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 A B S T R A C T

This study introduces the Structural MRI-based Alzheimer’s Disease Score (SMAS), a novel index intended to 
quantify Alzheimer’s Disease (AD)-related morphometric patterns using a deep learning Bayesian-supervised 
Variational Autoencoder (Bayesian-SVAE). The SMAS index was constructed using baseline structural MRI data 
from the DELCODE study and evaluated longitudinally in two independent cohorts: DELCODE (n=415) and 
ADNI (n=190). Our findings indicate that SMAS has strong associations with cognitive performance (DELCODE: 
r=−0.83; ADNI: r=−0.62), age (DELCODE: r=0.50; ADNI: r=0.28), hippocampal volume (DELCODE: r=−0.44; 
ADNI: r=−0.66), and total gray matter volume (DELCODE: r=−0.42; ADNI: r=−0.47), suggesting its potential 
as a biomarker for AD-related brain atrophy. Moreover, our longitudinal studies indicated that SMAS may be 
useful for the early identification and tracking of AD. The model demonstrated significant predictive accuracy 
in distinguishing cognitively healthy individuals from those with AD (DELCODE: AUC=0.971 at baseline, 
0.833 at 36 months; ADNI: AUC=0.817 at baseline, improving to 0.903 at 24 months). Notably, over 36 
months, the SMAS index outperformed existing measures such as SPARE-AD and hippocampal volume. The 
relevance map analysis revealed significant morphological changes in key AD-related brain regions, including 
the hippocampus, posterior cingulate cortex, precuneus, and lateral parietal cortex, highlighting that SMAS 
is a sensitive and interpretable biomarker of brain atrophy, suitable for early AD detection and longitudinal 
monitoring of disease progression.
1. Introduction

Alzheimer’s Disease (AD) is a major global health challenge, largely 
due to its increasing prevalence among the ageing population and 
its substantial socioeconomic implications. With demographic changes 
leading to increased prevalence, AD and other age-related dementias 
are projected to significantly strain healthcare systems and economies 
worldwide [1–4]. Therefore, it is crucial to prioritise the development 
of accurate and early diagnostic tools for AD. A promising approach is 
the development of a risk assessment score to quantify the disease stage 
in its early phases. Such scores could facilitate early detection, enabling 
timely interventions at stages when treatments are most effective. 
In addition, these scores could be extremely valuable in identifying 
patients and stratifying them for clinical trials, ensuring that research 
is effectively targeted and adapted to the specific stages and needs 
of patients, leading to more efficient and personalised care for those 
affected by AD [5–7].

A key challenge is developing a risk assessment score that char-
acterises AD-related brain atrophy patterns using sMRI. Traditional 
approaches to quantify brain atrophy related to AD often rely on af-
fected regions, such as hippocampal atrophy (a prominent biomarker of 
AD) and entorhinal cortex measurements [8–10]. However, they might 
lack specificity for AD and struggle with sensitivity and specificity 
at the mild cognitive impairment (MCI) stage, which can also mani-
fest in non-AD dementias [11–13]. Therefore, solely relying on these 
regions for a risk assessment score may overlook the comprehensive 
spatio-temporal patterns of brain atrophy associated with AD.

Data-driven machine learning approaches involve extraction of mor-
phometric features from sMRI scans, such as tissue segments (gray 
matter (GM), white matter (WM) & CSF), which can reveal patterns 
of brain changes associated with ageing and AD, potentially predicting 
disease progression and severity [14,15]. However, the high dimension-
ality and heterogeneity of these imaging features present significant 
challenges in the analysis, often limiting the effectiveness (in terms 
of performance) of traditional approaches [16,17]. One promising ap-
proach involves identifying low-dimensional latent representations of 
large, high-dimensional datasets. Numerous studies have employed 
multivariate approaches such as the support vector machine (SVM) 
classifier to estimate an index of AD anatomical risk called the spatial 
pattern of brain abnormality for recognition of early AD (SPARE-
AD) [17], partial least squares (PLS), canonical correlation analysis 
(CCA), and their sparse variants (sPLS and sCCA). These techniques 
2 
have been applied to associate cognitive scores or symptoms with 
imaging data [18,19] and for multimodal analysis [20,21]. However, 
these linear models might fall short in capturing the intricate interplay 
and non-linear dynamics that characterise AD progression [22–24].

Advancements in multimodal deep learning have shifted the fo-
cus towards models that can learn these non-linear relationships and 
extract meaningful features from complex data [25–27]. Variational 
Autoencoders (VAEs) [28,29], a class of generative models, have shown 
promise in learning high-level probabilistic latent embeddings from 
data, facilitating the identification of common patterns in ageing and 
AD progression [30,31]. However, the complexity and heterogeneity 
inherent in sMRI scans used in AD research pose challenges for VAEs. 
Issues such as posterior collapse, i.e., when the learnt latent variables 
become too similar to the prior, leading to a failure in capturing 
meaningful variability such as brain atrophy, and lack of supervision 
can impede the VAE’s effectiveness in extracting meaningful latent 
representations from sMRI data [32].

To address the challenges, we propose a novel Bayesian supervised 
VAE (Bayesian-sVAE) [29] to develop a risk assessment index, namely, 
Structural MRI-based AD Score (SMAS). By introducing a supervised 
prediction node, conditioned on cognitive performance, our approach 
enables the model to learn latent representations of sMRI that are 
relevant to AD-related cognitive decline. Integration of cognitive per-
formance into the model’s architecture can potentially improve the 
specificity of learnt patterns related to AD, allowing for more accurate 
identification and staging of AD progression.

In medical image analysis, the reliability of ML models is critical for 
supporting quantification of relevant uncertainties and transparency. 
Our approach focuses on three key aspects: uncertainty quantifica-
tion, explainability, and generalisability to improve model robustness 
and interpretability. To address uncertainty arising from inter-subject 
variability, scanner heterogeneity, and model complexity, [33,34], we 
employ a Bayesian framework within the supervised VAE, treating 
model parameters as random variables with prior distributions. For 
explainability, we use gradient activation maps to identify the image re-
gions most influential to the model’s predictions, facilitating clinicians’ 
understanding and trust in the rationale behind its predictions. Gen-
eralisability is evaluated through validation on independent cohorts, 
including datasets with varying scanner resolution, thus supporting its 
broader clinical applicability.

The novel SMAS index derived from a Bayesian-sVAE, trained on 
sMRI images conditioned on cognitive scores, captures unique patterns 
of brain atrophy associated with AD-related cognitive impairments. 
The study utilised longitudinal sMRI data from two large multi-centre 
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cohorts: the DELCODE (DZNE Longitudinal Cognitive Impairment and 
Dementia) study, which is part of the German Centre for Neurodegener-
ative Diseases (DZNE) [35], and the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) study (). The analysis follows three main stages: first, 
training the Bayesian-sVAE model on baseline DELCODE data, which 
included subjects from various diagnostic groups (cognitively normal 
(CN), subjective cognitive decline (SCD), MCI, AD, and AD-relatives 
(ADR)), allowing the estimation of the SMAS index; second, validating 
the trained model using the two datasets: the unseen DELCODE follow-
up data and the independent ADNI dataset. Finally, the resulting SMAS 
index underwent rigorous evaluation through several analyses to assess 
its clinical relevance, longitudinal progression, and disease staging.

2. Materials & methods

2.1. Bayesian supervised variational autoencoder

Variational Autoencoders (VAEs) provide a powerful probabilistic 
framework for analysing sMRI features by combining deep learning 
with variational inference. VAEs are particularly suitable for capturing 
the non-linear dynamics associated with AD [36]. In this context, let 
𝑥 represent MRI-based (potentially preprocessed) structural images (or 
input features) that capture neuroanatomical changes, and let 𝑧 denote 
a latent (or hidden) variable. The VAE is designed to learn the joint 
distribution 𝑝(𝑥, 𝑧), which can be decomposed as 𝑝(𝑥, 𝑧) = 𝑝(𝑧)𝑝(𝑥|𝑧), 
where 𝑝(𝑧) is the prior distribution over latent variables and 𝑝(𝑥|𝑧) is the 
likelihood of the sMRI imaging features given the latent representation. 
The latent variable 𝑧 is assumed to capture relevant aspects of brain 
atrophy patterns present in the sMRI images.

In this study, we propose a Bayesian Supervised Variational Autoen-
coder (Bayesian-sVAE) generative model to learn latent representations 
of brain structure from MRI features while simultaneously predicting 
a dependent variable, such as cognitive scores or clinical diagnoses. 
The Bayesian sVAE extends the traditional sVAE framework by treating 
the model parameters as random variables and employing variational 
inference for Bayesian model optimisation.

The Bayesian sVAE model consists of three main components: an 
encoder 𝐪𝝓(𝐳|𝐱), a decoder 𝐩𝜽(𝐱|𝐳), and a regressor 𝐪𝝍 (𝐲|𝐳), where 𝐲
represents the dependent variable. The encoder network transforms 
the input MRI samples 𝐱 = [𝑥1, 𝑥2,… , 𝑥𝑛] and dependent variables 
𝐲 = [𝑦1, 𝑦2,… , 𝑦𝑛] into a lower-dimensional latent space, where each 
𝑥𝑖 represents MRI features of the 𝑖th subject. We assume that each MRI 
feature 𝑥𝑖 is linked to a latent representation 𝑧𝑖, and 𝐳 = [𝑧1, 𝑧2,… , 𝑧𝑛]
is a latent vector influenced by the dependent variable 𝐲.

