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Layer-specific changes in sensory cortex 
across the lifespan in mice and humans
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Dietrich S. Schwarzkopf    8,9, Oliver Speck3,5,7,10, Janelle M. P. Pakan    1,3,5,7 & 

Esther Kuehn1,2,4,7

The segregation of processes into cortical layers is a convergent feature in 

animal evolution. However, how changes in the cortical layer architecture 

interact with sensory system function and dysfunction remains unclear. 

Here we conducted functional and structural layer-specific in vivo 7T 

magnetic resonance imaging of the primary somatosensory cortex in two 

cohorts of healthy younger and older adults. Input layer IV is enlarged and 

more myelinated in older adults and is associated with extended sensory 

input signals. Age-related cortical thinning is driven by deep layers and 

accompanied by increased myelination, but there is no clear evidence for 

reduced inhibition. Calcium imaging and histology in younger and older 

mice revealed increased sensory-evoked neuronal activity accompanied by 

increased parvalbumin expression as a potential inhibitory balance, with 

dynamic changes in layer-specific myelination across age groups. Using 

multimodal imaging, we demonstrate that middle and deep layers show 

specific sensitivity to aging across species.

Sensory processing is organized in a layered architecture with segre-

gated input, output and modulatory circuits. The layered architecture 

of sensory systems is a convergent feature in animal evolution1. A model 

of functional and dysfunctional sensory systems requires a detailed 

understanding of alterations in the layer-specific architecture and their 

associated phenotypes. Critically, this knowledge is thus far lacking not 

only for sensory systems but also for cortical dysfunction in general.

Sensory dysfunction has been associated with different cortical 

phenotypes, including functional overactivation2, increases in recep-

tive field sizes2,3, decreases in lateral inhibition2 and structural altera-

tions such as cortical thinning4. However, it is unclear how changes in 

the cortical layer architecture may contribute to the specific functional 

and structural alterations that characterize sensory cortices with 

reduced functionality. Cortical aging serves as a suitable model system 

to investigate this question as structural and functional plasticity is 

observed at different levels of the processing hierarchy and affects 

behavior2.

In the present study, we tested four major hypotheses of how 

structural and functional alterations in the cortical layer architecture 

characterize cortical dysfunction. The ‘preserved layer hypothesis’ 

assumes that the structural layer architecture cannot be distinguished 

between younger and older adults with present methodology, moti-

vated by the preserved layer architecture of primary motor cortex (MI) 

in older adults5. Conversely, the ‘altered input channel hypothesis’ 
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representations10, in input layer IV degrade with cortical aging and are 

associated with less precise functional representations3.

To test these hypotheses, we employed a unique approach and 

acquired layer-specific functional and structural magnetic resonance 

imaging (fMRI) data using 7T MRI of the primary somatosensory 

cortex (SI) of healthy younger and older adults together with behav-

ioral assessments. To better understand the mechanistic underpin-

nings, we analyzed younger, older and senescent mice using in vivo 

two-photon calcium imaging and histological analyses (Fig. 1). In 

humans, analyses were restricted to area 3b—the homolog of mouse 

SI11. This study inspires the precise investigation of cortical layer 

dynamics to reveal fundamental mechanisms that underlie cortical 

dysfunction.

assumes that age-related functional plasticity is characterized by 

a more (or less) pronounced input layer IV in older compared with 

younger adults. Previous studies showed structural sensitivity of layer 

IV to sensory input statistics6, which are higher in older adults due to 

increased age but also weakened due to reduced peripheral nerve 

receptor density7. Our third ‘altered sensory modulation hypothesis’ 

assumes that older compared with younger adults are characterized 

by a degradation of deep layers V and VI, which mediate changes 

in the excitatory–inhibitory modulation of sensory inputs. In pri-

mates, deep layers of sensory cortex mediate inhibition8, whereas, 

in older adults, inhibition is reduced2. Finally, the ‘degraded border 

hypothesis’ assumes that low-myelin borders that exist inferior to 

the thumb representation9, and occasionally between single-finger 
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Fig. 1 | Overview experimental design. a, 7T MRI was used to investigate the 

layer-specific structural architecture of the SI in younger and older adults (red 

arrows indicate ROI). qT1 values were used to define SI layer compartments 

in vivo. Layer-specific qT1 and QSM values were mapped onto the individuals’ 

inflated cortical surfaces. Myelin staining was remodeled according to  

Dinse et al.14. 7T fMRI was used to investigate age-specific and layer-specific 

functional changes in SI. Participants underwent several passive tactile 

stimulation paradigms (phase-encoded design and blocked design) in the 

scanner where fingers of the right hand were stimulated. L, left side of the 

human brain; R, right side of the human brain. ppm, parts per million. b, Younger 

and older adults underwent a behavioral test battery including tactile two-

point discrimination (2PD), tactile detection, tactile finger discrimination, 

sensorimotor integration and tactile texture discrimination tasks as well as the 

Grooved Pegboard Test, the O’Connor Hand Dexterity Test and the Small Motor 

Test. c, Barrel cortex two-photon calcium imaging (2PCI) of excitatory neurons 

expressing a genetically encoded calcium indicator (GCaMP6f) during air  

puff whisker stimulation was used to investigate younger and older adult  

mice: (i) during baseline conditions with all whiskers, (ii) after all whiskers were 

cut except two on the right side (W1 + W2; double stimulation condition), and 

(iii) after another whisker was cut, leaving only one (W1; single stimulation 

condition). Schematic indicating region used for postmortem histological 

analysis examining underlying cytoarchitectural differences across cortical 

layers and aging. Scale bars, 100 µm. h, hours.
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Results
Age-related cortical thickness changes are layer specific
Our first hypothesis expects the structural layer architecture to be  

similar between younger and older adults (‘preserved layer hypoth-

esis’). According to this view, if cortical thinning occurs with aging, we 

expect homogenous thinning of all layers. To target this fundamental 

aspect of cortex organization, we analyzed structural and functional 7T 

MRI data of younger (n = 20) and older (n = 20) adults’ SI (cohort 1) using 

the SI hand area as a model system. We localized the SI hand area using 

tactile population receptive field (pRF) modeling3. The SI layer defini-

tion followed a data-driven approach, assigning biological layers II and 

III to the outer compartment, input layer IV to the middle compartment 

and layers V and VI to the inner compartment10. In agreement with 

previous findings12, the SI hand area was, on average, 2.00 ± 0.10 mm 

thick (mean ± s.d.) but thinner in older compared with younger adults4 

(older − younger = −0.12 mm; Table 1). Critically, overall cortical thin-

ning is driven by reduced thickness of the inner compartment, whereas 

the middle compartment is thicker in older compared with younger 

adults (Table 1 and Fig. 2b,d; see Supplementary Table 2 for cortical 

thickness analysis without outlier removal; see Supplementary Table 3 

for a different localization approach; see Supplementary Table 4 for 

a different layer compartmentalization scheme; see Extended Data 

Fig. 1 for the exact definition of cortical layer compartments; and see 

Supplementary Fig. 3 for the distribution of layer-specific cortical 

thickness values).

Bayesian independent-sample t-tests confirm this result, showing 

extreme evidence for reduced total cortical thickness (BF10 = 1,383.79), 

reduced inner layer thickness (BF10 = 2.05 × 1026) and increased middle 

layer thickness (BF10 = 8.93 × 1021) in older adults compared with younger 

adults and anecdotal evidence for the null hypothesis of no group dif-

ference for the outer layer (BF10 = 0.635) (Supplementary Table 1). This 

result of layer-specific cortical thickness differences between younger 

and older adults rejects the ‘preserved layer hypothesis’.

We also examined a healthy adult (male, age 52 years) with con-

genital arm loss on the right side to further investigate variations in 

layer-specific cortical thickness in the area 3b hand area (see Supple-

mentary Fig. 1 for functional localizer). Detailed results are shown in 

Extended Data Fig. 2 and Supplementary Fig. 2.

Stable low-myelin borders in aging and in a one-handed person
Next, we tested the ‘degraded border hypothesis’. This hypoth-

esis assumes that the low-myelin borders that exist inferior to the 

thumb representation9, and occasionally between single-finger 

representations10, in input layer IV of SI degenerate with age. We first 

confirmed that the overall structural topographic architecture of SI 

follows the expected pattern—that is, individual-finger representa-

tions do not significantly differ in their microstructural composition 

(Supplementary Tables 6 and 7), whereas the hand and the face areas 

show microstructural differences, indicating distinct cortical fields10. 

In particular, we show more pronounced diamagnetic contrast in the 

face area in older adults (Fig. 2f and Supplementary Tables 8 and 9).

To test our hypothesis, we developed an automatic border detec-

tion algorithm (Fig. 3a), which did not detect significant age-related 

differences with respect to the existence or composition of layer IV 

low-myelin borders between younger and older adults (Fig. 3b–d). 

Statistical trends that indicate differences in iron and calcium content 

in the hand–face border between age groups (Fig. 3c,d) are not specific 

to the border area but are generally observed in SI.

The same automatic border detection algorithm was applied to the 

data acquired from n = 1 congenital one-handed person, revealing that 

low-myelin borders exist in both hemispheres of this individual—that 

is, contralateral and ipsilateral to the missing arm (Supplementary 

Fig. 5). Low-myelin borders, therefore, have a similar architecture in 

younger adults, older adults and in n = 1 individual with congenital 

arm loss. This rejects the ‘degraded border hypothesis’, confirming a 

previous observation in human MI5.

More pronounced layer IV input signals in older adults
The above-reported results reject both the ‘preserved layer hypothesis’ 

and the ‘degraded border hypothesis’. However, the increased thickness 

of input layer IV in older adults is in line with the ‘altered input chan-

nel hypothesis’. To follow this up, we investigated, in an independent 

cohort (cohort 2, n = 11 younger adults, n = 10 older adults), if there is 

evidence for extended sensory input signals in layer IV in older com-

pared with younger adults. We extracted both resting-state and tactile 

stimulation-induced percent signal change of index and middle finger 

representations (Fig. 4; see Supplementary Figs. 6 and 7 for data of all 

participants) in contralateral SI for each individual at each modeled 

cortical depth. In both younger and older adults, there is an antagonistic 

center-surround relationship between signals and cortical depth: signals 

peaked in the input layer IV but were minimal in neighboring depths. 

Given that we observed this relationship only during sensory stimula-

tion but not during the resting state (Fig. 4e versus Fig. 4f), and the 

peak occurred at the expected layer compartment encompassing layer 

IV, the signal peak is a marker to measure input signals to layer IV in SI.

Older adults present with a more pronounced sensory input 

peak compared with younger adults (Fig. 4f–h; for detailed statistics, 

see Supplementary Table 14; note that analyses were performed on  

calibrated blood oxygen level dependent (BOLD) data, reducing the 

likelihood that effects are driven by age-related differences in neu-

rovascular coupling). This provides further evidence for the ‘altered 

input channel hypothesis’, according to which the cortical input circuit 

changes with aging, although reduced inhibition could also explain this 

effect (‘altered modulation hypothesis’).

Altered functional response profile in the SI of older adults
Thus far, we have rejected both the ‘preserved layer hypothesis’ and 

the ‘degraded border hypothesis’ and have provided evidence for the 

Table 1 | Layer-specific cortical thickness values of the SI hand area

Hand area All 

n = 39

Younger 

n = 20

Older 

n = 19

Group differences

Mean ± s.d. Mean ± s.d. Mean ± s.d. t df Pperm CIperm

Total 2.00 ± 0.10 2.06 ± 0.07 1.94 ± 0.08 5.0 35.8 <10−5* 0.062, 0.183

Outer 0.40 ± 0.02 0.41 ± 0.02 0.40 ± 0.02 1.3 34.7 0.196 −0.004, 0.023

Middle 0.70 ± 0.15 0.56 ± 0.02 0.85 ± 0.03 −34.6 28.3 <10−5* −0.386, −0.198

Inner 0.90 ± 0.21 1.10 ± 0.06 0.69 ± 0.04 26.5 31.3 <10−5* 0.275, 0.539

Shown are total and layer-specific (outer, middle, inner) mean cortical thickness values (mean) and standard deviations (s.d.) in millimeters for the SI hand area. Independent-sample 

random permutation Welch t-tests were calculated to investigate group differences (t, test statistic; df, degrees of freedom; Pperm, Monte Carlo permutation P value; CIperm, 95% Monte Carlo 

permutation confidence interval; number of permutations = 100,000; minimum value of Pperm = 1 / number of permutations). *P < 0.0125, significant Bonferroni-corrected differences (corrected 

for 4 tests). Two-sided tests are reported. See Supplementary Table 1 for Bayesian independent-sample t-tests computed on these differences. Data of n = 19 older adults are presented here 

after outlier removal. The full dataset can be found in Supplementary Table 2. 





Nature Neuroscience | Volume 28 | September 2025 | 1978–1989 1982

Article https://doi.org/10.1038/s41593-025-02013-1

hypothesis (for detailed statistics, see Extended Data Table 1). Against 

our expectation, statistical evidence for age differences in markers 

of co-activated inhibition is inconclusive (for detailed statistics, see 

Extended Data Table 2). This suggests that middle layer expansion and 

deep layer thinning co-occur with coarser spatial selectivity of the index 

finger representation, but we cannot confirm that this co-occurs with 

decreased inhibition in older adults.

Altered microstructural layer composition in older adults
Next, we investigated how the microstructural composition of SI 

layers changes with age. We extracted quantitative T1 (qT1) values 

as a proxy for cortical myelin14 and quantitative susceptibility maps 

(QSMs) as proxies for cortical iron (positive values, pQSM) and  

calcium/metabolism (negative values, nQSM)15, as well as overall  

mineralization (absolute values, aQSM)16, from different depths of the 

human hand area. We confirm previously reported across-layer age 

effects5,16: (1) more negative nQSM values (older: −0.0118 ± 0.0006 parts 

per million (ppm); younger: −0.0098 ± 0.0003 ppm), (2) higher pQSM 

values (older: 0.0149 ± 0.007 ppm; younger: 0.0110 ± 0.0004 ppm) 

and (3) higher aQSM values (older: 0.0138 ± 0.0006 ppm; younger: 

0.0103 ± 0.0003 ppm) in older compared with younger adults (Sup-

plementary Tables 10 and 11).

Interestingly, age effects in qT1 values are layer specific, with 

lower qT1 values (reflecting higher myelin) in the inner and mid-

dle compartments in older compared with younger adults (older: 

inner = 1,547.6 ± 14.8 ms (mean ± s.e.); middle = 1,783.2 ± 21.9 ms; 

younger: inner = 1,636.3 ± 12.3 ms; middle = 1,874.4 ± 12.9 ms; Fig. 2e; 

see Supplementary Tables 10 and 11 for exact results; see Supplemen-

tary Tables 12 and 13 for control analyses using a different compart-

mentalization scheme). Controlling for effects of cortical atrophy, no 

significant difference was observed in hand mask (full hand map) size 

(qT1 (n = 40): t33.7 = −0.48, P = 0.632; nQSM (n = 34): t31.8 = 0.67, P = 0.510; 

pQSM (n = 34): t30.1 = −0.39, P = 0.696; aQSM (n = 34): t29.4 = 0.02, 

P = 0.981) between younger adults (qT1: 1,249 ± 90; nQSM: 512 ± 53; 

pQSM: 717 ± 62; aQSM: 1271 ± 98 vertices, mean ± s.e.) and older  

adults (qT1: 1,325 ± 130; nQSM: 462 ± 53; pQSM: 756 ± 75; aQSM: 

1,268 ± 124 vertices).

