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A B S T R A C T

For each of the many sensory channels through which animals perceive the world, sensory thalamus is an 
important processing station whose role lies between faithful stimulus encoding and cognitive interpretation. 
Located deep in the brain, sensory thalamus neurons must receive and transmit peripheral information reliably, 
while modulating it based on valence, internal states and memory from previous experience. It has to speak to 
the neocortex with the appropriate volume, and in an orderly way, to prioritize attention to what matters most in 
each circumstance. In this review, we recapitulate classic and recent findings on the sensory thalamus, and how 
its plasticity and modulation allow it to provide a basis not only for perception, but also memory and cognition. 
Finally, we discuss how alterations in sensory thalamus may underlie pathogenesis or contribute to specific 
symptoms of cognitive and neuropsychiatric disorders.

1. Introduction

First named by Galen (129 – 216 AD), the thalamus is believed to 
owe its name to the ancient Greek word “thalamos” (transliterated to 
English from ϑάλαμος), which refers to the innermost part of Greek 
houses usually the bed or bridal room (García-Cabezas et al., 2021; Serra 
et al., 2019; Cassel and Pereira de Vasconcelos, 2021). The thalamus is a 
grey matter structure located deep in the brain as part of the dien
cephalon. It is highly connected with many cortical and subcortical areas 
(Hwang et al., 2017). Due to its location and extensive connectivity, it 
was classically understood as a relay center that communicates with 
many different areas - the cortex connection being thought of as the one 
with the most sophisticated computations (Jones, 1991). However, over 
the last decades many studies expanded this role and support that the 
thalamus may act as an integrative hub, combining inputs from multiple 
sources and participating in brain-wide information processing and 
cognitive control (Halassa and Kastner, 2017; Shine et al., 2023).

2. Two-stage signal transmission in sensory thalamus

All sensory pathways, with the exception of the olfactory system 
(Courtiol and Wilson, 2015), transmit their information to cerebral 

cortex via dedicated sensory nuclei in the thalamus. The so-called 
first-order (or lemniscal) (Ahissar et al., 2000) sensory thalamic nuclei 
are the first to receive these sensory inputs, which are excitatory and 
also inhibitory (Winer et al., 1996a); Peruzzi et al., 1997; Mellott et al., 
2014; Beebe et al., 2018; Whyland et al., 2020) and send it to sensory 
cortices (Fig. 1a). These nuclei respond to sensory stimuli (Sumser et al., 
2025; Taylor et al., 2021; El-Boustani et al., 2020), are necessary for 
perception (Hasegawa et al., 2024; Leva et al., 2024) and include the 
lateral geniculate nucleus (LGN, for vision) (Le Gros Clark and Penman, 
1934; Bishop et al., 1962), the ventral portion of the medial geniculate 
body (MGBv, for audition) (Adrian et al., 1966; Rouiller et al., 1979), the 
parvocellular portion of the ventral posterior medial nucleus (VPMpc, 
gustatory) (Ogawa and Nomura, 1988), the ventral posterior medial 
(VPM, somatosensory) (El-Boustani et al., 2020; Pierret et al., 2000; 
Wimmer et al., 2010; Diamond et al., 2008), the ventral posterior lateral 
(VPL, somatosensory) (Zhang et al., 2006; Vázquez et al., 2013), 
the posterior ventral medial (VMpo, in primates, somatosensory) 
(Craig et al., 1994) and its rodent homolog posterior triangular (PoT, in 
rodents, somatosensory) (Leva et al., 2024; Gauriau and Bernard, 2004; 
Bokiniec et al., 2018). Occasionally, VPM and VPL are investigated 
together and named ventrobasal complex (VB) (Koyama et al., 1998). 
First-order sensory thalamic nuclei receive modulatory feedback 
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from deep cortical layers (typically L6), forming the so-called 
cortico-thalamic loops (Sherman and Guillery, 1996).

The so called higher-order thalamic (or paralemniscal) (Ahissar 
et al., 2000) nuclei also respond to sensory stimuli (Sumser et al., 2025; 
Taylor et al., 2021; Petty and Bruno, 2024; Odegaard et al., 2025) and 
play a role in perception (Taylor et al., 2021; La Terra et al., 2022), yet a 
large fraction of their input arrives as feedback from sensory cortical 
areas – primarily layer 5/6 pyramidal neurons – as well as directly from 
the periphery (El-Boustani et al., 2020). These nuclei are also part of the 
cortico-thalamic loops (Diamond et al., 1992), but they receive more 
contextual information from layer 6 neurons than first-order nuclei 
(Kirchgessner et al., 2020) and exclusive cortical input from layer 5 
(Sherman, 2016). They receive more processed inputs including global, 
multisensory information. These nuclei include the pulvinar (LP, visual) 
(Petty and Bruno, 2024; Petty et al., 2021; Kurzawski et al., 2022), the 
dorsal and medial portions of MGB (MGBd and MGBm, auditory) 
(Wepsic, 1966; Love and Scott, 1969; Edeline and Weinberger, 1991a; 
Anderson and Linden, 2011), as well as posterior medial (POm, so
matosensory) (El-Boustani et al., 2020; Wimmer et al., 2010; Petty and 
Bruno, 2024; Diamond et al., 1992; Petty et al., 2021) and mediodorsal 
thalamus (MD or MDT, mainly linked to non-sensory, higher-order 
functions but also encodes olfactory and gustatory stimuli) (Courtiol and 
Wilson, 2015; Fredericksen and Samuelsen, 2022).

Both first and higher-order sensory thalamic nuclei are mainly 
composed of excitatory neurons. The presence of local interneurons is 
limited and nucleus-specific in rodent thalamus, particularly mouse 
(Seabrook et al., 2013; Jager et al., 2021; Simko and Markram, 2021a; 
Gorin et al., 2023), yet interneurons in sensory thalamus are more 
frequent in primates (Butler, 2008). Ferrets (Sanchez-Vives et al., 1996), 
cats (Huang et al., 1999) and guinea pigs (Spreafico et al., 1994) also 
exhibit local interneurons in sensory thalamic nuclei.