The encoder network 𝐪𝝓(𝐳|𝐱) comprises a 3D convolutional block, 
several Residual Network (ResNet) blocks, and a fully connected layer. 
The ResNet blocks include two 3D convolutional layers with batch 
normalisation and ReLU activation, along with a skip connection. As 
the network deepens, the number of filters in these blocks increases 
progressively (for more details, see [37]). The fully connected layer 
produces a latent vector 𝑧𝑖 of 𝑚 dimensions that follows a Gaussian 
distribution: 𝑧𝑖 ∼  (𝜇𝑖, 𝜎2𝑖 ), where 𝜇𝑖 and 𝜎𝑖 are the mean and standard 
deviation of the Gaussian distribution, respectively, and are learnt by 
the encoder network.

The decoder network 𝐩𝜽(𝐱|𝐳) reconstructs the input features from 
the latent representations. It includes a fully connected layer, followed 
by ResNet blocks, and a final convolutional block. The output of this 
convolutional block is a reconstructed image 𝑥̂𝑖 matching the size of 
the input image.

The regressor network 𝐪𝝍 (𝐲|𝐳) is designed to predict the depen-
dent variable from the latent representations. It is structured as a 
simple linear layer that takes in a latent vector 𝑧𝑖 and outputs a scalar 
value 𝑦̂𝑖 representing the predicted dependent variable: 𝑦̂𝑖 = 𝑊 𝑧𝑖 + 𝑏, 
where 𝑊  and 𝑏 are the learnable weights and bias of the linear layer, 
respectively.
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In the Bayesian framework, the parameters of the encoder (𝜙), 
decoder (𝜃), and regressor (𝜓) networks are treated as random variables 
with prior distributions 𝑝(𝜙), 𝑝(𝜃), and 𝑝(𝜓), respectively. Variational 
inference is employed to approximate the posterior distributions of 
these parameters given the observed data by introducing variational 
distributions 𝑞(𝜙), 𝑞(𝜃), and 𝑞(𝜓). Finally, due to the comparably small 
training data, instead of learning features from MRI scans directly, in 
this study we focused on using preprocessed morphometric features as 
inputs 𝐱 to the VAE (see [38]) for the processing pipeline. Specifically, 
we utilised normalised, unmodulated GM, WM, and CSF tissue probabil-
ity maps. The VAE model learns an m-dimensional latent representation 
of the sMRI images, which we refer to as the SMAS indices. Given the 
model construction and the training sample (Fig.  C.7), we expect the 
SMAS indices to learn a condensed representation of cognition-related 
atrophy patterns.

2.2. Model optimisation basics

In the Bayesian-sVAE framework, the primary goal is to optimise a 
composite loss function that incorporates Bayesian inference, including 
the reconstruction and KL divergence terms from the ELBO, along 
with a supervised learning objective. Optimisation is conducted using 
backpropagation. The loss function is as follows:
(𝜃, 𝜙, 𝜓 ; 𝑥, 𝑦) = − E𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] + 𝛽 ⋅𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥) ∥ 𝑝(𝑧))

+ 𝛾 ⋅ E𝑞𝜙(𝑧|𝑥)
[

− logE𝑞(𝜓)[𝑝(𝑦|𝑧, 𝜓)]
]

+ 𝐷𝐾𝐿(𝑞(𝜃, 𝜙, 𝜓) ∥ 𝑝(𝜃, 𝜙, 𝜓))

where 𝜃, 𝜙, and 𝜓 denote the parameters of the decoder, encoder, 
and regressor, respectively. The loss consists of four components: the 
reconstruction loss, KL divergence terms, and the supervised regression 
loss. The reconstruction loss, E𝑞𝜙(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)], evaluates the sVAE’s 
ability to accurately reconstruct input data 𝑥 from latent variables 𝑧, 
thereby ensuring that the decoded samples bear a close resemblance 
to the original input data. The first KL term, 𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥) ∥ 𝑝(𝑧)), 
encourages the latent variable distribution to match the prior. The 
supervised loss, E𝑞𝜙(𝑧|𝑥)

[

− logE𝑞𝜓 [𝑝(𝑦|𝑧, 𝜓)]
]

, represents the expected 
negative log-likelihood of predicting the true target 𝑦 from the latent 
variable 𝑧 marginalised over the regressor’s variational posterior 𝑞(𝜓). 
The final KL term, 𝐷𝐾𝐿(𝑞(𝜃, 𝜙, 𝜓) ∥ 𝑝(𝜃, 𝜙, 𝜓)), assesses the divergence 
between the variational distribution of the parameters and their prior 
distribution. The hyperparameters 𝛽 and 𝛾 are employed to balance 
the relative importance of each term in the loss function, with their 
optimal values generally determined via grid search on out-of-sample 
data. The selection of appropriate weight priors for the Bayesian sVAE 
is a challenging task [39]. In our approach, the MOdel Priors with 
Empirical Bayes using DNN (MOPED) method, as proposed by [39], is 
applied to establish well-informed weight priors in Bayesian neural net-
works. To minimise the loss function, the Adam optimisation algorithm 
is utilised [40].

2.3. Application to real MRI sample

The DELCODE cohort is a multi-centric observational study con-
ducted at 10 sites of the DZNE. At baseline, the study included 1079 
participants representing a broad spectrum from healthy individuals 
to those clinically diagnosed with dementia. Specifically, the cohort 
consisted of 236 CN without any cognitive impairment, 444 subjects 
with SCD, 191 cases with MCI, 126 AD patients, and 82 ADR (for more 
details refer, [35]). Of the 1079 participants, 973 subjects (aged 60–89) 
had T1-weighted MRI scans. Thirty subjects were excluded due to MR 
artifacts and poor processing quality (see also section A), leaving 943 
subjects available for analysis. Longitudinal data included 705 scans 
at the first annual follow-up (M12), 550 scans at the second annual 
follow-up (M24), and scans of subjects at the third annual follow-up 
(M36) (see [14] for more details).
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The primary objective of the validation analysis was to evaluate 
how well the novel SMAS index tracks disease progression and staging 
and to validate this index against simpler or alternative markers such 
as the SPARE-AD index [17]. In addition to testing the model on 
longitudinal DELCODE data, we further assessed its generalisability 
using an independent subsample from the ADNI cohort. In the current 
work, a total of 200 subjects with T1-weighted scans acquired on 1.5 T 
MRI scanners were retrieved from the ADNI database (as specified 
by [41]). The sample consisted of 50 subjects with a stable diagnosis 
of CN state over the 24 months of follow-up, 50 subjects with a stable 
diagnosis of mild cognitive impairment (sMCI), 50 subjects with a 
stable diagnosis of AD, and 50 subjects with an initial diagnosis of MCI 
who showed progression to AD (pMCI) during the follow-up period.

The Preclinical Alzheimer’s Cognitive Composite (PACC5) [42] in 
DELCODE is calculated by z-standardising and averaging five cog-
nitive tests: free and total recall from the Free and Cued Selective 
Reminding Test (FCSRT), the Symbol Digit Modalities Test, Logical 
Memory Delayed Recall, Semantic Fluency (Animals), and the Mini-
Mental State Examination (MMSE). In the ADNI dataset, we used 
the PACC score obtained from the ADNI portal (see [43] for further 
details on its estimation). In both cohorts, raw scores are z-standardised 
using the baseline mean and standard deviation of cognitively normal 
participants.1

2.4. Model training & hyperparameter optimisation

We first trained a deterministic sVAE on 75% of the DELCODE base-
line sample, conditioned on PACC5. This step derived initial weights for 
the Bayesian-sVAE, using the MOPED methodology (see above). These 
pre-trained weights were then used to initialise the Bayesian-sVAE pa-
rameters. This approach enhances model convergence and performance 
by probabilistically modelling uncertainties in both the data and model 
parameters. The latent representations from the model correspond to 
SMAS indices. Choosing the dimensionality m of the latent space for 
VAEs is a challenging task, as it affects all terms in the loss func-
tion, e.g., reconstruction error, but particularly interpretability. Our 
approach focused on optimising the latent space for tracking subjects 
on their progression towards AD. Therefore, we decided to identify the 
number of latent dimensions (SMAS) using a predictive task discrim-
inating between CN and AD subjects, assessed by the area under the 
receiver operating characteristic curve (AUC-ROC). The performance 
of the predictive task was evaluated on unseen DELCODE scans at the 
12-month follow-up. While a marginal improvement in performance 
was observed with increased latent dimensions, this difference was 
not statistically significant, favouring the selection of a single latent 
dimension for simplicity and interpretability (see supplementary Fig. 
C.10 for more details). Finally, a grid search was employed to optimise 
hyperparameters 𝛽 and 𝛾, yielding values of 0.1 and 1, respectively, 
on out-of-sample data. These values were chosen for their ability to 
maximise predictive performance while maintaining model stability 
during training. We used the optimal hyperparameters in our further 
analysis (see Fig.  1).