These results are in line with the ‘altered input channel hypothesis’: 

the input layer IV does not only appear thicker and shows more pro-

nounced sensory input signals in older compared with younger adults, 

but it is also characterized by higher myelin content. These results are 

also in line with the ‘altered modulation hypothesis’: the deeper layers 

of SI are thinner in older adults, and the functional spatial selectivity of 

the index finger representation is coarser, but this is not accompanied 

by evidence for reduced functional inhibition. The reason may be the 

higher myelin content in deeper layers in older adults. To clarify the 

role of age-related alterations in layer-specific cellular composition 

more precisely, additional analyses were conducted in younger and 

older mice.

Altered neuronal activity and layer architecture in mice
Although BOLD responses are difficult to relate to precise neural 

excitatory or inhibitory drive, and MRI data are difficult to relate 

to precise histological changes, the use of animal models can help 

clarify mechanistic aspects related to the cytoarchitectural changes 

observed in specific layers and associated functional changes. We 

examined the aging whisker barrel cortex in mice as an analogous 

sensory system that shares multiple topological features and aspects 

of cortical representation with the human hand and fingers11. We 

investigated the activity of individual neurons in the equivalent 

of younger adults (mice 19.6 ± 2.5 weeks, n = 8—that is, between 

2 months and 6 months) and older adults (mice 76.7 ± 2.2 weeks, 

n = 8—that is, between 12 months and 20 months) and combined 

this with postmortem histological analysis across cortical layers  

and age.

To examine sensory-driven neuronal activity in younger com-

pared with older adult mice, a cranial window was implanted above 

the barrel cortex in transgenic mice expressing a genetically encoded 

calcium indicator (CGaMP6f)17 driven by a Thy1 promoter18. We exam-

ined sensory-evoked responses of excitatory neurons across the outer 

Fig. 2 | Age-related differences in the structural layer architecture of human 

SI. a,c, Younger (a) and older (c) adults’ microstructure described by qT1-based 

myelin (n = 20 each), nQSM-based diamagnetic contrast (younger: n = 18, older: 

n = 16), pQSM-based paramagnetic contrast (younger: n = 18, older: n = 16) and 

aQSM-based mineralization (younger: n = 18, older: n = 16) sampled between the 

CSF/gray matter border and the gray matter/WM border (group mean plotted 

in bold). Low qT1 and nQSM indicate high myelin content and high diamagnetic 

contrast, respectively. Myelin staining was remodeled according to Dinse et al.14.  

QSM values are given in ppm. b,d, Layer compartments of younger (b) and 

older (d) adults based on the local rate of change in qT1 (ref. 10). MRI layer 

profiles visualize the local rate of change in qT1 as shades of gray. e, Age-related 

differences in qT1, nQSM and pQSM in the SI hand area (permutation mixed-

effects ANOVAs). *P < 0.0045, significant differences at Bonferroni-corrected 

significance level. For exact values, see Supplementary Tables 10 and 11.  

f, Age-related differences in SI cortical fields. Shown are permutation mixed-

effects ANOVAs with factors age (younger adults, older adults), layer and cortical 

field (hand area, face area) on residual qT1, nQSM and pQSM after regressing out 

the effect of map size. *P < 0.002, significant differences at Bonferroni-corrected 

significance level. Trends above Bonferroni-corrected threshold are marked by 

‘T’. For exact values, see Supplementary Tables 8 and 9. For similar data of n = 1 

participant with congenital arm loss, see Extended Data Fig. 2, Supplementary 

Fig. 2 and Supplementary Table 5. In e and f, individual data are shown as colored 

dots and group means are shown as black dots. Box plots are drawn within the 

interquartile range (box), medians are shown as vertical lines, and whiskers 

connect the minimum and the maximum with the lower and upper quartiles. 

Horizontal black lines represent the lower and upper Gaussian confidence limits. 

Two-sided tests are reported. CSF, cerebrospinal fluid; WM, white matter.

Fig. 3 | Structural border results using an automated detection approach. 

a, Low-myelin borders (vertical lines) were detected based on detrended qT1 

values sampled along multiple geodesic paths from the face representation to 

the little finger representation of the hand. The analysis was based on qT1 values 

extracted from the middle layer compartment (dotted white line in myelin stain 

(remodeled according to Dinse et al.14)). Additional seeds were placed at the 

thumb representation (anchor to calculate geodesic distances) and the index 

finger representation. Geodesic paths were sampled along the inferior-to-

superior axis. Five paths were extracted from anterior to posterior within area 

3b using equal spaces between neighboring paths. Detected low-myelin borders 

were back-projected to cortical surfaces (white dots in enlarged surface plots) 

and are shown together with different contrasts (from left to right): middle qT1 

together with pRF center location maps of individual fingers, finger activation 

maps (t-values) extracted from vibro-tactile blocked design paradigm, hand 

activation map (t-values) extracted from motor blocked design paradigm (that 

is, individual finger movements), QSM indicative of diamagnetic (nQSM) and 

paramagnetic (pQSM) areas and connectivity map (eigenvector centrality (EC) 

values). b, Total counts of detected low-myelin borders for younger and older 

adults. Fisher’s exact test indicated no difference in the number of detected 

borders between age groups. c, Comparison of hand–face low-myelin border 

composition between age groups. No significant differences were observed 

between age groups with respect to border prominence, full width at half 

maximum (FWHM), qT1 intensity, EC, signed QSM values (QSM), pQSM values, 

nQSM values or aQSM values. For n = 2 participants, no hand–face border 

was detected. d, Comparison of within-hand low-myelin border composition 

between age groups. No significant differences were observed between age 

groups. Trends above Bonferroni-corrected threshold of P = 0.003 (correcting 

for 16 tests) are marked by ‘T’. NS, not significant.
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(layer II/III) and inner (layer V) cortical layers after spontaneous activity 

and direct air puff stimulation to all whiskers as well as subsets of whisk-

ers (Fig. 1c—that is, similar stimulation paradigm to humans: ‘single 

stimulation condition’, one whisker (W1); ‘double stimulation condi-

tion’, two neighboring whiskers co-activated (W1 + W2); Extended Data 

Fig. 3). Changes in fluorescence (∆F/F) of the calcium indicator were 

extracted and used as a proxy readout of neuronal activity. We observed 

a more pronounced increased amplitude of excitatory sensory-evoked 

responses in older adult mice during direct whisker stimulation of all 

whiskers as well as during voluntary whisking compared with spon-

taneous neuronal responses during rest (Fig. 5a,b and Extended Data 

Fig. 3; younger adult (n = 1,519 neurons) versus older adult (n = 1,958 

neurons): air puff whisker stimulation: t3,475 = 14.6, P < 0.001, Cohen’s 

d = 0.498; natural voluntary whisking: t3,475 = 16.9, P < 0.001, Cohen’s 

d = 0.577; spontaneous neuronal responses: t3,475 = 10.7, P < 0.001, 

Cohen’s d = 0.367; independent-sample t-test, data from eight mice 
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Fig. 4 | Layer-specific functional architecture of human SI. a, Topographic 

representations of the index and middle fingers shown for one younger adult 

(P01) and one older adult (P12) (randomly chosen; see Supplementary Fig. 6 for 

all individuals). Topographic maps are based on pRF modeling (first row) and 

Fourier-based analyses (second row). ROI (hand area of contralateral area 3b).  

FT, Fourier transform. b, pRF size (σ) estimates of index and middle finger 

representations (a.u.); individual data shown as colored dots: younger adults 

(n = 11), older adults (n = 10). Box plots are drawn within the interquartile range 

(box), medians are shown as vertical lines, and whiskers connect the minimum 

and the maximum with the lower and upper quartiles. c, Percent signal change 

of index and middle finger representations; individual data shown as colored 

dots: younger adults (n = 11), older adults (n = 10). Box plots are drawn within 

the interquartile range (box), medians are shown as vertical lines, and whiskers 

connect the minimum and the maximum with the lower and upper quartiles. 

d, Layer compartments for younger (n = 11, blue) and older (n = 10, red) adults 

defined based on rate of change in qT1 (ref. 10). e, Resting-state signal fluctuation 

extracted at different cortical depths for younger (n = 11) and older (n = 10) 

adults. f, Calibrated percent signal change (scaled between 0 and 1) of index 

and middle finger representations extracted at different cortical depths (see 

Supplementary Fig. 7b for data without calibration). g, Central peak of index and 

middle finger representations; individual data shown as colored dots: younger 

adults (n = 11), older adults (n = 10). Box plots are drawn within the interquartile 

range (box), medians are shown as vertical lines, and whiskers connect the 

minimum and the maximum with the lower and upper quartiles. h, Signal decay 

of index and middle finger representations; individual data shown as colored 

dots: younger adults (n = 11), older adults (n = 10). Box plots are drawn within 

the interquartile range (box), medians are shown as vertical lines, and whiskers 

connect the minimum and the maximum with the lower and upper quartiles.





Nature Neuroscience | Volume 28 | September 2025 | 1978–1989 1986

Article https://doi.org/10.1038/s41593-025-02013-1

per age group; see also Extended Data Fig. 3b). This indicates more 

pronounced sensory input signals in older adult mice, analogous to 

that observed in humans (Fig. 4f,g).

The human data on co-activated functional inhibition are incon-

clusive, with no clear evidence for the expected reduced co-activated 

inhibition in older adults. In mice, we found suppressive influences 

of the co-activated double stimulation condition in comparison to 

the single stimulation condition in spatially averaged activity maps 

(Extended Data Fig. 3b), although it should be noted that barrel 

fields were stereotaxically targeted to include the preserved whisk-

ers without precise receptive field mapping (Methods). We observed 

changes in neuronal responses to whisker stimulation conditions on 

the single-cell level and in the percentage of responsive neurons across 

age and cortical layers (Extended Data Fig. 3). Particularly in the outer 

cortical layers (layer II/III), younger adult mice showed an increased 

proportion of individual neurons with additive responses (younger: 

65%, older: 51%), whereas older adult mice showed a higher propor-

tion of neurons with reduced sensory-evoked responses (younger: 

13%, older: 23%) in the double stimulation condition compared with 

the single stimulation condition, indicating increased inhibitory 

influence of the neighboring whisker in older adult mice. The more 

pronounced sensory input signals in older mice as well as increased 

functional inhibition of neighboring whiskers may help to interpret 

the human data mechanistically (Fig. 4).

Next, we examined cytoarchitectural changes across layers in 

the barrel cortex of younger adult (14.8 ± 1.7 weeks, n = 17, between 

2 months and 6 months) and older adult (68.7 ± 3.8 weeks, n = 13, 

between 12 months and 20 months) mice as well as mice into further 

old age (114.7 ± 1.1 weeks, n = 8, >24 months) (Fig. 5c–e). To clarify the 

hypothesis that lower qT1 values (indicating higher myelination) in 

deep layers of older adults could prevent the decrease of co-activated 

functional inhibition (that is, ‘altered modulation hypothesis’) and to 

assess changes specific to inhibitory drive, we examined the proportion 

of neurons expressing parvalbumin (PV+) in these mice, which is a cal-

cium binding protein and molecular marker of the largest class of inhib-

itory interneurons in the cortex19. We found a significant effect of age 
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driven by increased PV+ density in older mice (F2,105 = 21.7, P < 0.001) and 

layer (F2,105 = 39.5, P < 0.001) but no interaction (F4,105 = 1.48, P = 0.214) 

(two-way mixed-effects ANOVA).

To assess the neurophysiological basis for the finding in humans 

that cortical aging is associated with lower qT1 values (indicating 

higher myelination) in middle and deep SI layers, we also examined 

the intensity of myelin basic protein (MBP) immunohistochemistry 

staining across cortical layers and age in a subset of these mice (younger 

adult mice (n = 11, 2–6 months), older adult mice (n = 7, 12–20 months) 

and mice in old age (n = 8, +24 months)). We found that older mice 

showed increased MBP expression in layer IV and deeper cortical lay-

ers; however, in very old age, these cortical layers showed a loss of MBP 

expression (Fig. 5e; significant effect of age (F2,69 = 24.0, P < 0.001) and 

layer (F2,69 = 110.6, P < 0.001) but no interaction (F4,69 = 2.23, P = 0.075) 

(two-way mixed-effects ANOVA)). These results are consistent with 

previous studies that showed an inverted U-shape relationship between 

myelination and age20. We also found a positive correlation between 

MBP expression and PV+ density across mice (R2 = 0.52, P < 0.001, n = 26 

mice; Fig. 5f).

Finally, the dynamics of microglia are also known to change with 

age, and it has been shown that myelin debris accumulates within 

microglia with aging20,21. We found significant differences in micro-

glia density (as measured by Iba1 expression) across cortical layers 

in this cohort of younger adult mice but not in older ages (with an 

increased microglial density in upper cortical layers in younger adults 

that was absent in older adults) (Supplementary Fig. 8). However, we 

found no significant correlation between microglia and MBP expres-

sion (R2 = 0.09, P = 0.120) or PV+ neuron density (R2 = 0.05, P = 0.278) 

across animals (Supplementary Fig. 8), suggesting that the specific 

functional changes that we observed across aging and cortical layers 

are more likely linked to changes in excitatory–inhibitory balance and 

sensory-related altered modulation rather than specific neuroinflam-

matory dynamics.

Layer-specific changes and human sensorimotor impairments
Finally, we investigated whether interindividual variation in 

layer-specific microstructure and function is related to age-specific 

functional and behavioral decline in humans. We confirmed that older 

adults compared with younger adults show worse tactile and motor 

performance (for exact results, see Extended Data Tables 3 and 4).  

We then calculated Kendall’s tau correlations for older adults (Fig. 6), 

where the following correlations show a moderate relationship: (1) 

lower qT1 values (higher myelin content) in the superficial layer com-

partment are associated with lower network centrality of the index 

finger (τ = −0.30) and (2) lower qT1 values (higher myelin content) in 

middle and deep layer compartments of the index finger representation 

are associated with worse tactile 2PD performance of the index finger 

(τ = −0.26). Please note, however, that these correlations do not exceed 

the significance level (P > 0.1).

Discussion
To develop a detailed understanding of alterations in the layer-specific 

architecture and their associated phenotypes, we studied the 

layer-specific structural and functional architecture of SI using in vivo 

ultra-high-field 7T MRI data of two cohorts of healthy younger and older 

adults. We also investigated SI whisker representations in younger and 

older mice using in vivo two-photon calcium imaging in combination 

with histology to derive more information on potential underlying 

neuronal mechanisms. Altogether, our data reject the idea that the 

principal layer architecture of the sensory cortex is preserved with 

aging. Rather, cortical thinning is driven by deeper layers, and the mid-

dle compartment, encompassing layer IV, appears thicker in older 

compared with younger adults. Whereas a previous study uncovered 

that MI shows vulnerability in the output layer V and superficial lay-

ers to aging5, in SI, age-related changes are most pronounced in input 

and deep modulatory layers. These insights (summarized in Fig. 7) 

suggest that layer-specific degeneration is dependent on the specific 

microstructural architecture of the cortex and needs to be described 

separately for different cortical areas.

