
Thematic Section: Advances in Musculoskeletal and Neuromuscular Rehabilitation 
Eur J Transl Myol 35 (2) 13956, 2025 doi: 10.4081/ejtm.2025.13956

A  large number of inherited or acquired human disorders 
are associated with abnormalities in contractile 

myofibre abundance, regulation and/or physiological 
functioning.1 One of the most severely progressive genetic 
skeletal muscle wasting disorders of early childhood is 
Duchenne muscular dystrophy (DMD),2 which is 
characterized by primary abnormalities in the highly 
complex and multi-promoter DMD gene.3 Mutations trigger 
the almost complete loss of the full-length DMD gene 
product, the dystrophin protein isoform Dp427-M of the 
membrane cytoskeleton, and the concomitant reduction of 
dystrophin-associated glycoproteins at the weakened 

sarcolemma membrane.4 The neuromuscular abnormalities 
in DMD are characterized by sarcolemmal leakage and 
surface membrane instability rendering muscles more 
susceptible to progressive myonecrosis, which is followed 
by chronic inflammation, reactive myofibrosis, fat 
substitution and abnormal myofibre regeneration.5,6 DMD 
patients can also suffer from a variety of additional multi-
system complications including cognitive deficiencies, 
cardio-respiratory failure, kidney damage, liver dysfunction 
and gastro-intestinal symptoms.7 
Newborn screening, detection of early signs of neuromus-
cular weakness, the differential diagnosis of different forms 
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of dystrophinopathy and the evaluation of genetic carrier 
status with varying degrees of symptoms can be carried out 
by numerous tests. This includes physical examinations, 
strength/walk motor assessments, blood enzyme assays, the 
histological and immunochemical examination of skeletal 
muscle biopsies, neurological electro-diagnostics and var-
ious imaging technologies.8-12 
To decisively reduce the clinical diagnostic/prognostic com-
plexity and considerable financial burden of these diverse 
tests, there is a need for the development of simpler, stream-
lined and more cost-effective biofluid-based assay systems 
that are ideally minimally invasive in nature.13 In general, 
direct or indirect damage of skeletal muscles often leads to 
the release of distinct muscle-associated or muscle-derived 
proteins into the circulatory system. The active or passive 
shedding of muscle proteins can be linked to strenuous 
physical exercise, traumatic injury, work-related musculos-
keletal damage, sepsis, drug abuse, excessive alcohol con-
sumption, certain medications, co-morbidities of the 
neuromuscular system during systemic disease or primary 
muscular disorders.14-18 
It is therefore critical to identify DMD disease-specific 
serum biomarkers that exhibit only a limited overlap with 
other neuromuscular disorders or activity-dependent 
changes. 
 
 
Aim of this article on serum biomarkers 
This article reviews the current status of established serum 
markers of DMD versus novel protein indicators of this 
devastating skeletal muscle disease. In the future, serum 
biomarkers will be especially crucial for the therapeutic 
monitoring of novel treatment approaches that utilize ge-
nome editing, stop codon read-through, antisense oligonu-
cleotide-based exon skipping, gene transfer via 
adeno-associated viruses that express micro-dystrophins, 
and/or new types of pharmacotherapy.19-23 
The discovery of novel biomarker candidates is outlined in 
this article, which has been carried out mostly by peptide 
Mass Spectrometry (MS),24 or aptamer-based proteomic 
SOMAscan methodology.25 Detailed descriptions of the 
various preparative and analytical methodologies that are 
routinely used in MS-based skeletal muscle proteomics 
have recently been published,24 including their application 
for studying the molecular and cellular pathogenesis of 
DMD and associated pathophysiological crosstalk and 
multi-system dysfunctions.26 

 
 