1 Data used in preparation of this article were obtained from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed 
to the design and implementation of ADNI and/or provided data but 
did not participate in analysis or writing of this report. A complete 
listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Fig. 1. Bayesian-sVAE model for AD-related atrophy patterns: The T1-weighted scans 
are segmented into different brain tissue types (GM, WM & CSF) using the CAT12 
segmentation algorithm [38]. The model consists of three main components: an 
encoder, a prediction block, and a decoder. The encoder encodes the segmented brain 
tissue features into a latent space to derive the SMAS index. The prediction block 
uses this latent vector, conditioned on the inputs, to predict cognitive performance 
differences. Finally, the decoder reconstructs the input space from the latent vector, 
ensuring the latent representation also captures the original features. See supplementary 
Fig.  C.7 for more details on architecture.

2.5. Model evaluation

2.5.1. Validation of SMAS index: Correlation with clinical assessments
To evaluate the effectiveness of the SMAS index in quantifying 

brain atrophy linked to AD progression, we derive the SMAS index 
across various validation datasets utilising the optimal hyperparame-
ters established during the training phase (see Section 2.4 for more 
details). The SMAS index was normalised with min–max scaling, with 
the scaling factors generated from the training sample used for the 
validation datasets for ensuring consistency. We hypothesise that the 
SMAS index, intended to measure the degree and spatial distribution 
of brain atrophy, ought to correlate with clinical indicators of dis-
ease progression, including the PACC5, hippocampal volume, and total 
gray matter volume. Additionally, we anticipate a higher association 
between the SMAS index and age in the DELCODE dataset, which is 
age-specific, compared to the more heterogeneous ADNI dataset.

2.5.2. Tracking longitudinal progression of SMAS index
To investigate the usefulness of the SMAS index in tracking AD 

progression, we conducted a longitudinal analysis utilising data from 
the DELCODE and ADNI cohorts. To do this, we applied a linear mixed-
effects model to assess temporal changes in the SMAS index across 
various diagnostic groups (CN, SCD, MCI, & AD).
SMAS𝑖𝑗 = 𝛽0 + 𝛽1𝑡𝑖𝑗 + 𝛽2Group𝑖 + 𝛽3(𝑡𝑖𝑗 × Group𝑖)

+𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝜀𝑖𝑗
where SMAS𝑖𝑗 is the SMAS index for subject 𝑖 at timepoint 𝑗, 𝑡𝑖𝑗 is 
the time, and Group𝑖 is the diagnostic group. Here, the fixed effects 
(𝛽0, 𝛽1, 𝛽2, 𝛽3) estimate the average population-level effects, capturing 
overall trends related to time 𝑡𝑖𝑗 , diagnostic group 𝐺𝑟𝑜𝑢𝑝𝑖, and their 
interaction 𝑡𝑖𝑗 ×Group𝑖 respectively. The random effects (𝑏0𝑖, 𝑏1𝑖) allow 
each subject to have their own baseline (random intercept) and rate of 
change over time (random slope), thus modelling individual differences 
in both intercept and slope. The residual term 𝜀𝑖𝑗 captures unexplained 
within-subject variability at each time point.

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Fig. 2. Correlation analysis between SMAS index and clinical measures in (A) DELCODE and (B) ADNI; The SMAS index is computed using the posterior mean 𝜇(𝑥) from the 
encoder of the Bayesian VAE, representing a deterministic point estimate of the latent variable. SMAS shows significant negative correlations with PACC, hippocampus volume, 
and total gray matter volume, and a positive correlation with age, validating its association with cognitive impairment and brain atrophy.
This aimed to demonstrate whether the SMAS index effectively 
distinguishes disease stages and captures AD progression dynamics. 
Additionally, we assessed individual rates of change in the SMAS index 
and compared them with the rates of atrophy in brain regions typi-
cally affected by AD, such as the hippocampus, amygdala, thalamus, 
ventricles, and total gray matter volume. By comparing these rates, 
we attempt to demonstrate the association between the SMAS index 
and region-specific atrophy rates, highlighting the index’s capacity to 
identify brain atrophy patterns associated with AD progression.

2.5.3. Comparative analysis: SMAS vs. SPARE-AD and hippocampal vol-
ume

To further validate the SMAS index as a marker of brain atrophy, 
we examined its ability to distinguish between CN, MCI, and AD 
individuals. We also compared the performance of the SMAS index 
against the SPARE-AD index and hippocampal volume in differenti-
ating CN, MCI, and AD in the DELCODE dataset and CN, stable MCI 
(sMCI), and progressive MCI (pMCI) in the ADNI dataset. SPARE-AD 
indices were computed using available code from https://github.com/
CBICA/spare_score, while hippocampal volume was obtained using 
Freesurfer (http://surfer.nmr.mgh.harvard.edu/). To ensure method-
ological consistency with the SPARE-AD index, which was proposed 
using a Support Vector Machine (SVM) model, we employed the SVM 
model for the classification task of distinguishing among CN, MCI, and 
AD individuals.
5 
2.5.4. Model transparency and explainability
To enhance clinical acceptance and support informed decision-

making, we provide explainability by generating gradient-based rele-
vance maps (see [44] for more details) highlighting key sMRI regions 
contributing to estimating the SMAS index. Formally, for a given in-
put sMRI feature 𝐱 ∈ R𝐻×𝑊 ×𝐷 and the associated SMAS index, we 
estimated the gradient of the output concerning each voxel:

𝐆 =
|

|

|

|

𝜕𝑓 (𝐱)
𝜕𝐱

|

|

|

|

Here, 𝐆 ∈ R𝐻×𝑊 ×𝐷 represents the relevance map, where each 
element 𝐺𝑖𝑗𝑘 reflects the absolute value of the derivative of the model’s 
output concerning voxel 𝑥𝑖𝑗𝑘. Higher gradient magnitudes imply higher 
influential voxels. Next, we computed individual gradient maps for 
all subjects and then calculated the voxel-wise mean gradient across 
subjects:
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where 𝑁 is the number of subjects, and 𝐱(𝑛) is the input sMRI feature 
for subject 𝑛.

3. Results

3.1. Validation of SMAS index: Correlating with clinical assessments

We observed significant correlations between the SMAS index and 
various clinical assessments. Higher SMAS scores were associated with 

https://github.com/CBICA/spare_score
https://github.com/CBICA/spare_score
https://github.com/CBICA/spare_score
http://surfer.nmr.mgh.harvard.edu/
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Table 1
Longitudinal validation of the SMAS index across different clinical groups, highlighting the progres-
sion trajectories. A) DELCODE dataset B) ADNI dataset. The findings indicate a more rapid progression 
in AD, succeeded by MCI and SCD individuals.
 A)  
  
 No. of observations 1474 Log-Likelihood −1123.5
 No. Groups 415 Converged yes

 Coef. Std.Err z P>|z| [0.025 0.975]
 Intercept −0.593 0.077 −7.696 <0.001 −0.744 −0.442
 SCD 0.333 0.109 3.060 0.002 0.120 0.547
 MCI 1.887 0.153 12.301 <0.001 1.586 2.188
 AD 3.987 0.494 8.079 <0.001 3.020 4.954
 ADR −0.053 0.178 −0.300 0.764 −0.402 0.295
 time 0.010 0.001 10.249 <0.001 0.008 0.012
 time * SCD 0.007 0.001 5.047 <0.001 0.004 0.010
 time * MCI 0.014 0.002 7.025 <0.001 0.010 0.018
 time * AD 0.032 0.006 5.125 <0.001 0.020 0.044
 time * ADR 0.001 0.002 0.554 0.580 −0.03 0.006

 B)  
  
 No. of observations 759 Log-Likelihood −115.9
 No. Groups 190 Converged yes

 Coef. Std.Err z P>|z| [0.025 0.975]
 Intercept −0.058 0.090 −0.645 0.519 −0.235 0.119
 sMCI 0.399 0.127 3.147 0.002 0.151 0.648
 pMCI 0.953 0.125 7.631 <0.001 0.709 1.198
 AD 1.363 0.127 10.749 <0.001 1.115 1.612
 time 0.004 0.001 2.676 0.007 0.001 0.006
 time * sMCI 0.006 0.002 3.190 <0.001 0.002 0.010
 time * pMCI 0.016 0.002 8.387 <0.001 0.012 0.019
 time * AD 0.020 0.002 10.290 <0.001 0.016 0.023
cognitive impairment, while lower scores indicated cognitively unim-
paired subjects. In the DELCODE dataset (Fig.  2 A), SMAS negatively 
correlated with PACC5 (r = −0.83), suggesting higher SMAS scores 
(indicating greater brain atrophy) are associated with lower cognitive 
performance.

Age correlated positively with SMAS (r = 0.50), and correlations 
with hippocampus volume and total gray matter volume were r = 
−0.44 and r = −0.42, respectively, aligning with the expected trends. 
To assess generalisability, we analysed the SMAS index in the ADNI 
dataset (Fig.  2 B), finding similar trends. The PACC-SMAS correlation 
was r = −0.62, reaffirming the negative relationship between cognitive 
performance and SMAS scores. Age showed a weaker correlation (r = 
0.28), while correlations with hippocampus volume (r = −0.66) and 
total gray matter volume (r = −0.47) were consistent.

