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that early AD may be associated with angular deficits (22), we com-
plemented our PI task by including a novel response to assess angu-
lar integration (AI) without being confounded by distance encoding 
as in previous studies [e.g., (22, 23); see (19) for further discussion]. 
To preview, our results show that individuals with SCD exhibit larger 
PI errors compared to controls, driven by increased memory leak as 
revealed by computational modeling. �ese deficits were not associ-
ated with differences in AI, movement dynamics, or visual distance 
estimation, underscoring the specificity of PI impairments in SCD.

RESULTS

Data were collected from 102 participants, comprising 72 controls and 
30 individuals with SCD. No significant differences were observed be-
tween the groups in terms of neuropsychological assessments, self- 
reported navigation abilities, and visuospatial working memory 
(Table 1). �e SCD group was slightly older [Bayes factor in favor of 
the alternative hypothesis over the null (BF10) = 1.916], and controls 
performed slightly better on the gait assessment (BF10 = 3.057), al-
though both groups scored near ceiling (12- point maximum).

To measure PI, participants engaged with an immersive virtual 
reality environment through a head- mounted display (HMD; an ex-
ample video is available in the Supplementary Materials). �ey navigat-
ed the environment using self- motion cues (vestibular, proprioceptive, 
motor efference copies, and optic flow). For the PI task (Fig. 1), par-
ticipants followed a floating object along eight distinct predefined 
curved paths (fig. S1). �ey were required to report two key metrics 
at designated stopping points (stop 1 and stop 2; Fig. 1): (i) initial 
heading orientation (AI response), and (ii) distance and direction 
back to the start of the path (PI response). Some trials featured only 
a single stopping point at the end of the path (Fig. 1; see Materials 
and Methods). A�er outlier exclusion, both groups presented a 
comparable number of valid trials for analysis (Table 1).

Patients with SCD show reduced PI performance
Using a regression model, for group and stopping point with age, 
sex, and Montreal Cognitive Assessment (MoCA) scores as covari-
ates, we found that participants with SCD exhibited larger PI errors 
compared to healthy controls (estimate = 0.257, SE = 0.065, t = 3.925, 
and P < 0.001; Fig. 2A). Both groups demonstrated higher PI error 
at the second stopping point at the end of the path relative to the 
intermediate response points (estimate = 0.560, SE = 0.090, t = 6.245, 
and P < 0.001; Fig. 2B). Critically, there were no significant differ-
ences in PI errors for the final stop between trials with and without 
intermediate stopping points for either group (t = 1.238 and P = 0.217), 
suggesting that in both groups, errors increased with increasing 

walked distance from the start location. Replicating previous find-
ings, PI errors increased with advancing age (estimate  =  0.427, 
SE = 0.063, t = 6.728, and P < 0.001; Fig. 2D), and females exhibited 
higher PI errors than males (estimate = 0.306, SE = 0.067, t = 4.557, 
and P < 0.001; Fig. 2C). Full regression results are reported in the 
Supplementary Materials (table  S1). We assessed whether par-
ticipants performed better than chance on the PI task. Both groups 
outperformed chance at the first stopping point. At the final stop-
ping point, SCD participants did not perform above chance, while 
controls maintained above- chance performance in both trials with 
and without the intermediate stopping point (fig. S2).

In contrast to PI error, there were no differences in AI error be-
tween the groups (BF10 = 0.270;  Fig.  3A), with both groups per-
forming significantly better than chance (control: mean = 46.126° 
and BF10 = 50.125; SCD: mean = 49.463° and BF10 = 16.043). Simi-
lar to PI error, we found higher AI error between the second stop-
ping point at the end of the path and the intermediate response 
points (estimate  =  11.354°, SE  =  1.881, t  =  6.04, and P  <  0.001; 
Fig. 3B). Last, AI error was associated with increasing age and was 
higher in females compared to males (table S2), but there was no 
link between AI error and Corsi block span—a measure of visuospa-
tial working memory (fig. S3).

Movement characteristics and visual distance perception are 
unlikely to drive PI differences between groups
To test whether group differences in PI error were driven by move-
ment dynamics, we compared head movements, angular and trans-
lational velocity, and head pitch (fig.  S4) using Bayesian t tests, 
assessing evidence for the null hypothesis. Controls and SCD nei-
ther differed in head movements during walking (BF01 = 4.049) nor 
in translational (BF01 = 4.129) and angular velocities (BF01 = 2.035).

We further examined whether SCD participants sampled the en-
vironment differently by looking downward more frequently during 
walking, which could impair optic flow perception (24, 25). Because 
gaze behavior was not recorded, head pitch data from the HMD 
served as a proxy, revealing no group differences (BF01 = 2.034). To-
gether, with all analyses yielding BF01 > 1, we conclude that move-
ment dynamics are unlikely to contribute to the differences in PI 
error between groups. �ese findings are consistent with previous 
work by Stangl et al. (17), who also reported no differences in move-
ment dynamics between young and older adults, supporting the no-
tion that PI errors in aging and early AD are not primarily driven by 
altered sampling of the environment but rather by underlying changes 
in spatial computation.

Next, we examined changes in PI performance and movement 
dynamics from early to late trials (comparing the first 10% versus 

Table 1. Demographic characteristics. 

Control mean (SD) SCD mean (SD) BF10

 Age 65.5 (5.68) 68.7 (7.76) 1.916

 MoCA 27.0 (1.80) 26.7 (2.00) 0.274

 Self- reported spatial abilities 69.4 (22.80) 78.5 (24.8) 0.868

 Visuospatial working memory (Corsi block task) 4.5 (0.96) 4.58 (0.898) 0.236

 Gait [subset of functional gait assessment task (  76 )] 11.3 (1.01) 10.6 (1.40) 3.057

 Completed PI trials 79.4 (14.70) 79.2 (18.6) 0.227
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Fig. 1. Task schematic for PI and AI. (Top) Example of the immersive virtual reality environment, illustrating the key stages of the task. Participants started at a desig-

nated point marked by a visible object (e.g., a pumpkin). They then followed a curved path by walking toward a floating sphere (the object was no longer visible). At the 

stopping point, they performed the PI response by repositioning the object to its original location. This was done by turning and estimating the distance using a white 

line displayed on the ground within the virtual environment. Participants also saw a numerical representation of the response line length. In addition, participants per-

formed an AI response (not shown) by rotating to their initial heading orientation (see bottom panel). (Middle) Example of a curved path, performed either with two 

stopping points, stop 1 in the middle of the path and stop 2 at the end (left), or with a single stop at the end of the path (right). (Bottom) Representation of key task ele-

ments and metrics. (Bottom eft) Participant AI response example, where participants are asked to indicate their initial heading orientation at each stopping point by ro-

tating their head and body. This task required participants to memorize their initial heading and update that heading as they navigate the curved path. Dashed arrow 

represents the initial heading orientation, and solid purple arrow represents the AI response. The absolute difference between the two represents AI error. (Top right) For 

the PI response, participants were asked to indicate the start position of the path by turning to the “presumed” start location and then indicating the distance to start. The 

difference between the start location and the PI response indicates PI error (in meters). Participants performed both responses (angular and PI) at each stopping point.
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Fig. 2. PI performance. (A) Group differences in PI error: Healthy controls exhibited significantly lower PI errors compared to the SCD group, (B) with errors increasing at 

the final stopping point relative to intermediate points in both groups. (C) Sex differences in PI error: Females exhibited significantly higher PI errors compared to males. 