Older adults present with a thicker and more myelinated input 

layer that exhibits a more pronounced sensory signal peak. Older 

mice also show increased MBP expression in layer IV; however, in more 

extreme old age, this cortical layer shows a loss of MBP expression, 

which is congruent with previous findings of changes in myelination 

across aging in animal models20 and cross-species studies22 as well as 

in relation to sensory activation6,23. A combination of age-driven and 

experience-driven mechanisms influencing the composition of layer 

IV is a potential explanation for these findings6. The more pronounced 
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Fig. 7 | Layer model of sensory aging. The layer model of sensory aging suggests 

that cortical aging, as one example of cortical dysfunction, has a unique 

layer-specific profile. Critical characteristics are a widened input channel, a 

layer-specific profile of cortical thinning driven by deeper layer degeneration 

(note that, for superficial layers, there is only anecdotal evidence for the null 

hypothesis of no group difference, BF10 = 0.635) and altered modulatory 

influences on functional representations. Black dotted lines indicate changes in 

layer-specific thickness in older adults compared with younger adults. Red and 

blue vertical lines schematically represent layer-specific functional activation for 

older and younger adults, respectively (with lower to higher activation from left 

to right—that is, along the x axis).
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layer IV in older age may reflect plasticity over the individual lifespan, 

followed by degeneration in very old age. Layer IV structural altera-

tions may allow individuals to compensate for peripheral signal loss, 

by shifting short-range connections toward inhibition to sharpen 

sensory signals and/or stabilize established functional networks24,25. 

This view confirms the ‘altered input channel hypothesis’ specifying 

a wider input channel in SI of older adults. An alternative view is that 

separate mechanisms underlie a thicker layer IV in older adults and 

potential experience-driven changes of layer IV architecture. Possible 

contributing mechanisms could be changes in synaptic plasticity26 and/

or architectural differences of oligodendrocytes, microglia and other 

neuroglial dynamics with aging21,27,28.

Second, we show that age-related cortical thinning in humans is 

layer specific. Therefore, the usual across-layer estimate of cortical 

thickness, often used to describe the human cortex in health and dis-

ease, may not be as informative as previously assumed. This is true, in 

particular, given that the middle compartment of SI is thicker despite 

overall cortical thinning in older adults. Layer-specific computations of 

cortical thickness, therefore, derive mechanistic information regard-

ing the architecture of the cortex, such as plasticity-related expansion 

and age-related degeneration. Calculating the average across layers 

disregards this critical intracortical information.

Deeper layers are thinner but more myelinated in older adults. At 

the same time, the spatial selectivity of the index finger representation 

is coarser while there is no clear evidence that co-activated functional 

inhibition is reduced in older adults. These measures may be con-

nected given that deeper layers in SI are involved in subcortical signal 

integration, signal modulation and inhibition29,30. Whereas the BOLD 

effect has limitations with respect to its interpretation as excitatory or 

inhibitory29, we replicated sensory-driven overactivation and found 

increased functional inhibition in older mice using single-neuron 

activity. In addition, we found higher PV+ cell density in older mice. 

Previous work in mice showed that a large fraction of myelin in corti-

cal layers II/III and IV ensheaths axons of GABAergic interneurons, 

particularly of PV+ basket cells in SI30. In humans, PV+ interneurons 

contribute substantially to the total myelin content in the cerebral 

cortex31. One explanation is to assume that the decreased qT1 signal 

reflects changes in myelination of cortical output with axons oriented 

through the deeper layers to enter long-range white matter tracts as 

well as an increase in PV+ density. Substantial evidence, and results from 

the current study in mice, show that cortical myelination continues 

throughout adulthood and does not begin to decline until well into old 

age20,22,32. This increase in myelination may also be linked to an increase 

in sensory-evoked activation and subsequent PV+ cell density, which 

may act as compensatory mechanisms for maintaining excitatory–

inhibitory balance33,34. Thinner deep layers, on the other hand, may 

reflect processes of reduced overall cell density that are proceeding 

at these stages of age and may even contribute to overactivation due 

to changes in local circuit dynamics and reduced inhibition. This may 

provide a mechanistic explanation for the altered sensory-evoked 

functional responses in SI in older humans and mice and would support 

the ‘altered sensory modulation hypothesis’.

It is worth noting that, in older compared with younger adult 

mice, PV+ cell density was increased as a main effect in all layers (most 

pronounced in layer IV), whereas, in humans, increased myelination 

was restricted to middle and deep layers. If our interpretation of the 

‘altered modulation hypothesis’ is correct, this suggests that cortical 

layer inhibition is differently affected in humans and mice with aging. 

An alternative explanation for the qT1 effect is that myelin sheaths are 

degrading (that is, becoming less compact) due to sheath splitting and 

the formation of myelin balloons, which is accompanied by the produc-

tion of redundant myelin and an increase in oligodendrocytes in older 

age27. Future studies focusing on cytoarchitectural changes in relation 

to changing myelin patterns, neurovascular coupling and sensory pro-

cessing can address this: of particular interest would be cross-species 

longitudinal studies. Whereas longitudinal resting-state MRI studies 

have shown changes in functional connectivity of somatosensory 

networks with age in mice35, detailed MRI approaches to assess layer IV 

microstructural changes36 have yet to be investigated in mouse models 

using a longitudinal approach across aging.

The present findings have multiple clinical implications. Our study 

reveals that the combined investigation of layer-specific thickness, 

microstructural layer compositions and layer-specific functional read-

outs, as well as the parallel investigation of humans and mice, uncovers 

key aspects of cortex organization and potential dysfunction. In Alz-

heimer’s disease, cortical thinning is related to cell loss and regarded as 

an early marker of the disease37. Whereas we show specific degradation 

of deep layers with aging, superficial layers may be altered earlier in 

Alzheimer’s disease. In multiple sclerosis, where neuroinflammation 

causes myelin damage in specific cortical layers38, postmortem investi-

gations in humans and mice showed a decrease in PV+ interneurons39,40, 

suggesting an interaction between layer-specific myelination and 

excitation–inhibition modulation. Losing myelin progressively can 

result in epilepsy-like brain activity, as inhibition of slow brain waves 

decreases41, and epileptogenic hyperexcitability and lesions often 

present layer specific42. Multimodal layer-specific investigations could 

uncover underlying mechanisms, also in multiple sclerosis38. Investi-

gating participants with congenital or acquired hand loss may provide 

further insights into the mechanisms of layer-specific plasticity in SI, 

specifically to disentangle age-related from input-related changes. 

Although we report a case study of a healthy, middle-aged participant 

with congenital arm loss in Extended Data Fig. 2 and Supplementary 

Fig. 5, extended and thorough investigations of this special popula-

tion may derive key insights into underlying mechanisms. In addition, 

further studies with higher sample sizes will allow investigating subtle 

differences between age groups in more detail. The results presented 

here motivate the investigation of high-precision cortical pathology, 

allowing for the tailoring of interventions to specific patients.
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Methods
General procedure
Human data acquisition and analyses were organized in two cohorts: 

cohort 1 and cohort 2. In Extended Data Table 5, a detailed overview of 

which data were acquired in which session and used for which analyses 

is provided.

Human participants
Cohort 1 is composed of 46 healthy, right-handed volunteers who 

underwent structural 7T MRI, functional localizers of individual fin-

gers and behavioral tests of tactile finger performance. Due to severe 

motion artifacts in the MRI data, six participants were excluded, 

leaving a total of 40 participants for cohort 1 (20 younger adults: 10 

females, 21–29 years, mean ± s.d.: 25.1 ± 2.7 years; and 20 older adults: 

10 females, 63–77 years, mean ± s.d.: 70.5 ± 4.0 years). Cohort 2 is com-

posed of 38 healthy, right-handed volunteers (21 younger adults and 

17 older adults) who underwent behavioral measurements of finger 

performance, of which 27 volunteers (14 younger adults and 13 older 

adults) also underwent 7T fMRI with a focused investigation of the 

index and middle finger representations. Due to severe motion artifacts 

in the MRI data, six participants were excluded, leaving a total of 21 

participants for cohort 2 (11 younger adults: five females, 25–35 years, 

mean ± s.d.: 28.18 ± 3.06 years; and 10 older adults: three females, 

60–80 years, mean ± s.d.: 68.40 ± 6.20 years).

Chronic illness, central acting medications and MRI contraindica-

tions (for example, active implants, non-removable metallic objects, 

tattoos, claustrophobia, tinnitus, consumption of alcohol and drugs 

and pregnancy) were a priori exclusion criteria for both cohorts. A 

study-specific health screening revealed no anomalies of sensory per-

ception (for example, numbness, tingling sensations, hypersensitivity 

and hyperalgesia) and motor control (for example, restricted finger 

movements) in distal extremities. Given altered sensory processing 

in string and piano players47, no professional musicians were enrolled. 

Two of 20 older adults in cohort 1 underwent successful carpal tunnel 

surgery on either the right hand only or on both hands. Their tactile 

performance was absent of clinical signs (no outliers). Participants 

reported no other medical conditions. None of the participants in 

cohort 1 showed signs of cognitive impairments as indicated by the 

Montreal Cognitive Assessment (MoCA; score ≥26 used as criterion for 

healthy aging; younger adults mean ± s.d.: 29.0 ± 1.1 and older adults 

mean ± s.d.: 27.8 ± 2.2)48, except for one older adult with a MoCA score 

of 21. Because this participant performed equally well in the behavio-

ral tasks compared with all other older adults, data were kept in the 

analysis. Younger and older adults from both cohorts were recruited 

from the participant bank of the German Center for Neurodegenerative 

Diseases (DZNE) in Magdeburg, Germany.

We also collected data of n = 1 healthy adult with congenital arm 

loss (male, age 52 years; affected side: right; level of deficiency: com-

plete arm missing from the shoulder; no experience of phantom sensa-

tions and pain; cosmetic prosthesis worn more than 8 hours per day; 

prosthesis never involved in daily life routines) who was recruited from 

the database of the Central Institute of Mental Health in Mannheim, 

Germany.

All participants gave written informed consent and were paid for 

attendance. The study was approved by the ethics committee of the 

Otto von Guericke University Magdeburg. Data of younger and older 

adults in cohort 1 were partly published in previous studies3,10.

Human MR scanning
Human 7T MRI. 7T MRI data were collected on a whole-body 7T MAG-

NETOM scanner (Siemens Healthcare) and a 32-channel Nova Medical 

head coil. The following data were acquired: MP2RAGE49 with whole 

brain coverage (for both cohorts: sessions 1 and 6; see Extended Data 

Table 5 for session indexing): 0.7 mm3, 240 sagittal slices, field of view 

(FoV) read = 224 mm, TR = 4,800 ms, TE = 2.01 ms, inversion time TI1/

TI2 = 900/2,750 ms, flip angle (α) = 5°/3°, bandwidth = 250 Hz/Px, 

GRAPPA 2; MP2RAGE with part brain coverage (targeting SI, cohort 

1: session 1): 0.5 mm3, 208 transversal slices, FoV read = 224 mm, 

TR = 4,800 ms, TE = 2.62 ms, inversion time TI1/TI2 = 900/2,750 ms, 

flip angle (α) = 5°/3°, bandwidth = 250 Hz/Px, GRAPPA 2, phase over-

sampling = 0%, slice oversampling = 7.7%; susceptibility-weighted 

images (SWIs) with part brain coverage (targeting SI, cohort 1: ses-

sion 1): three-dimensional (3D) gradient-recalled echo (GRE) pulse 

sequence50, 0.5 mm3, 208 transversal slices, FoV read = 192 mm, 

TR = 22 ms, TE = 9.00 ms, flip angle = 10°, bandwidth = 160 Hz/Px, 

GRAPPA 2, phase oversampling = 0% and slice oversampling = 7.7%. 

Structural scanning lasted, in total, approximately 60 minutes in ses-

sion 1 and 20 minutes in session 6.

To acquire fMRI data, we first performed shimming and acquired 

two echo-planar images (EPIs) with opposite phase-encoding polarity 

before the functional time series were collected using GRE EPI pulse 

sequences (cohort 1, session 2: 1 mm3, FoV read: 192 mm, TR = 2,000 ms, 

TE = 22 ms, GRAPPA 4, interleaved acquisition, 36 slices; cohort 1, ses-

sion 3: 1 mm3, FoV read = 212 mm, TR = 2,000 ms, TE = 25 ms, GRAPPA 

2, interleaved acquisition, 81 slices; cohort 2, sessions 6 and 7: 0.9 mm3, 

30 slices, interleaved acquisition, FoV read = 216 mm, TR = 2,000 ms, 

TE = 22 ms, GRAPPA 4). The phase-encoding EPIs were distortion cor-

rected using point spread function (PSF) mapping51. We applied a 

weighted image combination to combine the distortion-corrected 

phase-encoding EPIs while controlling for differences in spatial infor-

mation. Resulting EPIs were motion corrected to timepoint zero. PSF 

mapping was performed on motion-corrected EPIs to allow geometri-

cally accurate image reconstruction. The same sequence was used for 

all functional tasks (see below).

Human 3T MRI. For cohort 2 (session 8), 3T MRI data were acquired 

on a Philips 3T Achieva dStream MRI scanner. A standard structural 

3D MPRAGE was acquired with the following parameters: 1 mm3, 

192 slices, FoV read = 192 mm × 256 mm, slab thickness = 256 mm, 

TI = 650 ms, echo spacing = 6.6 ms, TE = 4.73 ms, flip angle = 8° and 

bandwidth = 191 Hz/Px.

Human physiological data recording. A pulse oximeter (NONIN 

Pulse Oximeter 8600-FO) clipped to the participant’s left index fin-

ger captured the pulse, and a breathing belt captured respiration 

during fMRI (cohort 1: session 2; cohort 2: sessions 6 and 7). Signals 

were digitally recorded with a sampling frequency of 200 Hz using an 

in-house-developed setup (National Instruments USB 6008 module 

with a Honeywell 40PC001B1A pressure sensor).

Human fMRI tasks
For both human cohorts, independently controlled, MR-compatible 

modules were used for tactile stimulation of the fingers3 (each 

with eight piezoelectric-controlled pins arranged in a 2 × 4 matrix,  

covering 3.5 × 8.5 mm2 of skin; Quaerosys, http://www.quaerosys.com; 

Fig. 1a). Individually adjusted vibrotactile stimulation was applied at 

a frequency of 16 Hz. Participants were asked to look at a centrally 

presented fixation cross and count randomly occurring stimulation 

pauses and report them after each run.

Five-finger functional localizer (cohort 1). In session 2 of cohort 1, 

we applied a previously established tactile stimulation paradigm to 

localize the fingers of the right hand in contralateral SI3,10. Five modules 

were used to stimulate the five fingertips of the right hand (one module 

each), with two pins raising at a time and 16 pin combinations per sec-

ond3. First, a phase-encoded protocol was applied (two runs of 20 

cycles; each fingertip stimulated 20 times for 5.12 seconds) in forward 

order (thumb to little finger, 50% forward-run first) and reverse order 

(little finger to thumb, 50% reverse-run first). One run took 8 minutes 

and 32 seconds (256 scans, TR of 2 seconds). Second, a blocked-design 
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protocol was used to stimulate the fingers in a pseudo-random order 

(two runs; six conditions: stimulation to thumb, index, middle, ring, 

little finger and no stimulation). One run took 6 minutes and 56 sec-

onds (each fingertip was stimulated 10 times for 2 seconds, followed 

by a 22-second resting phase; interstimulus interval (ISI): 2 seconds in 

70% of trials and 6 seconds in 30% of trials, counterbalanced between 

fingers; 208 scans). Total scan time was approximately 35 minutes. The 

localizer was used to localize the five fingertip representations in SI in 

the left hemisphere for younger and older adults.

