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Abstract

Aging is associated with the accumulation of molecular damage,

functional decline, increasing disease prevalence, and ultimately

mortality. Although our system-wide understanding of aging has

significantly progressed at the genomic and transcriptomic levels,

the availability of large-scale proteomic datasets remains limited.

To address this gap, we have conducted an unbiased quantitative

proteomic analysis in male C57BL/6J mice, examining eight key

organs (brain, heart, lung, liver, kidney, spleen, skeletal muscle,

and testis) across six life stages (3, 5, 8, 14, 20, and 26-month-old

animals). Our results reveal age-associated organ-specific as well

as systemic proteomic alterations, with the earliest and most

extensive changes observed in the kidney and spleen, followed by

liver and lung, while the proteomic profiles of brain, heart, testis,

and skeletal muscle remain more stable. Isolation of the non-blood-

associated proteome allowed us to identify organ-specific aging

processes, including oxidative phosphorylation in the kidney and

lipid metabolism in the liver, alongside shared aging signatures.

Trajectory and network analyses further reveal key protein hubs

linked to age-related proteomic shifts. These results provide a

system-level resource of protein changes during aging in mice, and

identify potential molecular regulators of age-related decline.
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Introduction

Normal aging is marked by progressive accumulation of molecular
damage at the cellular, tissue, and organ levels, leading to functional
decline, increased disease prevalence, and ultimately, mortality
(Gladyshev et al, 2021). Despite the many theories proposed to
explain the biological basis of aging, the precise underlying cellular
and molecular mechanisms are still poorly understood (Keshavarz

et al, 2023a, 2023b; Lopez-Otin et al, 2023). Unraveling these
mechanisms is critical for the development of therapies aimed at
mitigating age-related degeneration and improving healthspan.

Extensive research has documented aging-related changes in the
genome, epigenome, and transcriptome (Davie et al, 2018; Sen et al,
2016; Zou et al, 2000). However, it’s impact on the proteome,
remains less understood. Given that proteins are the primary
effectors of cellular function, deciphering proteomic changes
during aging is essential for understanding the biological basis of
age-related decline. Mass spectrometry-based global proteomics
allows researchers to identify and quantify proteins associated with
specific cellular processes in complex biological samples, providing
insights into cellular function and dynamics (Dengjel et al, 2012;
Geyer et al, 2016; Itzhak et al, 2017). However, this approach
requires significant instrument time to address stochastic peptide
sampling limitations (Bekker-Jensen et al, 2017). On the contrary,
targeted mass spectrometry is well suited for quantitation of
selected protein targets across various samples and is amenable to
relatively low sample amounts (Song et al, 2017; Stopfer et al,
2021).

A landmark human plasma proteomic study involving over 4000
healthy adults revealed that aging is a dynamic, non-linear process,
marked by waves of protein changes (Lehallier et al, 2019).
However, comparable comprehensive analyses across multiple
organs in mammalian models remain scarce. Recent studies
profiling proteomic changes across 8–10 tissues from mice
identified significant age-associated changes, particularly in mito-
chondrial proteins, immune-related factors, and macro complex
compositions (Keele et al, 2023; Takasugi et al, 2024). For instance,
age-related dysregulation of the mitochondrial interactome in 30-
month-old skeletal muscle showed significant changes in mito-
chondrial respiratory complexes I and IV, in addition to enzymes
involved in fatty acid oxidation and TCA cycle (Bakhtina et al,
2023). Similarly, chromatin proteome analysis across six organs in
mice (3–15 months) reported gradual protein changes in the brain,
heart, and kidney, while changes in the lung and liver were more
pronounced between 5 and 10 months. In contrast, the spleen
showed relatively few alterations over the same period, with each
organ displaying distinct proteomic signatures (Oliviero et al,
2022). Moreover, proteomic studies in rodents have often reported
minimal age-associated protein changes (Angelidis et al, 2019;
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Oliviero et al, 2022; Ori et al, 2015; Walther and Mann, 2011; Yu
et al, 2020), though these findings should be interpreted cautiously
given the methodological limitations.

The above-mentioned studies, focused on single organs, either
had limited age ranges or performed pairwise comparisons,
providing an incomplete picture of systemic aging. Moreover,
small sample sizes have constrained statistical power, while
comparisons between only two age groups—a common approach
in aging research—may oversimplify the continuous nature of
biological aging and lead to biased interpretations. In addition,
while trajectory analyses have been employed to assess age-related
protein expression patterns (Lehallier et al, 2019; Coenen et al,
2023), there has been limited exploration of the regulatory
architecture underlying these changes, leaving open questions
regarding the key molecular players that drive proteomic altera-
tions across different tissues.

To address these challenges, we conducted a large-scale, multi-
organ proteomic analysis across the adult lifespan of male C57BL/
6J mice. We chose to carry out the present study in C57BL/6J mice,
as this work is part of a larger research program investigating the
effects of single-gene mutations on aging-associated proteomic
changes. These mutations are maintained on a C57BL/6J genetic
background, and prior studies have demonstrated lifespan exten-
sion in this strain. Moreover, C57BL/6 mice were also recently
employed in recent large-scale multi-organ aging studies (Schaum
et al, 2020; Takasugi et al, 2024), thus allowing for comparative
analysis with our study. By examining eight organs—brain, heart,
lung, liver, kidney, spleen, skeletal muscle, and testis—across six
time points (3, 5, 8, 14, 20, and 26 months) with a relatively large
sample size (n = 45), our study provides a detailed temporal
landscape of protein expression changes during aging. Importantly,
we employed a moderated F-test, a statistically robust alternative to
pairwise comparisons, enabling the detection of gradual and
systemic proteomic alterations rather than changes confined to
isolated time points. This advantage became evident when initial
pairwise comparisons between 20-month and 3-month reference
samples—an approach widely used in aging studies—yielded fewer
differentially expressed proteins than the moderated F-test.
Although F-tests have not been widely used in proteomics, some
recent studies (Myers et al, 2019; Sebastiani et al, 2021) successfully
employed them. The use of the moderated F-test allows for more
powerful and stable inference to detect significant changes in
protein abundance compared to ordinary t tests (Kammers et al,
2015). In addition, we integrated trajectory analysis, Gene Ontology
(GO) enrichment, and network-based protein hub identification to
uncover both shared and organ-specific molecular changes
associated with aging.

Our findings reveal that proteomic alterations are not uniformly
distributed across organs but instead exhibit distinct temporal and
tissue-specific patterns. Notably, we observed the most pronounced
proteomic changes at 20 months, a time point preceding detectable
mortality in male B6 mice (Xie et al, 2022). The kidney and spleen
displayed the highest number of differentially expressed proteins
(DEPs), followed by the liver and lung, while the brain, heart, testis,
and skeletal muscle exhibited more stable proteomes. Network
analysis identified key regulatory hubs that may drive age-
associated proteomic remodeling, providing novel insights into
the molecular coordination of aging across organ systems.
Functional enrichment analyses further highlighted both shared

and organ-specific pathways, with oxidative phosphorylation in the
kidney, cytoplasmic translation in the spleen, lipid metabolism in
the liver, and extracellular matrix organization in the lung
emerging as central aging-associated processes.

To further validate our findings, we employed SureQuant-based
quantitative targeted mass spectrometry on a subset of differentially
expressed proteins identified from the global proteomics experi-
ment. We confirmed several age-associated proteins that were
differentially expressed in one or more of the four organs—kidney,
spleen, liver, and lung—which showed the most pronounced
changes at 20 months. Notably, many of these validated proteins
were shared across multiple organs. Identified peptides were
confirmed by SureQuant-based MS analysis with validation rates
of 80.40%, 76.10%, 78.10%, and 54.8% in the kidney, spleen, liver,
and lung, respectively.

By integrating large-scale proteomics with advanced statistical
and network-based approaches, our study offers a more compre-
hensive view of age-related protein expression dynamics than
previous investigations. The identification of key protein hubs
across multiple tissues not only enhances our understanding of
systemic aging but also provides potential targets for future studies
aimed at mitigating age-related functional decline. These findings
underscore the importance of holistic, multi-organ approaches in
aging research and set the stage for further exploration into the
molecular mechanisms that drive aging at the protein level.

Results

Optimal design to detect fine-grained age-dependent
changes in the mouse proteome

To investigate age-associated protein changes, we isolated eight
organs (brain, heart, lung, liver, kidney, spleen, skeletal muscle, and
testis) from male C57BL/6J mice across six time points for global
and targeted proteomics (Fig. 1A–D). These time points covered
four life stages: young adults (3 and 5 months), adult (8 months),
midlife (14 months), and late life (20 and 26 months). Our
experimental design (Fig. 1A) included a relatively large sample size
(n = 45), with at least five animals per time point, enhancing the
reliability of our findings.

In total, we identified 8814 proteins across the eight mouse
tissues examined, with each organ yielding at least 4000 proteins,
except for heart and skeletal muscle (Dataset EV1). Protein
extraction from these two organs was likely hindered by their
muscular tissue composition. Dimensionality reduction of the
mouse organs using uniform manifold approximation and projec-
tion (UMAP) indicated a clear separation of the various organs
(Fig. 1B). We confirmed the reproducibility of our MS datasets
based on the comparable number of identified total proteins at
different time points within the same organ.

Substantial differences in the extent to which aging

affects proteomic changes in various mouse tissues

To assess overall age-associated protein changes across the various
time points, we employed a moderated F-test (Singer and Hughey,
2019; Smyth, 2004) to identify differentially expressed proteins
(DEPs) across the eight mouse organs. Our analysis revealed that
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the proportion and absolute count of age-associated differentially
expressed proteins (DEPs) varied significantly across the assessed
mouse organs. The highest numbers and percentages of DEPs were
observed in the spleen (1769 DEPs, 44.2%) and kidney (1786 DEPs,
38.3%), followed by the liver (439 DEPs, 10.6%) and lung (147
DEPs, 3%). In contrast, skeletal muscle (52 DEPs, 2.6%), testis (49
DEPs, 0.9%), heart (18 DEPs, 0.6%), and brain (4 DEPs, 0.1%)

showed markedly lower counts and percentages of DEPs (Fig. 1C;
Dataset EV2).

