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Abstract
Background  Olfactory dysfunction is among the earliest signs of many age-related neurodegenerative diseases and 
has been associated with increased mortality in older adults; however, its genetic basis remains largely unknown. 
Therefore, here we aimed to elucidate its genetic architecture through a genome-wide association study meta-
analysis (GWMA).

Methods  This GWMA included the participants of European ancestry (N = 22,730) enrolled in four different large 
population-based studies followed by a multi-ancestry GWMA including participants of African ancestry (N = 1,030). 
Olfactory dysfunction was assessed using a 12-item smell identification test.

Results  GWMA revealed a novel genome-wide significant locus (tagged by single nucleotide polymorphism 
rs11228623 at the 11q12 locus) associated with olfactory dysfunction. Gene-based analysis revealed a high 
enrichment for olfactory receptor genes in this region. Phenome-wide association studies demonstrated associations 
between genetic variants related to olfactory dysfunction and blood cell counts, kidney function, skeletal muscle 
mass, cholesterol levels and cardiovascular disease. Using individual-level data, we also confirmed and quantified the 
strength of these associations on a phenotypic level. Moreover, employing two-sample Mendelian Randomization 
analyses, we found evidence for causal associations between olfactory dysfunction and these phenotypes.

Conclusions  Our findings provide novel insights into the genetic architecture of the sense of smell and highlight 
its importance for many aspects of human health. Moreover, these findings could facilitate the identification and 
monitoring of individuals at increased risk of olfactory dysfunction and associated diseases.

Keywords  Genome-wide association meta-analysis, Olfactory dysfunction, Sense of smell, Odor identification test, 
Gene-mapping, PheWAS, Biochemical, Anthropometric, Two-sample MR
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Background
Olfactory function is paramount to both safety and qual-
ity of life, enabling detection of hazardous or unpleasant 
odors and contributing to the enjoyment of scents, food 
and drink. Impairment of olfaction is very common, 
affecting approximately 1 in 5 adults with an increased 
prevalence among older individuals [24]. Indeed, aging 
is a major determinant of olfactory dysfunction and is 
thought to affect both the central and peripheral olfac-
tory system. Other risk factors associated with smell 
loss in adults include sinonasal diseases, smoking, and 
alcohol consumption [24]. Moreover, reduced sense of 
smell is a well-established consequence of coronavirus 
disease 2019 and one of the earliest markers of many 
neurodegenerative diseases [25, 27, 36]. Importantly, 
olfactory dysfunction itself has been suggested as a risk 
factor associated with cognitive decline [22], frailty [40], 
cardiovascular diseases [35], kidney function [44], and 
increased mortality [26]. However, the causality of these 
associations remains to be elucidated. Thus, uncover-
ing the genetic architecture of olfactory dysfunction 
could not only provide novel molecular targets for its 
treatment, but could also be instrumental to assessing 
whether decreased sense of smell is causally related to 
adverse health outcomes.

Despite the high prevalence of olfactory dysfunction 
and its involvement in a variety of diseases, the genetic 
architecture of olfactory dysfunction remains largely 
unknown. Odor identification, the most commonly stud-
ied component of olfactory function, has been shown to 
have a low to moderate heritability [13, 23]. A previous 
genome-wide association study (GWAS) of olfactory 
function identified nine genome-wide significant loci 
associated with odor identification among African Amer-
icans (N = 1,979), but only two among European Ameri-
cans (N = 6,582).10,11 Interestingly, many of these regions 
were related to neurodegenerative and neuropsychiatric 
diseases [10, 11]. More recently, Raj et al. examined the 

association between single nucleotide polymorphisms 
(SNPs) located in or near olfactory receptor genes 
(32,282 SNPs) and the ability to identify individual odors, 
detecting a larger number of SNPs (9,267 SNPs) at a sug-
gestive statistical significance level (p < 0.001). However, 
none of these SNPs remained significant after adjustment 
for multiple testing, failing to replicate the findings from 
the previous GWAS [33]. 