Box plots show the median and interquartile range (IQR); violins indicate data distribution with individual data points. (D) PI error increased as a function of age across 

both groups, and the shaded area represents the 95% confidence interval of the regression line. All plots are based on robust multiple linear regression models (P < 0.05).

25

50

75

100

125

Control SCD

Group

A
n
g
u
la
r 
in
te
g
ra
ti
o
n
 e
rr
o
r 
(°
)

A

50

100

Stop 1 Stop 2 Single stop

Stopping point

A
n
g
u
la
r 
in
te
g
ra
ti
o
n
 e
rr
o
r 
(°
)

B

Fig. 3. AI performance. (A) No significant group differences were observed in AI error between healthy controls and individuals with SCD. (B) AI error varied across stop-

ping points, with higher error at stop 2 compared to stop 1 and lower error at the final stopping point in trials with only a single stop compared to those with an intermedi-

ate stop. Box plots show the median and IQR; violins indicate data distribution with individual data points. All plots are based on robust multiple linear regression models.
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last 10% of trials; fig. S5) to ensure no differences in learning dy-
namics or task adaptation between groups, which could confound 
PI performance interpretations. First, we did not find any changes in 
PI performance between early and late trials (estimate =  0.006, 
SE = 0.093, t = 0.068, and P = 0.946), with no significant interaction 
between group and trial stage (estimate  =  −0.046, SE  =  0.093, 
t = −0.493, and P = 0.623). In terms of movement dynamics, we 
observed an increase in translational and angular velocity between 
early and late trials (translation: estimate  =  0.026, SE  =  0.003, 
t = 10.033, and P < 0.001; angular: estimate = 1.807, SE = 0.243, 
t  =  7.452, and P  <  0.001), with similar patterns for path groups 
(translation: P = 0.840; angular: P = 0.983). In addition, both groups 
showed an overall decrease in head movements in later trials (esti-
mate = −96.101, SE = 14.688, t = −6.543, and P < 0.001), poten-
tially reflecting that participants realized the futility of extensive 
head movements due to the lack of distal cues in the environment, 
with no interaction between group and trial stage (P = 0.210). Last, 
head pitch remained unchanged across trials (P = 0.781), with no 
group or trial stage interactions (P = 0.639).

In addition to the PI task, we included a distance estimation task 
to assess potential differences in visual distance perception and re-
sponse precision between control and SCD participants. Participants 
memorized and reproduced distances to an object (1.4, 3.4, and 5.9 m) 
using a virtual ruler. We found no significant group differences 
in distance estimation (estimate = 0.027, SE = 0.024, t = 1.113, 
and P = 0.267; fig. S6), suggesting comparable visual distance per-
ception and estimation across groups. Both groups exhibited a We-
ber’s lawlike effect, with error increasing as the distance increased from 
1.4 to 3.4 m (estimate = 0.288, SE = 0.033, t = 8.722, and P < 0.001) 
and further from 3.4 to 5.9 m (estimate = 0.351, SE = 0.033, t = 10.553, 
and P < 0.001). Notably, the SCD group exhibited a larger increase in 
error at the longest distance compared to controls (estimate = 0.103, 
SE = 0.033, t = 3.092, and P < 0.001), suggesting that they may ex-
perience more pronounced Weber- like uncertainty at greater dis-
tances. However, comparison of the β estimates indicated that the 
main effect of distance (β = 0.351) was more than three times 
larger than the group × distance interaction (β = 0.103), suggesting 
that increasing distance affected both groups more strongly than the 
group difference alone. In addition, distance error increased with age 
(estimate = 0.007, SE = 0.003, t = 1.978, and P = 0.049), although this 
effect was borderline significant and should be interpreted with cau-
tion. Full results are reported in table S3.

Characterizing error sources with a computational model
To better understand the mechanisms that contribute to the ob-
served PI errors, we developed an extended computational model 
based on the distance- based framework introduced by Stangl et al. 
(17). �is enhanced model addresses gaps in prior approaches by 
capturing both individual variability and shared characteristics of 
healthy aging and early pathological changes (i.e., SCD). Our model 
simulates participants’ internal location estimates during PI using a 
two- dimensional diffusion equation, incorporating velocity gain (α ), 
memory leak (β ), additive bias (b), and accumulating noise (σ

0
 ). In-

ternal estimates are generated on the basis of reported distance (d̂) 
and angle, with the addition of Weber- like reporting noise (σr) drawn 
from a normal distribution with zero mean and SD proportional to 

the reported distance (d̂).

To infer the model parameters ( α , β , b, σ
0
 , and σr ), we used a 

Bayesian hierarchical approach, which provides distinct advantages 

over traditional methods based on likelihood maximization. Spe-
cifically, this approach accounts for individual variability while cap-
turing shared group- level characteristics. �e Bayesian framework 
allows for prior knowledge integration and robust parameter esti-
mation via posterior distributions. Parameter inference was con-
ducted using Markov chain Monte Carlo (MCMC) sampling with 
the No- U- Turn Sampler (NUTS), ensuring efficient exploration of 
the parameter space and reliable posterior estimates (26). �is mod-
el effectively captures variability across individuals and groups, en-
hancing our understanding of cognitive changes in aging and SCD.

Model selection and evaluation
To determine the most parsimonious model, we compared candi-
date models combining various error sources (Fig. 4). Model com-
plexity and fit were assessed using expected log predictive density 
for leave- one- out cross- validation (elpdloo) (27). �e full model yielded 
the highest elpdloo value, indicating the best numerical fit, and was 
therefore retained as the primary model for explaining PI error 
sources. However, we note that several reduced models—specifically 
those omitting additive bias, accumulating noise, or both—had elpdloo 
values that were similar to the full model. To ensure our findings 
were not dependent on model choice, we reran all group- level com-
parisons using these alternative models. �e results remained con-
sistent, supporting the robustness of our conclusions. �ese additional 
analyses are reported in the Supplementary Materials (fig. S7).

Memory leak distinguishes patients with SCD from 
healthy controls
What are the mechanisms that may have caused increased PI errors 
in individuals with SCD? To address this question, we first calcu-
lated mean parameter estimates for each participant and compared 
them using linear regression with age and group as covariates (results 
reported in table S4). We found that SCD participants exhibited sig-
nificantly higher memory leak than controls (β; estimate = 0.055, 
SE = 0.021, t = 2.664, and P = 0.009; Fig. 5B), indicating a greater 
tendency for stored information to decay over traveled distance. We 
also observed a marginally significant group difference in reporting 
noise (σr

2; estimate = 0.035, SE = 0.017, t = 2.070, and P = 0.042; 
Fig. 5E), with SCD participants exhibiting slightly higher values com-
pared to controls. In contrast, there was no evidence of a significant 
group difference in velocity gain (α; estimate = −0.026, SE = 0.051, 
t  =  −0.518, and P  =  0.606;  Fig.  5A), additive bias (||b||; esti-
mate = 0.001, SE = 0.003, t = 0.570, and P = 0.571; Fig. 5C), and 
accumulating noise (σo

2; estimate = 0.016, SE = 0.025, t = 0.646, 
and P = 0.520; Fig. 5D). Across both groups, age was associated with 
increases in memory leak (β; estimate = 0.008, SE = 0.003, t = 2.765, 
and P = 0.007; fig. S8A) and reporting noise (σr

2; estimate = 0.008, 
SE = 0.002, t = 3.361, and P = 0.001; fig. S8B).