Moreover, the number of identified DEPs was not biased by the
total number of proteins since the testis, brain and lung with
relatively high numbers of total proteins still had very few DEPs.
Kidney and spleen, kidney and liver, as well as kidney, spleen and
liver had the most shared DEPs (Fig. 1D).
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In contrast to the pairwise comparisons which inherently only
capture changes across a given set of two time points, the
moderated—F-test allow for a holistic view of changes across time
and minimize potential biases from any given two time points.
Unlike pairwise comparisons, which assess differences between
only two time points at a time, the moderated F-test provides a
global statistical framework that evaluates expression changes
across all time points simultaneously, reducing biases that arise
from isolated pairwise analyses. To illustrate this, we performed
pairwise comparisons between 20-month-old mice and 3-month-
old reference controls—an approach commonly used in proteomic
aging studies (Takasugi et al, 2024). The percentages of DEPs
identified using pairwise comparisons were relatively low (kidney:
7.3%, liver: 5.1%, lung: 5.7%, spleen: 9.6%) (Dataset EV1) and
closely aligned with those reported in previous large-scale studies.
However, applying the moderated F-test substantially increased the
number of identified DEPs (Fig. 1E), providing a more compre-
hensive and statistically robust view of aging-associated proteomic
shifts. Furthermore, we evaluated the performance of the
moderated F-test in comparison to established statistical tests-
the standard F-test and linear trend analysis, for identification of
DEPs in the four organs with most protein changes. This analysis
indicated highly concordant results between the moderated and
classical F-tests with a similar number of identified DEPs, i.e., ≥94%
overlap (Dataset EV2). The moderated F-test yielded slightly more
DEPs for the kidney and spleen in comparison to the linear trend
analysis. Although we identified more DEPs for the liver and lung
with the linear trend in comparison to the moderated F-test, the
extra identifications from the linear trend had marginal R² ≤0.35
(Dataset EV2). As such, they may represent either false positives or
low-confidence DEPs. Importantly, there is a substantial overlap of
DEPs identified by the moderated F-test with those from the linear
trend, i.e., 86%, 73%, 88% and 96% for the kidney, spleen, liver and
lung (Dataset EV2). We therefore opted for the more conservative
statistical approach (moderated F-test) that yielded robust findings,
for this study.

Protein expression changes were most dynamic between
14 and 20 months across several tissues

To investigate the temporal dynamics of protein expression during
aging, we evaluated the relative abundances of differentially
expressed proteins (DEPs) across various mouse organs and age
groups. This analysis aims to identify specific ages associated with
peak proteomic alterations and examine how aging differentially

affects individual organs. Heatmap representations of protein
expression patterns for DEPs associated with individual organs
indicated that most protein changes occurred between 14 and
20 months (Figs. 2A–D and EV1). Given the relatively few DEPs
obtained in skeletal muscle, testis, heart, and brain, we focused our
cluster analysis on the four primary organs with the most protein
changes: kidney, spleen, liver, and lung. This analysis revealed
distinct patterns for the age-associated protein changes within these
organs. Most identified DEPs were downregulated across many age
groups (Fig. 2A–D). In the kidney, protein expression remained
relatively stable between 3 and 8 months with changes emerging
between 8 and 14 months and becoming most pronounced in
20 months old animals (Fig. 2A). In the spleen, stable protein
expression was observed between 3 and 8 months, followed by
significant changes occurring between 8 and 20 months, which then
diminished by 26 months (Fig. 2B). Conversely, the liver showed
relatively stable protein expression from 3 to 14 months, with
distinct changes emerging between 14 and 20 months (Fig. 2C).
The protein expression patterns in the lung indicated stable levels
from 3 to 8 months, with initial changes becoming evident between
8 and 14 months, progressing significantly from 14 to 20 months,
and slightly diminishing by 26 months (Fig. 2D). These patterns
suggest that aging affects each organ differently, with kidney and
spleen exhibiting more dynamic shifts compared to liver and lung.
The line graphs accompanying the heatmaps further illustrate the
trajectory of these changes, while the associated PC1 scores capture
part of the variance (79.1–90.2%) (Dataset EV3) in protein
expression across ages and hence reflect the complex and organ-
specific nature of age-related proteomic alterations.

Based on the protein expression patterns displayed in the
heatmaps, we determined peak protein changes in most assessed
mouse organs at 20 months. Dimensionality reduction using
uniform manifold approximation and projection (UMAP) (Becht
et al, 2019), also indicated separation of the 20-month age group
from the others (Fig. 2E–H). Moreover, we observed heterogeneity
in the differential protein expression across the various mouse
organs. For instance, the kidney and spleen exhibited a strong age
effect as evidenced by the high number of protein changes, while a
moderate age effect was observed in the liver and lung. The other 4
assessed organs showed minimal protein changes (Figs. 1B
and EV1). This organ-specific variability in age-dependent protein
expression changes underscores the complexity of aging at the
molecular level and suggests that certain organs may uniquely
change during aging, potentially reflecting differing functional
demands or resilience mechanisms.

Figure 1. Experimental design, workflow and distribution of differentially expressed proteins (DEPs) across organs.

(A) Schematic representation of the experimental workflow. Male C57BL/6J mice at six different age points (3, 5, 8, 14, 20, and 26 months) were used to examine age-

related protein expression changes across multiple organs (brain, heart, kidney, liver, lung, skeletal muscle, spleen and testis) from a single experiment. M—denotes age

group in months. The following number of biological replicates were used in the study for each age group: 7 (3 and 20 months), 9 (5 and 14 months), 8 (8 months) and 5

(26 months). The workflow includes tissue collection, protein extraction, and mass spectrometry analysis. Data processing steps included protein quantification, clustering

of DEPs, trajectory analysis, and network analysis for the identification of age-associated protein hubs. (B) UMAP plot of shared total identified proteins across organs.

Individual organs and age groups are represented by different colors and shapes, respectively. (C) Summary of the total identified proteins and DEPs for each organ. The

total number of identified proteins and significantly differentially expressed proteins for each organ, across age groups, are represented by blue and orange bars,

respectively. (D) Venn diagram indicating overlap of DEPs in the kidney, liver, lung, and spleen. (E) Contrast of Pairwise comparisons (20-month vs 3-month reference)

versus moderated F-test for the kidney, liver, lung and spleen. https://app.biorender.com/illustrations/677d53bf42d2236f53575092 https://app.biorender.com/

illustrations/6724f44102db9f70a8ecea5b. Source data are available online for this figure.
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Temporal protein expression analysis identified the most

enriched age-associated clusters

Next, we aimed to explore the dynamic progression of age-
associated protein changes across organs and therefore employed
fuzzy c-means (FCM) clustering to identify temporal patterns
within DEPs at various age groups (Kumar and E Futschik, 2007).
Based on partition coefficient (PC) and partition entropy (PE)
metrics, we determined the optimal cluster numbers for each organ:
three clusters for kidney and lung, two for the spleen, and four for
liver. We did not perform any clustering for skeletal muscle, testis,
heart and brain, for which we had very few differentially expressed
proteins (Figs. 1C and 3A–D). Furthermore, we selected the most
enriched clusters for each organ according to high mean Member-
ship and low SD Membership statistics. For the kidney, cluster 3,
associated with small molecule metabolic processes, was the most
enriched. This cluster comprised DEPs that exhibited relatively
stable expression between 3 and 14 months, followed by a steep
decrease from 14 to 20 months, and a rapid increase from 20 to
26 months (Figs. 3A and EV2; Dataset EV4). In the spleen, cluster
1, linked to cellular metabolic processes, was the most enriched,
although cluster 2, associated with wound healing, was also notable
(Figs. 3B and EV2). The DEPs in cluster 1 showed stable expression
between 3 and 8 months, a progressive decrease from 8 to
20 months, and an increase from 20 to 26 months. Cluster 2
exhibited similar stable expressions between 3 and 8 months,
followed by a progressive increase between 8 and 20 months and a
decline at 26 months (Figs. 3B and EV2; Dataset EV4). In the liver,
cluster 4 (small molecule metabolic process) was most prominent,
characterized by DEPs that maintained stable expression between 3
and 8 months, decreased slightly between 8 and 14 months,
followed by a stronger decrease from 14 to 20 months and a partial
recovery at 26 months (Figs. 3C and EV2; Dataset EV4).
Meanwhile, cluster 1 (negative regulation of hydrolytic activity)
in the lung indicated stable protein expression between 3 and
8 months, a slight increase between 8 and 14 months, an
accelerated rise from 14 to 20 months, and a decline at 26 months
(Figs. 3D and EV2; Dataset EV4). The temporal patterns observed
in protein expression in both heatmaps, and trajectory analysis of
organ clusters highlight distinctive patterns for each organ related
to their starting points and magnitude of changes. This becomes
evident when evaluating the patterns of eight identified shared
proteins across the four organs.

Notably, when evaluating shared differentially expressed pro-
teins across the 4 mouse organs with the most DEPs, the spleen and
kidney exhibited more pronounced age-dependent protein changes.
In comparison, we observed moderate protein changes in liver and

lung (Dataset EV4). These changes typically began between 8 and
14 months, peaked at 20 months, and started to decline by
26 months (Fig. 3E). We first analyzed age-related trajectories of
PLD4 and HEXB. Phospholipase D family member 4 (PLD4)
regulates cytokine production for inflammatory response (Gavin
et al, 2018). Hexosaminidase subunit beta (HEXB), in conjunction
with the cofactor GM2 activator protein, catalyzes the degradation
of the ganglioside GM2 and other molecules containing terminal
N-acetyl hexosamines (Lecommandeur et al, 2017). Both were
relatively stable from 3 to 8 months, gradually increased between 8
and 14 months and sharply increased from 14 to 20 months.
Protein levels of PLD4 increased at 26 months, except in the
kidney, where they decreased. In contrast, HEXB protein expres-
sion declined at 26 months, except in the spleen, where it increased.
We also assessed the age-related trajectories of ARPC1B, STAT1,
and TAPBP. Actin-related protein 2/3 complex, subunit 1B
(ARPC1B) is a cytoskeleton protein involved in Arp2/3 complex-
mediated actin nucleation (Gournier et al, 2001). Signal transducer
and activator of transcription 1 (STAT1) mediates cellular
responses to interferons (IFNs), cytokines and growth factors (Nair
et al, 2002). TAP binding protein (TAPBP) acts in antigen
processing and presentation of exogenous peptide antigen via
MHC class I (Teng et al, 2002). ARPC1B, STAT1 and TAPBP
protein levels were mostly stable between 3 and 14 months,
followed by a gradual increase in lung and liver from 14 to
20 months and either a slight reduction or increase from 20 to
26 months. The expression patterns in the kidney indicated a rapid
increase from 14 to 20 months, followed by a steep decline at
26 months. Expression levels of the three proteins were stable in the
spleen between 3 and 8 months, declined sharply from 8 to
20 months and increased expression between 20 and 26 months
(Fig. 3E). The above-mentioned examples underscore the varying
starting points and magnitude of age-associated protein changes
across different tissues.