Biofluid protein biomarkers 
Characteristic changes in the abundance and/or biochem-
ical activity of marker proteins in bodily fluids can be used 
to develop superior liquid biopsy assays to improve dia-
gnostics and prognostics, as well as the continuous mon-
itoring of therapeutic success and the potential occurrence 
of adverse side effects.27 A large variety of biofluids are 
currently investigated for their suitability to contain ap-
propriate biomarker signatures, including serum, plasma, 
saliva, urine, cerebrospinal fluid, tears, lymph, broncho-

alveolar lavage fluid, gastric juice, bile, pancreatic juice, 
aqueous humour, sweat, menstrual flow, breast milk, nip-
ple aspirate, amniotic fluid, follicular fluid, vaginal secre-
tions, sperm, ear cerumen, gland exudes, synovial fluid, 
nasal mucus, alveolar fluid and breath condensate.28 The 
application of body fluid proteomics has greatly enhanced 
this exciting field of pathobiochemical research and es-
tablished an unprecedented capability for the unbiased 
large-scale and high-throughput discovery of novel dis-
ease biomarker candidates.29-31 
Biofluid-associated protein biomarkers are ideally specific 
proteoforms of distinct protein species, or their representa-
tive peptide fragments, which are: (i) characterized by dis-
crete biochemical, physiological or cellular activities/ 
features that can be easily and cost-effectively measured, 
(ii) cell or tissue specific in their expression pattern, (iii) en-
riched in a restricted subcellular location, (iv) actively or 
passively released following particular types of cellular 
damage, (v) shed into easily assessable biofluids for mini-
mally invasive monitoring, (vi) being suitable for repeated 
sampling procedures, (vii) are of robust and sensitive nature 
for optimum assaying, (viii) specific for a particular patho-
physiological phenotype, (ix) suitable for disease screening, 
differential diagnostics, prognosis, evaluation of unwanted 
side effects and therapeutic monitoring, and (x) being an 
integral part of a meaningful and comprehensive biomarker 
signature.13 
Established and clinically approved indicators of disease 
processes can be used in a variety of biomedical applica-
tions as population screening markers, differential diagnos-
tic markers, tissue injury markers for the evaluation of 
disease severity, prognostic markers that also take into ac-
count potential co-morbidity/multi-system effects, thera-
peutic monitoring markers that encompass the 
determination of adverse side effects, and clinical outcome 
markers (Figure 1).15-18,32  
A variety of protein species, which are highly enriched in 
skeletal muscles, exhibit many of the above outlined char-
acteristics of muscle damage markers, and can be used 
alone or in combination for the development of more reli-
able biomarker tests of muscular disorders such as DMD. 
 
 
Skeletal muscle damage markers 
General markers of muscle injury 
In clinical medicine, occupational health and sports physi-
ology, serum markers of skeletal muscle damage are rou-
tinely used to assess the degree of myofibre injury.13-18 One 
of the most extreme forms of muscle disintegration is rhab-
domyolysis,33 a condition that is characterized by the mas-
sive release of muscle proteins and electrolytes often 
causing harmful downstream effects on kidney, lung and 
heart function.18 Frequently used skeletal muscle damage 
markers include creatine kinase (CK), myoglobin (MB), as-
partate transaminase (AST) and glycolysis-associated 
enzymes such as lactate dehydrogenase (LDH).16 
Figure 2 gives an overview of general skeletal muscle pro-
tein biomarkers released into the circulatory system fol-
lowing myofibre damage16-18, as observed in DMD,10 and 
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associated complications, such as myofibrosis.34 The ma-
jority of the listed marker proteins are currently only used 
for research purposes. A minority of the displayed protein 
species are clinically approved for evaluating muscle in-
jury, such as CK, MB, AST and LDH.16,18 
 
Creatine kinase 
One of the most frequently employed clinical indicators 
of general damage to the muscular system is measuring 
the blood-based activity levels of the enzyme CK.16 CK 
catalyses the reversible conversion of ATP and creatine to 
ADP and phosphocreatine. Five CK isoforms exist in the 
body in the cytosol and mitochondria. In the cytosol, com-
binations of muscle (M) and brain (B) type subunits result 
in 3 isoenzymes, i.e. CK-MM, CK-MB and CK-BB.35 The 
cytosolic CK enzymes provide an energy reservoir for 
ATP regeneration. The mitochondrial CK isoenzymes 
consist of the sarcomeric (mtCKs) and the ubiquitous form 
(mtCKu), and are involved in the direct formation of phos-
phocreatine from ATP in the mitochondrial intermembrane 
space.18 
Increased CK levels are routinely used for the preliminary 
diagnosis of neuromuscular disorders, including DMD.35,36 
Bottom-up proteomics can detect cytosolic M-type CK 
(CKM gene), cytosolic B-type CK (CKB gene) and mito-
chondrial CK (CKMT2 gene) in serum samples.37-39 Ad-
vantages of CK assays are their low cost and suitability 
for high-throughput testing. The amount of serum CK cor-