As expected, based on their connectivity, first-order and higher-order 
sensory thalamus display functional differences. Higher-order thalamus 
responses to sensory stimuli are strongly driven by sensory cortex, 
whereas those in first-order do not, and are present upon cortical inac
tivation (Diamond et al., 1992). First and higher-order thalamus also 
show different mechanisms to encode stimulus features. For example, 

first-order auditory thalamic cells vary their response amplitudes to 
sounds of different frequencies, whereas higher-order auditory thalamus 
change instead their response latencies (Ahissar et al., 2000). 
Higher-order sensory thalamus has been shown to respond to multi
modal stimulation (Wepsic, 1966; Love and Scott, 1969), behavioral 
state (e.g., active sensing) (Petty et al., 2021) and arousal (Wang et al., 
2023). Furthermore, higher order neurons show greater bursting, and 
less spontaneous activity, than first-order cells (Ramcharan et al., 2005), 
and project to both sensory and motor cortical areas (Casas-Torremocha 
et al., 2017, 2019).

Both first and higher-order thalamus are under tight inhibitory 
control by GABAergic projections from the thalamic reticular nucleus 
(TRN) (Wimmer et al., 2015; Liu et al., 1995; Pinault, 2004; Li et al., 
2020). However, higher-order nuclei appear to receive a greater 
GABAergic inhibition from other sources, such as the anterior pretectal 
nucleus (Bokor et al., 2005), and the zona incerta (Barthó et al., 2002) 
(Fig. 1b). Moreover, higher-order nuclei project to areas beyond the 
neocortex, like the high-order auditory thalamus projections to amyg
dala (Taylor et al., 2021; Li et al., 1995), or the high-order visual thal
amus terminals in the brainstem (Vega-Zuniga et al., 2025).

In summary, both first and higher-order thalamic nuclei show robust, 
replicable and time-locked neuronal responses to sensory stimuli, and 
specific inactivation of either first and higher-order sensory thalamus 
leads to strong deficits in perceptual acuity. First-order nuclei receive 
sensory information at a pre-cortical stage and are specialized in stim
ulus feature encoding, whereas higher-order thalamus receive extensive 
cortical input and is linked to broader stimulus modalities and cognitive 
context (Sherman, 2016; Wolff et al., 2021).

3. Beyond the relay

Despite this classical separation of sensory thalamic functions in first 
and higher-order nuclei, first-order thalamus can carry higher-order 
information. For instance, first-order visual thalamus has been shown 
to respond to visual stimulation in either eye, performing binocular 
integration, a process that was believed to arise only in cortex (Howarth 
et al., 2014). LGN and MGB also encode sensory features kept in working 

Fig. 1. Sensory nuclei of the thalamus in a first and higher-order classification. a. Diagram of the functional division between first order and higher-order nuclei of 
sensory thalamus. LGN, MGBv, VPM, VPL, VMpo (or PoT, in mice) and VPMpc are first order thalamic nuclei, whereas LP, MGBd, MGBm, POm and MD are higher- 
order thalamic nuclei. Both types get sensory input from the periphery, segregated by sensory modality, and both send projections to sensory cortices (and to other 
regions, not depicted here). Olfactory information reaches cortex without a first order thalamic nucleus. MD is typically not regarded as a sensory nucleus, but rather 
a high-order site involved in cognitive functions. However, it is included here due to recently identified olfactory and gustatory sensory information encoding. b. 
Summary of the major excitatory inputs and outputs of sensory thalamic nuclei. Peripheral information, mainly excitatory, travels to first and higher-order sensory 
thalamic nuclei, which in turn send projections to sensory cortices. Cortex sends feedback to thalamus, in the so-called thalamo-cortico-thalamic loops. Higher-order 
nuclei get particularly rich excitatory input from cortex. On the other hand, sensory cortices activate TRN, which in turn inhibits both kinds of sensory thalamic 
nuclei. Finally, higher-order nuclei also receive inhibitory input from other GABAergic structures (anterior pretectal nucleus and zona incerta). Overall, first order 
sensory thalamus is mainly driven by the peripheral input, whereas higher-order thalamic nuclei receive more innervation from either cortex or other sources, 
making them richer in multimodal and cognitive information.
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memory (Hasegawa et al., 2024; Rahmati et al., 2023), just like the 
higher-order MD (Peräkylä et al., 2017). In somatosensory thalamus, 
both first and higher-order nuclei integrate highly complex whisker and 
head kinematics (Oram et al., 2024). Moreover, first-order thalamic 
nuclei exhibit response plasticity to stimuli upon learning (Edeline and 
Weinberger, 1991b), which was classically attributed to higher-order 
nuclei (Edeline and Weinberger, 1991a). In sensory goal-oriented 
tasks in mice, sensory thalamus additionally encodes choice (Gilad 
et al., 2020). Furthermore, cochlear lesions trigger tonotopic reorgani
zation in first-order auditory thalamus that is very similar to that 
observed in primary auditory cortex, suggesting its participation in 
cortical plasticity (Kamke et al., 2003). Conversely, subsets of cells in 
higher-order thalamus also encode stimulus features reliably (Anderson 
and Linden, 2011).

Recently, the presence of neural ensembles has been reported in 
sensory thalamus, similar to cortex (Hu et al., 2024). Cells that fire 
synchronously are physically closer to each other and have similar 
tuning properties. Synchrony in these thalamic neural ensembles is seen 
under stimulus-driven firing but also spontaneously (Hu et al., 2024). It 
is believed that ensembles refine the encoding of information, such as 
stimulus features, which would be more poorly transmitted by individ
ual neurons. Coordinated neural activity is more likely to trigger neural 
responses in downstream targets (Zandvakili and Kohn, 2015).

Finally, communication between sensory thalamus and cortex in 
thalamo-cortical loops plays an important role in perception. A recent 
study inhibited feedback projections from sensory cortex back to higher- 
order thalamus, which suppressed perception in mice as well as sensory 
stimulus feature encoding in primary sensory cortex (Mo et al., 2024). 
These findings support the notion that sensory systems do not rely solely 
on bottom-up feature encoding to generate percepts. Instead, perception 
may arise from an integration of feature encoding with top-down 
contextual influence. This framework is commonly described as 
Bayesian or predictive coding (Knill and Pouget, 2004; Kanai et al., 
2015; Furutachi et al., 2024; Keller and Mrsic-Flogel, 2018). This view is 
supported by animal studies demonstrating that internal states shape 
stimulus encoding in sensory thalamus (Taylor et al., 2021; Hasegawa 
et al., 2024; Petty and Bruno, 2024) and sensory cortex (Furutachi et al., 
2024; English et al., 2023). In line with this, human studies have shown 
that expectations can modulate sensory responses both in the auditory 
cortex (SanMiguel et al., 2013) and in the auditory thalamus (Tabas 
et al., 2020; Cacciaglia et al., 2015).