Limited overlap of DEPs across tissues

To effectively illustrate the distribution and relationships among
differentially expressed proteins across mouse organs, we employed
a chord diagram and an UpSet plot (Fig. 4A,B), which visually
represent the weighted connections and intersections among DEPs
across organs. Notably, the organ pairs: kidney–spleen,
kidney–liver, and spleen–liver exhibited the largest overlap in
DEPs, with these pairs sharing 634, 282, and 173 DEPs,
respectively. The kidney, spleen and liver had 142 shared DEPs
(Fig. 4A,B). Moreover, we determined that the overlapping DEPs
across the above organ pairs were not random based on their

Figure 2. Differential expression profiles and UMAP analysis of age-associated protein changes in kidney, spleen, liver, and lung.

(A–D) Heatmaps of differentially expressed proteins (DEPs) across six age groups (3, 5, 8, 14, 20, and 26 months) for each organ: kidney (A), spleen (B), liver (C), and lung

(D). Proteins (rows) are clustered based on expression patterns across ages (columns). The color gradient represents log-transformed expression levels, with red

indicating upregulation and blue indicating downregulation relative to each protein’s mean expression. Adjacent line graphs depict the trajectories of mean z-scored

expression levels, with age on the x axis and expression changes on the y axis. The top dot plots display the principal component 1 (PC1) trajectory of the z-scored

expression profiles, highlighting shifts in protein expression across ages. Variance explained by PC1 is 90%, 87.4%, 84%, and 79% for the kidney, spleen, liver, and lung,

respectively. (E–H) UMAP plots of DEPs for each organ: kidney (E), spleen (F), liver (G), and lung (H). Each dot represents an age group, color-coded by age. Clusters in

UMAP space illustrate age-related divergence in protein expression patterns, with distinct trajectories observed for each organ over time. Differential expression and

UMAP analyses are based on 5–9 biological replicates for the various age groups: 7 (3 and 20 months), 9 (5 and 14 months), 8 (8 months), and 5 (26 months). Source data

are available on the Data Dryad public repository for this figure.
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corresponding hypergeometric probabilities of 2.46 × 10−64,
5.25 × 10−95 and 1.37 × 10−18, respectively. Similarly, the over-
lapping DEPs across the kidney, spleen and liver were identified
with a hypergeometric probability of 2.69 × 10−149 (Table EV1). For
comparison, 64.2% and 39.4% DEPs in the liver were also identified
in the kidney and spleen, respectively. A similar proportion of
DEPs in the spleen was identified in the kidney and vice versa
(35.8% and 35.5%, respectively). The data further revealed that a
substantial proportion of DEPs in certain organs were organ-
dominant, with 75% of DEPs in the brain, 60.5% in the spleen, and
55% in the kidney not being shared with other organs (Fig. 4B). In
contrast, only 16.7% of DEPs in the heart and 20.4% in the lung
were prominent in these organs, indicating a higher level of protein
expression overlap in these tissues. Across the various organs, we
identified 850 DEPs shared between at least two organs, with 133
proteins common across three or more organs. Interestingly, a
subset of DEPs—33, 10, and 9 proteins—were shared across four,
five, and six organs, respectively (Fig. 4B; Dataset EV5).

Among these shared proteins, ceruloplasmin (CP) was present
in all assessed organs except the brain, while other frequently
shared DEPs included immunoglobulins (IGHM and IGKC),
haptoglobin (HP), fibrinogens (FGA and FGG), collagen alpha-
1(XVIII) chain (COL18A1), complement factor H (CFH), and
clusterin (APO-J) (Dataset EV5). Notably, 95 out of the 133 shared
DEPs among three organs were found in kidney, spleen, and liver
(Fig. 4B). This group included well-known age-associated proteins
such as complement factor B (CFB), decorin (PG-S2), syndecan-4
(SYND4), alpha-1-acid glycoprotein 1 (AGP-1), and biglycan (PG-
S1), corroborating previous findings (Lofaro et al, 2021). Of note,
22 of the 33 shared DEPs across four organs, were common to the
kidney, spleen, liver, and lung, including key proteins like
vitronectin (VN), fibronectin (FN), and complement C4-B (C4-B)
(Fig. 4B; Dataset EV5). Moreover, three (HPRT1, MYH3 and
TTC22) out of eighteen DEPs associated with the aging heart were
prominent in that organ (Dataset EV2). In contrast to the
overlapping age-associated DEPs observed in the other six organs,
the three DEP (HAPLN2, GFAP and PPP3CC) specific to the brain
did not show changes in other organs (Dataset EV2), indicating
distinct age-related protein expression dynamics in the central
nervous system.

Furthermore, GO analysis of shared DEPs across organs
revealed dysregulation of critical biological processes associated
with aging, such as stress response, defense response, and negative
regulation of blood coagulation and fibrinolysis (Fig. 4C). Organ-
specific protein network enrichments performed in STRING,
highlighted metabolic processes in kidney, small molecule meta-
bolic processes in liver and spleen, and blood coagulation processes
in lung (Fig. 4D–G). These findings suggest that while some age-

associated processes have a universal impact across multiple
organs, others have a more pronounced effect in individual organs
or between a few of them.

The non-blood tissue proteome revealed organ-specific

and shared age-associated protein signatures

Given that we used non-perfused organs in the study, we sought to
minimize the contribution of blood to the shared DEPs across
organs and therefore dissociated the non-blood-associated pro-
teome from the total proteome for purposes of identifying organ-
specific protein signatures.

We initially observed a strong blood-related signal in our GO
analysis, both within some organ-specific clusters and shared
biological processes across multiple organs (Fig. EV2). This was
anticipated, as our study utilized non-perfused mouse organs,
leading to the detection of certain proteins linked to the blood
proteome. To refine our focus and extract organ-dominant aging
signatures, we removed all blood-associated proteins from our
differentially expressed proteins (Dataset EV6). By filtering out
these blood-derived proteins, we were able to disentangle the effect
of blood-derived proteins and obtain a clearer view of organ-
dominant dynamics of age-associated protein changes. The list of
mouse blood-associated proteins was compiled from a previously
published dataset (Niu et al, 2019), supplemented with identifica-
tions from own blood proteomics experiments (unpublished data)
(Dataset EV6). The resulting differentially expressed non-blood
proteome comprised 1388, 1354, 295, and 70 age-DEPs for the
kidney, spleen, liver, and lung, respectively. In the remaining 4
mouse organs with fewer age-DEPs, the removal of blood-derived
proteins resulted in 27, 22, 8, and 4 organ-dominant DEPs in the
skeletal muscle, testis, heart, and brain, respectively (Dataset EV6).
Shared non-blood-derived DEPs across the four assessed main
organs included: LGALS3BP, ARPC1B, COL18A1, ELN, PLD4,
STAT1, HEXB, and TAPBP (Fig. 3E; Dataset EV7).

To identify the most important age-associated biological
processes for the four mouse organs with the most DEPs, we input
their non-blood-proteome-derived DEPs into Cytoscape and
determined the top 100 (kidney and spleen), top 50 (liver) or top
10 (lungs) protein hubs based on maximal clique centrality (MCC)
(Dataset EV8). This analysis yielded the most enriched protein
networks for the organs depicted in Fig. 5. The kidney protein
network consists of two main dense clusters of mitochondrial
proteins: the first predominantly comprises mitochondrial riboso-
mal proteins (top), while the second is enriched in proteins
associated with mitochondrial energy production (bottom), includ-
ing Complexes I, III, IV, and V subunits (Fig. 5A,B). In the spleen, a
single dense cluster is primarily composed of ribosomal proteins.

Figure 3. Temporal expression dynamics of age-associated differentially expressed proteins of the four organs with most protein changes depicted by trajectory

analysis and selected expression profiles.

(A–D) Mfuzz clustering of z-scored expression levels of differentially expressed proteins (DEPs) showing age-associated expression trajectories in kidney (A), spleen (B),

liver (C), and lung (D). Each panel displays the distinct temporal expression patterns for multiple clusters identified in each organ, with average trajectories highlighted.

Clustering reveals organ-specific patterns in the timing and progression of age-related changes, with shifts in expression occurring at different stages across organs. (E)

Line graphs illustrating the expression dynamics of selected key age-associated proteins (PLD4, HEXB, ARPC1B, STAT1, and TAPBP) shared between the kidney, spleen,

liver and lung over the six age points. Error bars (SEM) of the line graphs for the assessed proteins in a single experiment with 5–9 biological replicates are shown. Each line

color represents a different organ, demonstrating organ-specific temporal expression profiles for these proteins. Source data are available on the Data Dryad public

repository for this figure.
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This cluster showed enrichment in proteins related to RNA
Processing and Ribosome Biogenesis, Ribosomal Protein Synthesis
and Assembly, Elongation Factors, and Protein Folding and Stress
Response (Fig. 5C,D). In contrast, the liver protein network
includes three sparse clusters, with the most prominent cluster
enriched in fatty acid oxidation and Cytochrome P450 enzymes
(Fig. 5E,F). Finally, the protein network of the lung shows a single
sparse cluster with an overrepresentation of extracellular matrix
(ECM) remodeling-associated proteins (Fig. 5G,H).

Moreover, gene ontology analysis of the protein hubs in
STRING indicated the most overrepresented biological processes
for the four organs as follows: oxidative phosphorylation (kidney),
cytoplasmic translation (spleen), lipid metabolic process (liver) and
extracellular matrix organization (lung) (Fig. 5A–H). In addition,
we performed similar analysis for organ pairs with the most shared
DEPs, namely: kidney and spleen (450), kidney and liver (182), as
well as spleen and liver (98). The protein network of shared DEPs
between the kidney and spleen further indicated that proteins
associated with the mitochondrial electron transport chain/ATP
production, as well as oxidative stress and antioxidant defense, were
particularly overrepresented in a single cluster (Fig. EV3). The two
main clusters arising from the shared DEPs between the kidney and
liver showed enrichment in fatty acid and energy metabolism, as
well as extracellular matrix (ECM) remodeling-associated proteins.
Finally, immune regulation and antigen presentation, as well as
extracellular matrix (ECM) remodeling and fibrosis, were the two
most overrepresented clusters from the shared DEPs between the
spleen and liver (Fig. EV3). The above-mentioned organ pairs
indicated overrepresentation in the following biological processes:
cellular respiration, fatty acid beta-oxidation, and Arp2/3 complex-
mediated actin nucleation, respectively (Fig. EV3).