relates well with the degree of skeletal muscle damage.15,35 
Of note, large-scale newborn screening of elevated CK 
levels has been successfully applied for the early diagnosis 
of DMD cases, combined with confirmatory genetic anal-
ysis.40-42 Disadvantages of CK tests are bioanalytical is-
sues with serum CK measurements that are associated 
with inter-individual and ethnic variabilities, an uneven 
tissue distribution of CK in different skeletal muscles, and 
a relatively low detection sensitivity in the case of minor 
muscle injury.43-45 
 
Myoglobin 
As an essential oxygen storage and transportation element, 
the cytoplasmic haemoprotein MB reversibly binds oxygen 
in heart and skeletal muscles.46 MB is of central physiolog-
ical importance for intracellular oxygen buffering, support-
ing  oxygen diffusion and facilitating the mitochondrial 
process of oxidative phosphorylation.47 However, MB is 
also implicated to interact with glycolytic metabolites, 
being involved in the sequestration and trafficking of lipids, 
and serving as a modulating sensor of nitric oxide-respon-
sive signalling pathways,48 besides its canonical oxygen 
binding function.46 Importantly, the drastic increase of MB 
levels in blood and urine is a reliable indicator of rhabdo-
myolysis.18,33 
An analytical issue with serum MB is the overlap between 
its release from both heart and skeletal muscles following 
tissue injury. However, this problem can be addressed by 
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measuring the ratio between serum MB and the CA3 iso-
form of cytosolic carbonic anhydrase. Since the CA3 iso-
enzyme is only expressed in skeletal muscle, but not 
cardiac myocytes, the determination of CA3, MB and the 
CA3/MB ratio in serum specimens can differentiate be-
tween the involvement of the heart versus skeletal muscles 
in particular disease processes.49 
MS-based proteomics can conveniently measure alterations 
in blood MB levels.37-39 The proteomic screening of serum 
from dystrophic patients and animal models of DMD has 
clearly confirmed an elevated MB concentration due to 
skeletal muscle degeneration.37,50-52 

Glycolytic enzymes 
Glycolytic enzymes represent ideal skeletal muscle 
markers, since they are highly abundant in the sarcosolic 
fraction as determined by proteomics,53-55 and they easily 
shed from damaged myofibres resulting in high levels of 
these types of enzymes in the circulatory system.36,37 Bio-
chemical and MS-based proteomic analyses of serum 
samples can be employed to routinely detect glycolysis- 
associated enzymes, such as LDH (encoded by LDHA and 
LDHB genes).37-39,56 LDH mediates the conversion of py-
ruvate to lactate under anaerobic conditions. In dystrophic 
patients and animal models of DMD, increased levels of 
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Figure 2. Overview of major proteins that are actively or passively released from dystrophic skeletal muscle tissues. On 
the left is shown a flowchart of major steps that are involved in the molecular and cellular pathogenesis of dystrophinopathy 
ranging from the primary abnormality in the DMD gene to complex alterations in dystrophic skeletal muscles, including 
myonecrosis, chronic inflammation, fat substitution and reactive myofibrosis. On the right are listed major muscle-derived 
serum protein species that exhibit elevated levels in X-linked muscular dystrophy and have been routinely identified by 
biochemical and proteomic assays. The yellow boxes in the diagram highlight clinically approved protein markers that 
are frequently employed to evaluate skeletal muscle damage.  
Abbreviations used: ACT, actin; ALD, aldolase; ALT, alanine aminotransferase; AST, aspartate transaminase; c, cytosolic; 
CA3, carbonic anhydrase 3; CK, creatine kinase; COL, collagen; COMP, cartilage oligomeric matrix protein; ECM, 
extracellular matrix; ENO, enolase; FABP3, fatty acid binding protein 3; FN, fibronectin; HBDH, hydroxybutyrate 
dehydrogenase; LDH, lactate dehydrogenase; MB, myoglobin; MLC3, myosin light chain 3; MMP, matrix 
metalloproteinase; mt, mitochondrial; MYBP, myosin binding protein; MYOM3, myomesin 3; MyHC, myosin heavy chain; 
OPN, osteopontin; TIMP, tissue inhibitor of metalloproteinases; TnI, troponin subunit I; TTN, titin.
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serum LDH, in addition to aldolase, enolase and pyruvate 
kinase, were identified by both enzyme assays, often in 
combination with elevated CK,57-59 and proteomic 
surveys.37,38,50-52 
 