Hand-and-face functional localizer (cohort 1). In session 3, cohort 

1 underwent a blocked-design paradigm where participants moved 

the left or right hand, the left or right foot or the tongue. Participants 

were trained outside the MR scanner and wore fingerless braces to 

stabilize the hand while carrying out the movements. Movements were 

carried out for 12 seconds followed by a 15-second rest period. Move-

ments were repeated four times, each resulting in 20 trials and taking 

approximately 9 minutes in total. This paradigm was used previously 

to localize hand and face areas5. The localizer was used to extract cor-

tical thickness in major body part representations of SI and to detect 

low-myelin borders between the hand and the face. For the one-handed 

adult, we applied a modified version of the original motor paradigm 

using mental imagery of finger movements for the missing limb (Sup-

plementary Fig. 1).

Two-finger functional localizer (cohort 2). In session 6 of cohort 2, 

the modules were used to stimulate the distal phalanges and inter-

mediate phalanges of the index and middle finger of the right hand. 

One module was attached to each phalanx using a custom-built, 

metal-free applicator that fitted individual finger sizes (Fig. 1a). To 

minimize adaptation-related differences in map activity between 

individuals, three randomly chosen pins were raised once at a time, 

yielding 56 pin combinations per second. Participants underwent 

two blocked-designed runs to localize the representation of the distal 

and intermediate phalanges of the index and middle finger in SI in 

the left hemisphere for each individual. The blocked-design run com-

prised three conditions, including stimulation of the index finger, 

stimulation of the middle finger and a rest condition with no stimula-

tion. Each finger was stimulated for 8 seconds in a pseudo-random 

sequence, where one finger was stimulated maximally two times in 

a row. In 70% of the trials, there was a 4-second pause, and, in 30% 

of the trials, there was an 8-second pause between two subsequent 

stimulations, counterbalanced across fingers. Each finger was stimu-

lated 20 times. One run comprised 264 scans and lasted for 8 minutes 

and 48 seconds. The run was repeated twice, lasting approximately 

20 minutes in total.

Two-finger functional response profile (cohort 2). In session 7, cohort 

2 underwent 12 phase-encoded runs, which were used for percent 

signal change and pRF modeling analyses. The phase-encoded runs 

included three different conditions: (1) stimulation of only the index 

finger, (2) stimulation of only the middle finger and (3) stimulation of 

both the index finger and the middle finger together. Each condition 

comprised four runs, each consisting of eight stimulation cycles and 

two rest conditions of 32 seconds (one before and one after stimula-

tion). Each stimulation cycle lasted 32 seconds, and stimulation was 

applied to each section of the phalanx four times for 8 seconds. Half 

of the stimulation runs of each condition were delivered in a forward 

order (finger top → finger bottom), the other half in a reverse order 

(finger bottom → finger top) (Fig. 1a). Half of the participants of each 

age group started with the forward-order run, the other half with the 

reverse-order run. One run comprised 160 scans (128 scans for stimula-

tion and 32 scans for rest), lasting 320 seconds (TR = 2 seconds). Par-

ticipants were instructed to covertly count short randomly distributed 

interrupts embedded in the tactile stimulation (duration 180 ms; see 

Liu et al.3). There was the same number of gaps in each run (32 gaps in 

total). All phase-encoded runs took approximately 60 minutes.

Resting state (cohorts 1 and 2). For both cohort 1 and cohort 2, we 

acquired resting-state data in a 5-minute scan while participants looked 

at a fixation cross and were asked to think about nothing in particular.

Human MRI analyses
Reconstruction of QSM images (cohort 1). QSM data were first recon-

structed from SWIs (that is, magnitude and phase images) using the 

Bayesian multi-scale dipole inversion (MSDI) algorithm52 as imple-

mented in QSMbox (version 2.0, freely available for download at https://

gitlab.com/acostaj/QSMbox). No normalization was applied to QSM 

values, because aging effects are assumed to be similar for normalized 

and non-normalized 7T MRI data16.

Structural image processing (cohorts 1 and 2). First, the quality 

of collected images was evaluated. QSM and qT1 images of n = 6 par-

ticipants from cohort 1 and qT1 images of n = 2 participants from 

cohort 2 were excluded due to severe motion artifacts. Only data 

showing no artifacts or mild truncation artifacts (not affecting SI)  

were processed.

For cohort 1, we used the structural image preprocessing approach 

as described in Doehler et al.10, employing CBS Tools (version 3.0.8) as a 

plugin for MIPAV (version 7.3.0). In short, after background noise clean-

ing, inhomogeneity correction and skull stripping, we co-registered 

qT1 slab images to upsampled qT1 whole brain images (combining 

linear and nonlinear registration using ANTs version 1.9.x-Linux, 

embedded in CBS Tools) in one single step (nearest neighbor interpo-

lation). To register QSM slab images to qT1 images, a combination of 

rigid and affine automated registration was applied using ITK-SNAP 

(version 3.8.0). Registered qT1 slab and upsampled qT1 whole brain 

images were fused. Resulting images were skull stripped, and dura 

was removed. Dura estimates were manually refined where required 

to ensure complete removal of non-brain matter from the region of 

interest (ROI). For cohort 2, the images were sent to a pipeline includ-

ing background noise cleaning, skull stripping and inhomogeneity 

correction. Background noise in all T1-weighted images was removed 

using the code of José P. Marques (https://github.com/JosePMarques/

MP2RAGE-related-scripts) and the method described in O’Brien et al.53. 

Skull stripping was performed on T1-weighted images using the Free-

Surfer (version 7.3.0) mri_synthstrip routine. Inhomogeneity correc-

tion was done for both qT1 and T1-weighted images using the segment 

routine as implemented in SPM12 (Statistical Parametric Mapping, 

Wellcome Department of Imaging Neuroscience, University College 

London) in MATLAB (MathWorks, R2018b (2018)).

For both cohorts, we used the TOADS algorithm54 to segment the 

cortex from the rest of the brain before we applied the CRUISE algo-

rithm55 to estimate tissue boundaries using the level set framework56. 

Cortex estimates were thresholded between the maximum of the inner 

and outer level set images (−2.8 and −0.2, respectively). The cortex was 

divided into 21 cortical depths using the validated equivolume model57. 

Intracortical qT1 values were used as proxy for myelin14, QSM values 

were used as proxies for iron (pQSM)15, calcium/diamagnetic contrast 

(nQSM)58 and mineralization (aQSM)16. All values were sampled along 

the extracted cortical depths in reference to individual cortical folding 

patterns. Individual cortical surfaces were estimated based on level set 

images of the middle cortical depth. Layer-specific quantitative values 

of the original high-resolution qT1 image (cohort 1 and cohort 2) and the 

QSM image (cohort 1) were mapped onto the inflated cortical surfaces 

(method of closest point)59. Sampled values at 21 cortical depths were 

extracted from the five fingertip representations (five-finger localizer) 

and from the face–hand representation (hand and face localizer) in area 

3b for cohort 1 and from the index finger and middle finger representa-

tions (two-finger localizer) in area 3b for cohort 2. Quantitative values 
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were averaged across vertices within individuals (giving one value per 

body part and depth).

For 3T MRI processing (T1-weighted 3D MPRAGE), csurf (http://

www.cogsci.ucsd.edu/~sereno/.tmp/dist/csurf) recon-all (implanted 

from FreeSurfer (version 7.3.0) (http://surfer.nmr.mgh.harvard.edu/)) 

was used for brain segmentation and cortical surface reconstruction. 

As a fully automated processing pipeline, recon-all performs steps 

including intensity correction, transformation to Talairach space, nor-

malization, skull stripping, subcortical and white matter segmentation, 

surface tessellation, surface refinement, surface inflation, sulcus-based 

nonlinear morphing to a cross-subject spherical coordinate system 

and cortical parcellation60. Skull stripping, segmentation and surface 

inflation quality were checked for each participant.

Definition of layer compartments. First and second derivatives of 

depth-dependent qT1 profiles (sampled across 21 cortical depths) were 

calculated using the gradient function as implemented in MATLAB 

R2017b. Depth-dependent structural profiles were averaged based 

on a previously introduced approach10, using ex vivo and in vivo vali-

dated myelin profiles of area 3b14 to identify anatomically relevant 

layer compartments in in vivo MRI data (Fig. 2b,d). After removing 

the two deepest layers in both age groups, minima and maxima of 

the first derivative of raw qT1 profiles indicated three data-driven 

layer compartments: an inner, a middle and an outer compartment. 

Based on Dinse et al.14, we assume that the input layer IV is located in 

the middle compartment and that deep layers V/VI are located in the 

inner compartment. However, we note that these compartments are 

based on in vivo MRI data and may, therefore, not match exactly with 

the anatomical layers as described by ex vivo myeloarchitecture and 

cytoarchitecture.

Functional data surface mapping (cohorts 1 and 2). All functional 

images were registered to the qT1 image (0.5-mm isotropic resolu-

tion for cohort 1 and 0.7-mm isotropic resolution for cohort 2) using 

the automated registration tool in ITK-SNAP (version 3.6.0, non-rigid 

transformation, 9 degrees of freedom). Manual refinement was applied 

where required to ensure registration accuracy. Registration matrices 

were applied to the functional parameter maps (that is, for cohort 1: 

five-finger localizers, hand–face localizer, pRF center location maps 

and ECMs; for cohort 2: two-finger localizer and two-finger functional 

response profiles) in a single step (ANTs, version 2.1.0, nearest neighbor 

interpolation). All ROI analyses were performed on non-smoothed func-

tional data (in original individual space) before statistical maps were 

registered to individual structural data space. Area 3b masks (see below 

for definition) were applied to all functional data of cohort 1, and ROI 

masks resulting from functional localizer were applied to the functional 

parameter maps of cohort 2. Registered individual functional parameter 

maps were mapped onto the individual cortical surfaces (method of 

closest point). The most superficial 20% of cortical values were excluded 

(to account for superficial veins affecting the BOLD signal). The mean 

of the remaining cortical values (covering 20–100% of cortical depth) 

was used to compute statistics independent of cortical depth.

Functional data of cohort 2 were also registered to the 3T 

T1-weighted image (same image used for recon-all brain segmentation) 

using csurf tkregister (12 degrees of freedom, non-rigid registration). 

Here, the x, y and z location of each surface vertex was mapped into 

functional voxel coordinates with the obtained registration matrix. 

The floating point coordinates of points at varying distances along 

the surface normal to a vertex were used to perform nearest neighbor 

sampling of the functional volume voxels (that is, the 3D functional 

data were associated with each vertex on the surface by finding which 

voxel that point lay within).

Definition of area 3b (cohorts 1 and 2). For cohort 1, where analy-

ses focused on structural mapping, area 3b was manually delineated 

based on an operational definition using anatomical landmarks 

extracted from cytoarchitectonic61, fMRI62 and multimodal parcella-

tion studies63—that is, following a standardized procedure that was 

used previously5,10,64. Resulting masks cover the anterior wall of the 

postcentral gyrus (mainly covering area 3b and parts of area 3a). All 

masks were plotted in reference to co-registered FreeSurfer labels 

(normalized probabilistic maps of area 3a and area 3b) on the individual 

cortical surfaces to allow comparability (Supplementary Fig. 4).

For cohort 2, where analyses focused on functional mapping,  

area 3b and the hand area were defined for each individual based on 

the atlas provided in csurf65.

Estimating body part representations (cohorts 1 and 2). The data 

quality was evaluated to ensure that there were no severe artifacts 

for both cohorts, and data showing severe artifacts (that is, n = 4 par-

ticipants in cohort 2) were excluded. Data of cohort 1 were slice-time 

corrected using SPM8 (Statistical Parametric Mapping, Wellcome 

Department of Imaging Neuroscience, University College London). 

Data of cohort 2 were slice-time corrected, and spatial smoothing 

was applied to the blocked-design data with 1-mm kernel width using 

SPM12.

For cohort 1, we calculated first-level fixed-effects models for 

the two blocked-design runs (session 2) using a general linear model 

(GLM) on individual data as implemented in SPM8. BOLD activation 

driven by each finger’s stimulation was modeled as an independent 

measure, because each finger was treated individually66. Five regres-

sors of interest (stimulation to thumb, index, middle, ring and little 

finger) were modeled per session, resulting in five linear contrasts (for 

example, the contrast [−1, 4, −1, −1 −1] for stimulation to index finger). 

Peak clusters of t-values were extracted (P < 0.01, minimum cluster size 

of k = 3). Resulting t-value maps were taken forward for surface map-

ping and were used to extract seeds for the low-myelin border analysis.

We used Bayesian pRF modeling to localize the five fingertips3,10. 

Phase-encoded fMRI data (cohort 1, session 2) were used to perform 

a two-stage analysis using the BayespRF Toolbox (https://github.

com/pzeidman/BayespRF) in MATLAB (SPM12, MATLAB R2017b). 

We conducted a first-level GLM analysis, constructing five regressors 

for the five fingers of the right hand. Only voxels passing a thresh-

old of P < 0.05 uncorrected were included in the second stage of pRF 

modeling3, which was performed on a voxel-by-voxel basis on the 

inferior-to-superior dimension (x dimension) of topographic align-

ment, using a Gaussian response function and a posterior model 

probability >0.95 (code available for download at https://gitlab.com/

pengliu1120/bayesian-prf-modelling.git)3. The analysis was restricted 

to area 3b to reduce processing time. We extracted pRF center location 

(x) to locate activated finger-specific voxels (finger-specific ROIs) and 

pRF width (σ, s.d. of the Gaussian response function) to estimate the 

pRF size of activated voxels in one-dimensional stimulus space. The 

most superficial 20% of the remaining data points were disregarded 

to minimize the effects of superficial veins. The resulting pRF center 

location maps (restricted to area 3b) served as localizer for individual 

finger representations. A ‘winner-takes-it-all’ approach was applied 

to sample vertices only once. Overlapping vertices (introduced by 

mapping splitted single finger pRF center location maps) were exclu-

sively assigned to the finger map with the highest variance explained 

(obtained from pRF modeling). Combining the five single finger maps 

to one ROI defined the hand area in area 3b of younger and older adults.

For the motor paradigm (cohort 1, session 3), we used first-level 

GLM analysis implemented in SPM12 to estimate functional activation 

maps (t-value maps) of tongue and finger movements using contrast 

estimates for each body part. We thresholded peak clusters at P < 0.01 

with a minimum size of k = 3. Resulting t-maps were taken forward 

for surface mapping. For the participant with congenital arm loss, 

we estimated t-value maps of finger movements or imagining finger 

movements of the left hand. Resulting t-maps were taken forward for 
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surface mapping and were thresholded in surface space. Hand and face 

activation maps were used to localize the hand–face area in younger 

and older adults and in the participant with congenital arm loss. A 

‘winner-takes-it-all’ approach was applied to the extracted values to 

sample vertices only once. For the participant with congenital arm 

loss, the lowest 30% of t-values were removed to ensure comparable 

map sizes within and between participants. To exclude spatial outliers, 

vertices located ±2 s.d. away from the location of the main cluster (in z 

direction and in y direction) were removed from the final data.

For cohort 2, we also calculated first-level fixed-effects models for 

the functional localizer of index and middle finger using SPM12. Two 

regressors of interest were modeled explicitly (stimulation to index 

finger and stimulation to middle finger), and the rest condition was 

modeled implicitly. The linear contrast estimate for index and middle 

finger was computed: F contrast [1 0/0 1], replicated for each session. 