Organ-specific, age-related protein dynamics revealed by

linear mixed-effects modeling

To uncover tissue-specific patterns of age-related proteomic
changes, we applied a linear mixed-effects model (LMM) across
combined data from seven murine organs. By including a random
intercept per mouse, this model accounted for intra-mouse
correlations due to matched tissue sampling, thereby increasing
statistical power. Specifically, the model tested for an interaction
between age and tissue: Expression ~ Age * Tissue + (1|Mouse). A
likelihood ratio test (LRT) between the full and reduced models
(excluding the interaction term) identified 2023 proteins with
significant age-by-tissue interactions (adjusted P < 0.05) (Dataset
EV9), indicating divergent age trajectories across tissues.

We further dissected these patterns by performing linear trend
tests independently within each organ for each of the significant
proteins, estimating both the direction and significance of age-

related expression changes. This analysis enabled the construction
of a comprehensive matrix summarizing directionality (Up/Down/
No Change) across organs for each protein (Dataset EV9).

Divergent and convergent aging signatures across organs

We leveraged this matrix to categorize proteins into groups based
on the consistency or divergence of their aging trajectories across
organs. Across kidney, liver, and spleen, consistently upregulated
proteins were enriched for immune-related processes, including
immune response, cytoskeletal remodeling, and negative regulation
of proteolysis, suggesting a shared immune activation signature
(Dataset EV9). In contrast, proteins consistently downregulated
across these organs showed no clear enrichment in biological
processes.

Strikingly, divergent proteins between pairs of organs revealed
tissue-specific aging hallmarks. For instance, proteins upregulated
in the liver but downregulated in the spleen were enriched for
mRNA splicing, RNA processing, and ribosome biogenesis.
Proteins upregulated in the kidney and downregulated in the
spleen were associated with fatty acid metabolism, oxidation-
reduction processes, and actin filament regulation (Dataset EV9),
potentially reflecting more robust metabolic and cytoskeletal
regulatory activity in the kidney relative to the spleen. Moreover,
upregulated proteins in the lung but downregulated in the kidney
or liver, consistently mapped to mitochondrial function, TCA cycle,
and oxidative phosphorylation (Dataset EV9), implying preserved
or even enhanced energy metabolism in the lung with age,
contrasting with a decline in classical metabolic organs.

This comparative approach also identified a subset of proteins
with organ-specific expression trends (i.e., significantly regulated
with age in only one tissue). The spleen and kidney exhibited the
largest number of such proteins. Functional analysis revealed that
kidney-specific downregulated proteins were enriched in pathways
related to fatty acid oxidation and carboxylic acid metabolism,
while spleen-specific downregulated proteins mapped to transla-
tion, RNA processing, and proteostasis maintenance pathways.

These results provide a comprehensive view of how aging affects
tissues in both shared and divergent ways. While certain pathways,
such as immune activation, appear to be broadly upregulated with
age, others, such as mitochondrial metabolism and proteostasis,
show tissue-dependent regulation, potentially reflecting organ-
specific resilience or vulnerability to aging stressors.

Highly correlated expression of non-blood DEPs shared
across tissues

Towards identifying shared aging-associated dysregulation of
proteins across tissues, we probed for trajectory correlation of

Figure 4. Age-associated differentially expressed proteins across mouse organs and gene ontology analysis.

Relationships between overlapping DEPs across mouse organs are depicted in a chord diagram (A), illustrating shared and unique DEPs associated with aging in each

organ. (B) UpSet plot showing intersections of identified DEPs across the assessed eight mouse organs. Bar heights represent the number of unique and shared proteins for

individual and organ combinations, respectively. Organs with overlapping DEPs are indicated by dots in the matrix. (C) Dot plot displaying the top 15 most enriched GO

biological processes across organs. Dot size and color intensity represent the number of associated DEPs and statistical significance (FDR), respectively. Functional

annotation of GO biological processes associated with DEPs identified in the kidney (D), spleen (E), liver (F), and lung (G). GO enrichment analysis was done using

STRING. Bubble size represents the number of associated proteins and the color gradient reflects the significance of enrichment, with lighter and darker shades indicating

lower and higher FDR values, respectively. SM skeletal muscle. Source data are available online for this figure.
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protein changes amongst shared DEPs in kidney and liver, kidney
and spleen, as well as the liver and spleen, using Spearman’s rank
correlation coefficient (Spearman, 2010). Expression patterns of
carboxylic acid catabolism-associated proteins (AADAT,
ACADSB, DCXR, ECI1, ETFDH, and HIBADH) and fatty acid
metabolism-associated proteins (ALDH3A2, ACADS, ACADSB,
ACSM3, and GGT5) were highly correlated in the kidney and liver
(Fig. EV4; Dataset EV10). The proteins exhibited mostly stable
expression between 3 and 14 months, followed by a decrease
between 14 and 20 months, then a reversal to earlier levels from 20
to 26 months during aging. This pattern suggests age-associated
shifts in carboxylic acid catabolism and acyl-CoA metabolism,
which may reflect metabolic remodeling in both organs. In the
kidney and spleen, we found that proteins involved in cellular
energy metabolism, including ATP synthase subunits (ATP5PB),
Complex I (NDUFA2), Complex II (SDHA), and oxidative
phosphorylation-related proteins (COX5B, COX6B1, COX6C,
UQCRC2), were highly correlated across these tissues (Fig. EV4;
Dataset EV11). In addition, PDHA1, which links glycolysis to the
TCA cycle, and ETFB, which facilitates electron transfer to
ubiquinone, showed strong co-expression patterns, further high-
lighting the coordinated regulation of mitochondrial function.
While AK2 contributes to ATP homeostasis, and GUCY1B1
participates in cGMP signaling, their correlations may reflect
broader metabolic network interactions rather than direct
involvement in oxidative phosphorylation (Fig. EV4; Dataset
EV11). Their expressions were mostly stable between 3 and
14 months, followed by a decline between 14 and 20 months,
before a reversal to earlier levels at 26 months. Alterations in
cellular respiration-associated proteins may reflect age-associated
metabolic adaptations, which could impact mitochondrial effi-
ciency in the kidney and spleen. Mitochondrial function is known
to decline with aging, yet these shifts may also represent
compensatory responses to changes in nutrient availability.
Additionally, we observed a strong correlation in the expression
of ECM proteins (BGN, DCN, HSPG2, and SDC4) across the liver
and spleen, with relatively stable levels between 3 and 8 months,
an increase between 14 and 20 months, and a subsequent decline
from 20 to 26 months (Fig. EV4; Dataset EV12), suggesting a
shared age-associated remodeling of the ECM. The most highly
correlated proteins across the three organ pairs showed enrich-
ment in fatty acid oxidation-related pathways (HADHB, ECI1),
carboxylic acid catabolism (HADHB, SCP2, DCXR, ECI1, and
HIBADH), and ECM organization (TGFBI, FBLN1, HSPG2, ELN,
COL18A1, and EMILIN1) (Fig. EV5; Dataset EV13). SCP2 plays a
role in cholesterol metabolism and may be localized to peroxi-
somes, its co-expression with metabolic proteins suggests a
broader coordination of age-associated metabolic remodeling
across tissues.

Targeted-MS-based validation confirmed blood carrier
proteins, complement factors and ECM proteins/
modifiers as DEPs

Based on the results of our global proteomic profiling of mouse
organs, which indicated that most age-associated protein changes
occur in the kidney, spleen, liver, and lung, we performed
SureQuant-based quantitative MS analysis on a subset of
differentially expressed proteins from these four organs, derived
from animals aged 3, 5, 8, 14, or 20 months. The 26-month-old
mice were excluded from validation experiments since the age
group constituted only five biological replicates and the animals
could be compromised by survivorship bias (Xie et al, 2022).
Candidate proteins were chosen based on differential expressions in
the moderated F-test analysis and had to be shared across 3 or more
organs. The selected candidate target proteins for validation
primarily consisted of blood carrier proteins, complement factors
and ECM proteins/modifiers. We validated 23–36 and 16–22 target
peptides and proteins, respectively in the 4 organs (Fig. 6A,B;
Appendix Figs. S1–4). Several validated target peptides/proteins
exhibited significant differential expressions, dominant in certain
organs. Dysregulation of cathepsin D (CTSD), alpha-galactosidase
A (GLA), kallikrein-1 (KAL-B), and SPARC-like protein 1
(SPARCL1) was dominant in kidney derived from 20-month-old
mice (Appendix Fig. S1). Finally, the spleen exhibited changes in
interferon alpha/beta receptor 2 (IFN-R-2) (Appendix Fig. S2). In
the liver, we detected protein changes in basement membrane-
specific heparan sulfate proteoglycan core protein (HSPG2) and
decorin (PG-S2) (Appendix Fig. S3) at the same age. In the lung of
20-month-old mice, notable dysregulation was observed for Alpha-
1-acid glycoprotein 2 (AGP 2), epidermal growth factor receptor
(EGFR), solute carrier family 2, facilitated glucose transporter
member 3 (GLUT-3) and cytochrome b-245 heavy chain (GP91-1)
(Appendix Fig. S4).

Most validated target peptides/proteins were common across
two, three, or all four organs. For example, fetuin-B (FETUB),
fibrinogen alpha chain (FGA), mannose-binding protein C (MBP-
C), and pigment epithelium-derived factor (PEDF) were signifi-
cantly expressed in both, kidney and spleen (Appendix Figs.
S1 and 2), whereas beta-glucuronidase (GUSB), lysosomal alpha-
mannosidase (LAMAN), and biglycan (PG-S1) demonstrated
significant differential expression in the liver and spleen (Fig. 6B;
Appendix Figs. S2 and 3). Clusterin (APO-J) and serotransferrin
(TF) were differentially expressed in the lung/kidney and lung/
spleen, respectively. Lactadherin (MFGM) was significantly upre-
gulated in the lung, liver, and kidney (Appendix Figs. S1–4).

Augmented protein expressions of complement component C9
(C9), fibronectin (FN), and syndecan-4 (SYND4) were common
among the liver, kidney, and spleen (Appendix Figs. S1–3). In

Figure 5. Networks and gene ontology analysis of the top protein hubs associated with the non-blood-derived differentially expressed proteins of the kidney, spleen,

liver and lung.