Following the validation of the SMAS index, we applied the trained 
model to analyse the DELCODE and ADNI datasets longitudinally to 
track disease progression. In the DELCODE dataset (Table  1 A), which 
includes 1474 observations across 415 groups, significant differences 
in disease progression trajectories were observed relative to the CN 
group. AD subjects exhibited the steepest progression (coefficient = 
3.987, 𝑝 < 0.001), followed by MCI (coefficient = 1.887, 𝑝 < 0.001) 
and SCD (coefficient = 0.333,p = 0.002). The progression rates also 
varied, with AD progressing the fastest (coefficient for time * AD = 
0.032, 𝑝 < 0.001), followed by MCI (0.014, 𝑝 < 0.001) and SCD 
(0.007, 𝑝 < 0.001). Likewise, the ADNI dataset (Table  1 B), with 759 
observations across 190 groups, showed similar patterns. Significant 
differences in progression were noted compared to the CN reference 
group, with the AD group showing the highest progression (coefficient 
= 1.363, 𝑝 < 0.001), followed by pMCI (0.953, 𝑝 < 0.001) and sMCI 
(0.399,p = 0.002). The fastest progression rates were in AD (0.020, 
𝑝 < 0.001), followed by pMCI (0.016, 𝑝 < 0.001) and sMCI (0.006, 
𝑝 < 0.001).

We also explored the relationship between changes in the SMAS 
index and brain volume changes. In the DELCODE cohort, the rate of 
change in the SMAS index was significantly and negatively correlated 
with hippocampal volume change (r = −0.55, 𝑝 < 0.001), indicating 
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that a higher SMAS index corresponds to reduced hippocampal vol-
ume. Similar negative & significant correlations were observed for the 
thalamus (r = −0.32, 𝑝 < 0.001, 𝑝 < 0.001), amygdala (r = −0.50, 
𝑝 < 0.001), and total gray matter volume (r = −0.39, 𝑝 < 0.001), 
suggesting higher rates of change in the SMAS index are linked with 
higher volume declines in these regions (see supplementary Fig.  C.15). 
In the ADNI dataset, a negative correlation between SMAS index change 
and hippocampal volume change (r = −0.32, 𝑝 < 0.001) was consistent 
with the findings from the DELCODE dataset. Additionally, a positive 
correlation was found with ventricular volume change (r = 0.51, 𝑝 <
0.001), aligning with typical AD patterns where increased ventricular 
volume accompanies brain tissue loss (see supplementary Fig.  C.16). 
Furthermore, we compared the rate of change in SMAS indices in 
relation to amyloid beta (A𝛽42/40) and phosphorylated tau (p-tau) and 
observed significant differences between positive and negative groups 
(see supplementary Fig.  C.17).

We further examined the longitudinal progression of SMAS in the 
DELCODE sample across clinical groups and age ranges. The analy-
sis showed that SCD and MCI groups exhibited faster atrophy com-
pared to CN and ADR. When comparing SMAS changes between cog-
nitively unimpaired (CU) and cognitively impaired (CI) groups longi-
tudinally, we observed higher progression rates in the older age group 
(75–85 years) and in CI individuals across all ages (see supplementary 
Fig.  C.14).

3.2. Comparative analysis: SMAS vs. SPARE-AD indices and hippocampus 
volume

3.2.1. DELCODE
We compared the SMAS index with SPARE-AD and hippocampal 

volume in distinguishing AD, MCI, and CN individuals over time. The 
SMAS index consistently outperformed across all timepoints.

For CN vs AD (Fig.  3 A), SMAS AUC values remained high: 0.971 
at baseline, 0.972 at 12 months, 0.875 at 24 months, and 0.833 at 36 
months. SPARE-AD declined from 0.864 at baseline to 0.5 at 24 and 
36 months. Hippocampal volume showed a similar drop, from 0.82 to 
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Fig. 3. DELCODE: Performance of hippocampus volume, SPARE-AD, and SMAS index in predicting cognitively normal (CN) vs. Alzheimer’s disease (AD) and CN vs. mild cognitive 
impairment (MCI) across different timepoints. (A) Area under the ROC curve (AUC) for CN vs AD prediction. (B) Sensitivity and specificity for CN vs AD prediction. (C) AUC for 
CN vs. MCI prediction. (D) Sensitivity and specificity for CN vs. MCI prediction. The SMAS index (red) demonstrates higher AUC, sensitivity, and specificity compared to SPARE-AD 
(blue) and hippocampus volume (green) for both prediction tasks over the 36-month period.
0.5 by 36 months. In CN vs MCI (Fig.  3 C), SMAS exhibited superior 
AUC values, from 0.849 at baseline to 0.706 at 36 months. SPARE-AD 
dropped from 0.751 to 0.605, while hippocampal volume declined from 
0.686 to 0.5.

Sensitivity was higher for SMAS in both tasks (Fig.  3). For CN vs 
AD, it decreased from 0.947 at baseline to 0.667 at 36 months, while 
SPARE-AD and hippocampal volume dropped to 0 at 24 months. In 
CN vs MCI, SMAS sensitivity fell from 0.788 to 0.438, outperforming 
SPARE-AD (0.575 to 0.229) and hippocampal volume (0.462 to 0). 
Specificity remained high for SMAS, reaching 1.0 for CN vs AD from 
12 months onwards and improving in CN vs MCI from 0.911 to 0.974 
by 36 months. SPARE-AD and hippocampal volume achieved similar 
specificity after 24 months (Fig.  3 D).

3.2.2. ADNI
In the ADNI dataset, SMAS continued to outperform SPARE-AD and 

hippocampal volume.
For CN vs AD, SMAS AUC values increased from 0.82 at baseline 

to 0.90 at 24 months, with sensitivity rising from 0.81 to 0.92 and 
specificity consistently above 0.83. SPARE-AD showed lower AUC (0.66 
to 0.75), while hippocampal volume had intermediate values (0.752 
to 0.81) (Fig.  4 A, B). For CN vs pMCI, SMAS showed higher AUC 
(0.76 to 0.812) compared to SPARE-AD (0.69 to 0.68) and hippocampal 
volume (0.73 to 0.79) (Fig.  4 C, D). In CN vs sMCI, SMAS AUC ranged 
from 0.625 to 0.62, performing similarly to SPARE-AD and better than 
hippocampal volume (Fig.  4 E, F).

3.3. Comparison of SMAS and CSF-biomarkers

We investigated the relationship between SMAS and CSF biomarkers 
(A𝛽42/40 & pTau) on an independent DELCODE dataset for the avail-
able sample size (n=415). We observed a significant moderate negative 
correlation between baseline SMAS and the A𝛽42/40 ratio (r=-0.50, 
𝑝 < 0.001). This suggests that lower A𝛽42/40 levels, reflecting greater 
amyloid pathology, are associated with a higher risk of brain atrophy 
(in cognition-related areas), as indicated by higher SMAS values. As 
expected, SMAS demonstrated a significant moderate positive corre-
lation with pTau (r=0.38, 𝑝 < 0.001), suggesting that higher pTau 
concentrations are also linked to more emphasised brain atrophy (see 
Fig.  5).
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Table 2
Classification performance of clinical diagnostic groups (CN vs. AD) using SMAS, 
CSF biomarkers, and their combinations in n=82 subjects of the DELCODE cohort. 
Performance was evaluated using leave-one-out cross-validation.
 Feature set AUC score F1-score Sensitivity/Specificity 
 SMAS 0.985 0.992 0.971/1.0  
 A𝛽42/40 0.883 0.917 0.829/0.954  
 pTau 0.824 0.781 0.800/0.759  
 SMAS + A𝛽42/40 0.986 0.976 0.971/0.977  
 SMAS + pTau 0.975 0.983 0.943/1.0  
 SMAS + A𝛽42/40 + pTau 0.973 0.983 0.943/1.0  

Additionally, we assessed the diagnostic performance of SMAS and 
CSF biomarkers and their combination using SVM within the DELCODE 
cohort with the available CSF biomarker data. Performance was evalu-
ated using leave-one-out cross-validation. More specifically, we focused 
on metrics such as the area under the receiver operating characteristic 
curve (AUC-ROC) and the weighted F1-score, as well as sensitivity and 
specificity.

In differentiating CN individuals from those with AD, SMAS alone 
demonstrated near-perfect classification performance (AUC = 0.985, 
F1 = 0.992, sensitivity/specificity = 0.971/1.0), outperforming both 
A𝛽42/40 (AUC = 0.883) and pTau (AUC = 0.824) when used individ-
ually. Integrating SMAS with either or both CSF biomarkers resulted in 
marginal improvements or maintained similarly high accuracy (SMAS + 
A𝛽42/40: AUC = 0.986; SMAS + pTau: AUC = 0.975; SMAS + A𝛽42/40 
+ pTau: AUC = 0.973). These findings indicate that pattern-based SMAS 
scores capture a highly discriminative index for AD classification that 
is complementary in its definition and calculation based on MR images 
compared to traditional CSF biomarkers (see Table  2).