Considering the critical role of olfactory dysfunction 
in many aspects of human health, here we aimed to elu-
cidate its genetic architecture by performing the larg-
est GWAS and meta-analysis of sense of smell to date, 
among adults of European and African ancestry, using 
data from four different large-scale, population-based 
studies. Moreover, using a two-sample Mendelian Ran-
domization (MR) approach, we investigated the causal 
relationship between olfactory dysfunction and different 
health-related outcomes.

Methods
Study population
We included 1,030 individuals of African American 
ancestry (AAs) from the Atherosclerosis Risk in Com-
munities (ARIC) Study [47], and 22,730 individuals of 
European ancestry (EUR) from the Rhineland Study, the 
ARIC Study, the Leipzig Research Centre for Civiliza-
tion Diseases (LIFE) -Adult-Study [12] and the Coop-
erative Health Research in South Tyrol (CHRIS) study 
[29], who had complete genetic and olfactory function 
data (Table  1). The Rhineland Study is an ongoing pro-
spective cohort study enrolling individuals aged 30 or 
above from two geographically defined areas in Bonn, 
Germany. The only exclusion criterium is insufficient 
command of the German language required for provid-
ing informed consent. The ARIC Study is an ongoing 
longitudinal study that was established in 1987–1989 to 
investigate risk factors for cardiovascular diseases. The 
LIFE-Adult-Study is a population-based cohort study 

Table 1  Baseline characteristics of participating cohorts
Characteristic RHINELAND ARIC

EA
ARIC
AA

LIFE-ADULT CHRIS

N 6580 3654 1030 4771 6696
Age (years) 55.9 ± 13.5 75.9 ± 5.2 75.0 ± 5.1 57.4 ± 12.97 44.6 ± 16.5
Women, % 55.4 56.0 66.0 51.4 53.2
Olfactory dysfunction score (mean ± SD) 2.10 ± 1.71 2.48 ± 2.29 4.01 ± 2.59 2.06 ± 1.72 1.6 ± 1.55
APOE ε4 allele carriers, % 1233 (26%) 922 (25%) 394 (38%) 1148 (24.1%) 2396 (35%)
Global cognition score
(mean ± SD)

−0.57 ± 0.55 - -

MMSE
(mean ± SD)

- 27.9 ± 2.3 25.6 ± 3.3 28.98 ± 1.62

Cognition (CERAD) 24 ± 6.34
AA African-American, ARIC Atherosclerosis Risk in Community Study, CHRIS The Cooperative Health Research in South Tyrol, EA European-American, EUR European, 
LIFE-Adult LIFE-Adult Cohort, MMSE Mini-Mental State Examination, range of possible score 0–30, CERAD Consortium to Establish a Registry for Alzheimer’s disease 
Neuropsychological Battery, RHINELAND Rhineland Study, SD Standard deviation
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investigating the prevalence and incidence of common 
diseases and subclinical disease phenotypes, the com-
plex interactions between genetic and lifestyle factors 
regarding the co-occurrence and development of sub-
clinical phenotypes and diseases, and the role of bio-
markers to predict disease initiation and progression. The 
study comprises an age- and sex-stratified random sam-
ple of 10,000 adult individuals (aged 18–79 years) from 
Leipzig, Germany. The Cooperative Health Research in 
South Tyrol (CHRIS) Study is an ongoing longitudinal 
study established in 2003 to investigate genetic and life-
style determinants of health and healthy aging in a single 
administrative district of the alpine Bolzano-South Tyrol 
province of Italy with a stable population, cooperative 
administration, shared single reference hospital, relatively 
homogenous customs and environment, and high healthy 
life expectancy. 13 393 adults aged ≥ 18 years (median 46, 
range 18–94, 54% female) participated in a baseline visit 
at the district reference hospital in 2011–2018.