Kidney (A, B), spleen (C, D), liver (E, F) and lung (G, H). Non-blood proteome-derived DEPs were input into Cytoscape to determine the top 100 (kidney and spleen), 50

(liver), or 10 (lung) protein hubs based on maximal clique centrality (MCC). Networks for the top protein hubs and corresponding GO enrichment analyses of the kidney

(A, B), spleen (C, D), liver (E, F), and lung (G, H), were visualized in STRING. Nodes represent proteins and edges indicate functional associations, highlighting highly

connected nodes (“hubs”), with potential roles in coordinating functional networks of age-associated changes in each organ. Bubble size and color gradient represent the

number of associated DEPs and FDR significance. Source data are available online for this figure.
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addition, alpha-1-acid glycoprotein 1 (AGP-1) and von Willebrand
factor A domain-containing protein 1 (VWA1) showed differential
expressions in the lung, kidney, and spleen (Appendix Figs. S1–2
and S4). Notably, five validated target proteins displayed differ-
ential expression across all four organs, including complement
factors (C4-B, CFB, and CFH) as well as ECM proteins (collagen
alpha-1(XVIII) chain (COL18A1) and vitronectin (VN) (Fig. 6A,B).

Discussion

In this study, we implemented an unbiased, quantitative global
proteomics approach to investigate age-associated protein changes
across 8 key organs in male C57BL/6J mice at six distinct time
points (3, 5, 8, 14, 20, and 26 months). These ages span the young
adult to late adult life stages, allowing us to capture age-associated
protein changes in various mouse organs across much of the
murine lifespan. Our proteomic analysis covered the brain, heart,
kidney, liver, lung, skeletal muscle, spleen, and testis (Fig. 1A). Six
of these organs overlap with those examined in recent studies by
Keele et al (2023) and Oliviero et al (2022), creating a basis for
comparative insights across investigations (Keele et al, 2023;
Oliviero et al, 2022).

While Oliviero et al (2022) also assessed temporal protein
changes across organs, their focus was primarily on the chromatin
proteome, contrasting with our whole-tissue approach (Oliviero
et al, 2022). Keele et al (2023) similarly explored protein dynamics
but concentrated on two time points, assessing adult and late
midlife stages (Keele et al, 2023). More recently, Takasugi et al
(2024) employed TMT-based MS analysis of whole-tissue lysates in
8 organs, examining protein changes from young adult into old age
(Takasugi et al, 2024). A key differentiator in our study is the
experimental design, which leverages a relatively large sample size
across 6 time points, providing a comprehensive overview of
protein changes throughout aging.

To gain deeper insight into age-associated proteomic changes
without the constraints of pairwise comparisons, we employed the
moderated F-test, which captures overall protein dynamics across
time. Traditional pairwise comparisons between two time points
can overlook the continuous nature of biological aging, potentially
leading to biased interpretations (Ritchie et al, 2015). By comparing
pairwise analyses (20-month vs. 3-month reference) with the
moderated F-test in the kidney, liver, lung, and spleen (Fig. 1D,E;
Dataset EV1), we found that pairwise comparisons underestimated
the number of differentially expressed proteins (DEPs). Conse-
quently, the moderated F-test proved more suitable for detecting
progressive proteomic alterations across age. To further resolve
age-associated molecular changes, we applied trajectory analysis to
track protein expression dynamics over time. In addition, we
dissociated blood-derived from non-blood-derived proteins, refin-
ing organ-dominant signatures. This approach enabled us to

identify both organ-dominant and shared age-associated protein
signatures, providing a clearer, system-wide perspective on aging’s
impact across tissues.

Most protein changes measured across the various mouse
organs in our study peaked at 20 months, with considerable overlap
of differentially expressed proteins in 4 organs: kidney, spleen, liver
and lung. A majority of the 39 shared DEPs across the 4 organs
were blood-derived and primarily constituted of blood carrier
proteins, coagulants, immunoglobulins, complement factors and
serpins. After exclusion of the blood-derived proteins, the
remaining shared DEPs from the non-blood proteome comprised
8 proteins, primarily involved in immune regulation and antigen
processing (LGALS3BP, STAT1 and TAPBP) (Teng et al, 2002;
Trahey and Weissman, 1999; Nair et al, 2002) or ECM remodeling
(COL18A1 and ELN) (Shimshoni et al, 2021). Our findings are in
contrast to most previous reports, which indicated only modest
alterations in protein levels of the mouse organs studied, at the late
adult stage (Angelidis et al, 2019; Oliviero et al, 2022; Ori et al,
2015; Walther and Mann, 2011). The majority of these studies,
either involved relatively small sample sizes with a few organs
analyzed or included only two age groups for comparison, which
may partially account for the discrepancies between their findings
and our results reported herein (Angelidis et al, 2019; Ori et al,
2015; Walther and Mann, 2011).

Trajectory analysis of age-associated DEPs across the four
organs with the most significant changes indicated that the onset
and progression of aging manifests distinctly at the molecular level
within each organ. In the kidney and liver, significant shifts in
DEPs emerged between 14 and 20 months, with declining and
minimally reduced protein expression at 26 months, respectively
(Fig. 2A,C). Conversely, in the spleen and lung, these age-related
molecular changes become evident at an earlier stage, between 8
and 14 months, peaking at 20 months. Following this peak, the
changes in the spleen appear to diminish, while the lung shows
sustained protein expression changes at 26 months (Fig. 2B,D).
This early onset of significant changes in the spleen and the lung
suggests that aging processes may initiate earlier in these organs
compared to others, offering an organ-specific insight into the
temporal dynamics of aging. In the kidney, mitochondrial proteins
involved in electron transport and ATP synthesis (cluster 3)
exhibited stable expression from young adulthood to midlife,
followed by a sharp decline from 14 to 20 months and a partial
recovery from 20 to 26 months (Fig. 3A). This decline coincided
with reductions in TFAM (mitochondrial biogenesis) (Kelly and
Scarpulla, 2004), SOD2 (antioxidant defense) (Cramer-Morales
et al, 2015), and PARK7 (mitochondrial protection) (Irrcher et al,
2010), suggesting a transient phase of mitochondrial vulnerability
(Dataset EV4). The subsequent recovery of VDAC1, TFAM, and
SOD2 at 26 months indicates a compensatory mitochondrial
remodeling response, potentially reflecting metabolic adaptation
(Vander Heiden et al, 2000). Alternatively, the apparent recovery

Figure 6. SureQuant-based quantitative mass spectrometry analysis of shared ECM proteins and complement factors in the kidney and spleen.

Comparison in the kidney (A) and spleen (B) was performed using the 3-month-old group as a reference and 7–9 biological replicates for each group. Mean light/heavy

ratios (L/H) of unique peptides used for quantitation are depicted as violin plots. Bold dashed horizontal lines indicate medians, and lightly dashed lines indicate quartiles

(n= 3). Statistical analysis was performed using the parametric unpaired one-sided t test. The exact P values are shown in each figure. P < 0.05 is statistically significant.

Kd kidney, Sp spleen. 3, 5, 8, 14, and 20 M denotes age in months. Source data are available online for this figure.
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detected at the population level may result from differential
survivorship, as approximately 30% of the mouse population is lost
to natural death between 20 and 26 months of age (Xie et al, 2022).
In the aging spleen, both clusters, 1 and 2, are prominent. Cluster 1,
enriched with ribosomal and mitochondrial proteins, showed stable
expression throughout young adult stages, followed by a rapid
decline between 8 and 20 months and an apparent partial recovery
between 20 and 26 months. This drop indicates impaired protein
synthesis and mitochondrial function, while the late recovery may
suggest that the spleen attempts to restore these essential processes.
Cluster 2, mainly containing ECM proteins, demonstrated a
gradual increase between 8 and 20 months, followed by a partial
decline from 20 to 26 months (Fig. 3B). The accelerated
upregulation may signify ECM remodeling in response to tissue
aging. In the liver, cluster 4 enriched with proteins involved in fatty
acid and energy metabolism—displayed stable expression during
young adult stages, gradually declining from 8 to 20 months and
stabilizing thereafter (Fig. 3C). This trend aligns with a metabolic
decline during aging. Notably, in the lungs, none of the three DEP
clusters showed clear enrichment for specific protein groups
(Fig. 3D), indicating a potentially distinct aging profile in
this organ.

Network analysis in Cytoscape identified core protein hubs
within each organ, allowing us to map connectivity among proteins
subjected to age-dependent change. This focused approach across
multiple time points and organs sets our study apart, revealing
organ-dominant aging signatures rather than broad systemic
signals, as seen in studies like Takusagi et al (Takasugi et al,
2024). In the kidney, a substantial number of mitochondrial
electron transport chain components, including: 28 out of 45
Complex I subunits (e.g., NDUFS3, NDUFA1, NDUFA2, NDUFS4,
NDUFB9, NDUFS2, NDUFV2), 3 out of 4 Complex II subunits
(SDHA, SDHB, SDHC), 6 out of 11 Complex III subunits (CYC1,
UQCRB, UQCR10, UQCRFS1, UQCRC1, UQCRC2), 7 out 13
Complex IV subunits (COX5A, COX6B1, COX4I1, COX7C,
COX6C, COX7A2, COX7A1) and 11 out of 17 Complex V
subunits (ATP5C1, ATP5O, ATP5D, ATP5PB, ATP5H, ATP5L,
ATP5J2, ATP5K, ATP5E, ATP5A1, ATP5MD), were among the
top-ranked hubs (Fig. 5A; Dataset EV7), reflecting the potential
role of aging on mitochondrial bioenergetics (Althoff et al, 2011;
Pereira et al, 2020). In addition, mitochondrial ribosomal proteins
(e.g., MRPS2, MRPS16) were prominent hubs (Fig. 5A; Dataset
EV7), emphasizing the central role of mitochondrial energy
metabolism and protein synthesis in kidney aging (Miller et al,
2004). Their identification as network hubs reinforces the kidney’s
reliance on mitochondrial function and suggests that these proteins
could serve as early biomarkers or therapeutic targets in preventing
renal aging. EIF3I and RPS27, which are involved in the initiation
of protein translation and assembly or function of ribosomes,
emerged as key hubs in the spleen (Fig. 5B; Dataset EV7)
(Vladimirov et al, 1996). Their presence suggests that the regulation
of protein synthesis is central to spleen aging. In the liver, lipid
metabolism hubs like ACLS1 and HMGCS2 indicate that energy-
processing proteins are pivotal in liver aging (Fig. 5C; Dataset EV7)
(Asif et al, 2022). Age-dependent change in ACLS1 has implica-
tions for triacylglycerol synthesis, beta-oxidation and phospholipid
fatty acid composition (Li et al, 2009). In addition, protein changes
in HMGCS2 are associated with aberrant ketogenesis and
subsequent development of fatty liver disease (Asif et al, 2022).