 
Proteomic muscle damage markers 
Mass spectrometric analysis of biofluids 
The large-scale and MS-based proteomic analysis of 
bodily fluids has led to the comprehensive establishment 
of liquid biopsy markers in health and disease.27-31 A large 
array of several thousand identified serum proteins spans 
a wide dynamic range of concentrations.39 This proteomic 
atlas of the plasma/serum proteome can now serve as an 
advanced search tool for biofluid marker candidates.56 
 
Proteomic biomarkers of dystrophinopathy 
MS-based profiling studies of dystrophic skeletal muscles 
have revealed considerable changes in proteins involved 
in myofibre contraction, the regulation of the physiologi-
cal coupling of excitation, contraction and relaxation, ion 
homeostasis, bioenergetic pathways, the organization of 
the cytoskeletal network and the cellular stress response.60-

67 Thus, the collapse of the dystrophin-glycoprotein com-
plex,68 which acts as a signalling and stabilization node at 
the plasmalemma and costameres in healthy skeletal mus-
cles,69 causes surface membrane micro-rupturing, sar-
colemmal Ca2+-influx, Ca2+-dependent proteolysis, 
weakened lateral force transmission and impaired excita-
tion-contraction coupling.70 These massive alterations in 
the proteomic profile of dystrophic skeletal muscles are 
partially reflected by alterations in the circulatory system 
showing distinct changes in the abundance of certain 
skeletal muscle-derived proteoforms in plasma/serum, sa-
liva and urine.37,38,49-52,71-87 
The systematic immunochemical, biochemical and pro-
teomic screening of serum from DMD patients and animal 
models of dystrophinopathy has confirmed elevated levels 
of previously characterized muscle damage markers such 
as M-type CK, LDH and MB, and identified novel marker 
candidates, including the MDH2 isoform of malate de-
hydrogenase, CA3, fibronectin (FN), fatty acid binding 
protein FABP3, fast troponin TnI (TNNI2), myosin light 
chain MYL3, fragments of the giant muscle protein titin 
(TTN), the molecular chaperone Hsp70 (HSPA1A), mi-
togen-activated protein kinase MAPK12, and Ca2+/cal-
modulin-dependent protein kinase CAMK2A,49-52,71-87 The 
measurement of serum inflammatory cytokines in dys-
trophic dog models suggests that elevated levels of C-C 
motif chemokine ligand 2 (CCL2) could be useful disease 
biomarkers of dystrophinopathy.88,89 In addition, a high 
concentration of the acute phase protein haptoglobin, 
which is mostly produced in the liver, was discovered in 
the serum from an animal model of dystrophinopathy.37  
Interestingly, amino-terminal fragments of the extracellu-
lar dystrophin-association glycoprotein alpha-dystrogly-
can were detected in serum by ELISA tests, making this 
crucial laminin/merosin-binding protein of the dystrophin-
glycoprotein complex a potential biofluid marker of 

DMD.90 A recent study indicates that changes in proteins 
encoded by the RGMA, EHMT2, ART3, ANTXR2 and 
DLK1 genes are associated with an increased risk of limb 
clinical milestones in DMD.91 
 