Together, these findings suggest that the roles of first and higher- 
order thalamic nuclei are more diffuse and diverse than traditionally 
suggested. Sensory thalamus performs high-level sensory processing and 
is involved in cognitive processing and behavioral adaptation and is 
referred to as an integrative hub for brain networks (Hwang et al., 
2017).

4. Sensing under the watch of the thalamic reticular nucleus

TRN projections are the main form of inhibitory control over sensory 
thalamus, both first and higher-order nuclei. Because TRN neurons are, 
in turn, driven by prefrontal (Cornwall et al., 1990; Nakajima et al., 
2019) and primary sensory cortices (Pinault, 2004), as well as other 
structures like basolateral amygdala (BLA) (Aizenberg et al., 2019), 
thalamic responses can be modulated quickly on a context and atten
tional basis. This is important because the relevance of a sensory mo
dality depends on the specific contexts (e.g., an animal may first rely on 
audition to assess predator sounds outside a safe location or may attend 
to vision to find a specific food source). Studies have shown that sensory 
thalamic nuclei modulate their activity by suppression or enhancing the 
encoding of a given modality according to task demands (Wimmer et al., 
2015; Williamson et al., 2015). TRN mediates this control by specifically 
modulating thalamic nuclei that are less relevant in a given context 
(Wimmer et al., 2015; McAlonan et al., 2006) and thus TRN has been 
referred to as a “searchlight” (Crick, 1984) that provides an additional 

dimension to sensory thalamus coding during cognition.

5. Sensory thalamus plasticity

Activity in the thalamic circuit has the ability to change with time. 
Plasticity in the sensory thalamus has been identified in two forms: First, 
lesions or sensory deprivation were shown to trigger changes in thalamic 
receptive fields or responsiveness. Such modifications may allow sen
sory systems to be adaptable and optimize the neural encoding of stimuli 
in every circumstance, similar to synapses being refined or brain areas 
taking over functions upon sensory loss (Bedny et al., 2011; von 
Melchner et al., 2000; Diniz CRAF, 2023). Second, plastic changes in 
sensory thalamus can also occur in a cognitive context, such as identi
fying a previously known stimulus (Disterhoft and Olds, 1972; O’Connor 
et al., 1997; Halverson et al., 2010), assigning a valence (Taylor et al., 
2021; Buchwald et al., 1966), or responding according to internal state 
(Gilad et al., 2020; Peelman and Haider, 2024).

Several lines of research studied thalamic plasticity upon sensory 
deprivation. For example, skin lidocaine anesthesia reversibly rear
ranges receptive fields in somatosensory VPM (Nicolelis et al., 1993). 
This fast thalamic plasticity depends, at least in part, on primary sensory 
cortex (Krupa et al., 1999). In the visual system, monocular deprivation 
triggers synaptic boutons to shift their responsiveness between monoc
ular and binocular tuning, and vice versa. This effect is reversible and 
independent of cortico-thalamic feedback (Jaepel et al., 2017). Synaptic 
inhibition is necessary for ocular dominance thalamic plasticity 
(Sommeijer et al., 2017; Qin et al., 2023). In humans, short-term visual 
deprivation with an eye patch elicits plasticity in the higher-order visual 
thalamus, as measured by monocular stimulation responses in the 
ventral pulvinar nucleus, with the deprived eye responses being 
enhanced (Kurzawski et al., 2022).This form of plasticity has also been 
observed in the first-order auditory thalamus, MGBv (Kamke et al., 
2003). Altogether, these data show that sensory thalamic nuclei adapt to 
injury or sensory deprivation to optimally harvest the neural resources 
available for perception. This sort of plasticity can also occur at 
pre-thalamic stages, and first-order sensory thalamus itself can receive 
new connections upon injury (Takeuchi et al., 2012).

On the other hand, sensory thalamus plastically modulates its re
sponses upon associative learning. Studies on fear conditioning have 
shown that auditory thalamus has enhanced responses to a tone that is 
coupled to an aversive outcome (Disterhoft and Olds, 1972; O’Connor 
et al., 1997; Halverson et al., 2010; Buchwald et al., 1966). This has been 
shown in cats (Buchwald et al., 1966; Ryugo and Weinberger, 1978), 
rabbits (O’Connor et al., 1997), rats (Disterhoft and Olds, 1972; Hal
verson et al., 2010) and mice (Barsy et al., 2020; Pardi et al., 2020; 
Taylor et al., 2021). Enhanced thalamic responses to conditioned stimuli 
also weaken upon extinction learning of the association (Taylor et al., 
2021; Buchwald et al., 1966), and reversal training experiments show 
that neurons can re-tune to stimuli if they become more relevant 
(Hasegawa et al., 2024; Gabriel et al., 1975). Mechanistic experiments 
show that inactivating sensory thalamus projections to amygdala im
pairs fear learning (Barsy et al., 2020; Pardi et al., 2020; Taylor et al., 
2021). Furthermore, thalamic plasticity is complex, with cells being able 
to up- or downregulate their responses to many elements, such as 
conditioned stimuli, safe stimuli, and expected or unexpected outcomes 
(Taylor et al., 2021; Hasegawa et al., 2024; Ryugo and Weinberger, 
1978; Supple and Kapp, 1989). While it has been shown that plasticity 
occurs in higher-order thalamic nuclei (e.g., during fear learning, Barsy 
et al., 2020; Pardi et al., 2020), first-order sensory thalamus neurons are 
also plastic upon learning (Fig. 2a).