On the individual subject level, voxels that survived a significance 

threshold of P < 0.05 (uncorrected) were mapped onto individual 

cortical surfaces generated by csurf. The overlapping area between the 

hand area65 and the index and middle finger representation in area 3b 

of each individual served as ROI masks for further analyses.

Resting-state analyses (cohort 1). Resting-state functional data (ses-

sion 2) were corrected for pulse-induced and respiration-induced 

noise. To prepare the physiological data for noise correction and to 

remove acquisition artifacts, we used the open-source Python-based 

software ‘PhysioNoise’67. Resulting respiratory and cardiac phase data 

were used to correct the resting-state time series for pulse-induced and 

respiration-induced noise by performing RETROspective Image COR-

rection (RETROICOR) on a slice-by-slice basis68. Residuals were taken as 

cleaned data to regress out motion-related noise parameters (extracted 

from the raw data) using the program vresiduals as implemented in LIP-

SIA (freely available for download at github.com/lipsia-fmri/lipsia)69. 

The resulting data were high-pass filtered at 0.01 Hz (allowing frequen-

cies faster than 0.01 Hz to pass) and smoothed (Gaussian kernel with a 

full width at half maximum of 2 mm) using the program vpreprocess 

implemented in LIPSIA. For n = 6 participants, physiological data were 

not successfully recorded due to loosening the pulse oximeter and/or 

breathing belt during scanning, which interrupted successful data sam-

pling. For n = 5 participants, severe motion artifacts were detected in 

the resting-state data. Therefore, resting-state analyses are presented 

for n = 29 (14 younger and 15 older) participants only.

ECMs were calculated in native space as a measure of network 

centrality (that is, maps reflecting the degree of connectedness of 

nodes within a network70) using the program vecm as implemented 

in LIPSIA69. The method of rectified linear unit correlation (RLC)71 was 

applied, which is suitable for ultra-high-resolution fMRI data.

Cortical thickness estimation (cohort 1). The profile geometry mod-

ule from the CBS Tools (version 3.0.8) for MIPV (version 7.3.0) was used 

to calculate overall cortical thickness across cortical depths (after 

removing the two deepest cortical depths) and layer-specific cortical 

thickness of extracted layer compartments.

Low-myelin border detection (cohort 1 and one-handed person). 

To investigate low-myelin borders in human area 3b, a multimodal 

surface-based mapping approach was developed and applied to each 

individual dataset. First, multidimensional sampling (inferior to supe-

rior, anterior to posterior) of layer-specific qT1 values was performed 

within area 3b (PyVista implementation of the Dijkstra algorithm72)10. 

The peak activation of the thumb (as identified by tactile stimulation 

using five-finger localizer task) served as seed region to sample geo-

desic paths in inferior-to-superior direction, connecting the upper 

face representation with the little finger representation. Start and end 

points were defined along the y axis of thumb and small finger activa-

tion peaks and approximately 15 mm (geodesic distance on shortest 

path) below the thumb activation peak (estimation derived from the 

location of the forehead as described previously73 and by ensuring 

that all sampling points are situated within the face area). Considered 

vertices were scattered within one vertex-to-vertex distance of approxi-

mately 0.28 mm around the y axis. Only in cases where the underlying 

qT1 pattern did not match y axis sampling, start and end points were 

defined along the x axis.

Five equally distant geodesic paths were sampled for each partici-

pant (Fig. 3a) to extract qT1 values from middle cortical depth (where 

the detection of low-myelin borders in area 3b is expected9). Peak 

detection was then performed on the five extracted qT1 signals (Fig. 3a). 

To control for a possible gradient in cortical myelin content along the 

inferior-to-superior axis9, all qT1 signals were detrended before the 

find_peaks algorithm from the SciPy signal processing toolbox (version 

1.10.1) was applied to find the most prominent peaks (local maxima 

with a prominence >2 s.d. from the mean of absolute detrended qT1 

values) in each detrended qT1 signal by comparing neighboring val-

ues. Resulting peaks were considered a low-myelin border (reflected 

by a row of high qT1 values) when they occurred in at least three of 

five detrended qT1 signals based on a nearest neighbor approach. 

The nearest peaks on first and second neighbor signals were grouped 

together based on geodesic distances. Peaks with a geodesic distance 

of less than 5 mm were considered near. Resulting low-myelin borders 

were then back-projected to individual cortical surfaces and visualized 

in reference to individual pRF finger maps to categorize low-myelin 

borders in hand–face borders and within-hand borders. Finally, several 

different features were extracted for each peak, including prominence, 

full width at half maximum, qT1 intensity, ECM, signed QSM intensity, 

nQSM intensity, pQSM intensity and aQSM intensity. For each feature, 

all values belonging to a single border were averaged to obtain one 

feature vector for each border. Feature vectors of within-hand borders 

were further averaged across all within-hand borders. In this way, we 

extracted two feature vectors (one for within-hand borders and one for 

the hand–face border) in each individual, which were used to calculate 

group statistics (between younger and older adults).

For the participant with congenital arm loss, the activation peak 

of the hand representation (as identified by movement of the intact 

hand and imagery of movement of the missing hand) served as seed 

region to sample geodesic paths in inferior-to-superior direction, 

connecting the upper face representation with the superior border of 

the hand representation. Start and end points were defined along the 

y axis at the superior border of the hand representation and approxi-

mately 15 mm (geodesic distance on shortest path) below the hand 

activation peak (estimation derived from the location of the forehead 

as described previously73 and by ensuring that all sampling points are 

situated within the face area).

Percent signal change calculation (cohorts 1 and 2). Individual 

time series of the averaged forward-order and reverse-order runs 

from phase-encoded protocol in the five-finger localizer task (ses-

sion 2 for cohort 1) and functional response profile task (session 7 

for cohort 2)3,66 were used to calculate mean response amplitudes by 

using csurf (http://www.cogsci.ucsd.edu/~sereno/.tmp/dist/csurf). 

The time series were averaged timepoint by timepoint by reversing the 

direction of time on a scan-by-scan basis, as the time series of different 

cycle directions (forward or reverse) were mirror symmetric to each 

other. The time-reversed cycle direction was time shifted before aver-

aging by 4 seconds (two TRs) to compensate for hemodynamic delay. 

Averaging was performed in three dimensions without any additional 

registration. Neither normalization nor smoothing was performed 

on the data during this procedure. Discrete Fourier transformations 

were performed on the timecourse of each 3D voxel, before calculat-

ing the phase and the significance of the periodic activation. Cycles of 

stimulations (20 for cohort 1 and eight for cohort 2) were used as input 

frequencies. Frequencies lower than 0.005 Hz (known to be dominated 
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by movement artifacts) were excluded, whereas higher frequencies up 

to the Nyquist limit (1/2 the sampling rate) were included. For display, 

a vector was generated whose amplitude was the square root of the 

F-ratio calculated by comparing the signal amplitude at the stimulus 

frequency to the signal amplitude at other noise frequencies and whose 

angle was the stimulus phase. To estimate mean response amplitudes 

of the ROIs (in percent), we estimated the discrete Fourier transform 

response amplitude (hypotenuse given real and imaginary values) for 

each voxel. This value was multiplied by 2 to account for positive and 

negative frequencies, again multiplied by 2 to estimate peak-to-peak 

values, divided by the number of timepoints over which averaging was 

performed to normalize the discrete Fourier transform amplitude and 

divided by the average brightness of the functional dataset (excluding 

air). Finally, the value was multiplied by 100 to estimate the percentage 

response amplitude3,66.

The data were sampled onto the individual FreeSurfer surface 

for each participant. Note that those analyses were used as two-finger 

localizers but not for layer-specific analyses. Clusters that survived a 

surface-based correction for multiple comparisons of P < 0.05 (correc-

tion was based on the cluster size exclusion method as implemented 

by surfclust and randsurfclust within the csurf FreeSurfer frame-

work)74 and a cluster-level correction of P < 0.001 were defined as 

significant. For each participant and condition, the complex-valued 

phasing-mapping data (real and imaginary values) were sampled onto 

the individualized inflated 3D cortical surface, and the values within the 

ROI were extracted. Mean percent signal changes of the tactile maps 

of each condition were calculated.

After registering the two-finger functional response profile esti-

mates (the complex-valued phasing-mapping data—that is, real and 

imaginary maps) to qT1 images, percent signal change was calculated 

for each of 21 cortical depths, which led to a curve drawn across the 

cortical depth. The curves were normalized for younger and older 

adults, respectively, using minimum–maximum normalization. The 

resting-state BOLD signals were also extracted for each cortical depth 

and normalized using minimum–maximum normalization. The nor-

malized BOLD signals were then used to calibrate the normalized 

percent signal change to control for baseline fluctuations. The central 

peak and surrounding signal decay were detected by calculating the 

area under the curve of the calibrated percent signal change curve 

across cortical depth.

pRF mapping (cohort 2). pRF mapping of the index and middle 

fingers was performed on phase-encoded data (session 7) using a 

MATLAB-based toolbox, SamSrf version 9.4 (freely available for down-

load at https://github.com/samsrf/samsrf). The toolbox provides a 

generic framework to model pRFs with stimulus space in any dimen-

sion75. The phase-encoding dataset was used for pRF mapping, with 

an additional rest condition to provide baseline information. The 

forward-order runs and reverse-order runs were converted into Free-

Surfer MGH format and projected onto the recon-all reconstructed 

surface. After converting from MGH to .mat format, the data were 

concatenated and averaged to increase the signal-to-noise ratio. The 

data were z-scored and linearly detrended. A stimulus aperture was 

created to define the somatosensory space. To represent the finger 

areas that were stimulated, the aperture was set up with the dimen-

sion of 100 × 100 × 320 (320 = number of TR). Four finger areas were 

constructed (two sections in distal phalanx and two sections in inter-

mediate phalanx), with each one associated with each of the stimulation 

units, based on the stimulation timing. Modeling ROI was defined man-

ually by choosing vertices in the inflated surface model with restricting 

y coordinates from −55 to 5 and z coordinates from 30 to 80 in Free-

Surfer space, which covered the full SI area. Because the stimulation 

was applied along one dimension of the fingers, a two-dimensional 

Gaussian tuning curve vertical model was used to perform the model 

fitting only on the y dimension (within-digit dimension), with the x 

dimension set as a constant. The pRF profile determines the predicted 

response for a given location. The predicted time series is convolved 

with a canonical hemodynamic response function (HRF).

The parameter modeling employed a two-stage coarse-to-fine 

procedure to obtain the best possible fit of the predicted time series 

with the observed data. The coarse fit process involved an extensive 

grid search by correlating the observed time series against a set of 

predicted time series derived from a combination of y0 and σ, cov-

ering the plausible range for each parameter. The search space was 

set at [−1.25, 1.25], which covers more than the stimulus space [−1, 1]. 

The parameters giving rise to the maximal correlation can survive 

and be sent to the second stage. The fine fit is an optimized proce-

dure to refine the parameters by further maximizing the correlation 

between observed and predicted time series. The noise ceiling was 

calculated as an estimate of the maximum goodness of fit that could 

theoretically be achieved from the data of each voxel75, using a similar 

procedure as Urale et al.76. The Spearman–Brown prophecy formula77 

was used to account for the accurate estimate of the true reliability 

of the time series. Six other parameters were estimated during mod-

eling, including the center location (µ), the sizes (σ), goodness of fit 

(R2), normalized goodness of fit (nR2), baseline and beta (β). R2 is the 

coefficient of determination of the correlation between the observed 

and predicted time series, and nR2 is the normalized coefficient of 

determination relative to the noise ceiling. During modeling, baseline 

(intercept) and β parameters (that is, BOLD response amplitudes) 

were estimated for each voxel. After extracting the modeled param-

eters within the ROI, the resulting data were cleaned by preserving 

only those vertices with positive β values. The average pRF size (σ) of 

each condition and of each participant was calculated based on the  

cleaned data.

Human behavioral measurements
Tactile detection task (cohort 1). The detection of finger touch was 

assessed using fine hair stimuli (sessions 4 and 5). We used a subset of 

standardized tactile monofilaments (Semmes–Weinstein monofila-

ments; Baseline, Fabrication Enterprises) to apply different mechanical 

forces (0.008g, 0.02g, 0.04g, 0.07g, 0.16g, 0.4g, 0.6g, 1.0g, 1.4g, 2.0g, 

4.0g, 6.0g) to the skin surface of the fingertips (Fig. 1). Stimuli were 

manually applied (guided by auditory instructions via headphones, 

controlled by the Psychophysics Toolbox extension in MATLAB R2017b) 

to a predefined skin area (circle with a diameter of approximately 

2 mm), touching the skin surface at an angle of approximately 90°, for 

1 second78. All participants listened to white noise via headphones. The 

right hand (palm facing upwards) was fixated on a small pillow behind 

a paper wall, preventing participants from seeing their own hand and 

the experimenter.

In a two-alternative forced choice (2AFC) paradigm, participants 

were asked to choose the time intervals that contained the stimulation 

(randomly applied in the first or second interval)79. Application of 

tactile monofilaments followed a 3-down/1-up staircase approach with 

two interleaved staircases, one starting at 0.02g and the other starting 

at 0.4g80. The experiment was finished when for the last 30 trials the 

standard deviation in stimulus intensity was one step or less79 or when 

the maximum number of 100 trials was reached. The participant’s 

tactile detection threshold was defined as the mean stimulus intensity 

across reversal points (change of response from correct to incorrect 

or incorrect to correct) within the period of stable performance (that 

is, the last 10 trials). The experiment took approximately 12 minutes 

per finger.

Before averaging, stimulus intensities were transformed logarith-

mically on a 1/10th milligram scale (log10 0.1 mg). Lower values indi-

cate higher tactile sensitivity to mechanical forces. We also estimated 

the skin indentation in millimeters based on the examined detection 

threshold. Detection thresholds were taken as proxies of correspond-

ing values in milliNewton (mN) that were provided by the manufacturer. 
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Afterwards, the skin indentation δ was calculated according to the 

following equation81:

where F is the estimated force in Newton (N), A (=0.2368 N) and b 

(=2.0696) are material/structural constants, and  (=1.00 mm) is the 

reference indentation81. Finally, the result (δ) was multiplied by 3 to get 

an indentation value clearly above threshold, which was used to 

increase the amplitude of pin movement in the 2PD task. All calculations 

were performed in MATLAB R2017b.

Finger discrimination task (cohort 1). The same Semmes–Weinstein 

monofilaments were used to apply tactile stimulation, targeting the 

same stimulation sites as described for the tactile detection task. In a 

5AFC design, tactile stimulation (lasting 1 second) was applied to one 

of five possible fingertips (session 5; Fig. 1). Participants were asked to 

name the finger where they felt the touch. Answers were given verbally 

within a limited response interval (lasting 7 seconds). In case partici-

pants perceived no touch (note that tactile stimulation was applied at 

individual detection thresholds and was, therefore, expected to be 

perceived in only approximately 50% of the cases), they were moti-

vated to guess. Each fingertip was stimulated 20 times, using unique 

pseudo-randomized sequences (with fingertips being stimulated not 

more than two times in a row). To extract the finger discrimination 

sensitivity (sensitivity of one finger being correctly discriminated from 

other fingers), we applied signal detection theory and calculated the 

d-prime as bias-free index of discrimination sensitivity82 by computing 

the amount of times a specific finger was touched and detected (hit) or 

was not touched but falsely detected (false alarm). Hits and false alarms 

were first converted to z-scores before subtracting false alarms from 

hits. d-prime values were obtained for each finger separately.