To further assess the robustness of our findings, we examined 
group differences in PI error sources using the highest density inter-
vals (HDIs) of the posterior distributions of the group- level mean 
model parameters (see fig. S9). HDIs provide a comprehensive sum-
mary of parameter differences by capturing the most credible range 
rather than relying solely on point estimates, offering a clearer rep-
resentation of uncertainty and group differences. Consistent with 
the individual- level analysis, the differences in the posterior distri-
butions of γ for memory leak (β) provide strong evidence for higher 
values in individuals with SCD compared to controls, with 99.5% of 
the distribution above zero (Fig. 5G). In addition, the 95% HDI 
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[0.10, 0.79] did not include zero, suggesting a statistically credible 
and significant group difference. While we observed a marginally 
significant group difference in reporting noise (σr

2) at the individual 
level (P = 0.042), this was not supported at the group level, where 
the posterior distribution overlapped with zero (Fig. 5J). �is sug-
gests that the group difference in reporting noise may be less robust 
and should be interpreted with caution. No evidence for group dif-
ferences was found for the remaining parameters because the 95% 
HDIs for velocity gain ( γ

α
 ), additive bias ( γb ), and accumulating 

noise ( γσ2
0

 ) (Fig. 5, F, H, and I) all overlapped zero. A subsequent 

region of practical equivalence (ROPE) analysis ([−0.1, 0.1]) sup-
ported practical equivalence for the remaining parameters, as most 
of the 95% HDI samples fell within these bounds (28). Together, 
these findings highlight memory leak as the most consistent and re-
liable parameter, distinguishing individuals with SCD from healthy 
controls, whereas other error sources—such as reporting noise—
were either less robust or comparable across groups.

To ensure that our findings were not driven by prior assump-
tions, we tested a range of reasonable hyperparameter values for the 
memory leak parameter (β). Specifically, we reran the hierarchical 
model using different priors and found that the group- level differ-
ence between SCD and control participants remained consistent. 
Full results of this sensitivity analysis are provided in the Supple-
mentary Materials (fig. S10).

Blood neurofilament light chain predicts PI errors, velocity 
gain deviations, and increased reporting noise
We also obtained plasma- based biological biomarker data related to 
neurodegeneration from a subset of participants (SCD  =  27 and 
control = 54). Specifically, we measured plasma levels of neurofi-
lament light chain (NFL), a marker of general neurodegeneration 
(29, 30), and phosphorylated Tau181 (pTau181), associated with 

AD- related tau accumulation (30, 31). We also included APOE (ε4 
carriers and ε4 noncarriers), a risk factor for AD (32), in the analy-
sis. Our analysis of these plasma biomarkers showed no significant 
differences in the concentrations of NFL (BF10 = 0.461; Fig. 6B) and 
no differences in the number of ε4 carriers and ε4 noncarriers be-
tween control and SCD groups ( χ2P = 0.796; Fig. 6C).

Next, we investigated the predictive relationship between PI er-
ror and blood- based biomarkers, with age included as a covariate. 
While no group differences in biomarker concentrations were ob-
served, biomarkers may still have differential effects across groups; 
therefore, we included group as an interaction term in the model. 
NFL was the only significant predictor of increased PI error (Fig. 6D; 
estimate = 1.080, SE = 0.366, t = 2.954, and P = 0.004). Subsequently, 
to understand the potential biological underpinnings driving dis-
tinct error sources contributing to impaired PI, we examined whether 
these biomarkers predict individual parameter estimates derived 
from the computational model and whether there are differential 
effects across groups. Higher NFL levels were significantly associat-
ed with greater deviations from optimal velocity gain (Fig. 6E; abso-
lute deviation from α = 1; estimate = 0.138, SE = 0.042, t = 3.277, 
and P = 0.002). We also observed a significant interaction between 
group and APOE ε4 status in predicting velocity gain deviation, such 
that SCD participants who were APOE ε4 carriers showed larger de-
viations (estimate = 0.094, SE = 0.044, t = 2.113, and P = 0.039; Fig. 6F). 
However, this result should be interpreted with caution due to the lim-
ited number of SCD participants with biomarker data (n = 19) and 
especially APOE ε4 carriers (n = 7). In addition, NFL levels were also 
predictive of increased reporting noise (Fig.  6G; estimate  =  0.053, 
SE = 0.019, t = 2.869, and P = 0.006). No other biomarkers signifi-
cantly predicted PI error sources. Full results of PI error and modeling 
parameters analysis in relation to blood biomarkers are reported in 
tables S5 and S6.

Fig. 4. Comparison of candidate models across error sources. Comparison of candidate models incorporating different combinations of error sources: velocity gain (α), 

memory leak (β), additive bias ( b ), accumulating noise ( σ
0
 ), and reporting noise ( σr). Error sources included in each model are represented below the graph as filled (pur-

ple). The expected log pointwise predictive density for elpdloo is shown for each model (mean ± SEM). Models with higher elpdloo values indicate better predictive perfor-

mance. The “full” model demonstrates the best fit to the data (highest elpdloo value).
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DISCUSSION

In this study, we examined PI in individuals with SCD and healthy 
controls using a self- guided immersive virtual reality task. SCD par-
ticipants showed significantly higher PI errors than controls. A hier-
archical Bayesian model revealed that these deficits were primarily 
driven by increased memory leak, with a marginally higher report-
ing noise in SCD, while other parameters—velocity gain, additive bias, 
and accumulating noise—remained similar between groups. Although 
no group differences were found in blood biomarkers, NFL, a marker 
of neurodegeneration, was significantly associated with increased PI 
errors, velocity gain deviations, and reporting noise.

To the best of our knowledge, this study provides the first evi-
dence for PI impairments in SCD participants, despite their compa-
rable performance to healthy controls on the AI component of the 
task and in other cognitive domains. Bayesian analyses did not reveal 
any group differences in head movements, translational and angular 
velocity, or head pitch, indicating that PI deficits were unlikely to be 
driven by variations in movement dynamics or sampling strategies, 
such as a tendency to look downward during navigation. In addition, 
both groups exhibited similar changes in performance and movement 
metrics from early to late trials, with no evidence of group differences 
in learning or task adaptation. �ereby, our results highlight that PI 
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2), (E) while other parameters (α, ∣∣b∣∣, and σ0

2) showed no significant group differences. Asterisk indicates significant effect 

(*P < 0.05 and **P < 0.01) from a robust linear regression model with age as a covariate. (F to J) Bottom: Posterior distributions of the differences between control and 

SCD groups for the group- level mean parameter γ. The horizontal bars near the x axis denote the 95% highest density interval (HDI) of the posterior distributions for group 

differences. Dashed vertical lines indicate zero, and the percentages reflect the proportion of the posterior distribution on either side of zero, providing evidence for the 

likely direction of group differences. (G) The posterior distributions revealed strong evidence for higher memory leak (β) in individuals with SCD compared to controls (red 

dashed line), with 99.7% of the distribution above zero and a 95% HDI excluding zero, indicating a statistically credible group difference. In contrast, posterior distributions 

of γ for the remaining parameters—velocity gain, additive bias, accumulating noise, and reporting noise [(F) and (H) to (J)]—showed negligible evidence for group differ-

ences, as their 95% HDIs overlapped zero (black dashed line).
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may uniquely tap into subtle changes in neural computations that 
are difficult to detect with standard cognitive measures, highlighting 
its potential as a sensitive marker of presymptomatic AD.