Recently, behavioral studies demonstrated that sensory thalamus 
also shows plasticity upon goal-oriented, appetitive learning. Upon 
learning an association between a stimulus and reward, sensory 
thalamic cells re-tune, while the coding of the reward-predicting stim
ulus gets enhanced (Hasegawa et al., 2024; Petty and Bruno, 2024; Gilad 
et al., 2020). Moreover, internal states, motor features and behavioral 
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choice to respond to a stimulus are encoded in sensory thalamic cells 
(Gilad et al., 2020; Peelman and Haider, 2024), and sensory nuclei from 
one sensory modality can become tuned to respond to stimuli of a 
different modality, if it is predictive of reward (Hasegawa et al., 2024; 
Petty and Bruno, 2024) (Fig. 2b).

6. Sources of plasticity in thalamus

Sensory thalamus has minimal connectivity between neighboring 
neurons (Halassa and Sherman, 2019) as well as a very small number of 
local interneurons (Halassa and Acsády, 2016; Simko and Markram, 
2021b), which makes it structurally distinct from cortical areas. As such, 
plasticity in sensory thalamus is most likely mediated by changes in 
intrinsic excitability and plastic synaptic inputs or changes in presyn
aptic activity from external sources, rather than through local circuit 
dynamics.

Non-synaptic plasticity, particularly changes in intrinsic excitability, 
have been suggested to occur in sensory thalamus (Apergis-Schoute 
et al., 2005). These changes may occur in the context of sensory expo
sure and learning, and are supported by evidence of transcriptional 
regulation in auditory thalamus upon sensory exposure and learning 

(Ran et al., 2003; Han et al., 2008; Brauth et al., 2007). Such modifi
cations can influence the responsiveness of thalamic neurons to 
incoming signals without altering synaptic strength.

On the other hand, synaptic plasticity in sensory thalamus may arise 
from several input sources: i) pre-thalamic sensory nuclei (such as the 
superior and inferior colliculi, dorsal column nuclei or the trigemino
thalamic tract) (Lee and Sherman, 2011; Winer et al., 1996b; Xue et al., 
1994; Lund and Webster, 1967), ii) sensory cortex feedback from layer 6 
neurons (Sherman and Guillery, 1996), iii) primary and higher-order 
sensory cortex layer 5 neurons driving predominantly higher-order 
nuclei (Lee and Sherman, 2010; Miller-Hansen and Sherman, 2022), 
and iv) TRN (Halassa and Acsády, 2016; Zikopoulos and Barbas, 2012). 
Additionally, sensory thalamus receives neuromodulatory input from 
other sources, which will be discussed in the next section.

While the pre-thalamic nuclei that feed sensory information to 
thalamus (found at the midbrain and brainstem) have been observed to 
exhibit plasticity, it is limited to adaptations following functional loss. 
For example, alterations in the peripheral sensory pathways can lead to 
adaptations in the superior and inferior colliculi (Gold and Knudsen, 
2000, 1999; Rauschecker and Harris, 1983). In contrast, sensory 
thalamic nuclei display a broader repertoire of plasticity, encompassing 

Fig. 2. Sensory thalamus shows plastic responses upon learning and cognitive variables. A. Left: Example of an aversive associative learning task in mice. In fear 
conditioning, mice learn to associate an auditory stimulus with an unpleasant outcome, in this case a mild electrical foot shock on the floor. Right: Sensory thalamus 
response examples over learning stages reveal that some cells stably encode the stimulus ("sound-encoding cells"), but others show plastic changes over learning 
("outcome-predicting cells", which respond to the tone for as long as it is predictive of the aversive outcome, and "outcome-omission cells", which respond to the tone 
only after the animal has learnt that it no longer predicts the shock). Traces in red represent illustrative cell activity, and the stimulus presentation window is depicted 
with a black line. These plots summarize some findings of Ryugo and Weinberger, 1978, Halverson et al., (2010) (population data) and Taylor et al., (2021) (single 
cell data). B. Left: Example of an appetitive associative learning task. In Go/No-Go sensory tasks, animals associate a sensory stimulus to a positive outcome, such as 
the delivery of a soymilk reward droplet, and they need to report the stimulus prior to obtaining the reward. In some tasks, experimenters use reversal training, where 
a new cue predicts the reward, and the original stimulus is no longer predictive of it. Right: Example responses of sensory thalamus cells during these behaviors. Some 
cells that respond to the sensory cue prior to the learning change their responses once the cue is predictive of the reward ("sound+outcome cells"). On the other hand, 
there are cells in sensory thalamus that respond to the stimulus only when it is predictive of reward ("outcome-predicting cells"), and even when the cue is of a 
different sensory modality ("outcome-predicting extramodal cell"). Stable cells are also present in these datasets, but are only shown in A. These data summarize some 
of the findings of Gilad et al., (2020) (population data), Hasegawa et al., (2024), Petty and Bruno, 2024 and other unpublished findings (single cell data, 
Paricio-Montesinos & Gründemann, in preparation). Some cells respond by enhancing their firing rate, and some by lowering it. Here we show all changes in activity 
as increased activity for clarity purposes.
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not only responses to injury or sensory deprivation but also processes 
such as encoding associative learning, with individual neurons finely 
tuned to cognitively-relevant features (Taylor et al., 2021; Hasegawa 
et al., 2024). This processing is likely mediated instead by projections 
from the cerebral cortex and the inhibitory control exerted by TRN. For 
instance, layer 6 corticothalamic projections modulate the gain and 
temporal dynamics of sensory thalamic responses to sensory stimuli 
(Mease et al., 2014). These projections can directly excite sensory 
thalamic cells or inhibit them indirectly by driving TRN activity, 
depending on the context (Crandall et al., 2015). Additionally, 
higher-order sensory thalamic nuclei receive “driver” inputs from mul
tiple cortical areas, allowing them to integrate information from diverse 
sources (Sampathkumar et al., 2021), and some of these nuclei have 
shown plasticity across sensory learning (Audette et al., 2019). 
Furthermore, the amygdala and prefrontal cortex also target TRN, 
positioning it as a hub for emotional and cognitive convergence that 
subsequently regulates sensory thalamus activity (Zikopoulos and Bar
bas, 2012). Together, these cortical and TRN inputs are likely candidates 
to mediate plasticity in sensory thalamic nuclei.