Carbonic anhydrase CA3 
Elevated levels of CA3, a key muscle enzyme with anti-
oxidative function that is intrinsically involved in the 
physiological maintenance of the intracellular pH-value, 
were established to occur in the serum of DMD patients.49 
This agrees with previous non-proteomic screening 
studies.92-94 A variety of CA isoforms, which catalyse the 
reversible hydration of carbon dioxide, exist in subtypes 
of contractile tissues.49 The establishment of fibre type 
specific markers is important for the cell biological clas-
sification of skeletal muscles in health and disease. In the 
human musculature, slow-twitching fibers that exhibit ox-
idative metabolism are of type I, predominantly fast-
twitching fibres with an oxidative-glycolytic bioenergetic 
profile are of type IIa, and fast-twitching fibres with high 
levels of glycolysis are of type IIx.95 Fibre types can be 
differentiated by their expression of the myosin heavy 
chain (MyHC) isoforms MyHC-1, MyHC-2a and MyHC-
2x in type I, IIa and IIx fibers, respectively.96 
In addition to the differential MyHC expression, cytosolic 
CA3 can also be utilized to characterize fibre type speci-
fication. CA3 is significantly enriched in slow-twitching 
type I myofibres, making it a reliable marker enzyme of 
fibre type distribution and skeletal muscle adaptations due 
to changed functional demands or pathophysiological 
changes that are associated with fibre type shifting.97,98 Of 
note, in DMD, CA3 levels were shown to be decreased in 
muscle tissues and elevated in serum.37,49,51,52,75 
 
Fatty acid binding protein FABP3 
The muscle/heart isoform of the fatty acid transporter, 
FABP3 (H-FABP), belongs to the family of lipid chap-
erones that mediate extra- and intracellular movements of 
hydrophobic metabolites.84 Voluntary muscles express 
high levels of FABP3 in addition to FABP1, FABP2, 
FABP4 and FABP5, which are involved in bioenergetic 
metabolism and cellular signalling processes. Systematic 
proteomic surveys of FABP isoforms in skeletal muscle, 
in combination with heart, kidney, liver and serum, re-
vealed that dystrophinopathies are associated with consid-
erable changes in metabolite transportation and fatty acid 
metabolism in DMD.84 
Dystrophin-deficient cardiac and skeletal muscle tissues 
contain decreased concentration of FABP3, but serum from 
DMD patients and dystrophic animal models shows 
elevated FABP3 levels.37,49,51,52,75 Interestingly, animal 
models of DMD exhibit increased FABP5 in the liver and 
FABP1 in the kidney in association with ectopic fat deposi-
tion.99-101 This indicates that impaired liver function and renal 
failure that may occur at advanced stages of DMD,2,7 in com-
bination with abnormalities in the gastrointestinal tract and 
chronic inflammation,102-104 could be associated with abnor-
mal fat metabolism. This is most likely due to impaired car-
diovascular functioning and abnormal circulation which 
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starves organs of the proper supply with nutrients, metabo-
lites, oxygen, hormones and signalling factors.84 

 
Sarcomeric proteins 
The complex arrangement of actin/nebulin-containing thin 
filaments with their regulatory troponin and tropomyosin 
complexes, myosin-containing thick filaments, auxiliary 
TTN filaments, Z-disc complexes and M-line proteins has 
been extensively characterized by proteomics.105,106 De-
generative muscle diseases are characterized by dis-
integration of the acto-myosin complex and associated 
sarcomeric proteins. It is therefore not surprising that the 
release of contractile proteins from damaged myofibres in 
DMD has been confirmed by MS-based studies.37,50-52,75 
Of special interest are fragments of TTN, an abundant 
high-molecular-mass protein that belongs to the class of 
giant muscle proteins,107 TTN of apparent 3,900 kDa is a 
half-sarcomere spanning protein that functions as a me-
chanical stabilizer of the contractile apparatus and is in-
volved in sarcomere assembly and maintenance, as well 
as the provision of muscle elasticity.108 Degradation of 
TTN and the release of peptide fragments are clearly as-
sociated with DMD.86,87 TTN-derived peptides have been 