Assessment of olfactory function
In the Rhineland Study, the ARIC Study and the LIFE-
Adult-Study, olfactory function was assessed using the 
12-item “Sniffin’ Sticks” odor identification test (SIT-
12), a widely utilized screening instrument for assessing 
odor identification ability [21]. This is assessed by using 
twelve felt-tip sticks from a test kit (Burghart Messtech-
nik GmbH, Germany), each carrying a distinct odorant. 
These sticks were consecutively positioned approximately 
2 cm in front of both nostrils for 3 to 4 seconds by trained 
technicians in a well-ventilated room. Participants were 
then asked to choose only one out of four answer options 
for each odorant. The time interval between two consec-
utive odor presentations was at least 20 seconds. In the 
CHRIS study, the 16-item “Sniffin’ Sticks” odor identifi-
cation test was employed and for this analysis restricted 
to the SIT-12 items, where results from the four pens 
(turpentine, garlic, apple, and anise) were excluded to 
make the assessment of olfactory dysfunction across all 
cohorts comparable. Olfactory dysfunction was defined 
as the total number of incorrectly identified odors on the 
SIT-12 test (range 0–12).

Genotyping, quality control and imputation
Genotyping was performed in all four cohorts using com-
mercially available genetic arrays followed by standard 
quality control measures. In brief, for the meta-analysis, 
quality control was performed using PLINK (version 1.9), 
excluding SNPs based on poor genotyping rate (< 99%), 
minor allele frequency (MAF) < 1%3 or Hardy-Weinberg 
Disequilibrium (HWE) (p < 1 × 10−6). Imputation of geno-
types was performed through IMPUTE (version 2) [20], 
using as reference panels 1000 Genomes phase 3 version 
5 in the Rhineland Study and the LIFE-Adult cohort, 

1000 Genomes version 1 phase 3 in the ARIC Study [3]
and TOPMed in the CHRIS cohort. The genetic variants 
were mapped to human genome coordinates based on 
GRCh37/hg19. Variants with imputation quality score 
below 0.3 were excluded [42]. In the ARIC study, geno-
typing was performed using the Affymetrix GeneChip 
SNP Array 6.0, applying standardized quality-control 
filters for call rate (< 95%), Hardy Weinberg equilibrium 
(HWE) (p < 1 × 10−5) for SNPs and for the samples to 
exclude individuals with call rate (< 95%) before imputa-
tion. In the Rhineland Study, blood samples were geno-
typed using the Illumina Omni-2.5 exome array and 
processed with GenomeStudio (version 2.0.5). Quality 
control was performed using PLINK (version 1.9). SNPs 
were excluded based on poor genotyping rate (< 99%) or 
HWE (p < 1 × 10−6). Additionally, participants with poor 
quality DNA samples were excluded because of poor call 
rate (< 95%) (n = 51), abnormal heterozygosity (n = 100), 
cryptic relatedness (n = 472) or sex mismatch (n = 43). To 
account for variation in the population structure, which 
may otherwise cause systematic differences in allele 
frequencies [31], EIGENSTRAT (version 16000) was 
used. EIGENSTRAT uses principal component analy-
sis to detect and correct for population structure, which 
resulted in the exclusion of an additional 164 participants 
from non-European descent. Finally, imputation was 
performed using IMPUTE (version 2) [20] and the 1000 
Genomes version 3 phase 5 as the reference panel [3]. 
In the LIFE-Adult study, the Affymetrix AXIOM-CEU 
1 array was used for assessment of genotypes. Exclusion 
was based on low sample call rate (< 97%), mismatches 
of reported and genotyped sex, duplicated samples or 
samples with unresolved relatedness and ethnic outli-
ers. Imputation was performed with IMPUTE2 (Ver-
sion 2.3.2) after pre-phasing with SHAPEIT (v2.r837). 
For the imputation the following filter criteria were 
used: SNP call rate < 97%, HWE < 1 × 10−6, plate associa-
tion < 1 × 10−7, monomorphic SNPs; SNPs violating cri-
teria of Affymetrix cluster measures FLD, HetSO and 
HomRO were removed too. In the CHRIS study, geno-
typing was carried out for consenting participants in 
three batches using the Illumina OmniExpressExome 
chip (n = 5,882), the Illumina Human Omni2.5Exome 
chip (n = 4,887), and the Illumina-based OmniEURHD 
chip from Life & Brain GmbH, Bonn (n = 2,694). Initial 
processing and quality control of returned raw genotyp-
ing data was performed on each genotype batch inde-
pendently at the time of acquisition using the Illumina 
GenomeStudio software package with additional quality 
control following established protocols similar to those 
described above. Subsequently batches were merged 
together consecutively, discarding variants not present 
on all array chips, and excluding samples with > 5% miss-
ingness. The genotype dataset consisted of approximately 
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579,000 variants from autosomal chromosomes in 12,834 
samples. TOPMed imputation was carried out with the 
topmed-freeze5 panel [39] on the Michigan Imputation 
Server (1.7.1) [8], using minimac4-1.0.2 [14]. Excluding 
markers with imputation R2 < 0.3, the CHRIS TOPMed-
imputed dataset contains 35,061,390 variants.