Regarding the cellular mechanisms of sensory thalamic plasticity, 
there are various identified sources. In retinogeniculate synapses, trains 
of stimulation cause short-term depression of AMPA receptor-mediated 
currents (Chen et al., 2002), which requires and is mediated by the 
protein CKAMP44 (Chen et al., 2018). Cortico-thalamic feedback syn
apses onto sensory thalamus show reversible, NMDA-independent 
long-term potentiation (Castro-Alamancos and Calcagnotto, 1999). In 
TRN cells, repetitive stimulation of glutamatergic cortico-reticular syn
apses results in an increase in excitability via GluN2C-NMDA receptors 
(Fernandez et al., 2017). Together, these mechanisms of plasticity in
fluence the responsiveness and synaptic transmission in sensory 
thalamus.

Altogether, the studies above show that thalamic nuclei are able to 
modify their connectivity and responsiveness upon sensory deprivation 
and learning. The fact that sensory thalamic nuclei can quickly and 
reversibly update their tuning according to behavioral demands postu
lates sensory thalamus as a key cognitive structure in the brain.

7. Neuromodulation of sensory thalamus

Neural networks change their function and plasticity through neu
romodulation (Bazzari and Parri, 2019; Brzosko et al., 2019; Varela, 
2014). Here, we will briefly discuss the main neuromodulators of sen
sory thalamus: acetylcholine (ACh), serotonin (5-HT), histamine, 
noradrenaline and dopamine.

Cholinergic input to the sensory thalamus originates mostly from the 
Pontomesencephalic tegmentum (PMT) in the brainstem (Schofield 
et al., 2011), while inputs from basal forebrain are less prominent 
(Heckers et al., 1992; Hallanger et al., 1987). The PMT is subdivided in 
two nuclei: the Pedunculopontine nucleus (PPN) and the Laterodorsal 
Tegmental nucleus (LDT) (Schofield et al., 2011). First and higher-order 
thalamic nuclei exhibit distinct cholinergic modulation. Electrophysio
logical data in auditory thalamus indicate that, in the first-order MGBv, 
ACh muscarinic receptor activation triggers depolarization and tonic 
firing, whereas cholinergic modulation in higher-order MGBd is more 
diverse, and many cells exhibit hyperpolarizion by ACh (Mooney et al., 
2004). This suggests that ACh may elicit specific modulation in first and 
higher-order auditory thalamus. VPM increases its spontaneous firing 
upon activation of ACh receptors, possibly thereby increasing noise 
levels (Hirata et al., 2006). Cholinergic modulation is most likely brain 
state-dependent, as cells in the PMT, the main source of cholinergic 
input to auditory thalamus (Schofield et al., 2011), show sleep-waking 
cycle-dependent activity, with peaks during wakefulness (Boucetta 
et al., 2014). PMT also sends extensive cholinergic modulation to visual 
thalamus (Billet et al., 1999) and TRN (Jourdain et al., 1989; Beierlein, 
2014). In TRN, ACh triggers both direct action potentials via activation 
of nicotinic acetylcholine receptors (nAChRs), but also changes the 

ability of TRN neurons to respond to presynaptic stimuli via muscarinic 
receptors (mAChRs), both expressed in TRN (Sun et al., 2013). Local 
administration of carbachol, which activates both receptor types, results 
in a decrease in spontaneous firing of TRN cells (Hirata et al., 2006). 
However, recent in vivo experiments found that optogenetic activation of 
cholinergic inputs onto TRN enhanced the activity of TRN cells and even 
promoted sleep (Ni et al., 2016). Finally, cholinergic cells from the PMT 
also target sensory areas beyond sensory thalamus, such as the inferior 
colliculus or the cochlear nucleus, underlining global cholinergic effects 
on sensory pathways (Schofield et al., 2011).

Therefore, cholinergic input appears to exert complex control over 
sensory thalamus. Both directly, possibly eliciting different effects in 
first and higher-order sensory nuclei, as well as by modulating its inhi
bition indirectly through TRN neuron control and other stages of the 
sensory pathway. Overall, cholinergic modulation in thalamus plays a 
role in sleep and arousal, attention and state-dependent sensory 
processing.

Serotoninergic afferents to the sensory thalamus arise from the me
dian (Gonzalo-Ruiz et al., 1995; Vertes et al., 1999) and dorsal (Vertes, 
1991; Kirifides et al., 2001) raphe nuclei in the brainstem. Direct 
application of 5-HT elicits depolarization in most neurons of first-order 
sensory thalamic nuclei (Varela and Sherman, 2009) and, in 
higher-order nuclei, it depolarizes many but not all: it also hyperpolar
izes a significant subset (~15 %) (Varela and Sherman, 2009; Monckton 
and McCormick, 2002). On the other hand, 5-HT has been reported to 
act on the retinal, presynaptic terminals that target visual thalamus, 
decreasing calcium activity and vesicle release onto thalamic cells 
(Reggiani et al., 2023). In TRN, there is expression of serotonin receptors 
with opposing net effects on GABAergic release (Goitia et al., 2016). The 
dorsal raphe nucleus has also been identified as an important modulator 
of pain perception (Wang and Nakai, 1994). Overall, serotonin appears 
to exert a nuanced control over sensory thalamus, supporting sensory 
gating. Moreover, 5-HT may be of particular importance during devel
opment, where it plays a role in the plasticity of thalamocortical axons 
(Sinclair-Wilson et al., 2023).

Histamine signaling in the central nervous system arises exclusively 
from the tuberomammillary nucleus of the posterior hypothalamus and 
it innervates, among other brain regions, sensory thalamus (Yoshikawa 
et al., 2021; Panula and Nuutinen, 2013; Scammell et al., 2019). Sensory 
thalamic nuclei, but not TRN, express receptors for histamine (Jin et al., 
2002). This suggests that histaminergic influence over sensory thalamus 
is local. Histaminergic activation of first-order visual thalamus has been 
shown to depolarize cells via suppression of K+ currents (McCormick 
and Williamson, 1991), and has been suggested to mediate sensory 
arousal (Uhlrich et al., 1993). The expression of histaminergic receptors 
appears similar between first and higher-order sensory thalamic nuclei 
(Jin et al., 2005), suggesting that this neuromodulator may affect both in 
similar ways. Histamine signaling in general has also been extensively 
linked to wakefulness and arousal (Yoshikawa et al., 2021; Panula and 
Nuutinen, 2013).