2PD task (cohort 1). We assessed the tactile discrimination perfor-

mance of the right index finger83 (session 4; Fig. 1). Stimulation was 

applied by two rounded pins (diameter = 0.4 mm) simultaneously 

touching the surface of the fingertip. A custom-made, fully automatic 

stimulation device moved the pins up and down, controlled by the 

software package Presentation (version 16.5, Neurobehavioral Sys-

tems). The amplitude of pin movement was adjusted to the individual 

detection threshold (as assessed before in the tactile detection task) 

but was set to at least 1.2 mm. Spacing between pins ranged from 

0.7 mm to 2.8 mm (in steps of 0.3 mm) for younger adults and from 

0.7 mm to 6.3 mm (in steps of 0.8 mm) for older adults. A single pin 

was included as control condition. Pin spacing was vertically adjusted 

by rotating a disc containing all nine pin spacing conditions. In a 2AFC 

paradigm (‘one pin’ versus ‘two pins’), pin spacing conditions were 

pseudo-randomly presented. Participants were instructed to give the 

answer ‘two pins’ only if they were certain. The right index finger was 

fixated on the stimulator, and the hand was covered by a white box dur-

ing the task to prevent effects caused by seeing the stimulated finger84. 

Each task block included 90 trials (10 repetitions per pin condition). 

To prevent order effects, unique sequences of pin spacing conditions 

were used per participant and run. All participants completed two 

runs. Intertrial intervals were pseudo-randomized and varied between 

1 second and 5 seconds. 2PD thresholds were calculated per participant 

and run. Answers ‘two pins’ were fitted as percentages across ascending 

pin distances (for example, 0.7–2.8 mm). A binary logistic regression 

was used to fit the data using the glmfit function (iterative weighted 

least square algorithm) from the Statistics Toolbox as implemented in 

MATLAB R2017b. The 2PD threshold was taken from the pin distance 

where the 50% level crossed the fitted sigmoid curve83. Lower values 

indicate higher spatial acuity.

z-transformed false alarm and hit rates were calculated for 

each participant to derive d-prime values as bias-free indices of 2PD 

sensitivity. Hit rates were calculated as the proportion of ‘two pins’ 

responses when the stimulus indeed consisted of two pins. False alarm 

rates were calculated as the proportion of ‘two pins’ responses when 

the stimulus consisted of only one pin. False alarm rates were adjusted 

to 0.1 by default, if no false alarm was detected83.

Precision grip task (cohort 1). Sensorimotor integration was assessed 

with a custom-made pressure sensor that was held between the thumb 

and index finger of the right hand, adjusted to individual strength85 (ses-

sion 4; Fig. 1). Reference forces that were to be matched ranged from 5% 

to 25% of the individual maximum grip force to avoid muscle fatigue85. 

Participants solved a visuo-motor matching task85, demanding them 

to continuously adjust the grip force. Applied forces were sampled at a 

frequency of 100 Hz and projected on screen at a refresh rate of 60 Hz. 

The task was controlled by the software package Presentation (ver-

sion 16.5, Neurobehavioral Systems). Each task repetition contained 

a unique pseudo-randomized sequence of 10 position changes at five 

different amplitudes (5%, 10%, 15%, 20% and 25% of maximum grip 

force), leading to a mean frequency of 0.25 Hz. After a period of task 

familiarization85, all participants performed the task for a total duration 

of 20 seconds. One run contained 15 trials divided by intertrial intervals 

of 10 seconds, leading to a total duration of approximately 8 minutes 

per run. All participants performed two runs, separated by a 5-minute 

resting period. After each trial, participants received feedback about 

their individual performance level on screen. We monitored the time 

(in seconds) that the controllable bar was within a given percentage 

above (2.5%) and below (2.5%) the target line (upper edge of the refer-

ence bar)85. Higher values reflect better sensorimotor integration.

Tactile detection task (cohort 2). We measured the tactile detec-

tion threshold of the index and middle finger of the right hand using 

the same MR-compatible piezoelectric stimulator used during MR 

scanning (session 9). The tested hand was occluded from view, and 

the module was mounted below the finger. The tactile threshold was 

detected with a 2AFC task. At each trial, two intervals were presented 

with only one of them containing a stimulation, which was one pin rising 

up during a stimulation with a certain amplitude, lasting for 1 second. 

Participants were asked to detect the stimulation interval by pressing 

the respective key on the keyboard in a self-paced manner (‘1’ or ‘2’). 

A randomized sequence (different for each participant) was used to 

determine which interval contained the stimulation. The adaptive 

thresholding procedure followed a 3-down/1-up staircase algorithm. 

For each finger, the stimulation amplitude started at 0.73 mm. Every 

time the participant chose the correct interval three times in a row, the 

amplitude went down for 0.03 mm, whereas, if the participant chose 

the wrong interval, the amplitude went up for 0.03 mm. Participants 

performed the task until an accuracy above 80% was reached. The task 

took 45–60 minutes.

Texture roughness discrimination (cohort 2). The texture roughness 

discrimination test was used to detect individual tactile sensation of 

surface roughness (session 9; Fig. 1). The test comprises a plastic board 

with 15 columns, and the size of each column is 1.0 × 1.5 cm. Each col-

umn consists of small pins arranged with densities at different levels, 

resulting in a roughness ranking from rough (level 1) to smooth (level 

10). During testing, participants were asked to sit on a chair with the 

arm positioned on a foam cushion. The tested hand was occluded from 

view. At each trial, two intervals were presented containing stimulation 

with two different roughness stimuli. Participants were asked to detect 

the column with higher roughness (that is, less density). They were 

asked to press the respective key on the keyboard in a self-paced manner  

(‘1’ or ‘2’). For stimulus application, the experimenter followed auditory 

instructions via headphones. Neither the hand nor the experimenter was 

visible to the participant during testing. The plastic board was positioned 

under the participants’ right hand during the stimulation and withdrawn 
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afterwards. The test was composed of two conditions, each including 

30 trials. During condition 1, tactile sensation of the index finger was 

tested; during condition 2, tactile sensation of index and middle finger 

combined was tested. The stimulation pairs were chosen under three 

different conditions, with the roughness level increasing consecutively 

(for example, level 3 and level 4) or in increments of two (for example, 

level 3 and level 5) or three (for example, level 3 and level 6). Stimulation 

pairs too easy or too difficult to distinguish were excluded. The stimula-

tion order for each pair and for the sequence was randomized for each 

participant. The test took approximately 45–60 minutes.

Hand dexterity. Two standard tests (that is, the Grooved Pegboard Test 

and the O’Conner Finger Dexterity Test) were used to test individual 

levels of hand motor function3, each consisting of two conditions (ses-

sion 9; Fig. 1). During one testing condition, participants were asked to 

use only their thumb and index finger of the right hand, whereas, during 

the other testing condition, they were asked to use their thumb, index 

finger and middle finger.

We also performed the Small Motor Test, which also consisted 

of two conditions (session 9; Fig. 1). During condition 1, participants 

were asked to use only their thumb and index finger of the right hand 

to pick up the pins, whereas, during condition 2, they were allowed 

to use their thumb, index finger and middle finger. It was composed 

of hexagonal-shaped nuts and small metal pins. The task was to 

pick up a pin using two fingers or three fingers to fill in the hole on a 

hexagonal-shaped nut held by the left hand and, after success, to then 

move on to the next pair. We measured the number of pins and nuts 

that were successfully paired with each other (n).

Human data statistical analyses
For cohort 1, all statistical analyses were carried out in R (version 4.2.2, 

R Core Team, 2022). All sample distributions were analyzed for outliers 

using box plot methods and tested for normality using the Shapiro–

Wilk test. Homogeneity of variances was tested with Levene’s test. 

We applied two-sided tests. The significance level was set to 0.05. 

Bonferroni-corrected thresholds were applied for multiple testing 

to correct for family-wise error accumulation. To account for skewed 

and heteroscedastic data, we calculated robust permutation tests86. 

Group differences between younger and older adults (that is, cor-

tical thickness and myelin border analyses) were investigated with 

independent-sample random permutation Welch t-tests (100,000 

Monte Carlo permutations, two-sided, equal-tail permutation P value) 

using the MKinfer package (version 1.1, https://cran.r-project.org/

package=MKinfer). Permutation P values (Pperm) are set to a minimum 

value of 10−5, limited by the number of permutations (that is, minimum 

value of Pperm = 1 / number of permutations). To investigate interac-

tion effects between the factors age (between-subjects factor, lev-

els: younger, older) and layer (within-subjects factor, levels: outer, 

middle, inner) as well as among the factors age, layer and body part 

(within-subjects factor, levels: thumb, index, middle, ring, little fin-

ger or levels: hand, face), we calculated mixed-effects permutation 

ANOVAs (type III) using the ‘Rd_kheradPajouh_renaud’ method87 for 

random effects models as implemented in the permuco package (ver-

sion 1.1.2) written for R (version 4.2.2, R Core Team, 2022). The number 

of permutations was set to 100,000. For comparability reasons, we 

report results of both parametric mixed-effects ANOVAs (using Green-

house–Geisser-corrected degrees of freedom and P values in case of 

sphericity violations) and non-parametric permutation mixed-effects 

ANOVAs. Generalized eta squared (ηG
2) was calculated as an effect size 

estimator for parametric ANOVAs.

To follow-up significant interaction effects, we calculated Welch 

t-tests using bootstrapped samples to estimate confidence intervals 

and P values (as implemented in the MKinfer package (version 1.1))88, 

accounting for non-normality in underlying conditions. For compara-

bility, we report both results—that is, with and without bootstrapping.

To regress out the effect of map size on layer-specific structural 

values, we calculated group-wise linear regression models using the lme 

4 package (version 1.1.33) while controlling for the effect of individuals 

(random intercept model). Intercepts were re-added to the resulting 

residuals before they were taken forward for between-finger and hand–

face comparisons. Bayesian independent-sample t-tests were used to 

compare cortical thickness between younger and older adults using 

two-tailed tests; the Bayes factors are specified as BF10 (see below for 

detailed explanation on Bayesian analyses).

For cohort 2, the JASP software package (version 0.17.1, JASP Team, 

2023) was used to calculate Bayesian independent-sample t-tests for 

each stimulation condition on percent signal change and pRF size 

(σ) to compare younger with older adults. Shapiro–Wilk tests were 

used to test on data normality. Student t-tests were used when data 

were normally distributed, and Mann–Whitney tests with five chains 

of 1,000 iterations were used when data were not normally distrib-

uted. The choice of priors (Cauchy, scale = 0.707) and the Markov 

chain Monte Carlo settings were the default as implemented in JASP 

(for all Bayesian tests)89. For pRF size and activation comparisons 

between younger and older adults, one-tailed tests were used to test 

for the alternative hypothesis σyounger < σolder, as previous studies found 

both enlarged pRF sizes and greater activation in older adults com-

pared with younger adults2,3. As reduced co-activated inhibition has 

been evidenced with aging2, the alternative hypothesis was set as 

σolder < σyounger for pRF size difference between the double finger con-

dition and the average of single finger conditions and %older < %younger 

for percent signal changes difference between double finger condi-

tion and the sum of single finger conditions. The Bayesian factors are 

specified as BF+0 for one-tailed tests. Following Lee and Wagenmakers90, 

we interpret the Bayes factor in support of H1 (BF10) in the following 

way: BF10 = 1–3 anecdotal evidence, BF10 = 3–10 moderate evidence, 

BF10 = 10–30 strong evidence, BF10 = 30–100 very strong evidence 

and BF10 > 100 extreme evidence; in support of H0: BF10 = 0.33–1 anec-

dotal evidence, BF10 = 0.1–0.33 moderate evidence, BF10 = 0.03–0.1 

strong evidence, BF10 = 0.01–0.03 very strong evidence and BF10 < 0.01  

extreme evidence.

Behavioral measures of cohort 1 (tactile detection thresholds, 2PD 

thresholds and 2PD sensitivity, finger discrimination sensitivity and 

precision grip accuracy) and functional outcome variables (percent 

signal change and network centrality) were compared between age 

groups using independent-sample random permutation Welch t-tests 

(100,000 Monte Carlo permutations, two-sided, equal-tail permuta-

tion P value) as implemented in the MKinfer package (version 1.1) for 

R (version 4.2.2, R Core Team, 2022).

Tactile detection thresholds and 2PD sensitivity of the right index 

finger, precision grip accuracy (that is, sensorimotor integration) 

involving both the right thumb and the right index finger as well as per-

cent signal change (that is, responsivity) and network centrality (that is, 

eigenvector centrality) of the contralateral index finger representation 

were correlated with layer-specific qT1 values of the contralateral index 

finger representation. Correlation analyses were performed using 

Kendall’s tau correlation coefficient. Uncorrected results are reported. 

Before calculating correlations, the data were partly transformed 

(using the reciprocal of tactile detection thresholds and qT1 values), 

so that, in the final scatter plots, higher values always indicate better 

performance in behavior, higher responsivity and more connectivity 

in fMRI markers as well as higher substance concentration in structural 

MRI markers. Regression lines in the scatter plots (Fig. 6) were gener-

ated based on robust linear Theil–Sen regression estimates43, because 

the estimation of the regression coefficients is based on Kendall’s tau44. 

Cutoffs for the interpretation of Kendall’s tau correlation coefficients 

were approximated with the following equation, where r denotes the 

Pearson correlation coefficient45:
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To derive the cutoff values, we applied the equation to a previously 

stratified convention for the Pearson correlation coefficient46.

For cohort 2, behavioral statistics included data of 21 healthy 

younger adults and 17 healthy older adults. Non-parametric 

independent-sample Mann–Whitney U-tests were used to compare 

texture roughness and hand dexterity measures between age groups. 

Effect sizes are given by the rank biserial correlation.

The functional signal central peak at layer IV of the index finger 

and double finger (index and middle finger together) representation 

was correlated with the texture roughness discrimination accuracy, the 

number of holes filled in the Grooved Pegboard Test and the number 

of pairs completed in the Small Motor Test for the index finger and 

the double finger condition, respectively. Correlation analyses were 

performed using Kendall’s tau correlation coefficient. Uncorrected 

results are reported.

Animal experiments
Calcium imaging experiments were performed in younger adult 

mice (2–6 months; n = 8; two females, six males) and older adult 

mice (12–20 months; n = 8; four females, four males (ages chosen 

for equivalent ranges to the human cohorts 1 and 2; see also Wang 

et al.91)) of a transgenic line expressing a genetically encoded calcium 

indicator (GCaMP6f; C57BL/6J-Tg (Thy1-GCaMP6f) GP5.5Dkim/J; 

RRID: IMSR_JAX:024276). Mice were housed in individually ventilated 

cages (Techniplast, Green Line system) under controlled conditions 

(22 ± 2 °C, 55% ± 10% humidity, 12-hour light/dark cycle, with lights on 

at 6:00) with food and water available ad libitum. Histological analy-

sis was performed in 12 of these mice in relation to the expression of 

PV+ neurons and in an additional 26 mice in relation to the expres-

sion of PV+ neurons, MBP expression as an indication of myelination 

and ionized calcium-binding adaptor molecule 1 (Iba1) expression as 

a marker for microglia (younger adult mice (n = 11; six females, five 

males, 2–6 months), older adult mice (n = 7; four females, three males; 

12–20 months) and mice in old age (n = 8; three females, five males; 

+24 months)). All experiments were performed with reference to the 

National Institutes of Health Guide for the Care and Use of Laboratory 

animals (2011)92 and in accordance with the European Communities 

Council Directive (2010/63/EU) and approved by local authorities of 

Sachsen‐Anhalt/Germany (42502‐2‐1479 DZNE).