Genome-wide association studies
We performed an ancestry-specific GWAS of olfactory 
dysfunction in each cohort separately, using General-
ized Linear Mixed Model Association Tests (GMMAT) 
[5]. Since olfactory dysfunction was defined as a count 
variable and followed a Poisson distribution, we applied 
a log-link function to model the association of each 
SNP with olfactory dysfunction, using the score test for 
computational efficiency [5, 15]. Indeed, using exten-
sive simulations under different genetic models, it has 
been demonstrated that for the analyses of count out-
come data Poisson regression models not only had more 
statistical power, but also yielded fewer false positives 
[15]. For variants that were genome-wide significant 
(p < 5 × 10−8) based on the score test, we rerun the analy-
ses while applying the Wald test to obtain estimates for 
the effect sizes and associated standard errors. In model 
1, we adjusted for age, sex and the first 10 genetic princi-
pal components to account for population structure. In 
model 2, we additionally adjusted for APOE ε4 carrier/
non-carrier status and global cognitive function as these 
factors have previously been associated with a poor sense 
of smell [10]. 

Meta-analysis of genome-wide association studies
The score test- and the Wald test-based results from 
GMMAT were meta-analyzed using the sample size-
weighted or the fixed effects inverse variance-weighted 
method, respectively, as implemented in the meta-anal-
ysis tool for genome-wide association scans (METAL) 
[46]. Additionally, we performed a multi-ancestry meta-
analysis by combining GWAS results from both Euro-
pean and African ancestry participants using a random 
effects model as implemented in METASOFT [17]. The 
genome-wide statistical significance threshold was set at 
p < 5 × 10−8.

Genomic risk loci
We used the Functional Mapping and Analysis of GWAS 
(FUMA) platform to identify genomic risk loci based 
on GRCh37/hg19 human genome coordinates [45]. 
Genome-wide significant SNPs in relatively high linkage 
disequilibrium (LD) (i.e., r2 ≥ 0.6) with nearby SNPs were 
used to define genomic risk loci, merging LD blocks of 
independently significant SNPs within 250  kb of each 
other into a single genomic locus. Within each genomic 
locus, we defined the lead SNPs as those SNPs that are 

independent of one another at r2 < 0.1, using the 1000 
Genome Phase 3 reference panel.

Variant annotation and gene mapping
Based on the standard 10  kb gap between SNPs and 
genes, each lead SNP was individually mapped to the 
gene. Variant annotation for each locus was based on lead 
SNPs and candidate SNPs, defined as those SNPs in LD 
with the lead SNP within a window of 250 kb and nomi-
nally significant at p < 0.05. Functionally annotated SNPs 
were subsequently mapped to genes based on (i) physical 
position on the genome (positional mapping), (ii) expres-
sion quantitative trait loci (eQTL) associations (eQTL 
mapping), and (iii) 3D chromatin interactions (Hi-C).

Gene and gene-set analysis
Gene-based analyses were performed using MAGMA 
(Multi-marker Analysis of GenoMic Annotation) v1.6 
as implemented in FUMA, using the Bonferroni method 
for multiple testing. Mapped genes from SNP2GENE 
were further investigated using the GENE2FUNC tool 
in FUMA, which through a hypergeometric test assesses 
pathway enrichment of mapped genes in the Molecular 
Signatures Database (MSigDB) gene sets.

Gene expression sequencing and analysis
In the Rhineland Study, total RNA sequencing was per-
formed using the TruSeq stranded total RNA kit (Illu-
mina) on a NovaSeq6000 instrument (Illumina). Genes 
with overall mean expression levels greater than 15 reads 
and expressed in at least 95% of the participants were 
considered for further analysis.