A similar pattern was observed for the earlier disease stage clas-
sification when classifying CN versus MCI. SMAS outperformed both 
A𝛽42/40 (AUC = 0.702, F1 = 0.706, sensitivity/specificity = 0.560/
0.862) and pTau (AUC = 0.650, F1 = 0.652, sensitivity/specificity = 
0.5/0.816) individually (SMAS AUC = 0.939, F1 = 0.883, sensitiv-
ity/specificity = 0.893/0.84). Combining SMAS with either biomarker 
led to slight improvements in overall model performance (SMAS + 
A𝛽42/40: AUC = 0.940; SMAS + pTau: AUC = 0.942). This suggests 
that SMAS might provide a useful index with early-stage discriminative 
power and might add incremental performance gains when integrated 



A. Nemali et al. Computers in Biology and Medicine 196 (2025) 110829 
Fig. 4. ADNI: Performance of hippocampal volume, SPARE-AD, and SMAS index in predicting CN vs. AD, CN vs. pMCI, and CN vs. sMCI at various time points using an independent 
ADNI dataset. (A) For CN vs. AD prediction, the SMAS index (red) consistently showed slightly higher performance compared to SPARE-AD (blue) and hippocampal volume (green) 
over 24 months. (B) Sensitivity and specificity for CN vs. AD prediction further support the favourable performance of the SMAS index. (C) For CN vs. pMCI prediction, the SMAS 
index exhibited slightly higher AUC values than SPARE-AD and hippocampal volume. (D) Sensitivity and specificity for CN vs. pMCI prediction also suggest a slight advantage 
for the SMAS index. (E) For CN vs. sMCI prediction, the SMAS index maintained moderately higher ROC AUC values. (F) Sensitivity and specificity for CN vs. sMCI prediction 
suggest a tendency for higher sensitivity for the SMAS index, while all models demonstrated reasonable specificity over time.
Fig. 5. Illustrates the relationship between SMAS index and CSF biomarkers: A𝛽42/40 (left) and pTau (right). A𝛽42/40 shows a significant negative correlation with SMAS 
(r=-0.50,p = 3.65e−28), while pTau shows a significant positive correlation (r=0.38,p = 6.05e−16).
with conventional molecular CSF biomarkers, raising the question of 
cost-efficiency trade-offs for clinical decision support (see Table  3).

3.4. Model transparency

In our study, we examined the relevant maps to derive the SMAS 
index, focusing on the DELCODE M12 validation data. These maps 
were created by averaging the weight contributions from all subjects in 
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the DELCODE M12 validation dataset, representing the average weight 
distribution and highlighting regions with varying contributions to the 
model’s predictions. Our findings reveal the hippocampus, posterior 
cingulate cortex, precuneus, and lateral parietal cortex as regions with 
high relevance contributions in estimating the SMAS index (Fig.  6). 
Nevertheless, while these regions demonstrate significant model-based 
relevance, it is crucial to exercise caution when interpreting these 
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Table 3
Classification performance (CN vs. MCI) using SMAS, CSF biomarkers, and their 
combinations in the DELCODE cohort.
 Feature set AUC score F1-score Sensitivity/Specificity 
 SMAS 0.939 0.883 0.893/0.894  
 A𝛽42/40 0.702 0.706 0.560/0.862  
 pTau 0.650 0.652 0.5/0.816  
 SMAS + A𝛽42/40 0.940 0.889 0.893/0.885  
 SMAS + pTau 0.942 0.883 0.869/0.897  
 SMAS + A𝛽42/40 + pTau 0.943 0.889 0.881/0.897  

Fig. 6. Relevance map of brain regions (hippocampus, posterior cingulate cortex, 
precuneus, and lateral parietal cortex) contribution in estimating SMAS index.

findings. Clinical applicability must be rigorously validated through 
further empirical research and thorough clinical evaluation.

4. Discussion

In this study, we present the SMAS index, a novel measure of 
AD-related morphometric patterns using a deep learning Bayesian-
sVAE, trained on structural brain imaging features of the large-scale 
DELCODE cohort. Our results, including a validation of the score across 
unseen data from two datasets (DELCODE and ADNI), do suggest the 
robustness and potential of SMAS to characterise at-risk individuals 
along the progression towards AD.

4.1. Choice of latent dimension

The selection of the latent dimensionality, especially determining 
the latent vector 𝑧𝑖 ∈ R1, was a key design decision in our Bayesian-
sVAE framework. While higher-dimensional latent spaces have the 
potential to capture more complex patterns in data, our empirical study 
over various dimensions (m = 1, 2, 4, … , 256) indicated modest im-
provement in performance (see Fig.  C.10 for more details). These minor 
improvements were insufficient to compensate for the increased com-
plexity and loss of interpretability associated with higher-dimensional 
latent representation models. Therefore, the decision to utilise a one-
dimensional latent space (m = 1) was motivated by two main factors: 
simplicity and interpretability, particularly in terms of clinical utility. 
A single latent variable offers a straightforward and easily communi-
cable metric for clinicians, facilitating longitudinal tracking of disease 
progression and enhancing transparency for risk assessment. Unlike 
multidimensional representations, which can be difficult to interpret 
and integrate, a one-dimensional score is intrinsically easier to compare 
and associate with external clinical factors such as cognitive test scores, 
genetic markers, and CSF biomarkers. Furthermore, this simplicity 
might facilitate better adaptation to decision-making in healthcare 
contexts, where model transparency and trust in AI-assisted approaches 
are important.
9 
4.2. SMAS index: A reliable indicator of brain atrophy

This study suggests that the SMAS index, derived from a Bayesian-
sVAE trained on DELCODE baseline sMRI data, may serve as a useful 
indicator for assessing brain atrophy. Analysis across independent DEL-
CODE and ADNI datasets shows that the SMAS index is associated with 
various clinical and structural factors, such as PACC5, age, hippocam-
pal volume, and total gray matter volume. A strong negative correlation 
between SMAS and PACC5 scores suggests that higher SMAS values 
are associated with lower cognitive performance, indicating potential 
relevance of SMAS for tracking cognitive decline in AD. Additionally, 
positive correlations between SMAS and age support its sensitivity 
to age-related atrophic patterns (see Fig.  2). The SMAS index also 
demonstrates negative correlations with both hippocampal and total 
gray matter volumes regions commonly affected in AD, indicating 
its capability to reflect atrophy in these areas [45–47]. Longitudinal 
analyses further support these findings, showing that a higher rate 
of change in the SMAS index corresponds to reduced volumes in the 
hippocampus, thalamus, amygdala, and total gray matter, as well as 
ventricular enlargement. In addition to structural and cognitive cor-
relates, SMAS also demonstrated significant relationships with core 
cerebrospinal fluid (CSF) biomarkers of AD pathology. We observed a 
moderate negative correlation between SMAS and the A𝛽42/40 ratio, 
indicating that greater amyloid burden is associated with more severe 
structural atrophy. Similarly, SMAS showed a moderate positive corre-
lation with pTau levels, further suggesting its relevance as a marker 
sensitive to neurofibrillary degeneration (see Fig.  5). These findings 
establish SMAS as a bridge between structural atrophy and underlying 
molecular pathology. Importantly, the SMAS index reflects underlying 
pathological processes, as indicated by its correlation with amyloid 
and tau biomarkers. This suggests that the SMAS index might detect 
molecular aspects of AD in addition to structural abnormalities. From 
a clinical staging viewpoint, the SMAS index outperforms established 
CSF biomarkers in distinguishing individuals with AD and those in the 
prodromal stage (MCI) from CN. Notably, it demonstrates an increased 
sensitivity in detecting early-stage disease, making it useful for identi-
fying individuals at risk before significant cognitive decline develops. 
SMAS, as a non-invasive, imaging-based marker, is a viable alternative 
or complement to fluid biomarkers, especially in situations when lum-
bar puncture is not possible. Furthermore, when combined with CSF 
biomarkers, the SMAS index offers additional predictive value. Aside 
from clinical and biomarker relationships, we investigated the potential 
impact of variations in MRI acquisition parameters across cohorts and 
scanner sites. The results suggest site effects were essentially negligible 
in the DELCODE cohort and limited to a few sites in ADNI, indicating 
overall robustness of the SMAS index across diverse imaging conditions.

Together, these findings underscore the SMAS index as a reliable, 
robust, and data-driven indicator of brain atrophy that integrates well 
with both structural and molecular aspects of AD. Its strong correlation 
with cognitive, anatomical, and biomarker-based markers, along with 
its higher diagnostic utility, supports its potential role in both re-
search and clinical contexts for tracking disease progression and aiding 
diagnosis.

4.3. SMAS index: A promising tool for early detection and monitoring of 
AD

4.3.1. Monitoring disease progression
The longitudinal analysis of the SMAS index in both the DELCODE 

and ADNI cohorts suggests that it may offer value in monitoring the 
progression of AD across different clinical stages. Notably, AD indi-
viduals exhibited the most pronounced increases in SMAS over time, 
followed by those with MCI. This is consistent with the hypothesis that 
the SMAS index is associated with disease severity and progression. 
Importantly, the detection of a small but significant increase in SMAS 
among SCD individuals raises the possibility that this index may be 
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sensitive to subtle, early alterations in neurodegenerative processes. 
This finding is particularly interesting, as SCD is increasingly consid-
ered as a potential preclinical stage of AD, and the sensitivity of SMAS 
to detect these subtle early changes suggests it may serve as an early 
biomarker for neurodegeneration before clinical symptoms become 
apparent. Furthermore, the differences observed in the rates of SMAS 
change between the DELCODE and ADNI cohorts may reflect underly-
ing differences in cohort composition, such as demographic variability, 
recruitment criteria, or other methodological factors. Collectively, these 
results suggest that the SMAS index has potential utility in tracking AD 
progression (see Table  1).