Mice cranial window. For cranial window implantation, mice were 

anesthetized with isoflurane (4% for induction and 2% maintenance). 

Eye cream was applied to protect the eyes (Bepanthen; Bayer), and 

analgesics and anti-inflammatory drugs were injected subcutaneously 

(carprofen 5 mg kg−1 and dexamethasone 2 mg kg−1). After shaving and 

disinfection of the scalp, a section of skin was removed. A craniotomy 

was then made over the left S1 barrel field, stereotaxically targeting 

the D1–D3 barrel fields (from bregma: AP −1.22 mm; ML 3 mm93). A 

3-mm-diameter glass coverslip was then placed on top of the crani-

otomy and fixed with glue (Gel Control; Loctite). A custom-built head-

plate was implanted on the exposed skull with glue and sealed with 

dental acrylic (Paladur; Heraeus Kulzer).

Mice two-photon calcium imaging. Two-photon calcium imaging 

was performed using an 8-kHz resonant scanning microscope (Hyper-

Scope; Scientifica) with an Ultrafast Laser (InSight X3 Dual output 

laser; Spectra-Physics; <120-fs pulse width, 80-MHz repetition rate) 

tuned to 940 nm. Images were acquired at 30 Hz (using a ×16 objective, 

0.8 NA, Nikon; tilted 10° from vertical for S1 barrel field imaging with 

ScanImage software (Vidrio Technologies)). Imaging of layer II/III S1 

barrel field, stereotaxically targeted to the D1–D3 barrels and spanning 

a 500–700-µm FoV, was performed at cortical depths between 150 µm 

and 250 µm and layer V imaging between 420 µm and 550 µm; each 

FoV was imaged under three whisker stimulation conditions. The size 

of the imaging FoV (500–700 µm) potentially spanned approximately 

two neighboring barrel fields including dividing septa within the stere-

otaxically targeted cranial window. Note that the imaging FoV was 

delineated based on the optimal imaging parameters to maximize the 

number of neurons but without precise spatial receptive field mapping 

of the individual barrel fields. For all imaging sessions, mice were awake, 

head restrained and placed on an air-suspended polystyrene 20-cm ball 

( Jet Ball system; PhenoSys GmbH; sampling frequency of 30 Hz). The 

sampling frequency of the calcium imaging was resampled to precisely 

match the sampling frequency of the optical encoders, sensory stimu-

lation, 30-Hz camera recordings (ImagingSouce, DMK22BUC03; side 

view of the face region) and behavioral readouts. Whisker stimulation 

was performed by an implemented air puff system (PhenoSys GmbH). 

Animals were in the dark for all trials. Signals from the calcium imaging 

and whisker pad tracking-estimations (see below) from the video track-

ing (DeepLabCut94) were aligned to the behavioral data file. This was 

done by downsampling and interpolating, ensuring that the aligned 

datasets had the same total number of frames, with an overall sampling 

frequency of approximately 30 Hz.

Mice whisker stimulation. All three stimulation conditions con-

sisted of randomized air puffs directed to the right-side whiskers and 

two-photon imaging performed in the left barrel field. Two FoVs were 

imaged for each mouse under each whisker stimulus condition—one 

in the outer layers (layer II/III) and one in the inner layers (layer V). 

First, all whiskers were stimulated (all-whisker condition); after trim-

ming the whiskers except for only two whiskers remaining on the right 

whisker pad (two of D1–D3 whiskers), the second session was per-

formed (double stimulation condition; W1 + W2), and, after trimming 

one of the remaining two whiskers, the last session of stimulation was 

performed (single stimulation condition; W1). The stimulation protocol 

consisted of approximately 30 air puffs (200-ms duration) delivered 

at randomized ISIs (range, 6–20 seconds) for each FoV flanked by 

2-minute imaging of spontaneous activity (10-minute total per FoV). 

Frame-by-frame whisker pad tracking-estimations were conducted on 

the video recordings captured during the session. The side view of the 

animal’s face was analyzed using DeepLabCut94. In brief, we trained a 

model for pose estimation on the side view videos to track the whisker 

pad. The pose estimation tracking was subsequently used to identify 

frames in which the animal was moving its whisker pad, with whisker 

movement defined on a frame-by-frame basis as periods with an instan-

taneous speed ≥0.5 cm s−1, 0.25-Hz low-pass filtered speed ≥0.5 cm s−1 

and an average speed ≥0.5 cm s−1 over a 1-second window centered at 

this point in time. Any intermovement interval shorter than 500 ms 

was also labeled as movement.

Mice histology. Animals were deeply anesthetized with ketamine 

(20 mg per 100 g of body weight, intraperitoneally) and xylazine (1 mg 

per 100 g of body weight, intraperitoneally) and perfused transcardi-

ally with 20 ml of 0.1 M PBS (pH 7.4), followed by 200 ml of 4% para-

formaldehyde. The brains were extracted, post-fixed overnight in 4% 

paraformaldehyde at 4 °C and then cryoprotected in 30% sucrose in 

PBS for 48 hours. Brains were cut into 50-µm-thick coronal sections 

(CryoStar NX70; Thermo Fisher Scientific) and collected in PBS (free 

floating). For immunohistochemistry, serial series of floating sections 

were then blocked in normal donkey serum (10% and 0.4% Triton in 

PBS) for 1 hour and incubated in primary antibodies overnight at 4 °C 

to visualize PV (monoclonal mouse anti-parvalbumin, 1:4,000, Swant, 

PV 235, RRID: AB_10000343; MBP, monoclonal mouse anti-myelin basic 

protein, 1:500, Santa Cruz Biotechnology, RRID:AB_10655672; Iba1, 

rabbit recombinant monoclonal anti-Iba1 antibody, 1:2,000, Abcam, 

RRID: AB_2636859). After rinsing in PBS, sections were incubated for 

2 hours with donkey anti-mouse Cy3 (1:200, Jackson ImmunoResearch 

Labs, cat. no. 715-165-150, RRID: AB_2340813) or for the Iba1 staining 

donkey anti-rabbit Cy3 (1:200, Jackson ImmunoResearch Labs, RRID: 

AB_233800). Finally, sections were rinsed again in PBS, mounted on 
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gelatin-coated slides and coverslipped with mounting media contain-

ing DAPI counterstain (VECTASHIELD). High-resolution images were 

captured using an epifluorescence slide scanner microscope (Axioscan 

7; Zeiss) under a ×10 objective and merged (resulting in an approxi-

mately 15,000 × 11,000-pixel image per coronal section).

Mice data analysis. Two-photon calcium imaging datasets (30 Hz) 

were motion corrected, and cell detection and signal extraction were 

performed using Suite2p95. To calculate the change in fluorescence 

(∆F/F), the pixel intensity is averaged within each ROI, representing 

the change in intensity for a single neuron, to create a raw fluores-

cence time series F(t). Baseline fluorescence F0 was computed for 

each neuron by taking the 5th percentile of the smoothed F(t) (1-Hz 

low-pass, zero-phase, 60th-order FIR filter), and the change in fluo-

rescence relative to baseline (∆F/F0) was calculated (F(t) − F0/F0). We 

used non-negative matrix factorization to remove neuropil contamina-

tion as implemented in FISSA96. All further analyses were performed 

using custom-written scripts in MATLAB. Histological analysis was 

performed on three representative sections of a 1-mm medio-lateral 

extent for each mouse brain across the entire cortical depth. Images 

were aligned to the cortical depth matching the surface, layer IV 

and the ventral white matter border as demarcated by DAPI. DAPI 

staining was also used to demarcate the cortical layers in the aligned 

images, namely outer layers, supragranular (I/II/III); middle layers, 

granular (IV); and inner layers, infragranular (V/VII) of the barrel 

cortex (using Fiji, ImageJ software)97. Cells were then automatically 

counted using the open-source software Cellpose98 with the nuclei 

model (DAPI) and the Cyto model (PV neurons or Iba1+ microglia) or 

the raw intensity summed across each row of pixels along the axis 

perpendicular to the cortical surface (MBP expression). For PV+ and 

Iba1+ counts, cell density was then calculated by normalizing to the 

area for the given demarcated cortical depths for each layer and across 

the given anterior posterior sections, and the percentage of all cells 

was calculated by normalizing to the corresponding total cell counts  

(DAPI nuclei).

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
Owing to data protection policies, raw MRI data from human stud-

ies are available upon reasonable request; requirements are a for-

mal data-sharing agreement and the need to submit a formal project 

outline. Any additional information required to reanalyze the data 

reported in this paper is available upon reasonable request. Source 

data used to make all figures are available as Source data files for main 

figures and extended data figures. Source data are provided with  

this paper.

Code availability
Code used for human MRI data processing is available at https://github.

com/PengLiu1120/cortical_layer_7T.git.
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Extended Data Fig. 1 | Anatomically-relevant cortical layer compartments.  

(a) Cortical layer compartments included in statistical analyses. The layer 

definition (that is, minima and maxima of the first derivative of raw qT1 values 

sampled in 21 depths from superficial to deep; group mean plotted in black, 

individual data plotted in gray) was based on the left area 3b hand area (identified 

by vibrotactile stimulation to the five fingertips of the right hand, see more 

details on layer definition in10) using the full sample of older adults (that is 

n = 20). (b) Cortical layer compartments after removing one outlier (participant 

40) from the full sample, leaving n = 19 older adults to define the cortical layer 

compartments. (c) Cortical layer compartments of younger adults shown as 

reference.
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Extended Data Fig. 2 | Structural SI Layer Architecture in Younger Adults, 

Older Adults and with Congenital Arm Loss. (a) Microstructural profiles 

of younger adults and older adults, extracted from the left hemisphere 

(contralateral to finger and tongue movements). qT1 values are given in 

milliseconds (ms), nQSM and pQSM values in parts per million (ppm). Three 

layer compartments were extracted based on localizing maxima and minima of 

the first derivative of raw qT1 values. For qT1 and nQSM, lower values indicate 

higher substance concentration. (b) Microstructural profiles of a healthy adult 

(male, age=52 years) with congenital arm loss on the right side, extracted from 

the hemispheres contralateral and ipsilateral to the missing arm. The cortex of 

the hand area contralateral to the missing arm (identified via mental imagery 

of finger movements, see Supplementary Fig. 1) is thinnest (hand contralateral: 

1.82 mm; hand ipsilateral: 1.88 mm; face contralateral: 1.96 mm; face ipsilateral: 

1.93 mm). Layer-specific cortical thickness extraction reveals a thinner 

middle compartment for the hand area contralateral compared to ipsilateral 

to the missing limb (hand contralateral: outer=0.47 mm, middle=0.72 mm, 

inner=0.63 mm; hand ipsilateral: outer=0.38 mm, middle=0.83 mm, 

inner=0.67 mm). Note that layer-specific thickness values of the adult with 

congenital arm loss are in a plausible data range (taking the range of two-

handed participants for the hand area as reference: outer=0.38–0.58 mm, 

middle=0.53–0.83 mm, inner=0.60–1.17 mm).
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Extended Data Fig. 3 | Age-related functional changes in mouse barrel cortex 

following single whisker and double whisker coactivation. (a) Calcium activity 

from example neurons (1-8) for three stimulation conditions, all whiskers 

(All), two neighboring whiskers (W1 + W2; double stimulation condition), and 

single whisker (W1; single stimulation condition). (b) Average ∆F/F responses 

across all neurons within a field-of-view for younger adult mice (1519 neurons 

from n = 8 mice) and older adult mice (1958 neurons from n = 8 mice) during 

sensory-evoked airpuff stimulation across conditions. Significant effect of age 

(F(2,42) = 18.18, p < 0.001), with older adult mice showing larger sensory-evoked 

excitatory neuronal responses (effect of stimulation condition, F(2,42) = 3.22, 

p = 0.050; no significant interaction, F(2,42) = 0.38, p = 0.689; two-way mixed-

effects ANOVA, constrained (type III) sum of squares; Tukey-Kramer correction). 

(c) Percentage of time that mice spent running during experimental sessions did 

not differ significantly across age (p = 0.525) or stimulation condition (p = 0.556; 

with no interaction (p = 0.978) two-way mixed-effects ANOVA, constrained (type 

III) sum of squares), indicating that locomotion alone is unlikely to contribute 

to the differences in sensory-evoked activity observed across age (see Fig. 5a). 

(d) Sensory-evoked ∆F/F for an example field-of-view, averaged across 50 × 

50 pixel spatial bins during double whisker (left) and single whisker (middle) 

stimulation and the difference of these two conditions (right). (e) Example 

neurons and sensory-evoked ∆F/F that show additive, reduced, or suppressed 

responses to single (W1) or double (W1 + W2) whisker stimulation; percentage of 

all neurons (younger adult mice [total 1519 neurons from n = 8 mice; 1081 outer 

layer neurons, 438 inner layer neurons] and older adult mice [total 1958 neurons 

from n = 8 mice; 1446 outer layer neurons, 512 inner layer neurons]) showing 

these response types across outer (layer II/III, outer ring) and inner (layer V, 

inner ring) cortical layers. (b, c) Box plots drawn within the interquartile range 

(box), medians shown as vertical lines, whiskers connect the minimum and the 

maximum with the lower and the upper quartiles.
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Extended Data Table 1 | Age group comparison of percent signal change and pRF size of index finger and middle finger SI 
representations

Bayesian independent-sample t-tests were performed on younger (n = 11) and older (n = 10) adults. The alternative hypothesis H1 is specified as young < old, and the null hypothesis H0 is 

specified as no difference between younger and older adults. 
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Extended Data Table 2 | Age group comparison of percent signal change and pRF size of index and middle finger SI 
representations calculated as difference between double finger and single finger stimulation

Bayesian independent-sample t-tests were performed on younger (n = 11) and older (n = 10) adults. For percent signal change, the difference between double finger stimulation and the sum of 

single finger stimulation was calculated; the alternative hypothesis H1 is specified as %older < %younger. For pRF size (σ), the difference between double finger stimulation and the average of single 

finger stimulation was calculated. The alternative hypothesis H1 is specified as σolder < σyounger, and the null hypothesis H0 indicates no difference between younger and older adults on the pRF 

size difference and percent signal change difference. 
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Extended Data Table 3 | Comparison of functional map features and behavioral markers between age groups

Network centrality (based on ECM) given in a.u.; d-prime 2-point discrimination (based on 2PD task) and d-prime finger discrimination (based on finger discrimination task, averaged across all 

fingers) given in s.d. units; inverse tactile detection threshold given in 1 / (log10 0.1 mg); inverse 2PD threshold given in 1 / mm; and sensorimotor integration (based on precision grip task) given 

in seconds. To facilitate the interpretation of the correlations, we ensured that higher values always indicate better performance; hence, tactile detection and 2PD thresholds were reversed. 