RNA sequencing and gene expression analysis in the 
Rhineland study
Blood samples were collected between 7:00 to 9:45 in the 
morning from an antecubital or dorsal hand vein. For 
RNA sequencing, samples were stored in PAXgene Blood 
RNA tubes (PreAnalytix/Qiagen). PAXgene Blood RNA 
Tubes were thawed and incubated at room temperature 
to increase RNA yields. Total RNA was isolated accord-
ing to manufactures’ instructions using PAXgene Blood 
miRNA Kit and the automated purification protocol (Pre-
Analytix/Qiagen). Differential blood cell counts (erythro-
cytes, neutrophils, eosinophils, basophils, lymphocytes, 
monocytes and platelets) were performed at the Central 
Laboratory of the University Hospital in Bonn, using 
EDTA-whole blood samples on a hematological ana-
lyzer Sysmex XN9000. RNA integrity and quantity were 
evaluated using the tapestation RNA assay on a tapes-
tation4200 instrument (both from Agilent). We used 
750 ng of total RNA to generate NGS libraries for total 
RNA sequencing using the TruSeq stranded total RNA 
kit (Illumina) following manufacturer’s instructions with 
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Ribo-Zero Globin reduction. We checked library size 
distribution via tapestation using D1000 on a Tapesta-
tion4200 instrument (Agilent) and quantified the librar-
ies via Qubit HS dsDNA assay (Invitrogen). We clustered 
the libraries at 250 pM final clustering concentration on 
a NovaSeq6000 instrument using S2 v1 chemistry (Illu-
mina) in XP mode and sequenced paired-end 2*50 cycles 
before demultiplexing using bcl2fastq2 v2.20. Quality 
control of the sequencing was evaluated through FastQC 
v0.11.9. Following the trimming of low-quality score 
reads through Trimmomatic v.0.39 software, sequenc-
ing reads were aligned using STAR v2.7.1 and the human 
reference genome GRCh38.p13 provided by Ensembl. 
The count matrix was generated with STAR–quantMode 
GeneCounts using the human gene annotation version 
GRCh38.101. Genes with overall mean expression greater 
than 15 reads and expressed in at least 95% of the par-
ticipants were included for further analysis. Raw counts 
were normalized and transformed using the varianceSta-
bilizingTransformation function from DESeq2 (v1.30.1). 
We extracted the expression levels of mapped genes from 
total RNA sequencing data available from a subset of 
Rhineland Study participants (n = 1985). In brief, multi-
variable linear regression was used to assess the associa-
tion between z-transformed gene expression levels and 
olfactory dysfunction while adjusting for age, sex, APOE 
ε4 carrier status, the first 10 genetic principal compo-
nents, global cognitive function and sequencing batch. 
Subsequently, we tested whether this association was 
modified by age by including an interaction term between 
age and gene expression levels. For genes with a signifi-
cant age interaction, we performed the linear regression 
analysis after stratifying in age tertiles (i.e., 30–50, 50–62 
and 62–95 years). The age tertiles were defined using a 
data-driven approach to achieve an approximately equal 
number of participants in each subgroup.

For SNPs identified in the GWAS meta-analysis and 
their mapped genes, functional validation of the associa-
tion between SNP and gene expression was performed 
using multivariable linear regression. Gene expression 
was coded as the dependent variable and the number of 
effect alleles (0, 1 or 2) was coded as a numeric indepen-
dent variable, controlling for age, sex, the first 10 genetic 
principal components and sequencing batch.

Phenome-wide association studies
We used the Open Target Genetics platform [16] to per-
form phenome-wide association studies (PheWAS) for 
the systematic identification of phenotypes associated 
with genetic variations related to olfactory dysfunction. 
The Benjamini-Hochberg false discovery rate (FDR) 
method was used for multiple comparisons adjustment.

