
Article

Feeding-induced olfactory cortex suppression
reduces satiation

Graphical abstract

Highlights

• Piriform (olfactory) cortex suppression scales with food value

during binge feeding

• Feeding-induced suppression is driven by GABAergic input

from the olfactory tubercle

• Suppression reduces flavor representation and correlates

with reduced satiation

• Optogenetic piriform cortex inhibition increases food intake

by prolonging feeding bouts

Authors

Hung Lo (羅鴻), Walter Cañedo Riedel,
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Pisa, Italy
12Humboldt Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstraße 13, 10115 Berlin, Germany
13Present address: Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
14Senior author
15Lead contact

*Correspondence: hung.lo@einsteinmed.edu (H.L.), friedrich.johenning@charite.de (F.W.J.)

https://doi.org/10.1016/j.neuron.2025.07.020

SUMMARY

Binge feeding commonly leads to overeating. Experiencing flavor during food consumption contributes to

satiation. Still, the interactions between flavor, binge feeding, and food intake remain unknown. Using min-

iscopes for in vivo calcium imaging in the anterior piriform cortex (aPC) in freely moving mice, we identified

specific excitatory neuronal responses to different food flavors during slow feeding. Switching from slow

feeding to binge feeding transformed these specific responses into an unspecific global suppression of

neuronal activity. Consummatory aPC suppression scaled with food value. GABAergic neurons in the olfac-

tory tubercle (OT) projected to the aPC and mirrored activity patterns in the aPC under different feeding con-

ditions, consistent with transmitting a value signal. Closed-loop optogenetic manipulations demonstrated

that suppressing the aPC during binge bouts reduces satiation by selectively prolonging feeding bouts.

We propose that aPC suppression by the OT enhances food intake by reducing sensory satiation during

binge feeding-associated states of high motivation.

INTRODUCTION

Satiation is an important feedback signal that reduces food

consumption following food intake. Within the framework of

the three canonical phases of feeding behavior (seeking, con-

sumption, and satiety),1 the mechanisms that diminish satia-

tion during consumption of high hedonic value food in the

absence of metabolic need remain poorly understood.2 Eating

rapidly over a short period, commonly known as binge eating,

reduces satiation.3–8 An increased eating rate is often linked

to overeating beyond metabolic needs9 and obesity,10 while

lowering the eating rate can effectively mitigate food

consumption.11,12

The canonical explanation for the reduction of satiation due to

binge feeding compared with slow feeding is based on the de-

layed transfer of homeostatic signals from the gastrointestinal

tract to the brain.13–15 Although it is undisputed that visceral sati-

ation results from ingestion and absorption, there is also sensory

satiation mediated by flavor representation.16–20 Experiments

using gastric tubes have demonstrated sensory satiation by by-

passing the sensory experiences of food within the oral cavity

through direct infusion. Oral bypassing reduces satiety and
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accelerates gastric emptying compared with regular feeding in

humans and rodents.18,21,22 Recent studies have uncovered

hypothalamic and brainstem circuits that mediate sensory satia-

tion.23,24 However, it remains unclear how sensory representa-

tion at the cortical level connects to satiation and how sensory

satiation is associated with the hedonic value and palatability

of food.

During consumption, the sensory representation of food is pri-

marily mediated by flavor. Flavor is a multisensory phenomenon

involving multiple interconnected cortical areas, including the pri-

mary olfactory cortex, or piriform cortex (PC), which represents

smell; the gustatory cortex (GC), representing taste; and, to

some degree, other sensory cortices for the tactile and visual as-

pects of food.25,26 The PC typically represents odor identity using

a concentration-invariant population code of activated neu-

rons.27,28 Activating populations in the PC is sufficient to elicit

conditioned appetitive and aversive behavioral responses.29

Despite its essential contribution to flavor experience, the role of

olfactory flavor representation in the PC during the consumption

phase of feeding remains poorly understood.30,31

RESULTS

Flavor representation in the anterior piriform cortex is

modulated by feeding rate

We established a self-paced feeding paradigm combined with

calcium (Ca2+) imaging in freely moving mice to examine how

the feeding rate affects sensory representation. We built a liquid

food (Ensure, an energy-dense flavored nutrient solution) delivery

system that feeds mice at two different rates to induce slow or

binge feeding experimentally (Figure 1A). Mice consumed more

liquid food and licked at a higher rate (Figures S1E–S1H) during

binge feeding, indicating the attribution of greater value, due to

a greater rate of reward, to binge feeding.32

We imaged Ca2+ transients of excitatory anterior olfactory (piri-

form) cortex (aPC) neurons expressing GCaMP6f (Figures 1B and

S1I–S1K) using a miniscope to record neuronal activity in freely

moving mice. When comparing periconsummatory neuronal ac-

tivity during slow and binge feeding, binge feeding bouts demon-

strated a switch toward robust global suppression (Figure 1C;

Video S1). For categorization, we analyzed neuronal responses

during slow feeding, as this feeding mode provided a larger

number of clearly separated individual trials. We used interleaved

water deliveries to classify neurons into food-specific, water-spe-

cific, non-selective, and non-responding categories during slow

feeding (Figures 1D, 1E, S2A, and S2B).

Using different Ensure flavors and sucrose, we found that aPC

neurons exhibit distinct, mostly non-overlapping responses to

different flavors (Figures 1F and 1G). We conclude that the

aPC differentially represents different flavors, including smell

and taste stimuli. The proportion of cells in the flavor-specific

subclasses during slow feeding is comparable to the odor-spe-

cific populations observed in the aPC.33,34 For simplicity, we

refer to the subpopulation of neurons activated by Ensure and

not by water as food-activated neurons.

The classification during slow feeding permitted us to test

whether the observed global suppression during binge feeding

extended to the subpopulation of food-activated neurons. If we

observed a preservation of the activity in food-activated neu-

rons, then global suppression would be a classical lateral inhibi-

tion phenomenon. Binge-induced suppression extended to all

neuron classes (food-activated, water activated, and non-re-

sponding) except non-selective (consumption-activated) ones,

arguing against classical lateral inhibition (Figures 1H, 1I, and

S2D–S2H).

Activity in the PC represents odor identity through a distrib-

uted population code.33,35–39 Our results during slow feeding

are compatible with a similar model for peri-consummatory fla-

vor representation in the aPC. When orthonasally sniffed odors

are presented at different intensities, the distributed population

code and the neuronal firing rates remain similar.38 During binge

feeding, the sensory stimulation from the same flavor increases

due to the higher food volume. Based on the aforementioned re-

sults on orthonasal sniffing of odors, we did not expect the

changes in the population representation of flavors that we

indeed observed during binge feeding (Figures 1H, 1I, and 2E).

Thus, our data point to a feeding rate-dependent modulation of

flavor representation in the aPC during food consumption that

fundamentally alters the flavor-specific population code and dif-

fers from the representation of orthonasally presented odors

during sniffing.

Flavor representation in the GC is stable across

feeding rates

Global neuronal suppression in the aPC induced by binge

feeding may be a more general phenomenon also observed in

other brain regions representing flavor. To test this hypothesis,

we performed Ca2+ imaging in the GC (GC, granular, and dysgra-

nular insular cortex) using a miniscope (Figure S1K) and tracked

taste representation during slow and binge feeding (Figures 2A–

2C and S3A–S3G). Again, we focused on the subpopulation of

food-activated neurons identified during slow feeding. In

contrast to aPC, food-activated GC neurons maintained activity

during binge feeding, with prolonged responses reflecting

increased orosensory exposure (Figures 2D–2H). In addition,

we did not find significant suppression of activity in the general

population of GC during binge feeding compared with slow

feeding (Figures 2D, 2E, S3H, and S3I).

We compared single-cell activity in food-activated neurons

across feeding rates. In the GC, responses during slow and

binge feeding were linearly correlated, while no such correlation

was observed in the aPC, indicating non-uniform, general inhibi-

tion during binge feeding (Figure 2F).40 Cumulative distributions

of Δ(binge-slow) Z-scored Ca2⁺ signals further confirmed that

GC neurons showed smaller net reductions and more frequent

increases than aPC neurons (Figure 2G), consistent with pre-

served flavor representation in the GC during binge feeding

(Figure 2H).

Binge feeding-induced aPC suppression is not inherited

from the olfactory bulb

Next, we wanted to understand possible mechanisms underlying

binge feeding-induced generalized suppression in the aPC. The

aPC is the first cortical relay of the olfactory system and receives

direct sensory afferent inputs from the olfactory bulb (OB).41 We

tested whether a reduction in sensory input from the OB could
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explain global suppression during binge feeding in the aPC. To

this end, we performed in vivo head-fixed three-photon Ca2+ im-

aging of OB mitral cells during slow and binge feeding. Mitral

cells are the major neuronal population that propagates odor in-

formation to higher olfactory cortices, including the aPC.27 In

contrast to the aPC, OB mitral cells remained activated upon

binge feeding (Figures 3A–3D, S4A, and S4B). We further per-

formed nasal lavage with 0.5% Triton solution to induce tempo-

rary hyposmia by ablation of olfactory sensory neurons (OSNs) in

mice42 (Figures S4C and S4D; hyposmia verified by a buried

food test). Our procedure caused a 30% drop in active aPC neu-

rons in the field of view detected with Ca2+ imaging, consistent

with reduced olfactory inputs to the aPC (Figure S4E). Both

intact net excitatory OB output during slow and binge feeding

and preserved suppression in hyposmic mice showing a 30%

drop in detected aPC neurons suggest that aPC suppression is

not inherited from peripheral olfactory pathways (Figures 3

and S4).

A B C

D E

IH

F G

Figure 1. Feeding rate modulates flavor representations in aPC

(A) Miniscope recording and behavioral protocol for slow feeding and binge feeding.

(B) Top: schematics of gradient-index (GRIN) lens/prism (blue shade) implantation in aPC (green structure). Bottom: field of view (FoV) of miniscope recordings

and extracted cell maps by constrained non-negative matrix factorization (CNMFe).

(C) Example Ca2+ traces of aPC neurons during slow feeding and binge feeding from one mouse. Neurons are sorted by response type during slow feeding, as

colored in (D).

(D) Percentage of aPC neurons activated during slow feeding by food, water, or non-selective consumption vs. non-responding neurons (n = 2,975 cells, 481 slow

feeding trials, and 241 binge feeding trials in 8 mice).

(E) Trial-averaged and single-trial responses of example aPC food-activated, water-activated, and non-selective neurons upon slow feeding.

(F) Percentage of aPC neurons activated by different flavors of Ensure and sucrose solution during slow feeding.

(G) Cell map of activated aPC neurons of different flavors during slow feeding.

(H) Trial-averaged responses to food deliveries of individual aPC CaMK2+ food-activated neurons upon slow feeding and binge feeding (n = 312 cells in 8 mice).

(I) Trial-averaged responses of the general population and food-activated aPC CaMK2+ neurons upon slow and binge feeding (n is the same as in D and H,

respectively). Dashed vertical line indicates start of the food delivery. Shaded line above denotes the adjusted p values (q values) of each time point, different line

widths represent different values (from thin to thick: q < 0.05, q < 0.01, q < 0.001). For (E) and (I), data are shown as mean ± SEM.
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Binge feeding-induced aPC suppression extends to the

major classes of local GABAergic neurons

Because the feeding rate leaves the excitatory sensory drive

unaffected, enhanced recruitment of inhibitory interneurons

during binge feeding could mediate the global suppression of

the aPC. Local inhibitory feedback interneurons—activated

by recurrent excitatory activity—predominantly inhibit odor re-

sponses in the aPC, while the contribution to global inhibition

from feedforward interneurons is minor.28 Thus, we probed

the activity levels of aPC parvalbumin-positive (PV+) and so-

matostatin-positive (SST+) inhibitory interneurons during slow

and binge feeding, as they comprise a large proportion of local

feedback circuits.43 However, both PV+ and SST+ interneurons

display strong suppression during binge feeding, in contrast to

the significantly smaller suppression observed during slow

feeding (Figures 3E–3L). Similar to the excitatory neurons, we

identified a subpopulation of food-activated interneurons

during slow feeding (Figures S4H, S4I, S4K, and S4L). These

food-activated interneurons also exhibited significant global

suppression during binge feeding (Figures S4J, S4M, and

S4N). Therefore, changes in the excitation-to-inhibition ratio

of sensory afferent and local recurrent aPC circuits do not

A B C

D E

F G H

Figure 2. Flavor representation in the GC is stable across feeding rates

(A) Schematics of GRIN lens/prism implantation in the GC.

(B) Cell maps extracted by CNMFe.

(C) Trial-averaged responses of individual GC food-activated neurons upon slow and binge feeding (n = 137 from 3 mice).

(D) Trial-averaged responses of the population and the food-activated GC neurons upon slow and binge feeding (n = 1,203 cells from 3 mice). Shaded line above

denotes the adjusted p values (q values) of each time point, different line widths represent different values (from thin to thick: q < 0.05, q < 0.01, q < 0.001).

(E) Estimated effect size (Cohen’s d) of binge feeding-induced modulation in aPC CaMK2+ and GC neurons, all neurons, and food-activated subclass. p values

calculated with permutation test (5,000 times bootstrapping; n is the same as in D).

(F) Cell-wise comparison of neuronal responses upon slow and binge feeding in food-activated aPC CaMK2+ and GC neurons (n is the same as in Figures 1C

and 1F).

(G) Cumulative distribution of the difference (binge feeding vs. slow feeding) of Z-scored ΔF/F (Δ ΔF/F (z)) in food-activated aPC CaMK2+ and GC neurons (n is the

same as in F).

(H) Schematics of neuronal responses in the aPC and the GC during slow feeding and binge feeding.

For (F), r and p represent the correlation coefficient and p value of Pearson’s r. For (D), data are shown as mean ± SEM. For (E), data are shown as means of

bootstrapped effect sizes (Cohen’s d) ± 95% confidence interval. For (G), the p value is calculated from the Kolmogorov-Smirnov test.
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appear to mediate the global suppression of aPC activity during

binge feeding.

GABAergic neurons in the OT project to the aPC and are

functionally connected with the aPC

Our results on OB mitral cells (Figure 3), OSN ablation

(Figure S4), and GABAergic aPC neurons (Figures 3 and S4) sug-

gest that the binge feeding-induced suppression originates

outside the aPC, either via long-range GABAergic inputs or

through neuromodulatory systems. We, therefore, searched for

an inhibitory input to the aPC that is activated by feeding and ex-

hibits stronger activation from binge feeding than from slow

feeding.

Serotonin projections from the dorsal raphe to the aPC are

quite prominent.44 Furthermore, serotonergic neurons in the dor-

sal raphe are activated during feeding45 and decrease activity in

the aPC in vivo.46 With respect to dopaminergic modulation,

patch-clamp experiments in acute aPC brain slices demon-

strated a net inhibitory effect of dopamine on aPC neurons

(Figures S5E–S5G). Serotonin and dopamine levels in the aPC

show similar decreases during slow and binge feeding and could

therefore be excluded as drivers of suppression (Figure S5).

Binge feeding is more valuable to the animal than slow feeding

(see also Figure S1). Therefore, we next looked for inhibitory ol-

factory-related structures outside the aPC that could relay this

value signal to the aPC but not to the GC during binge feeding.

The olfactory tubercle (OT) is a ventral striatal structure located

on the medial side of the aPC and activated by rewards and

odors.47 The OT is also involved in odor-cue-associated reward

learning,48 encoding odor valence.49,50

A B

E F

C

G

I J K

D

H

L

Figure 3. Binge feeding-induced aPC suppression is not inherited from the OB and extends to GABAergic aPC neurons

(A) Schematics of 3P-Ca2+ imaging in OB mitral cells.

(B) FoV of OB mitral cells.

(C) Trial-average of individual OB mitral cells upon slow and binge feeding (n = 752 cells from 4 mice).

(D) Trial-average of OB mitral cell population responses upon slow and binge feeding (n is the same as in C).

(E) Schematics of Ca2+ imaging in aPC PV+ neurons.

(F) Cell map of aPC PV+ neurons extracted by CNMFe.

(G) Trial-average of individual aPC PV+ neurons upon slow and binge feeding (n = 684 cells from 3 mice).

(H) Trial-average of population aPC PV+ neuron responses upon slow and binge feeding (n is the same as in G).

(I) Schematics of Ca2+ imaging in aPC SST+ neurons.

(J) Cell map of aPC SST+ neurons extracted by CNMFe.

(K) Trial-average of individual aPC SST+ neurons upon slow and binge feeding (n = 675 cells from 3 mice).

(L) Trial-average of population aPC SST+ neuron responses upon slow and binge feeding (n is the same as in K).

For (D), (H), and (L), data are shown as mean ± SEM, and the shaded line above denotes the adjusted p values (q values) of each time point, with different line

widths representing different values (from thin to thick: q <0.05, q < 0.01, q < 0.001).
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Figure 4. GABAergic neurons in the OT functionally project to the aPC

(A) Schematics of mapping axonal projection of OT VGAT+ neurons.

(B) Whole brain axonal projection pattern. Image is reconstructed from serial two-photon tomography.

(C–L) Viral expression and axonal projections in different brain regions; OT (C), aPC ipsilateral side (D) and contralateral side (E), VP (F), midbrain (G), dorsal

thalamus and HPC (H), AON and MOB (I), insular cortex (including GC, J), and high-resolution zoomed-in image of viral injection site in OT (K) and aPC (L).

(M) Left: axonal expression intensity in different brain regions, permutation test of 10,000 resamples was used for comparison of expression in ipsilateral and

contralateral hemispheres. Right: ratio of intensity in different hemispheres. OT, olfactory tubercle; aPC, anterior piriform cortex; MA, magnocellular nucleus; SI,

substantia innominata; VTA, ventral tegmental area; SNr, substantia nigra, reticular part; HPC, hippocampus; MDT, mediodorsal nucleus of thalamus; AON,

anterior olfactory nucleus; MOB, main olfactory bulb; GU, gustatory areas; AI, agranular insular area.

(N) Mice were implanted with dual-site tetrode arrays for simultaneous recordings in aPC and OT in a head-fixed configuration.

(legend continued on next page)
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To test whether GABAergic neurons in the OT project to the

aPC, we performed anterograde labeling in the OT vesicular

GABA transporter (VGAT)+ neurons and mapped the axonal pro-

jections. We found OT VGAT+ neurons project unilaterally to layers

1 and 3 of PC, in both the anterior and posterior regions. In

contrast, the cell bodies in PC layer 2 were spared (Figures 4A–

4E, 4L, and 4M). In addition to the PC projection, we also observed

projections to the mediodorsal thalamus (MDT, Figures 4H and

4M) and the anterior olfactory nucleus (AON, Figures 4I and 4M).

We did not find significant projections to the GC (Figures 4J and

4M). In keeping with previous work on D1R- and D2R-expressing

GABAergic neurons in the OT, we found comparatively stronger

projections to the ventral pallidum (VP)51 (Figures 4F and 4M).

Considering that the anterior part of the VP constitutes a

reward-driven GABAergic cell population adjacent to the OT,

two axonal tracing studies in the VP did not find projections to

the aPC,52,53 supporting that our axonal tracing results are likely

not contaminated by GABAergic neurons in the VP.

In addition to anatomically characterizing inhibitory connections

between the OT and the aPC, we also tested in vivo for functional

connectivity compatible with an excitation-inhibition sequence

from the OT to the aPC. We reanalyzed a previously published da-

taset of mice implanted with an anatomically shaped dual-site

tetrode array in the OT and the aPC (Figure 4N).48 In a head-fixed

configuration, mice were trained in a delay-conditioned task

(Figure 4O).

We probed lagged interactions between the two regions with

canonical correlation analysis (CCA; see STAR Methods).54,55

We observed functional interactions in both aPC→OT and

OT→aPC directions during the inter-trial interval (Figures 4P

and S6C). The aPC→OT functional interaction ceases after the

conditioned stimulus (CS; Figure S6C). The OT→aPC functional

interaction, however, reaches a maximum later during the delay

prior to reward, with a lag between OT and aPC of about 300 ms

(Figure 4P). After CS onset, the weights defining the subspaces

of the two regions are in average of opposite sign (Figure 4Q),

consistent with an excitation-inhibition interaction. Activity in

the functional interaction subspace is more strongly modulated

for trials with reward-predicting CS (CS100 and CS50) than for

the non-rewarded one (CS0) (Figure 4R). For trials with reward-

predicting CS, the units modulated by the communication sub-

space are excited in OT and inhibited in aPC (Figures 4S and

4T). The fact that 37 out of 67 sessions showed significant inter-

actions with the limited number of units recorded in each region

(Figure S6B) suggests that units in both regions broadly partici-

pated in the interaction. From the anatomically characterized

inhibitory connections between the OT and aPC and from the

corresponding in vivo functional connectivity, we conclude that

the OT suppresses the aPC as a function of the anticipated

reward outcome.

GABAergic OT neurons mirror neuronal dynamics in the

aPC during feeding in different motivational states

Our anatomical and functional connectivity data suggest that the

activity of GABAergic neurons in the OT inhibits the aPC

(Figure 5). Next, we tested whether GABAergic neurons in the

OT are activated during feeding and mirror the global suppres-

sion pattern in the aPC during this process. Using in vivo minis-

cope Ca2+ imaging of OT VGAT+ neurons (Figures 5A and S6), we

found that a subset of OT VGAT+ neurons was activated during

slow feeding (31.7%, n = 236/744, Figures 5B and 5C). These

feeding-activated OT neurons were more strongly activated by

binge feeding and remained active throughout the binge feeding

bouts (Figures 5B and 5C). The neuronal dynamics of the OT

VGAT+ neurons during binge and slow feeding mirror the dy-

namics of aPC neurons, further suggesting that the OT may drive

the binge feeding-induced aPC suppression.

In the OT→aPC communication subspace, we observed a

response modulation by value (Figure 4R). We, therefore, wanted

to test whether the activation of the OT and the subsequent sup-

pression in the aPC scaled with the reward magnitude of our

food stimulus. We tested this hypothesis by altering the palat-

ability of the food by diluting the Ensure to 25% of the original

concentration.2,56 When mice consumed the less palatable,

diluted Ensure, the binge feeding-induced aPC suppression

was reduced (Figures 5D, 5E, and 5J). The binge-activated OT

VGAT+ neurons also showed lower activation during consump-

tion of diluted Ensure, further suggesting a link between OT

and aPC under conditions of different palatability (Figures 5F

and 5J).

Metabolic states like hunger and satiety profoundly affect

sensory systems.57–61 Consequently, we wondered whether

(O) Three odors (conditioned stimulus [CS]) associated with water reward-outcome (unconditioned stimulus [US]) probabilities of 0%, 50%, and 100%,

respectively, were presented in pseudorandomized order.

(P) Significance of the canonical correlation r along the first pair of canonical components. Color map displays t-statistics obtained from an LME estimating the Z

score of r against the shuffle distribution in the cohort. Color map shows OT to aPC interactions, between the aPC activity (at the time reported on the x axis), and

the activity of OT measured at various preceding time points (y axis). Solid bins indicate statistical significance (p < 0.05 after Bonferroni correction).

(Q) Direction of the correlation d ⋅ r. Negative values indicate mean projection weights of the two regions on the first canonical dimension have opposite signs.

Mean across sessions (n_sessions = 67), shaded by significance from (P).

(R) Absolute deviation from baseline (mean ± SEM) along the first canonical components of aPC (top) and OT (bottom). Canonical components computed in the

window of peak CCA significance, reached during the delay (only significant sessions included, n_sessions = 37). The deviation from baseline in the interaction

subspace is smaller for CS0 compared with CS100 and CS50 (LME with post hoc comparison: for aPC, CS100 vs. CS0, t(108) = 3.8, p = 2.0× 10− 4, CS50 vs. CS0,

t(108) = 3.1, p = 2.4 × 10− 3 and for OT, CS100 vs. CS0, t(108) = 4.7, p = 7.5 × 10− 6, CS50 vs. CS0, t(108) = 3.3, p = 1.3 × 10− 3).

(S) Firing rate modulation (mean ± SEM) along the canonical components from (Q). In contrast to (Q), the associated firing rate is obtained as a weighted mean of

unit rates weighted with the absolute value of the CCA weights, thereby preserving the sign of modulation in each region in terms of excitation and inhibition. The

communication subspace corresponds to an inhibition of the aPC for reward-predicting stimuli (CS100 and CS50) (LME: β = − 0.56 Hz, t(3699) = − 2.0, p = 0.048)

and excitation of the OT (LME: β = 0.86 Hz, t(3699) = 2.0, p = 0.044).

(T) Spiking activity during the last ten CS100 trials of an example session shown for the two highest absolute-weighted units identified by CCA. The units have

weights with opposite signs.
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Figure 5. OT GABAergic neurons mirror neuronal dynamics in the aPC during feeding

(A) Schematics of Ca2+ imaging in OT VGAT+ neurons.

(B) Trial-average response of individual OT VGAT+ neurons to food (Ensure) upon slow and binge feeding. Neurons are sorted by different feeding response types

by time series clustering (n = 745 cells from 3 mice).

(C) Trial-average response of OT VGAT+ food-activating neurons upon slow and binge feeding (n = 236 cells from 3 mice).

(D) Schematics of palatability testing paradigm.

(E) Trial-average response of population aPC CaMK2+ neurons to Ensure and 5-fold diluted Ensure during binge feeding (n = 2,216 cells from 3 mice).

(F) Trial-average response of food-activating OT VGAT+ neurons to Ensure and 5-fold diluted Ensure during binge feeding (n = 162 cells in 3 mice).

(G) Schematics of fasting paradigm.

(H) Trial-average response of population aPC CaMK2+ neurons to Ensure during binge feeding upon ad libitum or overnight fasting (ad libitum n = 16,513 cells

from 8 mice, fasting n = 2,205 from 8 mice).

(I) Trial-average response of food-activating OT VGAT+ neurons during binge feeding upon ad libitum or overnight fasting (ad libitum n = 236 cells from 3 mice,

fasting n = 224 from 3 mice).

(J) Estimated binge feeding modulation upon different palatability (n is the same as in E and F).

(K) Estimated binge feeding modulation upon different metabolic states (n is the same as in H and I).

(L and M) Correlations between session-specific food intake and modulation of neuronal activity in aPC CaMK2+ neurons upon binge feeding (n = 83 from 8 mice,

M) or in OT VGAT+ neurons (n = 27 sessions from 3 mice, L).

For (C), (E), (F), (H), and (I), data are shown as mean ± SEM, and the shaded line above denotes the adjusted p values (q values) of each time point, with different

line widths representing different values (from thin to thick: q <0.05, q <0.01, q <0.001). For boxplot in (J) and (K), the center line shows the median, the box limits

show the quartiles, the whiskers show 1.5× the interquartile range, and the points show the outliers. For (J) and (K), p values were calculated with the unpaired t

test. For (L) and (M), p values were calculated with the Pearson’s correlation coefficient.
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increasing the caloric need impacted the consumption-correlated

suppression of aPC neuronal activity during binge feeding.

Compared with ad libitum-fed conditions, global binge feeding-

induced suppression of aPC neuronal activity was greater in fasted

mice (Figures 5G, 5H, and 5K). As expected, feeding-activated

inhibitory neurons in the OT showed stronger activation after over-

night fasting (Figures 5I and 5K). This indicates that aPC inhibition

and OT activation also scale with metabolic state.

For a broader understanding of the interaction between

metabolic state and flavor representation, we also examined

the effect of fasting on GC activity. In GC, we also observed

increased suppression during binge feeding in the fasted condi-

tion compared with the ad libitum-fed condition (Figure S6G).

This contrasts with the generally low level of GC suppression

during binge feeding (Figures 2D–2F). We conclude that sup-

pression of flavor representation extends to the GC under condi-

tions of caloric need. In ad libitum conditions, where palatability

significantly impacts food intake, binge feeding-associated sup-

pression of neuronal activity is limited to the olfactory compo-

nent of flavor representation.

Binge feeding-induced aPC suppression predicts

reduced satiation

Flavor representation of food items contributes to satiation, and

bypassing flavor representation via an intragastric catheter re-

duces satiation and accelerates gastric emptying of identical

food items.18,20 Accordingly, we hypothesize that the global

aPC suppression during binge feeding constitutes a mechanistic

link between the cortical flavor response and decreased satia-

tion. Under ad libitum feeding conditions, mice consumed

different amounts of food on different experimental days, which

we take as a proxy for differences in satiation. This noticeable

behavioral variability in our recording sessions correlates with

temporal progression, suggesting that binge feeding gradually

escalates over time (Figure S6F). We, therefore, investigated

whether this behavioral variability maps onto the aPC neuronal

responses. Using a linear mixed model (LME), we found a robust

correlation between the initial binge feeding-induced aPC sup-

pression and subsequent food consumption on each recording

session (Figure 5L). Suppression was always quantified during

the onset of a binge bout within the first 4 s after initiation. Our

model, therefore, quantifies suppression independent of feeding

bout duration. In keeping with the previously demonstrated re-

sults under variable palatability and metabolic state conditions,

GABAergic OT responses also mirrored the aPC responses for

different satiation levels. We observed a robust positive correla-

tion between the overall initial binge feeding-induced OT activa-

tion and subsequent food consumption during each recording

session (Figure 5M).

Optogenetic manipulation of aPC neurons

bidirectionally modulates feeding

We have established the correlative relationship between

feeding rate, suppression of olfactory flavor representation,

palatability, satiation, and metabolic state. It remains unclear

whether this effect directly impacts feeding behavior in the

form of satiation. We, therefore, tested whether more substantial

aPC suppression alone is sufficient to increase food consump-

tion and whether aPC activation during binge feeding reduces

food consumption. We employed a closed-loop optogenetic

paradigm to silence or activate aPC excitatory neurons at the

initiation of binge feeding bouts (Figure 6A).23,56 We used chan-

nelrhodopsin (ChR2) to activate excitatory aPC neurons for

excitation experiments. To suppress activity at the behavioral

timescale (tens of seconds) typical of binge feeding bouts while

minimizing the illumination period, we chose the highly light-sen-

sitive targeting-enhanced mosquito homolog of the vertebrate

encephalopsin eOPN362 to provide long-lasting suppression of

recurrent excitatory fibers in aPC (Figures 6B, S7A, and S7B).

Mice consumed more food when we optogenetically sup-

pressed aPC activity during feeding (Figures 6C, 6E, and 6F).

This fits well with the observation that mice also eat more under

conditions of hyposmia (Figures S4C–S4G). Optogenetically

activating the aPC reduced food consumption. Light stimulation

alone did not affect feeding behaviors in control mice transduced

with adeno-associated viruses encoding tdTomato or GFP

(Figures 6B, 6I, 6J, S7A, and S7B).

A reduction in satiation (the process of coming to feel full and

stopping to eat during a meal) should result in more prolonged

individual feeding bouts, indicating increased food liking. In

contrast, an enhanced homeostatic drive to eat (wanting) usually

increases the number of feeding bouts, implying reduced satiety

(the feeling of fullness that lasts after a meal and prevents further

eating).63,64 The optogenetic suppression of aPC activity pro-

longed the individual feeding bouts. Meanwhile, the number of

feeding bouts remained similar, suggesting that optogenetic

aPC suppression predominantly reduces satiation rather than

satiety, aligning with enhanced food liking instead of wanting

(Figures 6G and 6H). Additionally, ChR2 activation increased

the number of feeding bouts (Figure 6K) while reducing individual

feeding bout duration (Figure 6L). Our data show that binge

feeding-induced aPC suppression is causally linked to feeding

behavior, indicating a functional role of binge feeding-induced

aPC suppression in modulating appetite by decreasing satiation

and increasing food liking.

DISCUSSION

Here, we propose the aPC as a cortical hub for sensory satiation.

The aPC must be connected to other brain regions’ feeding cen-

ters to affect feeding behavior. A recent study reports disynaptic

connections between the posterior PC (pPC) and feeding-related

agouti-related peptide (AgRP)-andpro-opiomelanocortin (POMC)-

expressing neurons in the hypothalamic nucleus arcuatus.65

Considering the dense connectivity between aPC and pPC,66

this indirect pathway may be related to sensory satiation via

the aPC.

An alternative hypothesis regarding the link between the aPC

and feeding is related to the effect of stress on feeding. Excit-

atory connections between the aPC and the lateral septum

have recently been implicated in mediating behavioral distur-

bances that result from chronic social defeat stress. Generalized

aPC suppression during the stress experience reduced behav-

ioral stress symptoms.67 Therefore, aPC suppression during

binge feeding could enhance food liking by reducing stress

levels during consumption. In humans, stress has been identified
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as a significant risk factor for binge eating.68 It is tempting to

speculate that the reduction in stress mediated by increases in

feeding speed contributes to the pathogenesis of eating disor-

ders related to binge eating.

We propose that GABAergic neurons in the OT are a potential

source for mediating global inhibition in the aPC. This is sup-

ported by the OT’s role as a center for value signaling.50,69–71

Neurons in the OT are mostly GABAergic.72 Although connectiv-

ity from the OT to the aPC was recently described,73 another

study labeled this pathway as negligible.51 Both studies selec-

tively labeled outputs from D1- and D2-receptor-expressing

neurons. Here, we mapped axonal outputs from the larger pop-

ulation of all GABAergic neurons in the OT, including GABAergic

neurons in the Islands of Calleja that were previously reported to

project to the PC.74,75 However, we cannot rule out that the inhi-

bition in the aPC may, for example, also be mediated by a poly-

synaptic pathway originating from the OT via the AON. A more

detailed functional analysis of the OT circuits affecting the aPC

during consumption will need to be explored in future studies.

We also cannot exclude other inhibitory pathways, such as

long-range GABAergic neurons from the diagonal band of Broca

(DBB) in the basal forebrain,76 which may also be involved in the

BA C D

FE G H

JI K L

Figure 6. Optogenetically suppressing aPC neurons promotes feeding

(A) Schematics of closed-loop optogenetics experiment setup.

(B) Schematics of viral injection and optical fiber implants bilaterally in the aPC.

(C) Example feeding bouts in an eOPN3-expressing mouse without light stimulation (left) and with closed-loop light stimulation (right).

(D) Same as in (C) but with a ChR2-expressing mouse.

(E) Effects of light stimulation on total food consumption in tdTomato-expressing (n = 6 LED off sessions and 6 LED on sessions from 4 mice) and eOPN3-ex-

pressing (n = 6 LED off sessions and 6 LED on sessions from 4 mice) mice.

(F) Effects of light stimulation on total feeding duration in tdTomato- and eOPN3-expressing mice (n is the same as in E).

(G) Effects of light stimulation on the number of feeding bouts per session in tdTomato- and eOPN3-expressing mice (n is the same as in E).

(H) Effects of light stimulation on duration of individual feeding bouts in tdTomato-expressing (n = 560 for LED off sessions and n = 561 for LED on sessions from 4

mice) and eOPN3-expressing (n = 428 for LED off sessions and n = 425 for LED on sessions from 4 mice) mice.

(I–L) Same as in (E)–(H), but for GFP-expressing (n = 6 LED off sessions and 6 LED on sessions from 4 mice) and ChR2-expressing (n = 6 LED off sessions and 6

LED on sessions from 4 mice) mice (in L, GFP group: n = 476 for LED off sessions and n = 385 for LED on sessions, ChR2 group: n = 526 for LED off sessions and

n = 698 for LED on sessions).

For (E)–(L), gray lines denote the data from the same mice, and the black line denotes the mean. For (H) and (L), the y scales were capped to emphasize data

distribution, where a few extremely large data points were not shown. All data points were used for statistical analysis. For (E)–(L), p values of the interaction

between LED states and viruses were calculated with an LME, and p values of the contrast analyses were estimated with emmeans and adjusted with Dunnett’s

method.
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binge feeding-induced aPC suppression. We did not examine

the basal forebrain pathway because a recent study showed in-

hibited neuronal activity in the basal forebrain’s DBB during

feeding.77

An important question is how the OT detects food value.

Recently, the activation of dopaminergic neurons in the ventral

tegmental area (VTA) has been shown to scale with the hedonic

value of food to sustain palatable food consumption.2 Although

that study identified the nucleus accumbens as a target

modulating feeding behavior, the OT could serve as a

complementary dopaminergic target region modulating con-

sumption at the sensory level. In the OT, dopamine amplifies

direct olfactory inputs coming from the OB.78 Dopaminergic

signaling may also interact with other nutrient-sensing modalities

projecting to the OT to encode food value. The OT is the only ol-

factory brain region that also receives viscerosensory inputs

from the caudal nucleus tractus solitarius, a part of the dorsal

vagal complex.79,80

From an evolutionary perspective of food scarcity, overeating

induced by suppression of sensory satiety would be beneficial.

This is especially true when considering foods of a high hedonic

value, usually associated with a high carbohydrate-to-fat ratio.

These food items are designed to maximize the ratio between

energy intake and satiety.81 Eating these high-value foods at a

faster rate may further increase this ratio by reducing sensory

satiation. Then, what would be the point of the more pronounced

sensory representation during slow feeding that we describe

here? A simple explanation could be that the artificial pause after

receiving food in our slow feeding paradigm results in a reduced

value signal from the OT, leading to less aPC suppression. How-

ever, slow feeding also occurs under conditions of food unfamil-

iarity. It has been shown that when mice experience unfamiliar

flavors, the number of licks and lick clusters decreases,82 which

essentially describes a switch from binge to slow feeding. Slow

feeding and the associated flavor representation in the aPC

could be reserved for conditions of food unfamiliarity, where fla-

vor encoding by the aPC may be a prerequisite for flavor

learning. In line with this, strong PC activation has been demon-

strated following the experience of novel food flavors.83

However, in the surplus food environment human beings face

today, an increased eating rate is correlated with overeating9

and obesity,10 while reducing the eating rate can effectively

mitigate food consumption.3,7,84 Here, we demonstrate how

feeding rate and olfactory flavor representation interact via sen-

sory satiation to modulate appetite (Figure 7). We propose a

mechanism of how palatable food items with a high hedonic

value alter cortical flavor representation to reduce sensory

satiation.

RESOURCE AVAILABILITY

Lead contact

Requests for further information, resources, and reagents should be directed

to, and will be fulfilled by, the lead contact, Friedrich W. Johenning (friedrich.

johenning@charite.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Source data for plotting individual figure panels can be found on a GitHub re-

pository (https://github.com/hung-lo/BingeFeeding_2023). Processed data

can be found on the Zenodo data repository (https://zenodo.org/records/

15824561). Raw imaging data will be available upon request due to the large

file size (∼2–3 TB). Code for plotting individual figure panels can be found on

a GitHub repository (https://github.com/hung-lo/BingeFeeding_2023). An

example code for data processing and analysis can be found on the GitHub

repository (https://github.com/hung-lo/BingeFeeding_2023). Code for the

Figure 7. Graphic summary

In this study, we found a feeding-rate-dependent suppression of the olfactory flavor representation (Figures 1 and 3), whereas the gustatory flavor representation

is not affected by the feeding rate (Figure 2). This binge feeding-induced suppression is mirrored in the OT GABAergic neurons (Figure 5), which functionally

project to aPC (Figure 4). We further showed that optogenetically manipulating aPC excitatory neurons upon feeding bidirectionally modulates satiation (Figure 6).

ll
OPEN ACCESS Article

2866 Neuron 113, 2856–2871, September 3, 2025

mailto:friedrich.johenning@charite.de
mailto:friedrich.johenning@charite.de
https://github.com/hung-lo/BingeFeeding_2023
https://zenodo.org/records/15824561
https://zenodo.org/records/15824561
https://github.com/hung-lo/BingeFeeding_2023
https://github.com/hung-lo/BingeFeeding_2023


functional connectivity can be found on the GitHub repository (https://github.

com/KelschLAB/BingeEating).
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57. Soria-Gómez, E., Bellocchio, L., Reguero, L., Lepousez, G., Martin, C.,

Bendahmane, M., Ruehle, S., Remmers, F., Desprez, T., Matias, I.,

et al. (2014). The endocannabinoid system controls food intake via olfac-

tory processes. Nat. Neurosci. 17, 407–415. https://doi.org/10.1038/

nn.3647.

58. Aimé, P., Duchamp-Viret, P., Chaput, M.A., Savigner, A., Mahfouz, M.,

and Julliard, A.K. (2007). Fasting increases and satiation decreases ol-

factory detection for a neutral odor in rats. Behav. Brain Res. 179,

258–264. https://doi.org/10.1016/j.bbr.2007.02.012.

59. Freeman, W.J. (1960). Correlation of elctrical activity of prepyriform cor-

tex and behavior in cat. J. Neurophysiol. 23, 111–131. https://doi.org/10.

1152/jn.1960.23.2.111.

60. Prud’homme, M.J., Lacroix, M.C., Badonnel, K., Gougis, S., Baly, C.,

Salesse, R., and Caillol, M. (2009). Nutritional status modulates behav-

ioural and olfactory bulb Fos responses to isoamyl acetate or food odour

in rats: roles of orexins and leptin. Neuroscience 162, 1287–1298. https://

doi.org/10.1016/j.neuroscience.2009.05.043.

61. Albrecht, J., Schreder, T., Kleemann, A.M., Schöpf, V., Kopietz, R.,
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mScarlet-minWPRE

Plasmid and virus were made in
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AAV9: hSyn-flox-tdTomato Plasmid and virus were made in

the Charité viral core (BA-234a)

N/A

AAV5: EF1a-double floxed-hChR2(H134R)-

EYFP-WPRE-HGHpA

Plasmid was a gift from Karl

Deisseroth (Addgene plasmid

# 20298); virus was made in
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Addgene plasmid; 20298;

RRID: Addgene_20298

AAV1: CAG-flex-GFP Virus was made in the Charité

viral core (BA-02)

N/A

AAV9: CaMK2-iCre-WPRE Virus was made in the Charité

viral core (BA-696a)

Charité viral core id: BA-696a

Deposited data

Processed data This paper Zenodo: https://zenodo.org/records/15824561

Experimental models: Organisms/strains

C57BL/6N Charité Central Animal Facility N/A

Ai93D; Ai93(TITL-GCaMP6f)-D JAX JAX: 024103; RRID: IMSR_JAX:024103

Rosa-tTA JAX JAX: 011008; RRID: IMSR_JAX:011008

Ai148D; Ai148(TIT2L-GC6f-ICL-tTA2)-D JAX JAX: 030328; RRID: IMSR_JAX:030328

CaMKII-CreT29 JAX JAX: 005359; RRID: IMSR_JAX:005359

PV-Cre JAX JAX: 008069; RRID: IMSR_JAX:008069

SST-Cre JAX JAX: 013044; RRID: IMSR_JAX:013044

VGAT-Cre JAX JAX: 017535; RRID: IMSR_JAX:017535

Software and algorithms

FIJI/ImageJ Schneider et al.87 and

Schindelin et al.88

RRID: SCR_002285; Version: 2.14.0/1.54f

Python Python Software Foundation RRID: SCR_008394; Version: 3.9

Numpy Harris et al.89 NumPy, RRID: SCR_008633; Version: 1.21.5

Matplotlib Hunter90 MatPlotLib, RRID: SCR_008624; Version: 3.5.1

Seaborn Waskom91 seaborn, RRID: SCR_018132; Version: 0.12.2

Scikit-learn Pedregosa et al.92 scikit-learn, RRID: SCR_002577; Version: 1.1.1

Statsmodels Seabold et al. https://github.

com/statsmodels/statsmodels/

blob/main/CITATION.cff

statsmodel, RRID: SCR_016074; Version: 0.13.5

Scipy Virtanen et al.93 SciPy, RRID: SCR_008058; Version: 1.8.0

Dabest Ho et al.94 Version: 0.3.1

CNMFe/CaImAn Giovannucci et al.95 Calcium Imaging data Analysis, RRID: SCR_021533;

Git forked version:
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice

Animals were kept at the animal facility of Charité, under a regular 12/12 h light-dark cycle. All procedures involving animal experi-

ments were approved by the local authorities and ethics committee (LaGeSo Berlin, license numbers G0278/16, G0313/16, and

G0156/20). To image excitatory neurons in aPC, we cross-bred Ai93D mice, Rosa-tTA mice, and CaMK2-Cre mice to obtain

Ai93D; Rosa-tTA; CaMK2-Cre mice that express GCaMP6f in excitatory cells. To prevent early expression of GCaMP during devel-

opment, the breeding pairs and offspring were fed with doxycycline-containing food to suppress the expression of GCaMP6f until

weaning. A subset of aPC excitatory neurons imaging mice (n = 3 mice, used in Figures 1F, 1G, 5E, and 5J) was performed in

Ai148D mice with viral injection of CaMK2-Cre virus. Due to suboptimal GCaMP6f expression in the GC in the abovementioned trans-

genic mice, we injected the adeno-associated virus (AAV) carrying hSyn-Cre in the GC of Ai148D mice to express GCaMP6f in the

GC. To image GABAergic neurons in the aPC, we performed viral injection of Cre-dependent GCaMP6f in PV-Cre or SST-Cre mice.

To image serotonin and dopamine levels in the aPC, wildtype C57BL/6N mice were injected with AAVs containing iSeroSnFR or

dLight 1.3b. For mapping the axonal projection of OT GABAergic neurons, we injected Cre-dependent eOPN3-mScarlet virus in

the VGAT-Cre mice and imaged with serial two-photon tomography (see STAR Methods). To image GABAergic neurons in the

OT, we performed viral injection of Cre-dependent GCaMP6f in the VGAT-Cre mice. For optogenetic activation of aPC neurons,

CaMK2-Cre mice were bilaterally injected with Cre-dependent hCHR2(H134R)-EYFP virus or Cre-dependent GFP virus for controls.

For optogenetic inhibition of aPC neuron axons, CaMK2-Cre mice were bilaterally injected with Cre-dependent eOPN3-mScarlet vi-

rus or a Cre-dependent tdTomato virus for controls. Both sexes of mice were used in the study as we did not observe significant

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Inscopix CNMFe wrapper https://github.com/inscopix/isx-cnmfe-wrapper@v1.2

Inscopix CNMFe Inscopix https://github.com/inscopix/inscopix-cnmfe

Inscopix python API Inscopix N/A

Inscopix Data Processing

Software v1.31, v1.6.0, v1.8.0

Inscopix N/A

Inscopix Data Acquisition System Inscopix Version: 1.3.1

Bonsai Lopes et al.96 Bonsai, RRID: SCR_021512; Version: 2.4.0

FlyCapture2 Version: 2.11.3.425

Pyanpple Viejo et al.97 Version: 0.3.1

LSMAQ https://github.com/danionella/lsmaq

Suite2P Pachitariu et al.98 https://github.com/MouseLand/suite2p;

RRID: SCR_016434

StichIt https://github.com/SainsburyWellcome

Centre/StitchIt

BrainReg Tyson et al.99 https://github.com/brainglobe/brainreg

Cellfinder Claudi et al.100 https://github.com/brainglobe/cellfinder

BakingTray https://github.com/SainsburyWellcome

Centre/BakingTray

R R Core Team (2021). R:

A language and environment

for statistical computing.

R Foundation for Statistical

Computing, Vienna, Austria.

https://www.R-project.org/.

Version: 4.2.2; RRID: SCR_001905

Rstudio Posit team (2025). RStudio:

Integrated Development

Environment for R. Posit

Software, PBC, Boston,

MA. (http://www.posit.co/)

Version: 2022.12.0+353; RRID:SCR_000432

lme4 Bates et al.101 Version: 1.1.31;RRID: SCR_015654

Illustrator Adobe v27.4.1, 2023; RRID: SCR_010279

MATLAB MathWorks Version: R2020a
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difference in sex differences (see statistical summary for the optogenetic experiments). All experiments, including Ca2+ imaging and

optogenetics, are performed between 9 a.m. to 6 p.m. under regular light.

METHOD DETAILS

Liquid food delivery system

To reduce stress, we performed experiments inside the animals’ home cages. Cages were modified so that we could protrude the

motorized lick spout (Phenosys, Berlin, Germany) into the cage. After a 5-min baseline period, motorized lick spouts were presented

in the cage and primed for liquid delivery for 2 min with 1 min intervals between presentations. During these intervals, the spouts were

retracted. To control the feeding rate, we implemented different time-out periods for the delivery pump: 4 s for the slow feeding mode

and 0.4 s for the binge feeding mode. Over 30 min, mice had access to the spout for a total of 14 min, with a pseudorandom order of

2-min-long periods of slow or binge feeding. For olfactory isolation, we presented the lick spout inside a glass tube with an opening

for animals to reach the spout. Air suction from the glass tube limited olfactory responses to the food odor to the time period just

before and while mice interacted with the lick spout. Lick spouts were equipped with piezo sensors to register each licking. Licks

triggered a 400-ms activation of electrical pumps, which resulted in the delivery of one droplet (∼1.8 μL) of strawberry or choco-

late-flavored Ensure (Abbott Laboratories), sucrose or water. During slow feeding, we provided water and Ensure at a ratio of 7 to

3. Four slow-feeding rounds and three binge-feeding rounds were interchanged in a pseudorandom order. Mice were ad libitum

fed before the experiments, with a maximal period of up to 4 h of pre-experiment food deprivation during the light cycle. Fasting

was performed once a week for 20-22 h before starting the experiment.

Surgery procedures: Stereotactic injection

Mice were anesthetized by inhalation anesthesia with isoflurane (induction: 4-5%, then 1-2% with oxygen, flow rate 0.5-1 L/min).

Mice were local anesthetized with Lidocaine (1-2%) subcutaneous injection preincision. A craniotomy was performed over the

stereotactically determined target regions (see the ‘‘Coordinates for viral injection and GRIN lens/prism implantation’’ table) using

a semi-automatic Neurostar stereotactic apparatus (Neurostar, Tübingen, Germany). The virus (0.4 to 1 μL) was injected using a

10 μL-Hamilton syringe. Postoperative pain was prevented by Carprofen (5 mg/kg) subcutaneous injection right before surgery

and in the first 3 days after surgery. After the surgery, the animals recovered for at least 2 weeks. In some experiments, implantation

of the prism or the optic stimulation fiber was performed right after viral injection.

Coordinates for viral injection and GRIN lens/prism implantation

Surgery procedures: GRIN lens implantation

Mice (>P50) were anesthetized for the procedure by inhalation anesthesia with isoflurane (induction: 4-5%, then 1-2% with oxygen,

flow rate 0.5-1 L/min). Mice were local anesthetized with Lidocaine (1-2%) subcutaneous injection preincision. The anesthetized an-

imals were fixed in the stereotact (Neurostar, Tübingen), and a craniotomy was performed over the stereotactically determined target

region (see the ‘‘Coordinates for viral injection and GRIN lens/prism implantation’’ table). The side length of the quadratic craniotomy

was slightly larger than the side length of the prism base. The insertion tract was paved by aspiration of brain tissue until ∼1 mm

above the image plane of the microscope. Aspiration was performed through a thin needle (23G, sharp end) linked to a vacuum

pump, and the procedure was performed twice to ensure sufficient aspiration of brain tissues. Any small hemorrhagic foci that

occurred were staunched by Gelfoam. After removal of the Gelfoam and any pending blood clots, insertion of the microendoscopic

lens (GRIN lens attached with a Prism [1 mm diameter, ∼9.1 or∼4.3 mm long, Inscopix]) to the desired image plane was performed at

a rate of 100 μm/min according to the coordinates in the ‘‘Coordinates for viral injection and GRIN lens/prism implantation’’ table.

Brain regions Coordinates (AP/ML/DV) (mm) Notes

aPC 0.32/-3.1/5.4

0.32/-2.7/5.5 (10◦ coronal angle)

For viral injection

For implantation, we used the bottom right

corner of the Prism of the GRIN lens.

GC 0.26/-3.6/4.0

0.26/-3.0/4.1 (10◦ coronal angle)

For viral injection

For implantation, we used the bottom right

corner of the Prism of the GRIN lens.

OB 4.3-4.6 / ±0.6/ 0.3 For viral injection

OT 0.75/-1.7/6.0

0.75/-1.3/6.0 (no angle)

For viral injection

For implantation, we used the bottom right

corner of the Prism of the GRIN lens.
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With the aid of an adhesive (VetBond, 3M, or TRUGLUE, TRUSETAL) and dental cement (Super-Bond C&B, SUNMEDICAL), micro-

endoscopes with attached baseplates (Inscopix) were fixed to the skull, and the optical surface was protected from contamination by

a plastic cap (Inscopix baseplate cover). Postoperative pain was prevented by Carprofen (5 mg/kg) subcutaneous injection right

before surgery and in the first 3 days after surgery. In a subset of mice, we did not use microendoscopes with attached baseplates.

In this case, the slightly protruding microendoscope was fixed to the skull with adhesive and dental cement, and the optical surface

was protected from contamination using a silicone cap. In these mice, a baseplate was fixed in the desired optical plane above the

protruding lens in a surgery performed at least 4 weeks after the lens implant.

Surgery procedures: Cranial window for olfactory bulb imaging

Mice (C57BL/6, <P40) were anesthetized with isoflurane (induction: 4-5%, then 1-2% with oxygen, flow rate 0.5-1 l/min). Mice were

local anesthetized with Lidocaine (1-2%) subcutaneous injection preincision. After the scalp and periosteum were removed, a 3 mm

craniotomy was made over the two bulb hemispheres. An injection micropipette (tip diameter, 10–20 μm) was filled with AAV1.Syn.

jGCaMP7s.WPRE virus solution (Penn Vector Core), and 100 nl was injected 50 nl/min at a depth of 300 μm in either bulb hemisphere

(see ‘‘Coordinates for viral injection and GRIN lens/prism implantation’’ table for coordinates). After injection, a semi-circular <3mm

stack of two glass coverslips, glued to each other using optical adhesive, was fitted into the craniotomy and sealed with cyanoac-

rylate glue and dental cement. Finally, a light-weight head-post was fixed on the skull over the left hemisphere with light-curing ad-

hesives (RelyX, 3M) and dental cement (Ortho-Jet, Lang Dental). Postoperative pain was prevented by Buprenorphine (0.05-0.1 mg/

kg) and Carprofen (5 mg/kg) subcutaneous injection right before surgery and then Carprofen (5 mg/kg) in the first days after surgery.

Head-fixed three-photon imaging experiments began 3 weeks after the virus injection.

In vivo Ca2+ imaging: Habituation

For freely-moving recordings, before starting the combined behavioral and imaging sessions using Ensure and water, mice were

habituated to the lick spout delivery with 10% sucrose solution. Mice had to reach a criterion of 25 sucrose deliveries in slow feeding

mode in a 45-min habituation session before the actual measurements began. Mice were further habituated with additional air suction

around the lick spout and dummy scope mounting once they had learned to drink from the lick spout. The habituation period usually

lasted ∼3 weeks.

For head-fixed recordings, the habituation of mice to head-fixation began at least 5 days before imaging. On the first day, the an-

imal was head-fixed on a running wheel for 5 min and then gradually increased each day until it was calm for 1 h. At least 1 day before

imaging, a lick spout with Ensure/water within easy reach for licking was introduced.

In vivo Ca2+ imaging: In vivo miniscope imaging

The miniaturized microscope (nVista miniscope, Inscopix, CA, USA) was mounted right before the imaging session started without

anesthesia. Before the recording started, mice were allowed to explore the home cage for 3-5 min. After a baseline period of 5 min,

the lick spout protruded according to the protocol described above. For each mouse, the imaging settings (LED intensity, gain, focus,

etc.) were individually tuned to reach a similar level of brightness (mean values around 50-60 A.U. in fluorescence histogram function

in Inscopix acquisition software). We recorded at 20 Hz with a single focal plane. Most imaging sessions were 4x spatially down-

sampled during acquisition to save storage space. The behavioral system was linked with the Inscopix system using TTL pulses

upon pump activation. We performed up to 25 imaging sessions per mouse across 5 weeks, and overnight food deprivation was

performed once per week. We could stably record around 140 aPC excitatory neurons per imaging session (Figure S1K).

In vivo Ca2+ imaging: In vivo three-photon imaging

Imaging from head-fixed mice was performed with a home-built three-photon microscope. The laser (Opera-F, pumped by Monaco,

Coherent) provided light pulses at 1300 nm wavelength and 1 MHz repetition rate for excitation of jGCaMP7s. The laser output

passed a four-pass prism pulse compressor for dispersion compensation. Laser power was adjusted using a motorized half-

wave plate and a polarizing beam splitter, and was below 20 mW under the objective. We used a Nikon 25x/1.1 objective and

dual linear galvanometers at a frame rate of ∼10 Hz. Image acquisition was synchronized with laser pulses and was controlled by

LSMAQ (https://github.com/danionella/lsmaq). Time-series images (200 x 200 pixels) were recorded at depths of 200–300 μm below

the pia at the mitral cell layer.

Triton X-100 application

Nasal lavage with 0.5% of Triton X-100 (in 0.1M PBS) can introduce temporal hyposmia in mice for up to 3 weeks.42 Mice were anes-

thetized with Ketamin (100 mg/kg), Xylazine (20 mg/kg) and Acepromazine (3 mg/kg) intraperitoneal injection. They received Capro-

fen (5 mg/kg) subcutaneous injection before and the day after the Triton X-100 (experimental group) or PBS (control group) applica-

tions. We applied 40 μL 0.5% Triton X-100 solution to each nostril with a gel-loading pipette tip that was advanced for 2-3 mm into the

nostril. Triton solution was slowly applied with a micropump (Narishige, Japan) over several minutes on each side, with an interval of

5 min between the two nostrils. Foam building up at the opening of the nostrils was an indicator of a successful procedure.

Throughout the procedure and until waking up from anesthesia, mice were kept on an inclined plane so that their nostrils were below

their trachea and lungs in a heated chamber.
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Buried food test

To test the efficacy of Triton-induced anosmia, we examined the ability of hyposmic mice to find a hidden food pellet located 1 cm

deep in the bedding of the experimental cage. Mice were overnight food-deprived and habituated to the experimental cage for at

least 5 min before the experiment started. After the food pellet was buried, mice were transferred into the experimental cage. The

time to find the pellet was documented by the experimenter. The experiment was stopped if the mice did not find the pellet after

15 min. Control experiments were performed with mice that had undergone the same lavage procedure with 0.1M PBS nasal lavage.