Our experimental design was specifically tailored to reduce po-
tential confounds o�en seen in PI tasks. By requiring participants to 
rely primarily on multisensory self- motion cues (vision, proprio-
ception, vestibular feedback, and motor efference copies), we mini-
mized the influence of sensory degradation, which is commonly 
observed with aging and can impair performance when limited sen-
sory modalities are available (23, 33, 34). Furthermore, the task 
excluded proximal and distal landmarks (7, 9, 35), reducing the like-
lihood of compensatory landmark- based navigation or reliance on 
nonspatial heuristics. �ese design choices create a more “pure” PI 
task, where older adults had to continuously update their position in 
space relying on idiothetic cues. �e observed deficits in SCD par-
ticipants, therefore, likely reflect genuine impairments in PI rather 
than alternative cognitive or sensory alterations.

To gain a deeper understanding of the mechanisms contributing 
to the overall PI deficits, we developed a hierarchical Bayesian model 

that decomposes observed PI errors into distinct components. Criti-
cally, we found that memory leak was the only parameter that reli-
ably distinguished older adults with SCD from healthy controls. 
Memory leak, as defined in our model, refers to the gradual decay of 
the state variable, specifically the homing vector encoding the dis-
tance and direction back to the starting point, as distance increases 
during path traversal. Our behavioral findings support that this de-
cay occurs over space rather than time, as indicated by the compa-
rable PI performance at the end of the path in trials with and without 
intermediate stopping points. Notably, trials without intermediate 
stops had similar distances but shorter durations, emphasizing that 
memory leak is more closely tied to movement itself—emerging 
when positional changes occur—rather than during stationary peri-
ods. �us, we conclude that memory leak is unlikely to be driven by 
working memory deficits. �is interpretation is further supported by 
the absence of group differences on the Corsi block task, a standard 
measure of visuospatial working memory (36).

Our interpretation of spatially dependent error accumulation is 
further supported by findings from Stangl et al. (17), who observed 
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Fig. 6. Plasma biomarkers, APOE genotype, and associations with PI and error sources. (A and B) Violin plots showing plasma levels of pTau181 and NFL in control 

(blue) and SCD (red) groups. Bayesian t test analyses provided evidence supporting no group differences in pTau181 (BF10 =0.279) and NFL (BF10 =0.461). (C) Proportion of 

APOE ε4 carriers (pink) and noncarriers (blue) across control and SCD groups, showing no significant differences (P = 0.796) based on the chi- squared test. (D to F) Scatter 

plots illustrating the predictive relationship between plasma NFL levels and behavioral outcomes. Shaded areas represent the 95% confidence interval for regression lines. 

Higher NFL levels were associated with increased PI error (D), greater deviations from the optimal velocity gain (E), and higher reporting noise (F). (G) Significant interac-

tion between APOE ε4 status and group in predicting deviation from optimal velocity gain, with greater deviations observed in SCD ε4 carriers. Box plots show the me-

dian and IQR; violins indicate data distribution with individual data points. Plots [(D) to (G)] are based on robust multiple linear regression models.
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similar patterns of PI error across trials with varying numbers of 
stopping points. In their study, both younger and older adults 
showed consistent error accumulation as a function of distance trav-
eled, independent of time, as in our task. �ese results suggest that 
spatial decay is a robust and general feature of PI across age groups, 
reinforcing the idea that the memory leak observed in our SCD par-
ticipants reflects a disruption of core navigational computations 
rather than age- related differences in task engagement or cognitive 
strategy.

We propose that these PI deficits are related to impaired grid cell 
function, which may be among the earliest functional changes dur-
ing AD progression (6, 37, 38). Grid cells serve as a neural integrator 
for spatial information supporting PI (3), and functional changes in 
this network may impair the brain’s ability to maintain a stable rep-
resentation of self- location over the course of movement. Animal 
models of AD show profound loss of grid tuning (6, 39, 40). �e 
additional burden of tau pathology in the EC may disrupt the grid 
cell network’s capacity to prevent “leakage,” amplifying memory de-
cay and making it a key distinguishing feature from healthy aging, 
where some degree of leak may also be present but to a lesser extent 
[cf. higher leak with age as seen in Stangl et al. (17)]. Consistent with 
this hypothesis, young APOE ε4 carriers exhibit reduced grid- cell– 
like tuning (38).

While the precise mechanisms as to how AD pathology may lead 
to greater memory leak remain speculative, we propose several 
plausible explanations. One possible mechanistic example of how 
AD pathology could disrupt spatial computations involves altered 
attractor dynamics within the hippocampal- entorhinal circuit. Grid 
cell models based on continuous attractor networks create stable 
spatial maps by maintaining coherent activity patterns representing 
the organism’s location (41). In these networks, each new location 
estimate relies on the previously encoded spatial state and velocity 
updates. �e stability of these attractor networks could be compro-
mised by AD pathology, which effectively reduces the network’s “en-
ergy well,” making attractor states more prone to dri�. In such a 
weakened network, any slight perturbation (e.g., from sensory noise 
or normal fluctuations in neural firing) can push the representation 
away from its stable configuration, causing the previously encoded 
spatial state to degrade more quickly and amplifying PI errors. �is 
instability could be further exacerbated by AD- related dysfunction 
in parvalbumin interneurons, which compromises the inhibitory con-
trol needed for precise network dynamics and grid tuning (42, 43). 
Furthermore, the disruption of axonal transport and synaptic func-
tion likely contributes to this weakened network state (44). Conse-
quently, updating spatial position becomes increasingly difficult, 
with the internal representation eroding faster than under normal 
conditions.

An additional mechanism involves disrupted temporal precision 
in the sequential updating of the PI signal. Accurate tracking of posi-
tion relies on rhythmic oscillatory processes—particularly theta and 
gamma bands—to coordinate neuronal ensembles in the entorhinal- 
 hippocampal circuit (45–51). AD- related changes in the EC may 
reduce synchrony between grid cells and head- direction (HD) cells 
or attenuate the amplitude of key oscillations, potentially by disrupt-
ing the function of interneurons that regulate these rhythms (52, 53). 
For example, disease- related reduction in cholinergic transmission 
(54) disrupts theta- gamma interactions and grid tuning (55, 56). 
Without precisely coordinated neuronal firing, the system may strug-
gle to integrate velocity and orientation cues at the correct moments, 

thereby compounding small discrepancies over successive steps. 
�is disruption of temporal precision could further destabilize the 
state variable, contributing to the leak observed in SCD. Because PI 
relies on cumulative updates, even minor disruptions in the running 
position estimate can have a cascading effect, resulting in progres-
sive loss of spatial information manifesting as a gradual leak in spa-
tial memory.

While our findings and mechanistic interpretations are grounded 
in the domain of spatial navigation, we acknowledge that accumulator- 
 like processes are not unique to PI. Grid cells and the wider entorhi-
nal and hippocampal circuits, although classically associated with 
spatial coding, have also been implicated in the integration of tem-
poral sequences [e.g., Kraus et al. (57–61)] and conceptual and se-
mantic information. �is raises the possibility that similar leak- like 
effects may arise in nonspatial domains. In addition, we recognize 
that early AD pathology, particularly tau accumulation, may affect a 
range of integrative cell types beyond grid cells. Future work should 
therefore examine whether a more general accumulator dysfunc-
tion contributes to cognitive decline in SCD, which would support 
a broader role of entorhinal and hippocampal circuits in early 
Alzheimer’s–related changes across multiple cognitive domains.