By pinpointing these as central nodes, our study refines the
understanding of metabolic aging in the liver, suggesting that
targeted support to these hubs may maintain hepatic function in
advanced age. The ECM-associated hubs in the lung, such as
COL18A1 and ELN, emphasize the importance of structural
proteins in pulmonary aging (Fig. 5D; Dataset EV7) (Devarajan
et al, 2023). These proteins form a network that governs ECM
stability and late-stage upregulation of COL18A1 and down-
regulation of ELN, both of which highlight a unique pattern of
structural vulnerability to lung fibrosis (Karsdal et al, 2017) and
reduced elasticity (Mecham, 2018) in the aging lung. The
identification of specific ECM hubs offers potential targets for
prolonging lung function by maintaining tissue elasticity.

Gene ontology analysis of the protein networks for the non-
blood DEPs of the four organs (kidneys, spleen, liver, and lungs)
with the most connections revealed enrichment of the following
organ-dominant biological processes: oxidative phosphorylation
(kidney), cytoplasmic translation (spleen), lipid metabolic process
(liver) and extracellular matrix organization (lung) (Fig. 5). We
evaluated the functional enrichment of GO terms within the non-
blood DEPs that were shared across 2 or more organs using
network analysis in STRING and determined that mitochondrial
electron transport chain (ETC) and ATP production, as well as
oxidative stress and antioxidant defense, were highly represented in
the kidney and spleen (Fig. EV3; Dataset EV4). The mitochondrial
and oxidative stress-associated proteins were downregulated in
both organs during normal aging. In contrast, the kidney- and
liver-dominant DEPs showed enrichment in fatty acid and energy
metabolism, as well as proteins associated with extracellular matrix
(ECM) remodeling (Fig. EV3; Dataset EV4). The former were
downregulated, whereas the latter were upregulated in both.
Similarly, the shared spleen- and liver-associated non-blood DEPs
showed overrepresentation of proteins linked to immune regulation
and antigen presentation, as well as extracellular matrix (ECM)
remodeling and fibrosis (Fig. EV3; Dataset EV4). Moreover, the
shared kidney-, spleen- and liver-associated DEPs were enriched in
ECM organization and regulation of cytoskeleton organization
(Fig. EV3; Dataset EV4). Both immune regulation/antigen pre-
sentation and cytoskeleton organization-associated proteins were
upregulated in the liver and downregulated in the spleen (Dataset
EV2). This suggests that normal aging in the kidney and spleen is
characterized by reduced mitochondrial function and impaired
ATP production, increased oxidative stress, and consequently
reduced cellular energy homeostasis. Dysregulated lipid metabo-
lism and energy homeostasis was a feature of the aging kidney and
liver, whereas alterations in ECM remodeling and cytoskeletal
dynamics were hallmarks of the aging kidney, spleen and liver. In
addition, immune activation was associated with aging in the liver
and spleen. Protein changes in the spleen were first detectable at
8 months, whereas they emerged at 14 months in the kidney, liver
and lung (Figs. 2A–D and 3A–D). These findings provide evidence
for aging-associated biological processes which are either promi-
nent in specific organs compared to others (e.g., altered
mitochondrial function in kidney and spleen) or pervasive across
multiple organs (e.g., ECM remodeling and cytoskeletal
dysregulation).

In conclusion, the study provides a novel, organ-specific, and
temporally resolved understanding of protein dynamics during
aging, offering unique insights into the biological processes and
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potential intervention points that could support healthy aging. Our
analysis revealed that age-associated protein changes proceed
rapidly in the kidney and spleen, moderately in the liver and lung,
minimally in the skeletal muscle and testis, but very subtly in the
heart and brain. By isolating organ-dominant pathways and protein
hubs, our analysis not only highlights distinct aging mechanisms
but also underscores the varied magnitude and onset of the age-
related protein changes in the different organs.

Methods

Reagents and tools table

Reagent/resource

Reference

or source

Identifier or

catalog number

Experimental models

C57BL/6J mice Jackson
Laboratory

Stock no. 632

Recombinant DNA

Antibodies

Oligonucleotides and other sequence-based reagents

Chemicals, enzymes, and other reagents

4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES) (pH
7.4)

Thermo
Scientific

15630080

Sodium chloride (NaCl) Sigma
Aldrich

S5150-1L

Ethylenediaminetetraacetic acid (EDTA) Thermo
Scientific

Sodium Dodecyl Sulfate (SDS) Roth 2326.2-500 g

Dithiothreitol (DTT) Thermo
Scientific

R0862

tris(2-carboxyethyl)phosphine (TCEP) Thermo
Scientific

77720

Iodoacetamide (IAA) Thermo
Scientific

35603

Pierce Protease and Phosphatase Inhibitor
Mini Tablets,EDTA-free

Roche A32961

ammonium bicarbonate Thermo
Scientific

393212500

Potassium chloride (KCL) Thermo
Scientific

A11662.0B

AMICON ULTRA-0.5 CENTRIFUGAL FILTER
UNI, 10 K MWCO, 0.5 ML (96 pack)

Millipore UFC501096

Eppendorf™ Protein LoBind Thermo
Scientific

10708704

SILVERQUEST KIT 1 KIT/STAINING FOR 25
MINI GEL

Sigma
Aldrich

LC6070

Synthetic PEPotec isotope-labeled C-
terminal lysine (K) or arginine (R) crude
peptides

Thermo
Scientific

PIERCE C18 TIPS, 100 UL BED 96 TIPS 87784

Pierce™ LC-MS Grade water Thermo
Scientific

85189

0.1% Formic acid (v/v) in water, LC-MS
Grade

Thermo
Scientific

85171

Reagent/resource

Reference

or source

Identifier or

catalog number

0.1% Trifluoroacetic Acid (v/v) in water, LC-
MS Grade

Thermo
Scientific

85173

Pierce™ Acetonitrile, LC-MS Grade Thermo
Scientific

TS-51101

Isopropanol, Optima™, LC-MS Grade Thermo
Scientific

A461-4

Trifluoroacetic acid (TFA) Thermo
Scientific

PIERCE TRYPSIN PROTEASE MS GRADE, 5
×20 UG

Thermo
Scientific

90058

Urea Thermo
Scientific

Acclaim PepMap C18, 100 Å, 5 mm×300 μm Thermo
Scientific

160454

Acclaim PepMap C18, 100 Å, 75 µm X 50 cm Thermo
Scientific

164942

Stainl. Steel Emitters, 40mm, OD 1/32 Thermo
Scientific

ES542

Pierce™ FlexMix™ Calibration Solution Thermo
Scientific

A39239

LC-MS autosampler vials (CGC Certified
Clear Glass 12 x 32 mm Screw Neck Total
Recovery Vial, with Cap and PTFE/silicone
Septum, 1 mL Volume, 100/pkg

Waters 186000384C

Software

Proteome Discoverer™ software (v3.1) Thermo
Scientific

OPTON-30904

QFeatures (v1.12.0) Open
source

Skyline software v21.1.0.278 Open
source

R v4.3.1 Open
source

Cytoscape Open
source

https://
cytoscape.org/

STRING Open
source

https://string-
db.org/

Other

RSLCnano system (Ultimate 3000) Thermo
Scientific

Serien-Nr.:
8163996

Orbitrap Exploris 480 mass spectrometer Thermo
Scientific

Serien-Nr.:
MA10019N

Animal housing and husbandry conditions

This study utilized male C57BL/6J mice (Jackson Laboratory, stock
no. 632), divided into six distinct age cohorts: 3, 5, 8, 14, 20, and 26
months. All animals were acquired as a single batch and
maintained under specific pathogen-free (SPF) conditions in
individually ventilated cages (IVCs), adhering to FELASA guide-
lines. Each cage housed a maximum of five mice from the same age
group. Environmental conditions were kept constant, with a
temperature of 22 °C, 55% humidity, and a 12-h light/dark cycle.
Mice had unrestricted access to food and water, in accordance with
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institutional and governmental animal welfare regulations. Daily
monitoring was conducted to ensure general animal well-being, and
individual health assessments were performed before commencing
any experimental procedures. These assessments followed criteria
approved by the local animal ethics committee. Animals meeting
predefined humane endpoints, such as visible bleeding or ulcerated
tumors, were humanely euthanized. Sample size estimations for
each age group were calculated using G*Power software (version
3.1.9.2), in alignment with ethical approval requirements.

Sample preparation for mass spectrometry analysis

Prior to tissue collection, mice were acclimated in the dissection
room for a minimum of 30 min. Mouse organs, including: the
brain, spleen, lung, liver, kidney, testis, skeletal muscle and heart
(Fig. 1) were harvested from male C57BL/6J mice over the course of
two days and at the different time points, as previously described
(Xie et al, 2022). The number of animals processed each day was
evenly distributed across age groups. Tissues were rapidly frozen in
liquid nitrogen and stored at −80 °C. For protein extraction, frozen
organs were cryopulverized under liquid nitrogen to yield fine,
homogenous tissue powder, which was then used for peptide
generation and high-resolution accurate mass (HRAM) spectro-
metry. Each sample was lysed in 200 µl of buffer composed of
50 mM HEPES (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1.5% SDS,
and 1 mM DTT, supplemented with a protease and phosphatase
inhibitor cocktail (Thermo Scientific). Lysis was enhanced via
repeated sonication cycles—six rounds of 1-minute water bath
sonication at 35 kHz, interspersed with 2-minute cooling intervals
on ice. Total protein content was estimated using silver staining
prior to digestion. Approximately 25 µg of protein per sample was
reduced and alkylated, then processed using a modified Filter-
Aided Sample Preparation (FASP) protocol (Scifo et al, 2015) to
generate tryptic peptides for subsequent label-free and SureQuant-
based targeted proteomic analyses. FASP enables effective proteo-
lysis of low-quantity samples, producing high-quality tryptic
peptides for shotgun proteomics (Wisniewski, 2016; Wisniewski
et al, 2009). Tryptic digestion was carried out overnight at 37 °C
directly on the filter units using trypsin at a 1:20 enzyme-to-protein
ratio in 50 mM ammonium bicarbonate. Residual detergents were
precipitated by adding an equal volume of 2 M KCl. The resulting
peptides were then purified and desalted using C18 StageTips and
reconstituted in 20 µl of 1% formic acid for LC-MS/MS analysis.
Mass spectrometry was performed on non-blinded but randomly
ordered samples, with 5–9 biological replicates per condition.