Noradrenaline is an additional modulator of sensory thalamus. 
Noradrenergic projections that target sensory thalamus originate in 
locus coeruleus of the brainstem (Rogawski and Aghajanian, 1980a; 
Pérez-Santos et al., 2021; Rico and Cavada, 1998; Simpson et al., 1997). 
Neurons in sensory thalamic nuclei can be activated by noradrenaline in 
vitro, through alpha-adrenergic receptors (Rogawski and Aghajanian, 
1980a, 1980b). However, the picture is more complex in vivo, where 
both enhancement and suppression of thalamic firing were found upon 
locus coeruleus stimulation (Moxon et al., 2007; Devilbiss and Water
house, 2011). The direct effects of noradrenaline on higher-order thal
amus are unknown. Because the receptor alpha1/alpha2 ratio of 
expression differs between some first and higher-order nuclei, there may 
be specific outcomes for noradrenergic release depending on the region 
(Pérez-Santos et al., 2021). In a neural circuit context, cortical loop input 
to sensory thalamus is suppressed in the presence of noradrenaline 
(Nersisyan et al., 2021). Moreover, norepinephrine activates TRN 
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neurons and, therefore, indirectly reduces spontaneous firing of sensory 
thalamus, enhancing the signal-to-noise ratio in sensory thalamic cells 
(Hirata et al., 2006; Castro-Alamancos and Calcagnotto, 2001). 
Together, evidence suggests that noradrenaline modulates sensory 
thalamus in sensory processing and arousal.

Dopamine in the primate thalamus has various sources. Retrograde 
tracing of dopaminergic axons from the thalamus shows that these arise 
from the hypothalamus, ventral mesencephalon, periaqueductal gray 
(PAG) and the lateral parabrachial nucleus (LPbN) (Sánchez-González 
et al., 2005). While primate thalamus is densely innervated with dopa
mine, especially higher-order nuclei, its dopaminergic input in rodents is 
much scarcer (Sánchez-González et al., 2005). However, some dopa
minergic axons can still be found in rodent sensory thalamus 
(Papadopoulos and Parnavelas, 1990). In slices, the direct effect of 
dopamine on sensory thalamus neurons depends on D1 and D2 receptors 
and it seems to be overall excitatory in both first and higher-order nuclei 
(Govindaiah and Cox, 2005; Govindaiah et al., 2010a; Lavin and Grace, 
1998). However, dopamine may also inhibit the presynaptic terminals 
that target sensory thalamus (Govindaiah and Cox, 2006). The neuro
modulating effects of dopamine in sensory thalamus in vivo have been 
reported to be dose-dependent: while small amounts of dopamine result 
in sensory facilitation, larger amounts appear to reduce sensory re
sponses (Zhao et al., 2002, 2001). The high dose inhibition, however, is 
most likely an indirect effect mediated by the action of dopamine on 
GABAergic inhibition (Zhao et al., 2002; Albrecht et al., 1996). In TRN, 
dopamine signaling appears to increase activity. On one hand, local 
dopamine application elicits an increase in spontaneous firing in retic
ular cells (Barrientos et al., 2019). On the other hand, local dopamine 
release acts on presynaptic GABAergic terminals from globus pallidus 
that target TRN, inhibiting their GABA release. This results in a disin
hibition of TRN cells and a tighter silencing of sensory nuclei 
(Govindaiah et al., 2010b; Gasca-Martinez et al., 2010). Altogether, 
dopaminergic input to sensory thalamus and TRN modulates sensory 
processing and gating.

Overall, research has shown that sensory thalamus receives extensive 
neuromodulation (Table 1). Acetylcholine and serotonin are mainly 
activating but also inactivate a subset of higher-order cells. Histamine 
and noradrenaline are excitatory too; however, noradrenaline also ac
tivates TRN – which may result in a net silencing effect in sensory 
thalamus. Finally, dopamine appears to exert opposing, complex mod
ulation in sensory thalamus, and an increase in TRN activity.

8. The sensory thalamus in disease states

Sensory thalamic function has been linked to either the pathogenesis 
or the symptomatology of some neuropsychiatric disorders. It appears to 
be a key structure involved in schizophrenia, autism, and may also un
derlie some of the symptoms of Alzheimer’s disease and other illnesses 
(Fig. 3).

8.1. Schizophrenia

Schizophrenia is a neuropsychiatric disorder characterized by im
pairments in reality testing, with delusions, hallucinations, formal 
thought disorder and disorganized behavior (World Health Organiza
tion, 2024). Schizophrenic patients may also show anhedonia, deficits in 
attention, problem solving and speech (among other symptoms) 
(Orsolini et al., 2022). In schizophrenia, the size of the thalamus is 
reduced and its function is impaired (Buchsbaum et al., 1996). Despite 
differing findings (Selemon and Begović, 2007; Dorph-Petersen et al., 
2009), evidence suggests that both first (i.e., LGN, MGB) and 
higher-order (i.e., MD, LP) sensory thalamic nuclei – as well as other 
non-sensory nuclei – are of smaller volume in schizophrenia patients 
than in healthy individuals (Adriano et al., 2010; Perez-Rando et al., 
2022; Mørch-Johnsen et al., 2023). In addition, the thalamus of 
schizophrenic patients has abnormally high levels of dopamine (Oke 

et al., 1988), which has classically been linked to schizophrenia patho
genesis (Lau et al., 2013; Brisch et al., 2014). Lower thalamic D2/D3 
dopamine receptor binding has also been reported (Talvik et al., 2003; 
Yasuno et al., 2004).

Schizophrenia patients suffer from sensory hallucinations (i.e., 
experience of percepts in absence of external stimuli, therefore self- 
generated), which are linked to activity in thalamic nuclei, striatum, 
hippocampus, cingulate gyrus and orbitofrontal cortex (Silbersweig 
et al., 1995). Alterations in thalamocortical connectivity are also re
ported in schizophrenia patients (Marenco et al., 2012).