Beyond differences in memory leak, we also observed a marginal 
group difference in reporting noise, which may point to a more 
domain- general source of increased uncertainty in SCD. �is effect 
aligns with the group and distance interaction observed in the dis-
tance estimation task, where SCD participants showed dispropor-
tionately higher errors at the longest distance. While both effects 
were modest, they may reflect a shared underlying mechanism—
such as increased imprecision in encoding or reproducing continu-
ous magnitudes under higher- demand conditions. �is pattern is 
consistent with Weber- like effects, in which estimation error scales 
with the magnitude of the stimulus. Although not central to our pri-
mary findings, these effects suggest that continuous spatial estimates 
may become noisier in SCD, particularly under conditions when 
larger distances need to be estimated.

Recent studies have argued that corrupted AI may be a primary 
driver of early AD–related deficits (22) because preclinical or pro-
dromal AD (i.e., MCI, APOE ε4 status, and other AD- related risks) 
was associated with higher angular errors (7, 35, 62). In contrast to 
these findings, we did not observe group differences in AI between 
healthy older adults and individuals with SCD. Moreover, both groups 
performed significantly better than chance on our AI tasks despite 
showing clear differences in PI. �is discrepancy may be explained 
by methodological differences in how AI is assessed. Traditional PI 
tasks, such as triangle completion, infer deficits from distance and 
angular errors of the homing response, with distance error as the 
deviation from the actual start point and angular error as the differ-
ence between the correct and reported heading. However, misen-
coding of traveled distance during the outbound path can also 
induce angular error, potentially confounding the interpretation of 
angular deficits (19–21). To address this, we incorporated an addi-
tional task in which participants were asked to remember and recre-
ate their initial heading orientation at each response point, allowing 
us to disentangle AI from distance encoding and the combined pro-
cesses required for PI. Critically, while the task includes a working 
memory component—requiring participants to remember their ini-
tial heading—it also demands continuous updating of orientation as 
they navigate the path, integrating rotational changes over time. �is 
dynamic process is central to angular PI and engages mechanisms 
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beyond static memory recall. Supporting this interpretation, we 
found no significant relationship between AI error and visuospatial 
working memory performance (as measured by the Corsi block 
span), either in the full sample or within each group.

Our findings of intact AI alongside PI deficits in SCD align with 
research on AD rodent models. �ese studies suggest that HD cell 
coding, a critical component for orientation inputs to grid cells (63), 
is preserved for longer than grid cell integrity during the progression 
of AD (5, 6). It is possible that impaired AI becomes more prominent 
at later stages of disease progression, such as MCI, as supported by 
recent modeling studies in humans (22). Notably, Ying et al. (5) dem-
onstrated that although HD cells maintain normal firing properties 
and tuning curves in AD mice, early- stage AD is characterized by re-
duced synchrony between HD and grid cells. �is suggests that im-
paired integration of orientation and distance information may underlie 
early PI deficits, as evidenced by intact AI but disrupted PI in SCD, 
consistent with the interpretation that the EC is responsible for inte-
grating these inputs.

Contrary to previous research (7, 35, 62), we did not observe 
larger PI deficits in APOE ε4 carriers, a known risk factor for spo-
radic AD, despite using PI tasks without orientation cues, which are 
considered highly sensitive to PI impairments in this group [e.g., 
Colmant et al. (62)]. �is discrepancy may be partly explained by 
complex interactions between APOE status, lifestyle factors, and 
sex, as suggested by prior studies (35). �is aligns with evidence that 
APOE ε4 expression is modulated by various epigenetic (64), envi-
ronmental, and genetic factors (65).

Our study found no group differences in blood biomarkers, in-
cluding NFL and plasma pTau181. �is lack of distinction may reflect 
the nonspecific nature of NFL, which indicates general neurodegen-
eration rather than AD- specific pathology (30, 66). Similarly, while 
pTau181 is associated with AD, its sensitivity for detecting early or 
preclinical stages is limited—emerging evidence suggests that other 
phosphorylated tau isoforms, such as pTau217, may offer greater di-
agnostic accuracy and specificity for AD- related pathology (67). Despite 
the absence of group differences, NFL predicted PI deficits, with as-
sociations observed for higher PI error, greater deviation from opti-
mal velocity gain, and reporting noise. �ese associations align with 
NFL’s established link to systemic neurodegeneration and white mat-
ter pathology (29, 68), both critical for efficient neural communica-
tion (69, 70). Reduced white matter integrity, associated with elevated 
NFL, may amplify noise across neural networks, contributing to 
variability in velocity estimates and reporting accuracy. Further-
more, the NFL’s link to sensorimotor impairments, such as slower 
nerve conduction velocity and reduced sensory precision in diabe-
tes (71), may further affect motor control and sensory integration, 
contributing to both higher reporting noise and precision of self- 
motion information that may affect internal velocity gain estimates. 
�is interpretation is consistent with previous work by Stangl et al. 
(17) and Segen et al. (19), which suggested that PI impairments in 
healthy aging arise primarily from degraded or noisy sensory inputs 
and computational processes, rather than from specific dysfunction 
in grid cell systems.

Together, our findings suggest that NFL reflects broader, age- 
related neuronal changes, contributing to increased uncertainty in 
navigation, while memory leak consistently distinguished SCD from 
controls, likely indicating early entorhinal dysfunction. By disentan-
gling these mechanisms, we enhance our ability to differentiate PI 
impairments associated with normal aging from those linked to 

early AD—supporting the use of computational markers to identify 
individuals at greatest risk.

Future directions and conclusion
Although the ultimate validation of PI as a predictive biomarker for 
AD will require longitudinal evidence, our current cross- sectional 
findings provide critical insights into early cognitive changes in in-
dividuals at risk. We recognize that the SCD population is heteroge-
neous and that premorbid variability in spatial navigation ability, 
along with factors such as age and sex, can influence individual PI 
performance. Moreover, some healthy older adults in our sample 
may also be on a trajectory toward cognitive decline, which longitu-
dinal follow- up will help to clarify. Nevertheless, the group- level dif-
ferences we observe—particularly the increased memory leak in SCD 
participants—demonstrate that even in the absence of overt cogni-
tive impairment, subtle but systematic disruptions in navigational 
computations are already detectable. �ese findings highlight the 
sensitivity of self- motion–based PI tasks for capturing early changes 
linked to AD risk and underscore the potential utility of computation-
al modeling approaches for revealing latent cognitive vulnerabilities.

In summary, our findings highlight the potential of PI deficits—
particularly increased memory leak—as early markers of AD risk in 
individuals with SCD. By decomposing PI errors using computational 
modeling, we revealed distinct mechanisms underlying navigational 
impairments that are not apparent with conventional cognitive as-
sessments. �ese insights into early grid cell dysfunction and EC vul-
nerability can inform the development of targeted spatial navigation 
tasks for clinical use. Future work should determine whether PI- 
based measures can serve as sensitive end points for monitoring 
disease progression and evaluating the efficacy of disease- modifying 
interventions.