4.3.2. Age-related variations
The analysis of the DELCODE cohort reveals varied SMAS tra-

jectories across age and clinical groups, suggesting that SMAS may 
reflect differences in brain atrophy associated with these groups. In 
CN individuals, SMAS increases gradually with age, consistent with 
expected age-related atrophy. In SCD individuals, a steeper SMAS 
increase is observed, particularly in older age groups. This pattern may 
suggest that brain atrophy begins to accelerate earlier in SCD, possibly 
indicating initial neurodegenerative changes before clinical symptoms 
become apparent [48]. The MCI group shows an even higher SMAS 
rate from earlier ages, with a steady increase over time, which could 
suggest that brain atrophy progresses more rapidly in MCI, reflecting a 
more advanced stage of atrophy. Additionally, CI individuals exhibit a 
notably steeper SMAS trajectory compared to CU individuals, suggest-
ing an accelerated rate of brain atrophy in CI. Overall, these findings 
imply that SMAS could be a useful indicator for assessing brain atrophy, 
with potential utility in identifying and monitoring early stages of AD.

4.3.3. Disease staging
Our analysis of the DELCODE dataset showed that the SMAS in-

dex achieved high predictive accuracy in distinguishing CN and AD 
subjects, demonstrating strong performance with a slight decline over 
time (refer Fig.  3 A). For CN versus MCI, the AUC showed a moderate 
decrease over time 3 C). The SMAS index outperformed the 3D CNN 
model by [49], which achieved an AUC of 0.953 for CN vs. AD and 
0.775 for CN vs. MCI at baseline.

For the independent ADNI dataset, the SMAS index showed strong 
performance in distinguishing CN from AD and in predicting pMCI to 
AD conversion, with improving AUC as the time to stable diagnosis 
decreased. However, the performance for CN vs. sMCI was lower, 
indicating challenges in differentiating sMCI cases from CN (refer Fig. 
3). When compared to other methods, our approach shows competitive 
performance. For instance, [49] achieved an AUC of 0.949 for AD 
vs. CN and 0.785 for CN vs. MCI using a 3D CNN. [41,50], which 
used a support vector machine with PCA+FDR feature extraction on 
a similar dataset, reported lower performance metrics, particularly for 
(CN + sMCI) vs. (pMCI + AD) classification at various time points 
before stable diagnosis. Additionally, the multi-modal feature selection 
algorithm (FC2FS) by [51] achieved an AUC of 92.84% for NC vs. 
AD, while the multi-modal multi-task learning (M3T) method by [52] 
reported an AUC of 0.933 for AD vs. CN and 0.832 for MCI vs. CN. 
These comparisons indicate the potential of the SMAS index in early 
disease staging, particularly in distinguishing CN from MCI and pMCI.

4.4. Comparative analysis

To further validate the robustness of the SMAS index, we compared 
them with the well-established SPARE-AD and hippocampus volume. 
We evaluated their ability to differentiate between CN individuals and 
those with AD or MCI across both the ADNI and DELCODE datasets. 
Our results consistently showed that the SMAS index demonstrated 
higher performance compared to SPARE-AD and hippocampus volume 
over a 36-month observation period. In both datasets, the SMAS model 
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achieved higher AUC scores for CN vs. AD and CN vs. MCI, reaffirming 
its robustness in early detection (refer Fig.  3, 4).

We also confirmed the effectiveness of the SMAS index against 
those derived from traditional principal component analysis (PCA). 
We carried out classification analyses over latent dimensions using 
an independent subset of the DELCODE dataset (M12). The results 
echoed our previous findings, showing that the SMAS index consistently 
outperforms traditional methods in distinguishing CN from MCI. This 
suggests that these indexes might be useful for the early detection of 
AD stages.

4.5. Transparency and explainability

The quantitative analysis of relevance contributions to the SMAS 
index derived through Bayesian-sVAE demonstrates the model’s ca-
pacity to identify and quantify morphological alterations in key brain 
regions associated with AD. Significant relevance contributions were 
observed in the hippocampus, posterior cingulate cortex, precuneus, 
and lateral parietal cortex, aligning with established patterns of AD-
related neurodegeneration [53–57]. This correlation emphasises the 
model’s sensitivity to disease-specific structural changes.

Focusing on these critical regions suggests potential for early detec-
tion of AD-related atrophy, possibly at the MCI stage; secondly, it offers 
a means for longitudinal monitoring of disease progression; and thirdly, 
it presents a promising metric for evaluating the efficacy of potential 
disease-modifying therapies in clinical trials. This approach offers a 
transparent and interpretable method for quantifying AD-related brain 
atrophy.

4.6. SMAS: Clinical utility

To further support the clinical applicability and aid real-world im-
plementation, the SMAS index could potentially be used for stratifying 
individuals across the AD continuum (CN, MCI, and AD stages). In 
this context, we identified optimal cut-off thresholds using Gaussian 
mixture modelling, with values of 0.386 and 0.629 emerging as possi-
ble actionable reference points. These thresholds may allow clinicians 
to identify individuals at increased risk for early neurodegenerative 
changes (i.e., MCI) or those exhibiting structural atrophy patterns 
that are consistent with AD. Specifically, SMAS score above 0.386 
might indicate early-stage neurodegeneration, suggesting that closer 
monitoring could be warranted, while a score above 0.629 may be 
indicative of more advanced atrophy typically associated with AD. 
Importantly, while the SMAS index may serve as a helpful standalone 
measure, its integration with other clinical, genetic, and biomarker 
data could be particularly valuable in identifying individuals at risk 
for progression from CN to MCI, where early intervention can have 
the greatest impact. Additionally, the broader range of SMAS values, 
between 0.629 and 1.0, may reflect underlying heterogeneity among 
AD patients, potentially indicating variability in atrophy distribution, 
comorbid pathologies, and further disease progression.

4.7. Limitations and future directions

While our study shows promise, we acknowledge certain limitations 
and suggest key directions for future work. The current model is 
primarily based on structural MRI, limiting multimodality to different 
tissue classes. This choice was based on the increased availability of T1-
weighted data within the DELCODE cohort. In future work, we aim to 
incorporate additional imaging modalities such as fMRI, PET, or DTI, as 
well as extended demographic and clinical test scores, which could offer 
a more comprehensive representation of at-risk individuals and capture 
heterogeneity. This also highlights an important future challenge: ad-
dressing the impact of missing data for specific inputs and quantifying 
uncertainty in latent scores. Our analysis suggests that there is no 
systematic bias across scanner sites in the estimation of the SMAS index. 
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However, this does not imply that the SMAS index is entirely free from 
site-related variability, as differences in MRI acquisition parameters 
may still influence the estimates. In future work, we plan to further 
evaluate the performance of SMAS in additional cohorts. Specifically, 
we aim to investigate the extent to which MRI acquisition factors, 
such as field strength, scanner manufacturer, and software version, 
influence SMAS predictions. Additionally, we will explore model-based 
correction strategies (e.g., calibration approaches), including the use 
of scanner-related features as nuisance regressors or integrating them 
directly into the learning framework to account for potential sources 
of variation. Future studies might incorporate scan quality indicators 
and scan-related parameters to enhance the robustness of the score 
for single subjects. Finally, the potential influence of reserve variables 
should not be overlooked. Future research may aim to study a wider 
range of subject-specific factors that could mitigate the effects of brain 
pathology on cognitive outcomes, especially in assessing an individual’s 
risk of disease progression.
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Appendix A. DELCODE MRI acquisition

MRI scans were acquired in 9 out of 10 involved DZNE sites (3T 
Siemens scanners: 3 TIM Trio systems, 4 Verio systems, 1 Skyra, and 
1 Prisma system). Our main analyses were based on whole-brain T1-
weighted MPRAGE (3D GRAPPA PAT 2, 1 𝑚𝑚3 isotropic, 256 X 256 
px, 192 slices, sagittal,  5 min, TR 2500 ms, TE 4.33 ms, TI 110 ms, FA 
7◦). Further ROI and covariate processing was based on the additionally 
available FLAIR protocol (for details see Jessen, F., et al. 2018).

Appendix B. Demographics information

See Tables  B.4 and B.5.

Appendix C. Supplementary results

C.1. Supervised VAE framework

See Fig.  C.11.

C.2. VAE vs. Supervised VAE

To study the influence of integrating the cognitive variable PACC5 
as a constraint within the VAE framework, we examined both the 
reconstruction maps and latent space for constrained and unconstrained 
models. We first assessed the ability of the latent variable to reconstruct 
the original MRI morphological features. Figs.  C.9A and C.9B illustrate 
reconstruction maps for an individual subject, representing the out-
puts of the unconstrained and constrained VAE models, respectively. 
Visually, both models reproduce the input GM feature map with good 
fidelity, demonstrating that global anatomical structure is retained 
regardless of the constraint. To further quantify the differences, we 
present a voxel-wise difference map in Fig.  C.9C, highlighting the 
absolute intensity differences between the two reconstructions. The 
results demonstrate that most brain areas exhibit small intensity varia-
tions, suggesting that the integration of the PACC5 constraint does not 
significantly impact reconstruction quality. Notably, localised regions 
reveal subtle differences, which might be interpreted as reflecting 
cognitively significant aspects captured by the PACC5 constraint. In 
addition to reconstruction, we assessed how the presence of the PACC5 
constraint impacts the latent representation of the input data. As shown 
in Fig.  C.8, we examined the relationship between the SMAS index, a 
derived latent measure, and PACC5 scores within the DELCODE cohort 
(independent - timepoint: M12). The unconstrained model (Fig.  C.8, 
left) showed a minimal correlation (r = 0.05,p = 0.191), demonstrating 
that the latent space and cognitive performance are not well aligned. 
In contrast, the constrained model (Fig.  C.8, right) revealed a strong 
negative correlation (r = −0.82,p = 2.83e−142), demonstrating that the 
latent space is effectively shaped by the PACC5 variable. This alignment 
enables the constrained model to better capture variations in brain 
morphology that are predictive of cognitive decline. Moreover, the 
constrained latent structure more clearly distinguishes between clinical 
groups (CN, SCD, MCI, AD, ADR), supporting its potential utility in 
early disease characterisation.

C.3. Influence of site

To evaluate whether heterogeneity in MRI acquisition parameters 
across different scanner sites influenced the SMAS index, we conducted 
mixed linear model regression analyses for the DELCODE and ADNI 
datasets, treating scanner site as a fixed effect. In the DELCODE co-
hort (n = 1474 across 9 sites), none of the sites reached statistical 
significance after FDR correction (all 𝑝 > 0.51), suggesting that site-
specific factors did not substantially contribute to the differences of 
the SMAS index in our DELCODE cohort (see Table  C.6 A for more 
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Table B.4
Baseline demographic information for the participants from the DELCODE cohort used in this modelling 
study. The PACC5 score is transformed using min–max normalisation to the unit interval. Age is indicated 
in years.
 Variable CN SCD MCI AD ADR  
 No. of subjects 229 388 158 109 75  
 Males/females 129/94 173/200 69/82 63/44 44/31  
 Age (Mean ±SD) 69.46 ±5.42 71.27 ±6.06 72.91 ±5.72 75.19 ±6.25 66.27 ±4.61 
 PACC5 (Mean ±SD) 0.77 ±0.09 0.72 ±0.11 0.49 ±0.14 0.25 ±0.10 0.76 ±0.11  
Table B.5
Baseline demographic information for the participants from the ADNI cohort used in this modelling study. 
The PACC score is transformed using min–max normalisation to the unit interval. Age is indicated in 
years.
 Variable CN sMCI pMCI AD  
 No. of subjects 50 50 50 50  
 Age (Mean ±SD) 74.84 ±6.10 74.66 ±6.83 74.49 ±7.08 75.14 ±6.75 
 PACC (Mean ±SD) 0.77 ±0.11 0.52 ±0.12 0.39 ±0.12 0.21 ±0.10  
Fig. C.7. Overview of the proposed 3D supervised ResNet-based VAE architecture. The encoder block consists of a 3D convolutional layer followed by a sequence of residual 
blocks with increasing channel dimensions (64 → 128 → 256 → 512), ending with a linear transformation that produces the latent mean (𝜇) and log-variance (𝜎). The latent 
vector z is sampled via the reparameterisation trick and used for both decoding and prediction. The decoder reconstructs the input volume through symmetric residual blocks and 
upsampling layers, ending in a 3D residual block with sigmoid activation. A prediction head (pacc5) operates directly on the latent representation. Colour-coded modules indicate 
different operations, as defined in the legend.
Fig. C.8. Correlation analysis between the SMAS index and PACC5 in the DELCODE cohort. Unconstraint VAE (left), Constraint VAE using additional regression of latents on 
clinical scores (right).
details). In the ADNI cohort (n = 759 across 38 sites), testing for each 
site effect on SMAS values, we also found no significant effect of indi-
vidual sites, while a trend towards a compound hypothesis effect was 
observed (all 𝑝 > 0.06 FDR) (see Table  C.6 B for more details). These 
results do suggest that, within our datasets, heterogeneity in scanners 
or acquisition parameters across sites did not significantly introduce 
considerable bias into our analyses, but differences in harmonisation 
strategies across cohorts might contribute in larger sample analyses 
with increased sensitivity. Additionally, these analyses of mean effects 
do not imply that SMAS might be entirely free from variance differences 
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across sites. In the future, we plan to continue using SMAS in other 
cohorts and testing whether the extent to which MRI acquisition param-
eters influence its predictions as well as testing whether model-based 
corrections (or calibration approaches), such as including scanner-
related features (e.g., field strength, manufacturer, software version) 
as nuisance regressors or embedding them directly into the learning 
framework. This approach would enable the SMAS index to inherently 
adjust for site-related variability, thereby enhancing its generalisability 
and suitability for clinical settings.
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Table C.6
Scanner site effects on SMAS scores across cohorts. A) DELCODE dataset B) ADNI dataset. In DELCODE & 
ADNI, no significant site effects were observed, suggesting stable performance across scanners.
 A)  
  
 No. of observations 1474 Log-Likelihood −1123.5 
 No. Groups 415 Converged yes  
 Coef. Std.Err z P (FDR) [0.025 0.975]  
 Intercept −0.593 0.077 −7.696 <0.001 −0.744 −0.442  
 SCD 0.333 0.109 3.060 0.002 0.120 0.547  
 MCI 1.887 0.153 12.301 <0.001 1.586 2.188  
 AD 3.987 0.494 8.079 <0.001 3.020 4.954  
 ADR −0.053 0.178 −0.300 0.910 −0.402 0.295  
 site-5 −0.113 0.096 −1.172 0.515 −0.185 0.130  
 site-8 0.030 0.096 0.308 0.910 −0.301 0.076  
 site-10 −0.061 0.070 −0.867 0.579 −0.159 0.218  
 site-11 0.010 0.073 0.133 0.922 −0.199 0.077  
 site-13 −0.074 0.082 −0.902 0.579 −0.134 0.154  
 site-14 −0.135 0.120 −1.127 0.515 −0.236 0.087  
 site-17 −0.016 0.070 −0.222 0.922 −0.371 0.100  
 site-18 −0.058 0.148 −0.391 0.910 −0.153 0.122  
 time 0.010 0.001 10.249 <0.001 0.008 0.012  
 time * SCD 0.007 0.001 5.047 <0.001 0.004 0.010  
 time * MCI 0.014 0.002 7.025 <0.001 0.010 0.018  
 time * AD 0.032 0.006 5.125 <0.001 0.020 0.044  
 time * ADR 0.001 0.002 0.554 0.922 −0.03 0.006  
 B)  
  
 No. of observations 759 Log-Likelihood −115.9  
 No. Groups 190 Converged yes  
 Coef. Std.Err z P (FDR) [0.025 0.975]
 Intercept −0.058 0.090 −0.645 0.667 −0.235 0.119  
 sMCI 0.399 0.127 3.147 0.003 0.151 0.648  
 pMCI 0.953 0.125 7.631 <0.001 0.709 1.198  
 AD 1.363 0.127 10.749 <0.001 1.115 1.612  
 time 0.004 0.001 2.676 0.070 0.001 0.070  
 site-3 −0.587 0.636 −0.923 0.589 −1.834 0.660  
 site-5 0.721 0.367 1.967 0.181 0.003 1.440  
 site-6 0.011 0.529 0.020 0.984 −1.026 1.047  
 site-7 0.517 0.415 1.245 0.432 −0.297 1.330  
 site-11 0.454 0.367 1.237 0.432 −0.265 1.173  
 site-13 0.441 0.531 0.831 0.627 −0.599 1.482  
 site-14 −0.602 0.480 −1.256 0.432 −1.543 0.338  
 site-16 0.365 0.629 0.580 0.705 −0.868 1.598  
 site-20 −0.704 0.627 −1.123 0.494 −1.934 0.525  
 site-22 0.531 0.377 1.408 0.382 −0.208 1.271  
 site-23 0.461 0.323 1.426 0.382 −0.173 1.094  
 site-24 −0.214 0.855 −0.251 0.837 −1.891 1.462  
 site-27 0.182 0.349 0.523 0.709 −0.501 0.866  
 site-29 0.891 0.478 1.865 0.200 −0.045 1.827  
 site-33 0.365 0.329 1.109 0.493 −0.280 1.010  
 site-35 1.119 0.454 2.463 0.110 0.228 2.009  
 site-36 0.765 0.432 1.771 0.231 −0.082 1.611  
 site-41 0.693 0.482 1.437 0.382 −0.252 1.638  
 site-51 1.062 0.537 1.977 0.182 0.009 2.115  
 site-52 −0.242 0.529 −0.457 0.720 −1.279 0.795  
 site-53 −0.316 0.550 −0.575 0.705 −1.393 0.762  
 site-57 −0.341 0.421 −0.810 0.627 −1.167 0.485  
 site-62 0.178 0.382 0.466 0.720 −0.571 0.927  
 site-67 0.658 0.631 1.042 0.523 −0.580 1.895  
 site-73 0.415 0.629 0.660 0.698 −0.818 1.648  
 site-94 0.273 0.484 0.564 0.705 −0.675 1.221  
 site-98 −0.534 0.659 −0.809 0.627 −1.825 0.758  
 site-99 0.183 0.417 0.440 0.720 −0.634 1.001  
 site-109 1.520 0.544 2.794 0.063 0.453 2.586  
 site-114 1.392 0.636 2.190 0.152 0.147 2.638  
 site-126 0.716 0.541 1.322 0.425 −0.345 1.777  
 site-127 0.263 0.423 0.622 0.705 −0.567 1.093  
 site-130 1.517 0.637 2.381 0.111 0.268 2.766  
 site-131 1.095 0.549 1.996 0.182 0.020 2.170  
 site-133 0.184 0.451 0.408 0.729 −0.699 1.067  
 site-136 0.037 0.428 0.087 0.951 −0.802 0.877  
 site-941 0.865 0.854 1.012 0.534 −0.810 2.539  
 time * sMCI 0.006 0.002 3.190 <0.001 0.002 0.010  
 time * pMCI 0.016 0.002 8.387 <0.001 0.012 0.019  
 time * AD 0.020 0.002 10.290 <0.001 0.016 0.023  
13 
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Fig. C.9. Gray matter morphological tissue map of a subject with mild cognitive 
impairment (MCI). (A) Original tissue map shown in coronal, sagittal, and axial views. 
(B) Reconstructed map for the same subject obtained using an unconstrained variational 
autoencoder (VAE). (C) Reconstructed tissue map generated by a constrained VAE for 
comparison. (D) Scatter plot illustrating the correlation between reconstructed voxel 
intensities from the unconstrained and constrained VAEs, indicating high similarity 
(Pearson correlation coefficient r = 0.987) in terms of reconstruction.