The buried food tests were repeated every week to monitor the mice’s olfactory capability and ensure the mice remained hyposmic

throughout our experiments.

Closed-loop optogenetics

Mice expressing ChR2/GFP or eOPN3/tdTomato in aPC excitatory neurons were anesthetized for the procedure by inhalation anes-

thesia with isoflurane (induction: 4-5%, then 1-2% with oxygen, flow rate 0.5-1 L/min). The anesthetized animals were fixed in the

stereotact (Neurostar, Tübingen), and a craniotomy was performed over the stereotactically determined target region. Fiberoptic

cannulas (200 μm diameter, NA 0.66, length 5 mm, Doric lenses) were inserted bilaterally until reaching the target coordinates

(Figure S7). The slightly protruding fiber with an attached zirconia sleeve for taking up the stimulation fiber patchcord was fixed to

the skull with adhesive and dental cement, and the optical surface was protected from contamination using a plastic cap.

Before starting the combined behavioral and optogenetic stimulation sessions using Ensure, the mice were habituated to the lick

spout delivery with 10% sucrose solution. Mice had to reach a criterion of 25 sucrose deliveries in binge feeding mode and needed to

successfully trigger sham closed-loop stimulations in a 20-min habituation session before the actual measurements began. At the

start of the experiment, we plugged a splitter branching patchcord (200 μm diameter, NA 0.57, Doric) connected to a mono fiberoptic

patchcord (480 μm diameter, NA 0.63, Doric) onto the fiberoptic cannulas. Activating aPC neurons via ChR2 has been reported to

trigger seizure-like events.102 To avoid this, we limited the blue light (470 nm, Doric) intensity at 0.5 mW or lower at the tip of the fibers,

for which we did not observe seizure-like behaviors. The increased number of feeding bouts indicates that the mice were still moti-

vated to visit the food source under closed-loop ChR2 activation. This suggests that our stimulation paradigm was not perceived as

aversive. For activating eOPN3, white light from a Ce:YAG fiber light source (Doric) was delivered at an intensity of 8 mW at the tip of

the fibers. For these experiments, mice were granted constant access to the lick spout in the binge feeding mode over a period of

60 min. Upon detection of a binge bout (3 pump deliveries with a maximum of a 1.5 s interdelivery interval), a train of 100 pulses at

20 Hz (for ChR2) or a single 500 ms light stimulus (for eOPN3) was delivered on ‘‘LED on’’ days. After detecting a binge bout with a

subsequent light stimulus, there was a minimal refractory period of 10 s until a binge bout could initiate the next light stimulus. Every-

thing was similar on ‘‘LED off’’ days, apart from not stimulating with light upon binge bout detection. LED on and off days were alter-

nated for 12 subsequent days.

Imaging processing

Ca2+ movies obtained from miniscope recordings were first temporally downsampled to 10 Hz. We then cropped out regions in the

field of view (FoV) where no active Ca2+ transients were visible. The same FoV cropping parameters were used throughout recordings

from the same mice. Movies were then bandpassed with a spatial filter (low cutoff = 0.005, high cutoff = 0.500, Inscopix IDPS) and

motion corrected (aligned to mean image or first frame, max_translation = 20, Inscopix IDPS). Ca2+ traces were extracted with

CNMFe103 with the following parameters (Cell diameter: 10 px, PNR: 10, except 20 for aPC GABAergic cells, Corr: 0.8). Ca2+ traces

were manually curated with predefined selection criteria (peak amplitude >80 A.U., baseline drifts smaller than 20% of peak fluores-

cence, clear cell shape, locate outside blood vessels, minimal motion artifacts of given regions of interest).

Image stacks from 3P imaging were loaded into Suite2P98 for motion correction, region-of-interest (ROI) segmentation, and trace

extraction using the settings specified in the appended exemplary ops file. We used the ‘mean img’, ‘correlation map’, and ‘max pro-

jection’ views of Suite2P to manually check and sort somatic from non-somatic ROIs of mitral cells. The output from Suite2P was

analyzed in Python: Detected neuropil signals were subtracted. Remaining frames with movement artifacts were then detected

and excluded based on the presence of post-registration x- and y-shifts at each time point. A further criterion was the phase corre-

lation of individual frames and the reference image below a threshold of 50% of the maximum peak of phase correlation in the respec-

tive stack. After that, ΔF/F values and Z scores were calculatedlinked .

In vitro electrophysiology

All experiments were conducted at 32-34◦C. Axon Multiclamp 700B amplifier (Molecular Devices) was used for the electrophysiolog-

ical recordings. We filtered the signals with 2 kHz and digitized the signal at a 20 kHz sampling rate (BNC-2090, National Instruments

Corporation). We filled the glass pipettes (resistance 3–6 MΩ) with an intracellular solution (135 mM K-gluconate, 6 mM KCl, 10 mM

HEPES, 0.2 mM EGTA, 2 mM MgCl2, 2 mM Na-ATP, 0.5 mM Na-GTP, 5 mM phosphocreatine Na (pH 7.3), and 0.2% biocytine). We

did not correct for liquid junction potential. In current clamp, we compensated the bridge balance. If a cell had a resting membrane

potential above -60 mV or if the series resistance was larger than 30 MΩ, the cell was discarded. No holding current was applied for

the dopamine modulation experiments. We patched layer 2b (superficial pyramidal) aPC neurons based on their morphology and

location in the aPC. 10 μM of dopamine was applied in the bath and incubated for 5 min before starting recording. For current injection
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protocols, the injected current is tuned in the range of 80-150 pA to aim for triggering 3-5 action potentials for baseline conditions, and

each current stimulation is repeated 6 times under both baseline and dopamine wash-in conditions.

Histology and imaging

Mice were anesthetized with Ketamine (100 mg/kg) and Xylazine (15 mg/kg) and perfused with 0.1M PBS and then 4% paraformal-

dehyde (PFA). Mice brains were harvested and stored in 4% PFA at 4◦C overnight and transferred to 0.1M PBS for long-term storage.

Brains were embedded in 4% agar-agar and sliced at 100-150 μm thickness with a vibratome. Brain slices were mounted on glass

slides and were imaged by an epifluorescence microscope (Leica DMi8) or a confocal microscope (Leica SP5). Acquired images were

then aligned to the mouse brain atlas104 for registration of the location of GRIN lens-prism or fiber optic cannula implants.

Serial two-photon tomography

A subset of fixed mouse brains was sliced and imaged by serial 2P tomography, where whole forebrain structures can be imaged at

cellular resolutions.105 We modified a custom-made 2P microscope to operate with BakingTray (ScanImage & BakingTray, MATLAB,

https://bakingtray.mouse.vision/). Obtained images were stitched (StitchIt, MATLAB) and reconstructed into 3D brain models.

Accordingly, images in Figures 4B–4L are composite images stitched from distinct serially acquired tiles. Image stacks were then

registered to the Allen mouse brain atlas (BrainReg, Python) and visualized with napari (Python).99,106,107 The whole-brain image

in Figure 4B is gaussian filtered and enhanced in napari (Python) to emphasize the OT projecting regions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis, statistics, and plotting

All data analysis was performed using customized scripts in Python, MATLAB, and R. Statistical analysis was performed in Python

(Scipy, Numpy, Dabest), MATLAB, and R (Lmer). Individual statistical tests are listed under the respective figure legends, and all sta-

tistical details are listed in the statistical summary table (Table S1). Mean ± standard error of the mean (SEM) or 95% confidence in-

terval was used to report statistics in figures. A significance level of p < 0.05 is used for rejecting the null hypothesis. No statistical

methods were used to predetermine sample size, randomization, nor was blinding applied. Given the sample size and symmetry of

the data, we assumed approximate normality and applied parametric statistical tests. All statistical analyses were performed in Py-

thon, MATLAB, and R. Most figures were plotted in Python (matplotlib, seaborn) and MATLAB, and figure and font sizes were later

modified in Illustrator (Adobe). We used the Okabe-Ito color palette108 to increase the accessibility for common forms of color

blindness.

Data synchronization

Ca2+ imaging data and behavioral data were synchronized by finding the time lag of maximum cross-correlation between pump

events in digital values from the Phenosys behavioral protocol and the binarized pump-triggered TTL pulses recorded in the Inscopix

system by Pynapple.cross_correlogram (Python).

Binge feeding bout detection and slow feeding processing

To detect binge feeding bouts, inter-pump intervals were calculated for each pump event, and only pump deliveries with intervals

shorter than 2 s qualified as part of a feeding bout. Additionally, each feeding bout was required to include at least 3 pump deliveries.

When analyzing slow feeding, neurons were aligned to individual deliveries, followed by a 4-s interval to the next delivery. Activity

during binge feeding was aligned to the first delivery in a binge bout, followed by the first 4 s during which the animal activates

the pump at 0.5 to 2 Hz.

Pump events in slow feeding mode were filtered out if no further lick event followed the initial lick event triggering pump activation.

Initial motor artifacts from the movement of the lick spout were also removed from further analysis. Since binge feeding bouts were

guaranteed to have subsequent lick events by design, the exclusion of pump events following no lick events was not applied to binge

feeding pump events.