MATERIALS AND METHODS

Participants
�e study involved 104 participants, divided into two groups. �e 
control group consisted of 73 individuals (46 females), averaging 
65.70 years old (SD = 5.80). �e SCD group, referred by neurolo-
gists from an in- house memory clinic, included 31 participants (15 
females), with an average age of 68.45 years (SD = 7.79). SCD clas-
sification was based on a comprehensive clinical interview, includ-
ing self- reported cognitive concerns and informant feedback, with 
no objective cognitive impairment detected through neuropsycho-
logical testing using the CERAD- Plus battery (72). All participants 
provided informed consent, and the study was approved by the Eth-
ics Committee of the University of Magdeburg (131/14). Two sub-
jects (one SCD and one control) scored below the MoCA (73) cutoff 
of 23 (74), indicating the presence of MCI, and were hence excluded 
from further analysis, resulting in the final sample of 102 partici-
pants (72 controls and 30 SCD). All subjects had normal or corrected-  
to- normal vision and were physically capable of standing for 
extended periods, a prerequisite for completing the PI task. We also 
obtained self- reported spatial abilities, measured by the 32- item 
German Center for Neurodegenerative Diseases (DZNE) Question-
naire on Spatial Orientation Skills, and visuospatial working memo-
ry, measured by the Corsi block- tapping task (36), implemented 
using the PsyToolkit platform (75). In addition to cognitive assess-
ments, participants underwent functional gait analysis using four 
tasks from the functional gait assessment (76), focusing on level 
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surface walking, gait speed variations, narrow base support, and gait 
with eyes closed. Balance was assessed using eight brief 20- s tasks. 
However, because of scoring discrepancies among experimenters, 
these results were not included in the analysis.

Plasma biomarker analysis
Blood samples for pTau181, NFL, neuronal pentraxin 2 (NPTX2), 
and APOE genotyping analysis were obtained from 84 participants. 
�e blood samples were analyzed at the clinical research group, 
Bonn DZNE, using the Simoa kit, while NPTX2 was analyzed using 
the INNOTEST kit from Fujirebio. We did not include NPTX2 in 
the final analysis because, although it is secreted by neurons and 
serves as a marker of synaptic integrity (77), NPTX2 is also pro-
duced in nonneuronal tissues such as the pancreas (pancreatic is-
lets), pituitary gland, and adrenal medulla. �is broader expression 
pattern raises concerns about the specificity of plasma NPTX2 as a 
reliable marker of synaptic integrity. For APOE genotyping, DNA 
was extracted from participants’ blood samples, analyzed to detect 
the APOE polymorphisms, and assigned two of the following al-
leles: ε2, ε3, or ε4. �e APOE ε4 allele is a major risk factor for AD 
(32). We classified participants as ε4 carriers (ε3ε4, ε4ε4, and ε2ε4) 
or ε4 noncarriers (ε2ε2, ε2ε3, and ε3ε3).

Immersive virtual reality PI task
Participants engaged in a self- guided immersive virtual reality PI 
task, performed in a virtual environment featuring an open field de-
void of landmarks, with only a ground pebbly texture providing 
optic flow information. �e self- guided nature of the task, where 
participants chose their preferred walking speed, offered the advan-
tage of minimizing experimenter biases and potential dual task 
costs associated with walking at a predefined speed. �is setup also 
contrasts with other self- guided PI tasks, e.g., the apple game (7) or 
virtual reality–based triangle completion tasks [e.g., (9, 35)], where 
external objects act as destination markers to guide participants, po-
tentially enabling them to compute distances using static visual 
depth perception. �is task required them to estimate the distance 
and direction to their starting point at two different points along 
each of eight unique sinuous paths—in the middle and at the end. 
�ese paths were designed with a variety of le� and right turn com-
binations, ensuring that each combination was repeated twice 
(fig. S1). Examples include le� followed by right turn, right followed 
by le� turn, two consecutive le� turns, and two consecutive right 
turns. �e turn sizes varied between 40° and 140°, with the stipula-
tion that the combined turn sizes in the same direction per path did 
not exceed 180°. �is design, devoid of external guiding objects, en-
sured that distance estimation was based primarily on internal cues 
rather than visual distance estimation, thus providing a purer as-
sessment of PI abilities.

�e task was developed using Unity so�ware (19.4.0f1) and 
played through an HTC Vive Pro headset equipped with a wireless 
setup, enhancing the immersive experience. Each path segment, a 
portion of the path that contains a single turn in one direction, ei-
ther leading from the start to the midpoint or from the midpoint to 
the end, spanned ~3 m, varying with the curvature of the path (bee-
line distance of 2.7 m). In about 10% of the trials, participants 
walked the entire path and provided responses only at the end, re-
sulting in trials of shorter duration but covering the same distance. 
Each new trial commenced with participants walking toward an 
object and then facing the start of the path to memorize their 

position and heading orientation. �ey then followed a floating 
sphere to the first stopping point, where they provided both AI and 
PI responses. A�er responding, participants were guided to contin-
ue the path by following the sphere until reaching the end, where AI 
and PI responses were again given. �e order of AI and PI responses 
was counterbalanced among participants.

At each stopping point during the task, participants were asked 
to orient themselves toward their perceived starting position, using 
a virtual ruler projected on the ground to indicate the distance to 
this location. �e line’s direction was controlled by the participant’s 
head movements, while its length was adjusted using the up and 
down keys on the HTC Vive controller.

Besides PI responses, we also obtained an AI response by asking 
participants to remember and recreate their initial heading orienta-
tion at each stopping point, achieved by physically rotating to their 
perceived initial heading and pressing the trigger on the HTC Vive 
controller. �is task requires participants to both memorize their 
initial heading and update that heading throughout the trial as they 
navigate the curved path, thus capturing angular PI rather than stat-
ic orientation recall. �is additional task, which was based on earlier 
work (21), aimed to assess participants’ ability to integrate heading 
changes (AI) without the confounding factor of distance integra-
tion, differing from standard approaches of decomposing the PI 
response into distance and angular error [see Segen et al. (19) for 
further discussion].

Experimental procedure
�e study was conducted over two separate days, with sessions last-
ing 3 hours each. Participants initially engaged in six practice trials. 
�e main trials were organized into blocks of 14, interspersed with 
mandatory short breaks. At the end of each block, participants un-
dertook three additional distance estimation trials, requiring them 
to recall and then replicate specific distances—1.4, 3.8, and 5.9 m—
using a virtual ruler without physical movement. �is task was in-
cluded to investigate potential differences in visual distance estimation 
and response noise between the control and SCD groups.

A subset of the subjects in the control group performed PI tasks 
without the AI response. Due to technical difficulties, we included 
these subjects in the analysis, as their PI error was similar to those 
who provided both the PI and AI responses (fig. S11).