Liquid chromatography and tandem mass spectrometry
(LC-MS/MS) analysis

Peptide mixtures were analyzed using a Dionex Ultimate 3000
RSLC nanoLC system coupled to an Orbitrap Exploris 480 mass
spectrometer. Peptides were injected using a solvent consisting of
95% eluent A (0.1% formic acid in water) and 5% eluent B (0.1%
formic acid in 80% acetonitrile) at a flow rate of 300 nL/min.
Samples were first concentrated on a trap column (Acclaim
PepMap C18, 100 Å, 5 mm × 300 µm i.d.; Thermo Scientific),
followed by separation on an analytical column (Acclaim PepMap
C18, 100 Å, 75 µm × 25 cm; Thermo Scientific) using reversed-
phase chromatography. Peptides were eluted with a 75-min linear

gradient from 5 to 31% eluent B, followed by a 20-min ramp up to
50% eluent B. Mass spectrometry was performed in positive ion
mode with data-dependent acquisition. Full MS (MS1) spectra were
collected at 120,000 resolution over an m/z range of 375–1550,
using an AGC target of 3 × 106 ions, maximum injection time
(maxIT) of 25 ms, and a charge state range of 2 to 7. Dynamic
exclusion was set to 60 s with single-event exclusion and a mass
tolerance of 10 ppm. For MS/MS (MS2), precursor ions were
selected using a top-speed approach with a 2-s cycle time. A
decision tree strategy was employed to prioritize precursor ions:
those with signal intensities above 3 × 105 were given highest
priority (scan priority one), and those between 1 × 104 and 3 × 105

were assigned as scan priority two. MS2 settings included a 2m/z

isolation window, normalized collision energy (NCE) of 30% using
higher-energy collisional dissociation (HCD), and resolutions of
7500 and 15,000 for priority one and two scans, respectively. AGC
targets were set to 1 × 105 with maxITs of 20 ms and 50 ms. Full MS
data were acquired in profile mode, while fragment ion spectra
were recorded in centroid mode.

Database searching

Mass spectrometry raw files were analyzed using Proteome
Discoverer™ software (version 3.0.1.27, Thermo Scientific), employ-
ing the SEQUEST® HT algorithm to search against the Mus
musculus Swiss-Prot® protein database (release date: 2023-11-08).
Tryptic digestion was assumed with up to two missed cleavages
permitted, and peptide lengths were restricted to between 7 and 30
amino acids. Precursor ion mass tolerance was set at 10 parts per
million (ppm), and fragment ion tolerance for MS2 was set at
0.02 Da. Carbamidomethylation of cysteine residues was specified
as a fixed modification, while oxidation of methionine and
N-terminal methionine loss were considered variable modifica-
tions. False discovery rates (FDR) for both peptide and protein
identifications were controlled at 1%, as defined by the Peptide and
Protein Validator nodes within the Consensus workflow. Unless
otherwise specified, default settings were applied for all nodes. The
Spectrum Selector node was configured to include charge states
from +2 to +6. INFERYS rescoring was enabled in automatic
mode, and final peptide-spectrum matches were filtered to a
maximum of 1% FDR using the Percolator algorithm during the
Processing workflow. A second-pass search was enabled to detect
semi-tryptic peptides. For quantification, both razor and unique
peptides were used. Prior to downstream analysis, entries flagged as
reverse hits, identified by site only, or classified as potential
contaminants were excluded.

Data processing

After initial processing in Proteome Discoverer, peptide-level
quantification data were exported and further curated using the
QFeatures package (version 1.12.0) in R (version 4.3.1). Several
filtering criteria were applied to ensure data quality: peptides
lacking a corresponding master protein accession (Master.Protei-
n.Accessions) were excluded; entries with quantification flags
marked as “NoQuanValues” or “NoneMonoisotopic” (Quan.Info)
were removed; only peptides linked to a single protein group
(X..Protein.Groups == 1) and classified as unambiguous (PSM.Am-
biguity == “Unambiguous”) were retained. Additional filtering was

Enzo Scifo et al The EMBO Journal

© The Author(s) The EMBO Journal Volume 44 | Issue 16 | August 2025 | 4631 –4660 4647

D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://w
w

w
.em

b
o
p
ress.o

rg
 o

n
 S

ep
tem

b
er 1

7
, 2

0
2
5
 fro

m
 IP

 1
9
3
.1

7
5
.1

5
4
.1

9
.



performed based on posterior error probabilities and q-values, both
required to be ≤0.05 (as computed by Qvality). Peptide intensities
were normalized using median centering (center.median) and log-
transformed to stabilize variance and approximate normality.
Protein-level quantification was then derived by aggregating
peptides using the robustSummary method from the MsCoreUtils
package, grouping by the master protein accession identifier.
During aggregation, missing values were excluded (na.rm = TRUE).
Remaining missing protein intensities were imputed using the
missForest algorithm (version 1.5), a non-parametric random
forest-based approach that iteratively predicts missing values based
on observed features, offering robust imputation across complex
datasets.

To detect differentially expressed proteins (DEPs), a moderated
F-test was applied, enabling the evaluation of statistical differences
across all experimental groups without requiring a predefined
reference condition. This method assesses whether any condition
differs from the others by considering all model coefficients
simultaneously, making it especially appropriate for exploratory
analyses with balanced group designs. The limma package (version
3.58.1) was used to fit a linear model to the protein expression data
(lmFit), followed by empirical Bayes moderation to shrink variance
estimates and enhance statistical reliability. An overall F-statistic
and associated P values were computed via the topTable function.
Proteins with a Benjamini–Hochberg adjusted P value < 0.05 were
classified as significant. This approach provides a robust framework
for identifying DEPs while accounting for variability across age
groups and organs.

Dimensionality reduction of samples in
various mouse organs

To assess intra-organ variability across the six age points (3, 5, 8,
14, 20, and 26 months), we applied Uniform Manifold Approxima-
tion and Projection (UMAP) (Becht et al, 2019) (UMAP) to our
proteomic datasets (Figs. 1B and 2E–H). Input data for UMAP
consisted of log-transformed, normalized protein abundances from
all age groups across the eight analyzed organs: brain, heart, kidney,
liver, lung, skeletal muscle, spleen, and testis. For organ-specific
dimensionality reduction, the full set of identified proteins per
organ was used. For cross-organ visualization, we restricted the
analysis to the 1,223 proteins commonly detected across all organs,
as determined using the merge function in R. We evaluated three
distance metrics “euclidean”, “canberra”, and “cosine” to determine
which provided the clearest cluster separation. Since all three
metrics produced comparable clustering results, we opted to use the
default “Euclidean” metric for the final UMAP visualizations.

UpSet plot analysis

To visualize overlap and specificity of age-associated changes, we
analyzed differentially expressed proteins (DEPs) identified in the
eight mouse organs—brain, heart, lung, liver, kidney, spleen,
skeletal muscle, and testis—by comparing protein expression at
20 months to the 3-month baseline. Only DEPs identified with
medium to high confidence were included. Visualization was
performed using the UpSetR package (version 1.4.0) in R (version
4.3.1). The resulting UpSet plot illustrates both organ-specific
(single black dots) and shared (connected dots) protein expression

changes across organs (Fig. 4B), effectively highlighting the unique
and overlapping DEPs among tissues.

Trajectory analysis

To investigate age-related protein expression dynamics, we
performed trajectory analysis using log-transformed, normalized
abundance values from the proteomics datasets. For each organ,
protein expression levels across time points were first standardized
using z-score normalization via the scale function in R, and the
resulting average z-scores were used as input for time-series
clustering. Temporal expression patterns were grouped into 2 to 4
clusters per organ using the fuzzy c-means algorithm implemented
in the Mfuzz package (version 2.62.0) in R (version 4.3.1).
Clustering parameters were guided by the partition coefficient
(PC) and partition entropy (PE), with the optimal fuzzifier (m)
estimated using the mestimate function (Futschik and Carlisle,
2005; Kumar and E Futschik, 2007). To compare aging trajectories
across the eight mouse organs—brain, heart, kidney, liver, lung,
skeletal muscle, spleen, and testis—we overlaid the most enriched
clusters from each organ into a combined plot. This approach
enabled us to distinguish between organ-specific and shared
temporal protein expression patterns associated with aging. To
interpret the functional relevance of these clusters, we performed
Gene Ontology (GO) enrichment analysis using STRING (https://
string-db.org/), focusing on biological processes and molecular
functions enriched in each cluster (Figs. EV1 and 2).

Construction of protein network hubs

To identify central regulatory proteins in aging-associated net-
works, we analyzed differentially expressed proteins (DEPs) from
non-blood organs using Cytoscape (version 3.10.0; https://
cytoscape.org/). For each organ, we selected the top-ranking hub
proteins based on maximal clique centrality (MCC) using the
CytoHubba plug-in. Specifically, the top 100 hubs were extracted
for kidney and spleen, 50 for liver, and 10 for lung, based on
network connectivity. Protein–protein interaction networks for
these hub sets were then visualized using STRING, highlighting
direct and indirect associations among the most connected
proteins. Hub status was determined by the number of interactions
each protein exhibited within the STRING-derived network.

Linear mixed-effects modeling for tissue-specific
aging effects

To detect proteins exhibiting tissue-specific expression changes
with age, we employed a linear mixed-effects model (LMM) using
the lme4 package in R. The model was specified as:

Expression ~ Age * Tissue + (1 | Mouse), where Age was treated
as a continuous predictor, and a random intercept for Mouse
accounted for intra-individual correlations arising from matched
tissue samples. To test for tissue-specific age trajectories, we
performed a likelihood ratio test (LRT) by comparing the full
model (with the Age × Tissue interaction) to a reduced model
without the interaction term. Proteins with a Benjamini–Hochberg
adjusted P value < 0.05 were considered to exhibit significant age-
by-tissue interaction effects. For proteins identified as significant by
the LMM, we further assessed the directionality of age-related
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changes in each tissue by conducting linear trend tests. These were
performed using ordinary least squares regression (lm(y ~ Age)),
treating Age as a continuous variable. This analysis provided both
the slope and statistical significance of expression changes over
time for each protein-tissue pair. The results were summarized in a
directionality matrix, categorizing proteins as being consistently
upregulated, consistently downregulated, or showing divergent
trends across tissues.