Fig. C.10. Comparative evaluation of CN vs. MCI classification performance using 
indices derived from PCA and Bayesian-VAE for the DELCODE M12 sample trained on 
the DELCODE baseline sample: SMAS indices exhibit superior AUC performance over 
PCA indices across latent dimensions, demonstrating high specificity and sensitivity. 
Despite a slight performance enhancement with increasing latent dimensions, the 
difference was not statistically significant, advocating for the choice of a single latent 
dimension for ease of interpretation and simplicity.

C.4. Longitudinal trajectories: SMAS index

To enhance the interpretability and clinical relevance of our find-
ings, we provide illustrative cases illustrating longitudinal trajectories 
of the SMAS index alongside established PACC5 and hippocampal vol-
ume. The examples provided represent individuals across four diagnos-
tic categories: CN, SCD, MCI, and AD. Fig.  C.12 illustrates time-scaled 
trajectories for three individuals per diagnostic group (selected ran-
domly), demonstrating the progression of SMAS (blue), PACC5 (green), 
and hippocampus volume (orange) over 36 months. The SMAS index in 
CN individuals (Fig.  C.12 row 1) remains mostly constant throughout 
time, with trajectories closely matching those of PACC5 and hippocam-
pus volume, indicating no major cognitive or structural degeneration. 
SCD individuals (Fig.  C.12 row 2) demonstrate increased variability, 
with some exhibiting an early increase in SMAS that is not yet reflected 
in corresponding cognitive or volumetric changes. Individuals with MCI 
(Fig.  C.12 row 3) exhibit a greater degree of longitudinal SMAS index, 
which is frequently associated with declining PACC5 scores and hip-
pocampal shrinkage, indicating increasing neurodegeneration. Finally, 
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Fig. C.11. Distribution of the SMAS index across an independent DELCODE cohort 
at 12 months. The clinical groups are: CN (Cognitively Normal, n=172, green), SCD 
(Subjective Cognitive Decline, n=271, yellow), MCI (Mild Cognitive Impairment, n=91, 
salmon), and AD (Alzheimer’s Disease, n=18, dark red). Box plots display the median 
(central line), interquartile range (box), and outliers (individual points). SMAS values 
are normalised between 0 and 1, with higher values indicating greater brain atrophy. 
Statistical significance was assessed using ANOVA followed by post-hoc pairwise 
comparisons (***p < 0.001). The progressive increase in SMAS values from CN through 
SCD and MCI to AD demonstrates the metric’s ability to capture the continuum of 
neurodegeneration across the AD spectrum.

AD subjects exhibit the steepest increases in SMAS, accompanied by 
pronounced cognitive decline and hippocampus volume loss (Fig.  C.12 
row 4).

To supplement these trajectory plots, we illustrate voxel-wise rel-
evance maps for selective individuals (last column from Fig.  C.12) 
from each diagnostic group. Fig.  C.13 shows maps that highlight the 
significant influence of the SMAS index for a test subject (subject 3) 
with warmer colours (red) indicating more voxel importance. In the CN 
(SMAS = 0.25) and SCD (SMAS = 0.23) subjects, relevance activation 
was minimal and, with slight activations in the temporal region and 
thalamus, suggesting limited structural atrophy. However, in the SCD 
subject, emerging focal activations, particularly in the thalamus region, 
indicate subtle changes potentially linked to preclinical pathology. In 
the MCI subject, relevance activations become stronger, especially in 
the medial temporal region, aligning with known progression patterns 
in prodromal AD. The AD subject exhibits more intense relevance 
activations involving regions typically affected by AD, such as the 
medial temporal lobe, temporal lobe, and thalamus.

Appendix D. SMAS thresholds

To establish clinically meaningful SMAS index cut-off thresholds 
for differentiating CN, MCI, and AD individuals, we applied Gaussian 
mixture modelling (GMM). GMM identified two optimal cut-off values: 
0.386, which best separated CN from MCI individuals, and 0.629, 
which distinguished MCI from AD individuals. These thresholds reflect 
progressive neurodegenerative burden, with scores above 0.386 indi-
cating increased risk of early-stage atrophy (MCI), and scores above 
0.629 reflecting advanced atrophy typical of AD. We validated these 
thresholds using AUC-ROC analysis to assess diagnostic accuracy. For 
the CN vs. MCI comparison at the SMAS threshold of 0.386, the AUC 
was 0.945, with 92.3% sensitivity and 82.6% specificity. In distinguish-
ing MCI from AD at the SMAS threshold of 0.629, the AUC was 0.875, 
yielding 83.3% sensitivity and 81.3% specificity (see Fig.  C.18). See 
Figs.  D.19 and D.20.
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Fig. C.12. Individual longitudinal trajectories of SMAS index, PACC5, and hippocampus volumes across DELCODE diagnostic groups. Each panel displays time-scaled trajectories 
of SMAS (blue), PACC5 (green), and hippocampal volume (orange). All measures are normalised to a 0–1 scale to enable direct comparisons.
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Fig. C.13. Gray matter relevance maps illustrating regions contributing to the estimation of the SMAS index. Representative subject 3 from each clinical group are shown: A) 
Cognitively Normal (CN; SMAS = 0.25), B) Subjective Cognitive Decline (SCD; SMAS = 0.23), C) Mild Cognitive Impairment (MCI; SMAS = 0.41), and D) Alzheimer’s Disease 
(AD; SMAS = 0.87). The colour bar indicates the magnitude of relevance activation, with warmer colours (yellow-red) indicating higher relevance and cooler colours (blue–green) 
representing lower relevance. Notably, medial temporal regions demonstrate increased activation in MCI and exhibit the highest activation levels in AD, reflecting structural 
neurodegeneration along the AD continuum.

Fig. C.14. Rate of SMAS change over age for different clinical groups A) Comparison of the rate of SMAS change across age for CN, SCD, MCI, AD, and ADR groups. B) Rate of 
SMAS change over age for cognitively unimpaired (CU) and cognitively impaired (CI) groups.
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Fig. C.15. Rate of change of SMAS indices and brain volume changes in the DELCODE sample. The scatter plots depict the correlation between the rate of change of SMAS indices 
and the rate of change in the volume of the hippocampus (r = −0.55), thalamus (r = −0.32), amygdala (r = −0.50), and total gray matter volume (r = −0.39).

Fig. C.16. Rate of change of SMAS indices and brain volume changes in the ADNI sample. The scatter plots depict the correlation between the rate of change of SMAS indices 
and the rate of change in the volume of the hippocampus (r = −0.32) and ventricles (r = 0.51).
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Fig. C.17. Comparison of SMAS indices rate of change in relation to CSF biomarkers (A𝛽 42/40) and ptau. The left side represents the significant rate of change in SMAS indices 
for both A𝛽42/40 positive and negative groups. On the right side, for both the ptau-positive and negative groups, we observe a significant rate of change.

Fig. C.18. Illustrates the distribution of SMAS values for three clinical groups: Cognitively Normal (CN, green), Mild Cognitive Impairment (MCI, orange), and Alzheimer’s Disease 
(AD, red). Vertical black lines indicate threshold values (SMAS = 0.386 and SMAS = 0.629) determined using Gaussian mixture modelling (GMM) to optimise separation between 
the diagnostic categories. SMAS > 0.386 denotes increased risk for early neurodegenerative changes (MCI), while SMAS > 0.629 indicates significant structural atrophy consistent 
with an AD-like pattern. Dashed lines represent GMM-derived probability density estimates for each group, illustrating the progression of neurodegeneration risk with increasing 
SMAS.

Fig. D.19. Uncertainty of SMAS indices for the DELCODE cohort across clinical groups. The CN and SCD groups exhibit relatively low uncertainty, indicating more consistent 
SMAS index measurements in these groups. The MCI group shows moderate uncertainty with a broader distribution, reflecting increased variability. The AD group presents the 
highest level of uncertainty, suggesting significant variability in SMAS indices within this population.
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Fig. D.20. Reconstruction uncertainty from the Bayesian-sVAE model in estimating the SMAS index. Higher uncertainty areas are observed primarily in the central regions around 
the ventricles, the boundaries and edges of brain structures, and some cortical regions in the lower slices. These areas reflect the regions where the Bayesian-sVAE model has more 
difficulty in accurate reconstruction, potentially due to the variability in the sMRI.
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