Area under the receiver operating characteristics curve (auROC)

We used auROC to classify neurons into different response classes to Ensure and water deliveries during slow feeding.109,110 In in-

dividual neurons, we compared the distribution of raw Ca2+ amplitudes during baseline activity (-1 to 0 s before pump activation) to

the distribution of raw Ca2+ amplitudes in individual 100-ms bins across trials. To produce the bin-specific ROC curves, we moved the

criterion from the minimal to the maximal Ca2+ response we found in the neuron’s baseline activity distribution and the given 100-ms

bin distribution. We then plotted the probability that Ca2+ signals in the given 100-ms bin distribution were larger than the criterion

against the probability that the Ca2+ signals in the baseline distribution were larger than the criterion. The auROC for each bin

was then calculated using the auc function (sklearn.metrics.auc), resulting in auROC values between 0-1, and 0.5 means not different

from the baseline. The post-stimulus auROC values from each time bin were compared to the baseline auROC values. Significance

was established if at least four consecutive post-stimulus bin values between 0-2 s were greater than 2 S.D. of the pre-stimulus base-

line values (food-, sucrose-, or water-activated neurons).
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Effect size calculation

To calculate the effect size of binge feeding-induced suppression in each neuron class, we performed a bootstrap-coupled estima-

tion (DABEST, Python). To obtain the distribution of the mean difference between the two conditions, we resampled the mean Ca2+

activity of two conditions (e.g., slow feeding and binge feeding) 5000 times (bootstrapping distribution, represented as the violin plot).

The distribution was then normalized by the pooled standard deviation of both conditions to convert it to Cohen’s d using the Dabest.

cohens_d (DABEST). p values were computed with the Dabest.PermutationTest (DABEST).

q values calculation

To estimate the differences between 2 neuronal time series along the time axis, we first calculated the p values of each time bin by

performing the unpaired Student’s t test (scipy.stats.ttest_ind). Then we applied false discovery rate correction (statsmodels.stats.

multitest.fdrcorrection) to obtain the adjusted p values, which are the q values.

Linear mixed models

Linear mixed models were used to estimate contributions of predictors (e.g., level of excitation/suppression in neuronal activities

upon feeding, or interaction of optogenetic actuators and light stimulation) to outcome (e.g., food consumption or feeding duration)

while allowing different intercepts for individual mice (lmer, R). To calculate the contribution of a given predictor, we built a full model

with all predictors and a reduced model that lacks the given predictor. We then compared these two models with the anova function

(R) to calculate the p value of the given predictor. Representative models are structured as follows:

Full model

Food:consumption ∼ 1 + session + bodyweight + baseline:time + sex + virus + LED:state + virus ∗ LED:state + (1|mouse id)

Reduced model (without interaction of optogenetic actuator and LED state)

Food:consumption ∼ 1 + session + bodyweight + baseline:time + sex + virus + LED:state + (1|mouse id)

Functional interaction

Dataset

We examined OT-aPC interactions on a dataset previously published in Winkelmeier et al.48 The dataset is composed of nsessions =

67 sessions from nmice = 11 mice with simultaneously recorded units both in OT and aPC (Figures S6A and S6B). Mice were trained in

a delay-conditioned task where conditioned odor stimuli (CS, 1 s) and a delay (1.7 s) were followed, or not, by the unconditioned water

reward (US). Mice were exposed to three different CS with reward-outcome probabilities of 0%, 50%, and 100%, respectively. In

each session, each of the three CS was presented in 50 trials (trial duration between 10 s and 12 s) in pseudorandomized order.

The task shaped a value-encoding inhibitory response in the aPC throughout the delay and US.48

Canonical correlation analysis (CCA)

CCA is a linear technique that allows for the identification of the subspace of shared covariance, between two sets of multivariate time

series. In the population spaces of the OT and the aPC, CCA identifies axes, defined by sets of weights and referred to as canonical

components, along which the projections of the two regions’ activities exhibit maximal correlation, thereby identifying the respective

subspaces of potential functional connectivity. Significance is assessed by determining whether the identified correlation reflects

trial-to-trial variability (noise correlation) rather than just the shared modulation of the two regions to the task (signal correlation).

Here, CCA is used to identify the two axes along which the projections of OT and aPC activity, respectively, have maximal Pear-

son’s correlation r (as such, r is always positive). We performed CCA in sliding windows of 2 s. First, we aligned the spiking activity

with respect to CS onset and binned the spike counts in 100-ms bins. Then, we concatenated the bins within the 2-s windows from

the 150 trials of the session. We then normalized the spike count of each unit separately by subtracting their mean and dividing by

their standard deviation. To obtain a lagged canonical correlations, we shifted the 2-s window of one of the two regions by lags

ranging from -25 ms to -275 ms in steps of 25 ms, and from -275 ms to -575 ms in steps of 50 ms (the results from the negative lagging

of the OT are reported in the Figure 4, and those of the aPC in the Figure S6). The procedure was repeated by sliding the original

20-bin window in 100 ms steps over the trial duration (x axis in Figures 4P and 4Q; the computed statistics are reported as aligned

to the center of the 20-bin window).

Statistical significance of the CCA

The resulting r was tested for statistical significance at the session level by a shuffle test, in which the order of the trials of one of the

two regions is randomized within trial type (according to odor identity and reward delivery). The shuffle procedure is repeated 4,800

times, from which a distribution rshuffle is obtained under the null hypothesis of independence between regions. In particular, by re-

taining the trial type in the shuffled distribution, r > rshuffle implies that the identified correlation goes beyond a shared mean response

to the stimuli (signal correlation), but reflects trial-to-trial co-fluctuations of the two regions (noise correlation). At the session level, the

p value of r is given by the fraction of rshuffle larger thanr. To evaluate the significance of r across sessions, we derived for each session

a z value by subtracting from r the mean of rshuffle and dividing by the standard deviation ofrshuffle. The resulting z-values were pooled
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across the 67 sessions (nmice = 11), and the overall significance was tested through a linear mixed effects model (LME) to account for

the identity of the mice. The LME was computed using the function fitlme (Matlab R2020a) and the model equation′z ∼1 + (1|Mouse)
′
.

The result is an estimate with standard error, β ± σβ, and the associated t-statistic, t = β=σβ, from which the p value is derived

comparing to the t-distribution given the degrees of freedom (DOF = nsessions − 1 = 66). In the window between 1.8 s and 2.1 s

after CS onset with the activity of the OT lagged between -325 ms and -250 ms with respect to the aPC, the model estimates that

r is β = 1:2 ± 0:2 standard deviations above the mean of the shuffle distribution.

Sign of the correlation

To determine whether the identified co-modulation pattern between regions is predominantly correlational (excitation→excitation or

inhibition→inhibition) or anti-correlational (excitation→inhibition or inhibition→excitation), we defined the quantity d:

d =

∑NaPC
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waPC
i
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i

⃒
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⋅
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j
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with NaPC and NTu the number of units samples in the session aPC and OT, respectively, and w the set of weights used to project the

activity of the units in both regions along the respective axes identified by the CCA. To obtain an overall estimate of the nature of the

interaction, we computed the mean across sessions of d⋅r, giving more weight to sessions with high canonical correlation (as r is

strictly positive, while z can be negative) (Figure 4Q).

Observing the communication subspace

To analyze the modulation by the CS of the activity in the communication subspace, we selected the sessions with significant r >

rshuffle (p < 0.05) within the window from 1.8 s to 2.1 s after CS onset with the OT activity lagged between -250 ms and -325 ms

(37 sessions, at least one per mouse, Figure S6A), and extracted the weights from the bin with the lowest p value in each session.

The activity in the communication subspace is obtained by projecting the activity of the units with the weights found by the CCA.

We tested whether the different CS modulated the activity in the subspace of each region. Since reversing the direction of the ca-

nonical axis in both regions leaves their correlation unchanged and thus might randomly vary across sessions, we decided to quantify

the activity in the communication subspace as absolute deviation from the baseline projection. To this aim, we built an LME (Matlab

2020a, function fitlme) with model formula ′Δ ∼ 1 + CS + (Mouse)+ (Mouse : Session)
′
where Δ is the vector of absolute mean de-

viations from baseline for each trial type for each session. We then performed post-hoc comparisons between CS with the function

coefTest on the output of fitlme to compare the effect sizes between pairs of CS types. The windows from which the activities were

obtained are, with respect to CS onset: for baseline, -1.7 s to 0 s; and for the window of interest in aPC, 1 s to 2.7 s; and in OT, 0.725 s

to 2.425 s.

To quantify firing rate modulation in both regions linked to the identified interaction, we calculated the weighted mean of each re-

gion’s unit activity, using the absolute values of the corresponding CCA weights. For this analysis, CCA was applied directly to the

raw unit activities without normalization. To test whether the regions had and excitatory or inhibitory response within the identified

communication subspace, we estimated the deviation from baseline with an LME (Matlab 2020a, function fitlme) with model formula

′δ ∼ 1 + (Mouse)+ (Mouse : Session)+(Session : CS)
′
, where δ is the vector of the difference between the projected rates and the

projected baseline for each trial. The windows from which the activities were obtained are again, with respect to CS onset: for base-

line, -1.7 s to 0 s; and for the window of interest in aPC, 1 s to 2.7 s; and in OT, 0.725 s to 2.425 s. The model was estimated including

only CS100 and CS50 trials. We tested whether δ was significantly different from 0.

Instantaneous firing rate

To estimate the instantaneous firing rate for the plots in Figures 4R and 4S, the spike times were convoluted with a half-Gaussian

probability distribution function f:

f(t; σ) =

⎧
⎪⎨

⎪⎩

0 if t < 0
̅̅̅̅
2

π

√
1

σ
e− 1

2
(t

σ )
2

if t ≥ 0

with σ = 300 ms. The convoluted data was sampled every 100 ms and scaled by a factor of 10 to reflect spikes per second (Hz). In

Figure 4R, we plotted the mean across the significant 37 sessions of the absolute mean deviation from baseline (-1.7 s to 0 s) of the

projected activity in the communication subspace for different trial types. In Figure 4S, we plotted the mean across the 37 sessions of

the weighted mean of the instantaneous firing rate weighted with the CCA absolute weights. For this plot, CCA was applied directly to

the raw unit activities without normalization.
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