Selection and characterization of isotope-labeled

peptides for targeted mass spectrometry

Peptides for SureQuant-based targeted mass spectrometry (MS)
were selected according to three main criteria. First, we prioritized
unique peptides derived from candidate proteins identified as
differentially expressed across age groups in our label-free
proteomics dataset, based on moderated F-test results. Second,
peptides with favorable ionization properties and previously
observed in MS-based studies (as curated in PeptideAtlas) were
preferred. Third, candidate peptides were required to be 8–25
amino acids in length and free of internal cysteine residues to
ensure stability and detectability. Using these criteria, we acquired
synthetic PEPotec peptides (Thermo Scientific) labeled with stable
isotopes at the C-terminal lysine (K) or arginine (R). These crude,
heavy-labeled peptides were pooled at equimolar concentrations
(1 pmol/μL each in 0.1% formic acid) to create a spike-in standard
for downstream MS analysis. Peptide intensity optimization was
performed prior to the SureQuant assay. In the initial survey run,
precursor ions were monitored using their monoisotopic mass
within a 2–3m/z window, capturing reference fragment ions at a
minimum intensity of 1 × 105. A second run was conducted using
the precursor m/z values identified in the first step to confirm and
fine-tune fragment ion selection. For quantitative analysis, the same
endogenous tryptic peptides from the label-free experiment were
used, this time spiked with the stable isotope-labeled (SIL)
counterparts. Target peptides quantified in the SureQuant assay
are listed in Dataset EV14.

Liquid chromatography and survey MS analyses

Stable isotope-labeled (SIL) and endogenous peptides were mixed
and analyzed using a Dionex Ultimate 3000 RSLC nanosystem
coupled to an Orbitrap Exploris 480 mass spectrometer. Samples
were injected in a solvent containing 95% eluent A (0.1% formic
acid in water) and 5% eluent B (0.1% formic acid in 80%
acetonitrile), and loaded onto a trap column (Acclaim PepMap
C18, 100 Å, 5 mm × 300 μm i.d., Thermo Scientific). Peptides were
separated by reversed-phase chromatography on an analytical C18
column (75 μm × 25 cm, Thermo Scientific) using a 35-min linear
gradient from 5% to 25% eluent B, followed by a 5-min ramp to
50% eluent B. Mass spectrometry was performed in positive ion
mode using data-dependent acquisition (DDA). Instrument
settings included a spray voltage of 1.9 kV, no sheath or auxiliary
gas flow, and a capillary temperature of 300 °C. MS1 scans were
acquired at 120,000 resolution, over a mass range of 300–1500m/z,
with an automatic gain control (AGC) target of 3 × 106 ions, a
maximum injection time (maxIT) of 50 ms, and a default precursor
charge state of 2. For each MS1 scan, the top 40 most intense ions

from the inclusion list exceeding an intensity threshold of 1 × 105

were selected for fragmentation. These were isolated within a 1.0 m/

z window and fragmented using higher-energy collisional dissocia-
tion (HCD) with a normalized collision energy (NCE) of 28%.
MS2 spectra were recorded over a scan range of 100–1700m/z, with
an AGC target of 1 × 10⁷ ions, maxIT of 10 ms, and a resolution
of 7500.

SureQuant-based quantitation of selected
target peptides

SureQuant analysis was carried out following a described protocol
(Stopfer et al, 2021), with specific adjustments tailored to our
experimental design. Data acquisition was conducted using a
modified SureQuant acquisition template, incorporating four
branches to accommodate the +2 and +3 charge states of stable
isotope-labeled (SIL) lysine- and arginine-containing peptides.
Peak area data for endogenous (light) and corresponding heavy
internal standard (IS) peptides were extracted using Skyline
software (version 21.1.0.278) (MacLean et al, 2010). Only peptides
for which the IS signals showed non-zero area under the curve
(AUC) for at least five out of six monitored product ions were
retained for analysis. For quantification, the three most intense
fragment ions from both light and heavy peptides were selected.
Their peak areas were summed, and the light-to-heavy ratio was
used to calculate peptide abundance across samples. This approach
—focusing on three high-intensity transitions—provided a com-
promise between quantitative precision and the ability to detect
low-abundance targets.

Quantification and statistical analysis

Statistical analysis details, including the tests and N number used,
are provided in the figure legends.

Data availability

Raw MS data, peak lists and search results are publicly available
under the following accession numbers-ProteomeXchange
(PXD058684) and jPOST (Okuda et al, 2017) (JPST003472) via
the following link: https://repository.jpostdb.org/entry/
JPST003472.3. Source data for Figs. 2, 3, EV and appendix Figs.
have been deposited and is publicly accessible through the Data
Dryad online repository under the following link: http://
datadryad.org/share/WGg-0_wtEQp0kSMfDDtl5xdKmqR8Yu_9yR
UGWZ2GCZ8. Analysis code is available at https://github.com/
ehningerd/Scifo-Morsy-Liu_et_al-mouse_aging_proteome.

The source data of this paper are collected in the following
database record: biostudies:S-SCDT-10_1038-S44318-025-00509-x.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44318-025-00509-x.
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Expanded View Figures

Figure EV1. Aging-associated protein expression changes in skeletal muscle, testis, and heart.

(A–C) Heatmaps illustrate differentially expressed proteins (DEPs) across six age groups (3, 5, 8, 14, 20, and 26 months) for skeletal muscle (A), testis (B), and heart (C).

Proteins (rows) are clustered by expression trends, while columns represent age groups. The color gradient reflects log-transformed expression values, with red indicating

higher expression (upregulation) and blue indicating lower expression (downregulation) relative to each protein’s average level. Line graphs adjacent to the heatmaps

depict the mean z-scored expression trajectories over time, with the x axis representing age and the y axis showing expression changes. Dot plots at the top highlight the

principal component 1 (PC1) trajectories, capturing age-related shifts in protein expression. PC1 accounts for 80%, 79%, and 83% of the variance in skeletal muscle, testis,

and heart, respectively. Source data are available on the Data Dryad public repository for this figure.
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Figure EV2. Gene Ontology annotation of individual enriched MFuzz clusters for age-DEPs including the blood-derived proteome in the kidney, spleen, liver,

and lung.

Enriched GO biological processes for clusters 1- 3 (C1-C3) for the kidney, clusters 1 and 2 (C1-C2) for the spleen, clusters 1–4 (C1-C4) for the liver and clusters 1–3 (C1-C3)

for the lung are shown. Age-DEPs were clustered into temporal expression patterns using MFuzz clustering. Clusters represent groups of proteins with similar expression

trajectories over six age groups (3, 5, 8, 14, 20, and 26 months). Gene Ontology (GO) enrichment analysis was performed for biological processes using STRING. The bar

plots show enriched GO terms for each cluster, with the x axis representing -log10(P value) of enrichment and the y axis listing the GO terms. Bubble size indicates the

number of proteins associated with each term, while the bubble color gradient corresponds to the false discovery rate (FDR), ranging from low (light green) to high (dark

blue). Source data are available on the Data Dryad public repository for this figure.
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Figure EV3. Gene Ontology annotation and STRING network analysis of shared non-blood-derived age-DEPs in 2 or more organs.

Enriched GO biological processes and STRING interaction network clusters for the top hub proteins identified in the shared age-DEPs between the kidney and spleen (A),

kidney and liver (B), spleen and liver (C) as well as kidney, spleen and liver (D) are shown. Left Panels: GO plots showing enriched biological processes for the shared age-

DEPs. The significance of enrichment is indicated on the x axis with the -log10(FDR), while protein count and false discovery rate (FDR), are depicted by the size and color

of circles, respectively. Right Panels: STRING interaction networks for the top hub proteins identified using Cytoscape’s CytoHubba. Each node represents a protein, and

edges indicate functional associations. Source data are available on the Data Dryad public repository for this figure.
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Figure EV4. Pairwise correlation analysis of shared age-DEPs in kidney and spleen, kidney and liver, liver and spleen.

Heatmaps displaying the expression trajectories of highly correlated proteins (Spearman’s correlation coefficient >0.5) across paired organ comparisons: (A) spleen and

kidney, (B) kidney and liver, and (C) spleen and liver. The color gradient indicates the normalized and log-transformed expression values, ranging from low (blue) to high

(red) relative to the mean (standard error of the mean (SEM) is 0.1, 0.18, and 0.11 for the kidney, spleen, liver). Each heatmap represents the top 20 positively correlated

proteins for the corresponding organ pair. Age groups (in months, e.g., 3 M, 5M) are displayed on the y axis, and proteins are listed on the x axis. (D–F) Gene Ontology

(GO) biological process enrichment analysis in STRING for proteins positively correlated (Spearman’s correlation coefficient >0.5) in each organ pair: (D) spleen-kidney,

(E) kidney–liver, and (F) spleen–liver. The x axis represents the -log10(FDR) of the enriched terms, while the bubble size corresponds to the number of genes associated

with each term. The color gradient reflects the significance of enrichment, with lighter and darker shades indicating lower and higher FDR values, respectively. Source data

are available on the Data Dryad public repository for this figure.
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Figure EV5. Correlation analysis of shared age-DEPs in kidney, liver and spleen.

(A) Heatmaps showing the expression patterns of 31 highly correlated proteins (Spearman’s correlation coefficient >0.5 across all pairwise organ comparisons) in kidney,

liver, and spleen. The x axis represents the age groups (in months, e.g., 3 M, 5M), while the y axis lists the proteins. The color gradient denotes normalized and log-

transformed expression levels, with red indicating high expression and blue indicating low expression relative to the mean. (B) Line graphs depicting the expression

trajectories of the top 20 highly correlated proteins across kidney, liver, and spleen. Each plot represents the protein expression trajectory across age groups for the three

organs, providing a visual comparison of expression dynamics. The consistent trends across organs demonstrate the shared correlation of protein expression across the

biological systems. (C) Gene Ontology (GO) enrichment analysis of the highly correlated proteins. The x axis represents the -log10(FDR) of enriched biological processes,

while the bubble size reflects the number of proteins associated with each term. The color gradient indicates FDR significance, with lighter and darker shades denoting

lower and higher significance, respectively. Source data are available on the Data Dryad public repository for this figure.
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