Behavioral data analysis
Outlier removal
A two- step outlier removal procedure was applied. First, we re-
moved trials where an accidental response was registered either due 
to technical issues or participants’ use of the controllers. �ese trials 
were identified as follows: trials less than 2 s (lowest possible time), 
trials with distance responses less than 0.4 m (minimum set dis-
tance), and trials with identical distance to the random lengths of 
the line at the beginning of the response (within a 0.01- m thresh-
old). We also removed all trials that had response times more than 
60 s (longer response times o�en accompanied by loss of connection 
or interruptions due to clarifications from subjects about the task). 
�e second step included removal of outliers based on PI task per-
formance (PI and AI error) using Gaussian mixture modeling 
(GMM) to remove occasional trials where participants might have 
temporarily lost concentration or got disoriented. Specifically, outliers 
were identified using the densityMclust() function from the mclust 
R package, which fits a GMM to the empirical distribution of errors 
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for each participant. Trials falling below the fi�h percentile of the 
log- likelihood distribution were flagged as outliers, as they repre-
sent data points with the lowest likelihood given the participant’s 
error profile. Overall, this resulted in the exclusion of 10.77% of the 
data for PI error and 13.79% for AI error. We used the GMM- based 
outlier removal for distance estimation trials based on absolute dis-
tance error for each participant and each distance level, which re-
sulted in the exclusion of 3.05% of the data.

PI metric calculation
�e x and y coordinates of the presumed starting point according to 
the participant’s response were calculated by

where d is the response distance and oriresponse is the responded 
orientation. xorigin and yorigin are coordinates of the start point, and 
xpresumed and ypresumed are the resulting coordinates of the presumed 
starting point. To determine the PI error for a given stopping point, 
the Euclidean distance between the presumed starting point (ac-
cording to the participant’s response at this respective stopping 
point) and the starting point was calculated

AI metric calculation
AI error was calculated using the absolute difference between the 
initial heading orientation at the starting point (orientation indicat-
ed to participants using an arrow on the floor of the virtual environ-
ment) and the angular orientation response at each stopping point.

Modeling analysis
Outlier removal
To model error sources, an additional outlier removal criterion was 
applied, excluding subjects with fewer than 50 valid PI trials a�er 
data preprocessing. �is resulted in the removal of 10 subjects (sev-
en controls and three SCD). Following parameter estimation, we 
further excluded subjects with negative velocity gain ( α ). �is led to 
the exclusion of an additional nine participants (three controls and 
six SCD). Examination of individual responses in this group re-
vealed a common tendency to “fail” to turn during their PI response, 
contributing to the negative velocity gain. A detailed analysis of the 
error patterns and response profiles of these participants is provided 
in the Supplementary Materials. Given that these 19 participants 
were excluded from the modeling analysis, we conducted a reanaly-
sis of the behavioral data, also excluding these individuals, and pres-
ent the results in the Supplementary Materials for comparison.

Internal estimate model
We used the distance model from Stangl et al. (17) where internal 
location estimates of the participants’ positions are modeled by a 
two- dimensional diffusion equation. Compared to Stangl et al. (17) 
where the path between two control points was approximated by a 
straight line, we interpolated the trajectories by a piecewise linear 
approximation. Bold- faced letters denote multidimensional vectors.

Let x be a path of length L parameterized by its length, i.e., x(0) and 
x(L) correspond to the starting and the finishing point, respectively. 
Let x̂(�) be the internal location estimate of the participant’s actual 
position x(�) for 0 ≤ � ≤ L . �e distance model from Stangl et al. (17)

where
1) β is the location memory decay. If β = 0 , then the participant can 

incorporate the inputs on the right- hand side of Eq. 1 into the estimate 
of x̂(�) perfectly. If β > 0 , then the participant will slowly forget the 
previous inputs. Models of this type are known as “leaky integrators.”

2) v(�) = dx(�)∕d� is the normalized velocity at x(�) . Because 
the path is parameterized by the distance, it follows that ∣v(�)∣ = 1 
for all 0 ≤ � ≤ L.

3) α is the multiplicative velocity gain. �e value α = 1 corre-
sponds to the correct evaluation of the contribution of v on the loca-
tion estimate. �e cases 0 < α < 1 and 1 < α describe systematic 
underestimation and overestimation of the same effect, respectively.

4) b is the additive bias, i.e., the direction in which the internal 
estimate is being systematically shi�ed.

5) σ
0
 is the accumulating noise (SD). If σ

0
= 0 , then the internal 

location estimate is not affected by the accumulating noise.
6) � is two- dimensional normally distributed Gaussian noise 

uncorrelated in � . Formally, the noise is a derivative of the two- 
dimensional Brownian motion.

We note that for β = 0 , σ
0
= 0 , α = 1 , and b = 0 , the estimate x̂ 

perfectly reflects the actual position x.

Segment reformulation
Assume that the path is split into K segments marked by stopping 
points sk , k = 0, 1, 2, … ,K , so that sk = x

(

�k

)

 for some �k ∈ [0, L] 
with �0 = 0 and �

K
= L . Let Δ�k = �k − �k−1 , where k = 1, 2, … ,K , 

be the length of the k th segment of the path. �e internal estimate x̂k 
at the stopping point sk can be recovered from the participant’s re-

port of distance estimate ̂d and the estimate of angle ̂φ to the starting 
point x

start
 by

We set x
start

= 0 . Given the internal estimate x̂k ≔ x̂
(

�k

)

 of loca-
tion at the stopping point sk , the internal estimate of x̂k+1 has a 
Gaussian distribution given by

where θ =
(

β, α, b, σ0
)

 are the model parameters, Id2 is the two- 
dimensional identity matrix, and the mean μk+1 and the variance 

σ2
k+1

 are defined by

and

xpresumed = xstop + d ⋅ cos
(

oriresponse
)

ypresumed = ystop + d ⋅ sin
(

oriresponse
)

PIerror =

√

(

xpresumed−xorigin
)2

+

(

ypresumed−yorigin
)2

dx̂(�)

d�
= −βx̂(�) + αv(�) + b + σ

0
�(�) (1)

x̂k =

[

d̂cos
(

φ̂
)

d̂sin
(

φ̂
)

]

+x
start (2)

ℙ
(

x̂k+1∣x̂k; θ
)

=�
[

x̂k+1∣�k+1

(

x̂k

)

, σ2
k+1

Id2

]

(3)

(4)

σ2
k+1

=
σ2
0

2β

(

1−e
−2βΔ�k+1

)
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respectively (see the Supplementary Materials for complete derivation).
In Stangl et al. (17), the integral term in Eq. 4 is simplified by an 

additional assumption of a constant velocity along each segment, 
effectively approximating the trajectory of each segment by a straight 
line. In contrast, we have not imposed this additional assumption, 
which renders the integral analytically unsolvable in general. For 
our purposes, it was sufficient to use a numerical method to approx-
imate the integral with higher precision.

Reporting noise
We consider reporting noise as a normal distribution with zero 
mean and variance σ2

rep
 independent of ξ , reflecting the spread of the 

responses around the internally estimated location in Eq. 2. �e re-
ported internal location therefore satisfies

�anks to the independence of ξ and the reporting noise, the 
density of the reported internal location simplifies to

Following Weber’s law, we assume that the SD of the reporting 

noise is proportional to the participants’ reported distance d̂k (at the 

end of the k th segment), i.e., σrep = σrd̂k

where θ =
(

β, α, b, σ0, σr
)

 are the model parameters.