The link between sensory thalamic function and schizophrenia may 
partially have genetic roots. In humans, a specific deletion of the chro
mosome 22 (22q11.2) causes a number of signs and symptoms, one of them 
being a proneness to develop auditory hallucinations and schizophrenia 
(Mancini et al., 2020). Patients with the 22q11.2 deletion syndrome also 
have a smaller sensory thalamus and abnormal hyperconnectivity between 
MGB and auditory cortex (Mancini et al., 2020). A mouse model lacking 

Table 1 
Summary of neuromodulatory input onto sensory thalamus. Acetylcholine, 
serotonin, histamine, noradrenaline and dopamine innervate first and higher- 
order sensory thalamic nuclei in different ways, triggering different outcomes 
in the cells they target. The source, innervation, effects and main references are 
summarized here.

Source Innervation & 
effect

References

Acetylcholine 
(ACh)

Pontomesencephalic 
tegmentum 
& Basal forebrain

1st order: 
depolarization 
Higher-order: 
depolarization & 
hyperpolarization 
(subset) 
TRN: 
depolarization

Mooney et al., 
(2004)
Mooney et al., 
(2004)
Sun et al., 
(2013), Ni et al., 
(2016)

Serotonin Median & Dorsal 
Raphe nuclei

1st order: 
depolarization 
Higher-order: 
depolarization & 
hyperpolarization 
(subset) 
TRN: 
depolarization & 
hyperpolarization

Varela and 
Sherman, 
(2009)
Monckton and 
McCormick, 
(2002), Varela 
and Sherman, 
(2009)
Goitia et al., 
(2016)

Histamine Tuberomammillary 
nucleus of 
Posterior 
Hypothalamus

1st order: 
depolarization 
Higher-order: 
unknown (similar 
receptors to 1st 
order) 
TRN: no local 
receptors

McCormick and 
Williamson, 
(1991)
Jin et al., (2005)
Jin et al., (2002)

Noradrenaline 
(NA)

Locus coeruleus 1st order: in vitro 
depolarization, in 
vivo mixed 
Higher-order: 
unknown (nuclei- 
specific α1/α2 
expression) 
TRN: 
depolarization

Rogawski and 
Aghajanian, 
(1980a), 
(1980b), Moxon 
et al., (2007)
Pérez-Santos 
et al., (2021)
Hirata et al., 
(2006)

Dopamine Hypothalamus, 
Ventral 
Mesencephalon, 
Periaqueductal Gray, 
Lateral Parabrachial 
nucleus

1st order: in vitro 
activity increase, 
in vivo mixed 
Higher-order: 
hyperpolarization 
but increase in 
excitability 
TRN: activity 
increase

Papadopoulos 
and Parnavelas, 
(1990), 
Govindaiah 
et al., 2010
Lavin and 
Grace, (1998)
Barrientos et al., 
(2019), 
Gasca-Martínez 
et al., 2010
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Dgcr8 was proposed as a model of the 22q11.2 syndrome, and these mice 
have abnormal numbers of thalamic D2 receptors and synaptic trans
mission between MGB and cortex (Chun et al., 2014). The latter was 
reversed by the treatment with antipsychotic drugs and dopamine receptor 
antagonists (Chun et al., 2014). Later, it was found that Dgcr8 deficiency 
triggers a microRNA loss (miR-338–3p), which appears to be the root of the 
thalamocortical disruption and can be replenished in adult mice to rescue it 
(Chun et al., 2017). Finally, the genes Disc-1 and Cacna1l are also associ
ated to schizophrenia (Schizophrenia Working Group of the Psychiatric 
Genomics Consortium, 2014; Krol et al., 2018). Disc-1 is prominently 
expressed during brain development and may be involved in the estab
lishment of thalamocortical connections (Austin et al., 2004), and Cacna1l 
has allelic variants that alter TRN neuron excitability (Baez-Nieto et al., 
2022), which is the main inhibitory controller of sensory thalamus. 
Furthermore, TRN participates in the generation of sleep spindle activity, 
which is reduced in schizophrenic patients (Ferrarelli et al., 2007). For 
these reasons, TRN has been proposed to be involved in schizophrenia 
pathogenesis (Krol et al., 2018; Ferrarelli and Tononi, 2011; Steullet et al., 
2018).

Overall, abnormalities in the structure and function of sensory 
thalamus may underlie some of the symptoms arising in schizophrenia. 
Thalamic volume loss, alterations in sensory responsiveness and 

impairment of thalamocortical connectivity and transmission appear to 
be common hallmarks in schizophrenic patients (Jiang et al., 2021). 
Recent studies suggest that these deficits may arise from genetic de
ficiencies, which may be compensated exogenously to alleviate some of 
the symptoms (Chun et al., 2017).

8.2. Autism

Autism spectrum disorder (ASD) is a set of lifelong neuro
developmental conditions, which manifest during early childhood, and 
cause impaired social interactions, executive dysfunction (Cook et al., 
2013) with repetitive and inflexible patterns of behavior and altered 
sensory and information processing (Lai et al., 2014; Ayub et al., 2021). 
Individuals diagnosed with ASD show hypo- and hyperreactivity to 
sensory stimuli (World Health Organization, 2024; Balasco et al., 2020). 
One of the suggested causes of this altered sensory perception is that 
ASD patients have altered thalamocortical connectivity, in sensory but 
also many other thalamic and cortical regions (Ayub et al., 2021; 
Woodward et al., 2017; Linke et al., 2023; Karavallil Achuthan et al., 
2023). Furthermore, studies in animal models of ASD have reported 
fewer and smaller neurons in first and higher-order auditory thalamus, 
with respect to controls (Mansour et al., 2021). Patients with ASD also 

Fig. 3. Summary of identified disease alterations in sensory thalamus. Schizophrenia and autism are linked to genetic mutations that trigger morphological and 
functional changes in sensory thalamus, TRN and thalamocortical projections. In Alzheimer’s disease, amyloid plaques and neuronal loss are found in sensory 
thalamus, and TRN activity and sleep are also affected. In tinnitus, auditory thalamus and cortex are hyperexcitable. Finally, patients with major depressive disorder 
and PTSD also show sensory thalamus alterations. The schemes depict the mouse brain anatomy but recapitulate both human and mouse findings of altered regions 
(red) and unaffected ones (grey).
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exhibit smaller thalamic volume (Tsatsanis et al., 2003; Tamura et al., 
2010), and the magnocellular portion of LGN shows reduced activity in 
adults with autism (Schelinski et al., 2024).