For percent signal change and network centrality, the reported body part (D1, thumb; D2, index finger, hand) indicates the localizer in area 3b from which values were extracted. We report 

group means (mean) and s.d.; independent-sample random permutation Welch t-tests were calculated to investigate group differences (t, test statistic; df, degrees of freedom; Pperm, Monte 

Carlo permutation P value; CIperm, 95% Monte Carlo permutation confidence interval; number of permutations = 100,000; minimum value of Pperm = 1 / number of permutations). Significant 

differences with Bonferroni-corrected threshold of P < 0.006 are marked by ‘*’; trends above Bonferroni-corrected threshold are marked by ‘T’. 
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Extended Data Table 4 | Non-parametric Wilcoxon signed-rank tests comparing measures of hand dexterity between 
younger (n = 21) and older (n = 17) adults using different finger(s)

(1) Time in seconds used to complete the Grooved Pegboard Test; (2) number of holes (n) filled within the given time interval in the O’Connor Dexterity Test; (3) number of pairs completed 

(n) within the given time interval in the Small Motor Test; and (4) accuracies on distinguishing texture in the Texture Roughness Test. D1, thumb; D2, index finger; D3, middle finger. Significant 

effects with P < 0.01 are marked by ‘*’, with P < 0.001 marked by ‘**’ and P < 0.0001 marked by ‘***’. 
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Extended Data Table 5 | Overview of collected human 7T MRI data and its use for conducted analyses

Detailed information of the collected data of each session and the corresponding analyses in the Methods and Results sections. 
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection MATLAB R2015b(PsychToolbox), Presentation

Data analysis MIPAV v7.3.0, CBSTools v3.0.8, ANTs v2.1.0, ITK-SNAP V3.6.0, FSL, Freesurfer v7.3.0, Csurf v0.8, MATLAB v2017b (SPM8), MATLAB v2018b 

(SPM12, BayespRF, SamSrf), LIPSIA v3.0, Python (Nighres, Pyvista, SciPy, PhysioNoise), Suite2p (Pachitariu et al., 2016; v0.14.0), FISSA 

(Keemink et al., 2018; v.1.0.0), DeepLabCut (Mathis et al., 2018; v2.3.8), ImageJ, Cellpose (Stringer et al., 2025; v3.0.10), JASP v0.17.1, R 4.2.2 

Customized code are provided via https://github.com/PengLiu1120/cortical_layer_7T.git and https://github.com/pakanlab/

Liu_et_al_NatureNeuroscience2025

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Due to data protection policies, raw MRI data from human studies are available upon request, requirements are a formal data sharing agreement and the need to 

submit a formal project outline. Any additional information required to reanalyze the data reported in this paper is available upon request. Source data used to 

make all figures are available as Source Data files for main figures and extended data figures. Source data are provided with this paper.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Cohort 1 and cohort 2 is composed of 50% male and 50% female. 

Sex was determined via self-report using a binary question of male/female. 

We did not distinguish sex and gender.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

We did not collect data on race, ethnicity other socially relevant groupings. 

Population characteristics We classified the participants into younger adults (age between 18 and 35) and older adults (age above 65).

Recruitment Younger and older adults from both cohorts were recruited from the participant bank of the German Center for 

Neurodegenerative Diseases (DZNE) Magdeburg, Germany. The participant with congenital arm loss was recruited from the 

database of the Central Institute of Mental Health (CIMH) Mannheim, Germany. Participants of both cohort 1 and cohort 2 

were right-handed.

Ethics oversight The study was approved by the Ethics committee of the Otto-von-Guericke University Magdeburg.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The estimation of the number of human cohort 1 was motivated by previous layer-dependent 7T MRI studies using quantitative in-vivo 

proxies to describe the microstructural cortex architecture (Dinse et al., 2015, Kuehn et al., 2017). With a group size of 20 younger and 20 

older adults, a large effect size 0.9 and a power (1-beta) of 0.8 can be detected, and is well above previously reported sample sizes. The 

participant for cohort 2 was motivated by our previous 7T functional MRI study (Liu et al., 2021). 

 

Dinse, J. et al. A cytoarchitecture-driven myelin model reveals area-specific signatures in human primary and secondary areas using ultra-high 

resolution in-vivo brain MRI. NeuroImage 114, 71–87 (2015). 

Kuehn, E. et al. Body Topography Parcellates Human Sensory and Motor Cortex. Cereb. Cortex 27, 3790–3805 (2017). 

Liu, P. et al. The organizational principles of de-differentiated topographic maps in somatosensory cortex. eLife 10, e60090 (2021).

Data exclusions Participants were excluded from the study due to severe motion artifacts in the imaging data.

Replication Population receptive field sizes were calculated in both cohort 1 and cohort 2, and compared with our previous study (Liu et al., 2021), where 

we found consisted results that older adults present larger pRF sizes compared to younger adults. 

A larger input channel at layer IV was also reproduced between cohorts, despite using different methods: cohort 1 using structural data and 

cohort 2 using functional data.

Randomization The participants were allocated into two groups according to age (younger adults: age between 18 and 35 and older adults: age above 65). 

Animals were tagged with numbers randomly and selected by sequence of animal number.
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Blinding The blinding was not possible during the data collection and analyses because age is not a factor that can be blinded.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Antibodies were used in animal experiments for immunohistological processing. Primary antibodies used are:  

PV, monoclonal mouse anti-parvalbumin, 1:4000, Swant, PV 235, RRID: AB_10000343; 

MBP, monoclonal mouse anti-myelin basic protein, 1:500, Santa Cruz, RRID:AB_10655672; 

Iba1, rabbit recombinant monoclonal anti-Iba1 antibody, 1:2000, Abcam, RRID: AB_2636859. 

 

Secondary antibodies used are:  

donkey anti-mouse Cy3 (1:200, Jackson ImmunoResearch Labs Cat# 715-165-150, RRID: AB_2340813, United Kingdom) or for the 

Iba1 staining goat anti rabbit Cy3 (1:200, Jackson ImmunoResearch Labs, RRID: AB_233800).

Validation All antibodies used are commercially available, have been previously published and validated extensively both in these previous 

publications as well as with negative controls (with the same immunohistochemistry protocol without the application of the primary 

antibody), and when applicable are appropriately cited in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals Calcium imaging experiments were performed in younger adult (2-6 months; n=8; 2 females, 6 males) and older adult mice (12-20 

months; n=8; 4 females, 4 males; ages chosen for equivalent ranges to the human cohorts 1 and 2, see also Wang et al.93), of a 

transgenic line expressing a genetically encoded calcium indicator (GCaMP6f; C57BL/6J-Tg (Thy1-GCaMP6f) GP5.5Dkim/J; RRID: 

IMSR_JAX:024276). Mice were housed in individually ventilated cages (Green line system, Tecniplast) under controlled conditions (22 

± 2°C, 55% ± 10% humidity, 12 h light–dark cycle, with lights on at 6  a.m.) with food and water available ad libitum. Histological 

analysis was performed in 12 of these mice in relation to the expression of PV positive (PV+) neurons and in an additional 26 mice in 

relation to the expression of PV+ neurons, MBP expression as an indication of myelination, and Iba1 expression as a marker for 

microglia (younger adult mice [n=11; 6 females, 5 males, 2-6 months], older adult mice [n=7; 4 females, 3 males; 12-20 months], and 

mice in old age [n=8; 3 females, 5 males; +24 months]). All experiments were performed with reference to the NIH Guide for the Care 

and Use of Laboratory animals (2011)94, and in accordance with the European Communities Council Directive (2010/63/EU) and 

approved by local authorities of Sachsen-Anhalt/Germany (42502-2-1479 DZNE).

Wild animals No wild animals were included.

Reporting on sex Both female and male mice were included, but sex was not a factor considered in the study design.

Field-collected samples No field-collected samples were included.

Ethics oversight All experiments were performed according to the NIH Guide for the Care and Use of Laboratory animals (2011) and the Directive of 

the European Communities Parliament and Council on the protection of animals used for scientific purposes (2010/63/EU) and were 

approved by the animal care committee of Sachsen-Anhalt, Germany

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 

gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 

number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 

the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 

was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 

off-target gene editing) were examined.

Plants

Magnetic resonance imaging

Experimental design

Design type Resting-state and blocked-design

Design specifications For cohort 1, a phase-encoded protocol was applied (2 runs of 20 cycles; each fingertip stimulated 20 times for 5.12 

seconds) in forward (thumb to little finger, 50% forward-run first) and reverse order (little finger to thumb, 50% reverse-

run first). One run took 8 minutes and 32 seconds (256 scans, TR of 2 seconds). A blocked-design protocol was used to 

stimulate the fingers in a pseudo-random way (2 runs; 6 conditions: stimulation to thumb, index, middle, ring, little 

finger and no stimulation). One run took 6 minutes and 56 seconds (each fingertip was stimulated 10 times for 2 

seconds followed by a 22 seconds resting phase; inter-stimulus intervals of 2 seconds in 70% of trials or 6 seconds in 

30% of trials were counterbalanced between fingers; 208 scans). Resting-state data in a 5-minute scan were collected. 

Total scan time was approximately 40 minutes. 

 

For the motor paradigm of cohort 1, a blocked-design paradigm where participants carried out motor movements of 

the left and the right hand, the left and the right foot (investigation not part of this study) and the tongue. Movements 

were carried out for 12 seconds each followed by a 15 seconds rest period. Movements were repeated four times each 

resulting in 20 trials in total. The total scanning time was approximately 9 minutes for this run. 

 

For cohort 2, The blocked-design run comprised three conditions. Each finger was stimulated for 8 seconds in a pseudo-

random sequence, where one finger was stimulated maximally two times in a row. In 70% of the trials, there was a 4 

seconds pause between two subsequent stimulations, in 30% of the trials, there was a 8 seconds pause between two 

subsequent stimulations. This was counterbalanced across fingers. Each finger was stimulated 20 times. One run 

comprised 264 scans, and lasted for 8 minutes and 48 seconds. The blocked-design run was repeated twice, lasting 

around 20 minutes in total. The phase-encoded runs included three different conditions. Each condition comprised four 

runs, each consisting of eight stimulation cycles and two rest conditions of 32 seconds (one before and one after 

stimulation). Each stimulation cycle lasted 32 seconds, and stimulation was applied to each section of the phalanx four 

times for 8 seconds. Half of the stimulation runs of each condition were delivered in a forward order (top→down) and 

the other half in a reverse order (down→top). Half of the participants of each age group started with the forward-run, 

the other half started with the reversed-run. One run comprised 160 scans (128 scans for stimulation and 32 scans for 

rest), lasting 320 seconds for a TR of 2 seconds. All phase-encoded runs took around 60 minutes.

Behavioral performance measures For cohort 1: 

Tactile detection task: mean stimulus intensity across reversal points (change of response from correct to incorrect or 

incorrect to correct) within the period of stable performance (i.e., the last 10 trials). 

Finger discrimination task: d-prime as measure of discrimination sensitivity. 

Two-point discrimination task: The two-point discrimination threshold was taken from the pin distance where the 50 

percent level crossed a fitted sigmoid curve. 

The precision grip task: The time (in seconds) the controllable bar was within a given percentage above (2.5%) and 

below (2.5%) the target line (upper edge of the reference bar). 

 

For cohort 2: 

Tactile detection task: the accuracy of successfully distinguishing tactile stimulation. 

Texture roughness test: the accuracy of successfully distinguishing different tactile textures. 

Grooved pegboard test: the number of successfully filled holes within fixed time 

The O’Conner finger dexterity test: the time needed to fill all the holes 

Small motor test: the number of successfully paired elements within fixed time 

 

The data were checked for outliers using mean and three times the standard deviation.
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Acquisition

Imaging type(s) Functional and structural

Field strength 7T and 3T

Sequence & imaging parameters For functional 7T: GRE EPI pulse sequences (cohort 1, sessions 4 and 5: 1 mm isotropic resolution, FoV read: 192 mm, 

TR=2000 ms, TE=22 ms, GRAPPA 4, interleaved acquisition, 36 slices; cohort 2, session 8 and 9: 0.9 mm isotropic 

resolution, 30 slices, interleaved acquisition, FoV read=216 mm, TR=2000 ms, TE=22 ms, GRAPPA 4). 

 

For structural 7T: MP2RAGE images with whole brain coverage for both cohorts (0.7 mm isotropic resolution, 240 

sagittal slices, FoV read=224 mm, TR=4800 ms, TE=2.01 ms, inversion time TI1/TI2=900/2750 ms, flip angle (α)=5°/3°, 

bandwidth=250 Hz/Px, GRAPPA 2).  

 

In addition for cohort 1: MP2RAGE images with part brain coverage (targeting the sensorimotor cortex; 0.5 mm 

isotropic resolution, 208 transversal slices, FoV read=224 mm, TR=4800 ms, TE=2.62 ms, inversion time TI1/

TI2=900/2750 ms, flip angle (α)=5°/3°, bandwidth=250 Hz/Px, GRAPPA 2, phase oversampling=0%, slice 

oversampling=7.7%), and susceptibility-weighted images with part brain coverage (targeting the sensorimotor cortex) 

using a 3D gradient-recalled echo (GRE) pulse sequence (0.5 mm isotropic resolution, 208 transversal slices, FoV 

read=192 mm, TR=22 ms, TE=9.00 ms, flip angle =10°, bandwidth=160 Hz/Px, GRAPPA 2, phase oversampling=0%, slice 

oversampling=7.7%). 

 

For structural 3T: standard structural 3D MPRAGE, resolution: 1.0 mm, 192 slices, FoV read=192 mm×256 mm, slab 

thickness=256 mm, TI=650 ms, echo spacing=6.6 ms, TE=4.73 ms, flip angle=8°, bandwidth=191 Hz/Px

Area of acquisition For 7T functional: part brain coverage (targeting the sensorimotor cortex) 

For 7T structural: whole brain and part brain coverage (targeting the sensorimotor cortex) 

For 3T structural: whole brain

Diffusion MRI Used Not used

Preprocessing

Preprocessing software For 7T structural: CBS Tools (v3.0.8) as a plugin for MIPAV (v7.3.0) for registration, segmentation and layering, ITK-SNAP 3.8.0 

and ANTs for registration, QSM box 2.0 for reconstruction of QSM images 

For 7T functional: MATLAB (SPM8 and SPM12) and LIPSIA 3.1.0 

For 3T structural: Csurf recon-all for segmentation

Normalization No data was normalized.

Normalization template No normalization template was used.

Noise and artifact removal Opposite polarity (PE) EPIs were distortion-corrected using point spread function (PSF) mapping. 

For resting state data: to prepare the physiological data for noise correction and to remove acquisition artifacts, the open-

source Python-based software ‘PhysioNoise’ was used. Resulting respiratory and cardiac phase data were used to correct the 

resting-state time series for pulse- and respiration-induced noise by performing RETROspective Image CORrection 

(RETROICOR) on a slice-by-slice basis.

Volume censoring No volume censoring was performed.

Statistical modeling & inference

Model type and settings For 7T functional: GLM (1st level analysis), Fourier Transformation and population receptive field modeling

Effect(s) tested Permutation mixed-effects ANOVA, independent-samples random permutation Welch t-tests, linear random intercept model 

and Bayesian independent-sample t tests

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)

For cohort 1, area 3b was manually delineated based on an operational definition using anatomical 

landmarks extracted from cytoarchitectonic, fMRI and multimodal parcellation studies, i.e., following a 

standardized procedure that has been used previously. All masks were plotted in reference to co-

registered Freesurfer labels (normalized probabilistic maps of area 3a and area 3b) on the individual 

cortical surfaces to ensure that the locations of the manual delineations overlap with those outlined by 

automated approaches. Additional functional localizers were used to locate specific body parts in area 3b. 

 

For cohort 2, area 3b and the hand area were defined for each individual based on the atlas provided in 

csurf. Additional functional localizers were used to locate specific body parts in area 3b.

Statistic type for inference

(See Eklund et al. 2016)

voxel-wise
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Correction FDR for GLM, Fourier Transformation and population receptive field modeling 

Bonferroni methods for multiple comparison

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis


