. 
The PCA is a tool to reduce the dimensionality of a dataset by projecting the data onto a new coordinate system. 
The new system’s axes are chosen such that the variance across the first axis is maximized. The variance across the 
subsequent axes is maximized as well, but under the condition that the axis is orthogonal to the other axes. The 
Dall × I  matrix M  of all datasets Md is factorized through singular value decomposition into:

	 M = UΣV T ,� (2)

where U is a Dall × Dall and V is an I × I  matrix. Both matrices are unitary. V T  is the transpose of V. The 
Dall × I  diagonal matrix Σ contains the singular values σi of M  on its diagonal. The transformation to the new 
coordinate system can be described by:

	 T = MV = UΣ.� (3)

The PCA was computed through the sklearn.decomposition PCA function39. The index I of T  was cut off after 
the second dimension, giving a two-dimensional latent space representation in the form of a Dall × 2 matrix. 
A scatterplot of this matrix can be seen in Fig. 6a. The three datasets with the IDs 9, 12, and 20 are noticeably 
different. We consider these as outliers. A zoomed-in version, with the outliers cropped out, is provided in 
Fig. 6b. The remaining datasets are distributed quite compactly, even some amount of clustering for the two 
classes sham and PD can be observed.
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Based on the median-absolute-deviation (MAD), R. Wilcox proposed a MAD-median rule40. It was used, 
in addition to the PCA, to test for outliers. It was calculated separately for sham and PD datasets for the overall 
variance per dataset σ2

d  in the following way:

	

|σ2
d − median(σ2

d)|
MAD(σ2

d)/0.6745 > K � (4)

with K =
√

χ2
0.975,1 ≈ 2.24 as the square root of the 0.975 quantile of a chi-squared distribution with one 

degree of freedom. Table 2 lists the scores for the datasets which are above the threshold K. The animals with 
IDs 9, 12, and 20 stand out again, with scores well above the threshold K = 2.24. This, combined with the PCA 
results, led to the decision to exclude these datasets from the database.

Analysis
In order to gain insight into the differences in terms of the statistical properties of the acceleration magnitudes, 
histograms of the two classes’ magnitude values md,i were computed. The magnitude values md,i were 
normalized by the gravity of Earth g:

	
m̃d,i = md,i

g
.� (5)

To compute short-term statistics, the magnitude samples were further split temporally into segments of equal 
length S = 1500 (one minute of data) with no overlap

	 m̂d,n = (md,(n−1)S+1, . . . , md,nS) = (md,n,1, . . . , md,n,s, . . . , md,n,S)� (6)

where 1 ≤ n ≤ N  denotes the segment index with the total number of segments per dataset N = 720 and s the 
discrete time index within each segment. The matrix

	 M̂d = (m̂d,1, . . . , m̂d,N )� (7)

can then be defined, that includes all segments m̂d,n generated from one dataset Md. Now

Condition Animal ID MAD-median score

PD

9 4.812

12 4.036

20 7.038

Table 2.  Scores of median-absolute-deviation (MAD) rule for datasets with scores above the threshold 
K = 2.24.

 

Fig. 6.  Two-dimensional latent space representation of the complete datasets. The dataset dimensions were 
reduced through principle component analysis. (b) is a zoomed in version of (a) with the magnified region 
indicated by the red rectangle in (a). The outliers with the ID’s 9, 12, and 20 are cropped out.
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mean(m̂d,n) = µd,n = 1

S

S∑
s=1

ms,� (8)

	
variance(m̂d,n) = σ2

d,n = 1
S − 1

S∑
s=1

(ms − µd,n)2,� (9)

	
skewness(m̂d,n) = γd,n =

1
S

∑S

s=1(ms − µd,n)3

√
σ2

d,n

3 ,� (10)

and

	
kurtosis(m̂d,n) = κd,n =

1
S

∑S

s=1(ms − µd,n)4

√
σ2

d,n

4 ,� (11)

with md,n,s shortened to ms, were calculated for all segments m̂d,n. The segmental means, variances, skewnesses, 
and kurtosises of all segments were then normalized by the gravity of Earth g, whereby the order of the statistical 
measure was considered in the normalization:

	
µ̃d,n = µd,n

g
, σ̃2

d,n =
σ2

d,n

g2 , γ̃d,n = |γd,n|
g3 , and κ̃d,n = κd,n

g4 .� (12)

To amplify differences in the distributions at higher values, the histograms were generated using logarithmic 
bins. The x-axis was scaled accordingly. To avoid negative values in the logarithm, only the absolute values of 
skewness were used. The histograms are illustrated in Fig. 4. To further aggregate the statistics, the means of the 
segmental statistics per individual animal d

	 mean(µd,n) = µ̄d, mean(σ2
d,n) = σ̄2

d, mean(γd,n) = γ̄d, and mean(κd,n) = κ̄d� (13)

over all N segments were calculated. The mean segmental statistics are illustrated in Fig. 5.
Hypothesis tests were performed to test the null hypothesis H0,σ̄2

d
 that the population underlying the mean 

variances σ̄2
d  of the sham datasets is the same as the one underlying the PD datasets. The same tests have been 

performed for the null hypothesis H0,γ̄d  that the population underlying the mean skewness γ̄d is the same for 
both classes. The performed tests include Kolmogorov-Smirnov41, Mann-Whitney-U42, and Baumgartner-Weiß-
Schindler43. All of these tests are non-parametric tests that do not assume normality for the data distributions. 
The tests have been performed excluding the outliers. The corresponding scipy.stats functions44 were used for 
calculation. The test results are compared against the significance level α = 0.05. Because multiple hypothesis 
tests are performed, the family-wise error rate should be controlled in some way. To this end, we chose the 
Holm-Bonferroni correction27. The reported p-values are sorted from lowest to highest, and then adjusted with

	 p̃i = pi(NHT + 1 − i),� (14)

where NHT = 3 is the number of hypothesis tests performed, and 1 ≤ i ≤ NHT  the index of the sorted 
p-values. The sorted and adjusted p-values p̃i are then compared against α in order of their index i. If p̃i > α, 
the test is not declared significant and all subsequent tests are declared non-significant as well, even if ˜pi+1 < α.

Conclusions
In our study, we utilized accelerometer measurements from wireless, rodent backpack-worn sensor nodes in 
order to distinguish between healthy and diseased rats in the 6-OHDA animal model of Parkinson’s disease. 
Our statistical analysis showed significant differences in the variances of the magnitude of the acceleration 
vectors for each dataset between healthy and diseased animals. As a conclusion, accelerometry is a valid method 
to distinguish between 6-OHDA-lesioned rats with unilateral dopaminergic deficiency and their healthy 
counterparts. Furthermore, our findings w.r.t. a correlation between the acceleration variance and severity 
of lesioning (apomorphine-induced rotations) show that while movement differences can be captured with 
accelerometer signals, the variance of magnitude does not reflect the final biomarker that indicates severity of the 
disease. As a conclusion, further research with potentially higher sampling frequencies and more sophisticated 
statistical or signal processing based data analysis approaches are necessary in order to identify relevant signal 
features that indicate symptom severity.

In future studies, the incorporation of additional low-power sensor data, e.g., magnetometers, could 
improve these results by allowing the reconstruction of the sensor’s orientation relative to earth’s coordinate 
system. Moreover, higher sampling rates and increased animal numbers in combination with machine learning 
approaches may significantly shorten the segment length needed for reliable classification.

Furthermore, our findings show promising potential for the long-term accelerometer monitoring with the 
recently published STELLA+ device18, which also integrates a MEMS based accelerometer and a BLE transceiver 
module.
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Finally, we plan on applying this approach to other animal models of PD, including rodent models of α
-synucleinopathies, which better mimic the human disease and present with different motor symptom 
severities45,46. These findings may contribute to advancements in adaptive therapies in PD.

Data availability
The datasets generated and analyzed during the presented study consist of ≈  350 GB of video material and 
≈ 2.3 GB of raw acceleration data and will be made available by the corresponding author upon reasonable 
request.
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