Another thalamic link to ASD is its inhibitory control via TRN. The 
genes Chd2 and Ptchd1 are highly expressed in TRN (Krol et al., 2018), 
and their mutations have been linked to autism (Iossifov et al., 2012; 
Pinto et al., 2010). In line with this, it has been proposed that decreased 
thalamic inhibition triggers sensory thalamus to transmit to cortex 
excessive, unfiltered sensory information that disrupts attention (Baran 
et al., 2023).

Overall, research suggests that thalamic function is affected in ASD, 
with part of the symptoms (i.e. altered stimulus sensitivity, abnormal 
sensory gating) possibly being linked to changes in sensory thalamus 
nuclei and inhibitory control. However, thalamocortical connectivity in 
more executive areas is likely key as well and may underlie social and 
executive functions.

8.3. Alzheimer’s disease

Alzheimer’s disease (AD) is a form of dementia that generally im
pacts memory at first and progressively results in loss of most cognitive 
functions (Knopman et al., 2021). It is associated to encephalic grey 
matter loss and cell death caused by the accumulation of the so-called 
amyloid beta plaques, oligomers and neurofibrillary tangles, initially 
in the temporal lobes, but also affecting thalamus and other structures 
(Braak and Braak, 1991).

Among thalamic structures, the anterior nuclei are more prominently 
affected in AD (Biesbroek et al., 2024), but sensory thalamus also shows 
changes. Beta-amyloid senile plaques and neurofibrillary tangles can be 
found in auditory thalamus (Sinha et al., 1993). Moreover, VPL, MD and 
LP thalamic nuclei show atrophy in AD (Forno et al., 2023; van de 
Mortel et al., 2021). Pulvinar atrophy appears to occur especially in the 
earlier cognitive decline stage of AD, referred to as mild cognitive 
impairment (van de Mortel et al., 2021). In addition, neuronal loss and 
synaptic alterations are found in MGB in AD patients (Baloyannis et al., 
2009).

In mouse models of AD, amyloid plaques can be found in amygdala 
and sensory thalamus, impairing the learning of fear memories (Knafo 
et al., 2009). This is similar to human AD patients, who have deficits in 
fear conditioning (Hamann et al., 2002). Because associative learning of 
sensory stimuli with negative outcomes heavily depends on amygdala 
and its direct inputs from sensory thalamus (Barsy et al., 2020; Taylor 
et al., 2021), it is possible that thalamic deficiencies contribute to the 
sensory, attentional or memory deficits observed in AD patients (van de 
Mortel et al., 2021).

Moreover, thalamic inhibitory control may also be affected in AD. In 
mouse models of the disease, TRN activity is reduced (Hazra et al., 
2016), and restoring short wave sleep by chemogenetic TRN activation 
ameliorates amyloid plaque deposition (Jagirdar et al., 2021).

Altogether, sensory thalamus and TRN show alterations during Alz
heimer’s disease and may contribute to the course and progression of the 
disease in addition to other structures such as the hippocampus (Braak 
and Braak, 1991) or anterior thalamic nuclei (Aggleton et al., 2016).

8.4. Other diseases

Auditory thalamus has been linked to tinnitus, the phantom 
perception of sound in absence of sound stimulation that is linked to 
hearing loss (Almasabi et al., 2022). In animal models of tinnitus, MGB 
shows enhanced spontaneous activity with respect to healthy animals 
(Cook et al., 2021). This could underlie the cortical hyperexcitability 
observed in tinnitus patients (Leaver et al., 2011).

Furthermore, sensory thalamus may also play a role in mood and 
mood disorders. In major depressive disorder (MDD), patients have 
smaller volume of several thalamic regions, including sensory nuclei 
(Chibaatar et al., 2023). Also, one way to alleviate symptoms is via light 

therapy (Tao et al., 2020), which appears to act via direct projections to 
lateral habenula from visual thalamus (Huang et al., 2019). Moreover, 
sensory thalamus has been reported to drive a specific population of 
parvalbumin-expressing cells in the sensory cortex, which plays a role in 
stress resilience. Enhancing this pathway had antidepressant-like effects 
in mice (Li et al., 2023).

In post-traumatic stress disorder (PTSD), the higher order somato
sensory POm shows hyperactivation in mouse models. Inhibiting its 
activity results in a decrease of defensive responses in mice (Xi et al., 
2023).

Finally, studies in developmental dyslexia, a learning disorder with 
impairment in reading and spelling, revealed dysfunctions of LGN 
(Galaburda and Livingstone, 1993; Müller-Axt et al., 2017) and MGB 
(Díaz et al., 2012).

9. Concluding remarks

In this review, we aimed to recapitulate the most recent under
standing of sensory thalamus with a focus on functions and disease 
states. While first-order nuclei are more specialized in reliable encoding 
of sensory stimuli and higher-order thalamus generally contains more 
processed information, both participate in perception, associative 
learning, choice and other cognitive functions. Sensory thalamus is 
plastic and receives top-down as well as inhibitory (mainly from TRN) 
and neuromodulatory control, with higher-order nuclei being particu
larly targeted. Moreover, the impairment of sensory thalamus likely 
underlies some of the symptoms associated with neuropsychiatric dis
orders such as schizophrenia or autism as well as Alzheimer’s disease. 
Therefore, expanding our understanding of sensory thalamus is key to 
pinpoint the mechanisms behind highly complex percepts, emotions and 
memory formation, as well as to identify more specific and effective 
therapeutic targets for debilitating diseases of mental health and 
cognitive decline.

Novel, cutting-edge technological advances such as intravital single 
cell deep brain imaging of sensory thalamus (Taylor et al., 2021; 
Hasegawa et al., 2024), high-density electrophysiological recordings 
(Jun et al., 2017), neuromodulator sensors (Zhuo et al., 2024; Dong 
et al., 2023; Feng et al., 2019; Jing et al., 2020; Deng et al., 2024) and 
selective neuron manipulation approaches like chemogenetics (Roth, 
2016) and optogenetics (Madisen et al., 2012), combined with behav
ioral testing, will together enable us to advance our understanding of 
sensory thalamic function, plasticity and neuromodulation in health and 
disease.
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