identified in both serum and urine samples from DMD pa-
tients and animal models of dystrophinopathy.85,109 In ad-
dition, myosin binding protein MYBP, troponin subunit 
TnI, myomesin isoform MYOM3, actin and myosin light 
chain MLC3 were identified in DMD serum.37,50-52,75 An 
increased concentration of cardiac troponin cTnI is a 
promising candidate biomarker for late-onset in DMD pa-
tients.110,111 Besides sarcomeric markers, the elevated 
levels of interleukin 1 receptor-like 1 protein (ST2) in the 
serum of cardiomyopathic DMD patients was shown to 
be a promising for minimally invasive monitoring of car-
diac complications in dystrophinopathy.112 The degrada-
tion and misfolding of sarcomeric proteins is associated 
with elevated levels of molecular chaperones in the serum 
of dystrophic organisms, which agree with a considerable 
cellular stress response in dystrophic muscles, as con-
firmed by proteomics.113-115 
 
Myofibrosis markers 
The microenvironment of skeletal muscles, which plays a 
critical role in lateral and longitudinal force transmission, 
myofiber maintenance and repair mechanisms,116 is char-
acterized by complex layers of the extracellular matrix 
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Figure 3. Outline of the usefulness of serum protein biomarkers for the diagnosis, prognosis and therapeutic monitoring 
of dystrophinopathy.
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(ECM).117 The basal lamina and endomysium form the in-
nermost ECM structure which encloses and protects in-
dividual myofibres, followed by the perimysium which 
covers each fasciculus, and the epimysium which sur-
rounds the entire skeletal muscle.118 
The MS-based analysis of the extracellular matrix of dys-
trophic skeletal muscles has identified drastic increases in 
matricellular proteins, proteoglycans, ECM-associated 
glycoproteins and various collagens spanning the endo-
mysium, perimysium and epimysium,119-121 This upregu-
lation of ECM components is indicative of reactive 
myofibrosis,122,123 and is reflected by high serum levels of 
FN, osteopontin, collagen fragments, the cartilage 
oligomeric matrix protein COMP, and  matrix-metallop-
roteinase MMP-9 plus tissue inhibitors of the TIMP class 
of proteins.37,71,124-126 

 
 
Future perspectives 
As outlined in Figure 3, novel serum biomarkers of DMD 
can be utilized in a variety of clinical applications includ-
ing differential diagnosis, stage-specific prognosis, thera-
peutic monitoring with repeated sampling options and 
clinical endpoint measurements. Current  patient manage-
ment and treatment of DMD focuses on pharmacotherapy 
with glucocorticoids, in combination with physiotherapy, 
orthopaedic interventions, cardiorespiratory management 
and nutritional support. The suitability of new therapies, 
the determination of clinical success and the evaluation of 
potential adverse effects of novel approaches to treat dys-
trophinopathy have to be properly assessed. New treat-
ments include improved pharmacotherapy, genome 
editing, stop codon read-through therapy, antisense oligo-
nucleotide-based exon skipping, gene transfer via adeno-
associated viruses, myoblast transfer therapy and stem cell 
therapy.19-23,32 Thus, to support the clinical evaluation of 
the functional trajectory of DMD,127-129 it is important to 
develop reliable liquid biopsy tests. 
As recently reviewed by Benemei et al.,12 crucial aspects 
of biomarker assays relate to relevance, quantifiability, 
validity, objectivity, reliability, sensitivity, specificity and 
precision for measuring diagnostic, prognostic and ther-
apeutic monitoring aspects of DMD. Regarding biofluid 
markers of skeletal muscle degeneration in dystrophino-
pathy, ideally these biomarkers exhibit no or only a min-
imal overlap with other tissue damage markers that are 
released from the heart, liver, kidney, smooth muscles, 
the immune system, or the central and peripheral nervous 
system. 
In general, protein biomarker assays should be suitable to 
evaluate focal abnormalities, as well as the progression of 
systemic disease. Assay systems should be robust, cost-
effective and not prone to disproportionate sampling er-
rors in relation to false negatives or false positives. In 
biomarker testing, crucial modifying parameters have to 
be taken into account, such as effects due to the circadian 
rhythm, potential seasonal variations, patient age, gender, 
ethnicity, co-morbidities, extensive pharmacotherapy, sur-
gical treatments, nutrition, physical activity, life style and 
general health status. 
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