Bayesian hierarchical model
We used a Bayesian approach (78), MCMC sampling, to estimate 
the posterior distributions of the model parameters. �e likelihood 
for a single path segment is given by Eq. 5. Consequently, the likeli-
hood function for the whole path is

For T trials, let X̂k =

(

x̂
(1)

k
, … , x̂

(T)

k

)

 denote the vector of T re-

ports at the k th control point. �e overall likelihood function is then 
defined by

If ℙ(θ) represents the prior distribution over the parameters, 
then the posterior distribution is

We introduced two levels of hierarchy into each model parame-
ter ψ : individual and group level, represented using the plate nota-
tion (Fig. 7). At the individual level, parameters from participants 
within the same group are assumed to follow the same prior distri-
bution governed by the group- level parameters. Specifically, for a 

given parameter ψ associated with the participant p from group g , 
either control or SCD has a distribution  with location γψ,g and  
scale τψ,g

For accumulating noise σ0 and reporting noise σr ,  is Gaussian+. 
For all other parameters,  is a Gaussian. �e group- level hyperpa-
rameters γψ,g and τψ,g have their own respective priors 1 and 2

Details regarding the specific prior distribution of hyperparam-
eters, including their locations and scales, are provided in the 
Supplementary Materials. Because an analytical solution for the 
posterior distribution in Eq. 6 is not available, we used the NUTS to 
generate posterior samples of the model parameters (26). �e infer-
ence was conducted using NumPyro (79) with four independent 
MCMC chains, each run for 1000 warm- up iterations, followed by 
1000 sampling iterations. To assess model performance, we used 
leave- one- out expected log pointwise predictive density, elpdloo.

Statistics and reproducibility
PI and AI error analysis
For statistical quantification, all analyses were conducted in R. To 
examine the relationship between group status and stopping point, 
we used robust multiple linear regression with the MASS package in 
RStudio, as the Shapiro- Wilk test indicated nonnormal residuals 
(P < 0.05). �ese models assessed associations of these factors with 
two primary outcomes: PI error (in meters) and AI error (°). Co-
variates included “sex,” “age,” and “MoCA,” and due to evidence sug-
gesting sex- specific effects in AD pathology (80), a “sex by group” 
interaction term was also added.

Continuous covariates were scaled and centered to normalize 
their range. We applied sum contrasts for binary factors, such as 
group (control versus SCD) and sex (male versus female), and suc-
cessive differences contrasts for stopping point, comparing interme-
diate versus final stopping points.

Blood and genetic biomarker analysis
To evaluate whether PI performance and key computational model 
parameters were related to biological and genetic markers of neuro-
pathology (pTau181, NFL, and APOE status), we modeled PI error 
and parameters such as the absolute deviation from optimal velocity 

x̂k+1∣x̂k ; θ∼�
[

�k+1

(

x̂k

)

, σ2
k+1

Id2
]

+�

(

0, σ2
rep
Id2

)

ℙ
(

x̂k+1∣x̂k; θ
)

=�

[

x̂k+1∣�k+1

(

x̂k

)

,
(

σ
2
k+1

+σ
2
rep

)

Id2

]

ℙ
(

x̂k+1∣x̂k ; θ
)

=�

[

x̂k+1∣�k+1

(

x̂k

)

,

(

σ
2

k+1
+σ

2

r
d̂
2

k

)

Id2

]

(5)


(

x̂K∣x̂K−1, … , x̂0; θ
)

=

K−1
∏

k=0

ℙ
(

x̂k+1∣x̂k; θ
)



(

X̂K∣X̂K−1, … , X̂0; θ

)

=

T
∏

t=1



(

x̂
(t)

K
∣x̂

(t)

K−1
, … , x̂

(t)

0
; θ

)

ℙ

(

θ∣X̂
K
, … , X̂0

)

∝

(

X̂
K
∣X̂

K−1, … , X̂0; θ

)

ℙ(θ) (6)

λψ,p ∼ 
(

γψ,g, τψ,g
)

γψ,g ∼1( ⋅ ), τψ,g ∼2( ⋅ )

Fig. 7. Graphical representation of the Bayesian hierarchical model. The group- 

level hyperparameters γψ,g and τψ,g , associated with group plate G , govern the 

individual- level parameter λψ,p , enclosed in the participant plate P . Each partici-

pant undergoes multiple trials, represented by the outer trial plate T , with each 

trial having multiple path segments captured by the inner plate K  . The observed 

data x̂
t

k
 at segment k + 1 in trial t  is influenced by the parameter λψ,p . Here, ψ stands 

for any of the five model parameters under the parameter plate θ.
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gain (1), β, additive bias, accumulating noise, and reporting noise as 
dependent variables, influenced by standardized (scaled and cen-
tered) plasma biomarker concentrations. All models included a 
group interaction term and age as a covariate. Given the violation of 
normality, robust regression from the MASS package was used to 
capture these relationships accurately. Sum contrasts were used for 
APOE status (carriers and noncarriers).

To evaluate the unique contribution of plasma NFL levels to spe-
cific error sources, partial coefficient of determination (R2) values 
were calculated. For each dependent variable (e.g., reporting noise 
and velocity gain), we compared the variance explained by full re-
gression models including NFL with reduced models excluding NFL. 
Partial R2 was computed as the proportion of variance uniquely at-
tributed to NFL, reflecting its specific predictive contribution to 
the model.

Group comparisons on demographic variables, blood 
biomarkers, and movement characteristics
For simple group differences, Bayesian t tests were conducted. Where 
variances were equal, we used ttestBF from the BayesFactor package 
in R; in cases of unequal variances, as in age and gait, we modeled 
variance separately for each group using the brm function from the 
brms package. �is method was applied to demographic variables 
(age, MoCA, self- reported spatial abilities, visuospatial working 
memory, gait, and number of completed trials) and group compari-
sons for blood biomarkers (pTau181 and NFL) and movement met-
rics (head movements, angular and translational velocity, and head 
pitch). For comparisons between the first 10% and the last 10% of 
trials on changes in PI performance and movement dynamics from 
early to late trials, we used linear regression analysis with sum con-
trasts for both group and trial periods (first 10% and last 10%).

Modeling analysis
Individual level
To examine differences for the individual (mean)–level error sources, 
we used robust linear regressions from the MASS package to ac-
count for violations of the normality assumption in residuals. Sepa-
rate models were fitted for each model parameter, with age included 
as a covariate. �e parameters analyzed included memory leak (β), 
velocity gain (α), additive bias (∣∣b∣∣), accumulating noise (σ0

2), and 
reporting noise (σr

2). Sum contrasts were used for group (control/SCD).
Group level
For group- level analysis, we examined the posterior distributions of 
the model parameters to assess credible differences between groups. 
�e analysis focused on the 95% HDI, a key concept in Bayesian 
inference that indicates the range within which the most credible 
values of a parameter lie. Whether zero falls within this interval is 
crucial for interpreting the strength of evidence for an effect. If zero 
is excluded from the 95% HDI, then it suggests statistically credible 
evidence of an effect, while inclusion of zero indicates that the data 
do not rule out the possibility of no effect, reflecting uncertainty 
about the presence of a true difference. In addition, we applied the 
ROPE (28) to determine whether observed effects were practically 
negligible. �e ROPE defines a range around the null value (o�en 
zero) within which differences are considered too small to be mean-
ingful in practice. If most of the posterior distribution (e.g., 95% 
HDI) falls within the ROPE, then the effect can be considered prac-
tically equivalent to the null value. We used ArviZ, NumPy, and 
Matplotlib to perform group- level analysis.

Supplementary Materials
The PDF file includes:

Supplementary Text

Figs. S1 to S11

Tables S1 to S6

Legend for movie S1

Other Supplementary Material for this manuscript includes the following:

Movie S1
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