Phenotypic associations using individual-level data
In addition, using individual-level data from the Rhine-
land Study, we assessed whether phenotypes associ-
ated with genetic variants of olfactory dysfunction (after 
FDR correction) were also associated with a poor sense 
of smell on a phenotypic level. Age, sex and smoking 
data were based on self-reports using questionnaires. 
Smoking was coded as a dichotomous variable (cur-
rent vs. non-current smoker). Participants with miss-
ing data on smoking were classified as current smokers 
when their cotinine metabolic levels, measured with the 
Metabolon HD4 platform, exceeded the non-smoker 
sample-defined 97.5 percentile. Body mass index (BMI) 
was measured as weight (kg) divided by height squared 
(m [2]). Skeletal muscle mass (kg) was derived from bio-
impedance analysis. Muscular strength was measured 
using the hand-held Jamar Plus Digital Dynamometer 
(Patterson Medical, USA). The grip force of each hand 
was measured three times and the average of the hand 
grip strength was calculated. Hypertension was coded as 
“yes” in case of antihypertensive drug use or high blood 
pressure (mean systolic blood pressure > = 140 mmHg or 
diastolic blood pressure > = 90 mmHg), and as “no” other-
wise. Heart rate was measured as number of heart beats 
per minute. Cardiovascular conditions including stroke, 
heart failure and coronary artery disease (CAD) were 
defined as self-reported physician diagnosis. Differential 
blood cell counts (e.g., erythrocytes, leukocytes, baso-
phils, eosinophils, lymphocytes, monocytes, neutrophils) 
were measured at the Central Laboratory of the Univer-
sity Hospital in Bonn using EDTA-whole blood samples 
on a hematological analyzer Sysmex XN9000. Habitual 
dietary intake (ml/day) was assessed by a self-adminis-
tered semi-quantitative food frequency questionnaire 
(FFQ). We assessed whether phenotypes associated with 
genetic variants of olfactory dysfunction (after FDR cor-
rection) were also associated with a poor sense of smell 
on a phenotypic level using multivariable regression 
models. Statistical significance was inferred at p < 0.05. 
We log-transformed white blood cell (WBC), eosinophil, 
neutrophil and lymphocyte cell counts, as well as skeletal 
muscle mass, to account for their skewed distributions. 
All the phenotypes were adjusted for poor sense of smell 
and further corrected for age and sex. We additionally 
adjusted for potential risk factors such as smoking when 
the dependent variable was heart rate, white blood cell 
counts for neutrophil, eosinophil and lymphocyte cell 
counts and BMI for skeletal muscle mass and cardiovas-
cular diseases (CVD). All the numerical variables were 
standardized to a mean of 0 and a standard deviation of 
1 to allow for better comparison of the effect sizes across 
different traits. To this end, we employed multivariable 
regression models with statistical significance inferred at 
FDR-adjusted p < 0.05.
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Two-sample Mendelian randomization
We employed a two-sample MR approach to test whether 
the associations between olfactory dysfunction and the 
phenotypes identified in the previous step were causal, 
using the TwoSample MR package [19]. For the out-
comes, we obtained GWAS summary statistics using 
the IEU GWAS database (Supplementary Table 13) [19]. 
Specifically, we obtained the GWAS summary statistics 
for coffee intake [19], lymphocyte count [6], cystatin C 
levels [28], pulse rate [19], hypertension [9], appendicu-
lar lean mass [30], total cholesterol levels [37], cardiovas-
cular disease [9], white blood cell count [43], lymphocyte 
percentage of white cells [2], neutrophil percentage of 
white cells [2], hand grip strength (right) [19], hand grip 
strength (left) [19], basophil count and neutrophil cell 
count [19]. As genetic instruments for the exposure we 
used genome-wide significant SNPs from the olfactory 
dysfunction GWAS meta-analysis. SNPs in LD were 
clumped based on r2 < 0.01 at a 10  Mb window before 
the MR analyses. To assess the risk of weak instrument 
bias, we calculated the F-statistic for the selected genetic 
instruments [38]. The Benjamini-Hochberg false discov-
ery rate (FDR) method was used for multiple compari-
sons adjustment.

Results
Population characteristics
The study and ancestry specific population characteris-
tics are provided in Table 1, Supplementary Table 1. On 
average, participants of European ancestry had a lower 
degree of olfactory dysfunction and scored higher on 
cognitive tests compared to those of African ancestry. 
Moreover, APOE ε4 allele carrier frequency was lower in 
participants of European ancestry.

GWAS meta-analysis
The GWAS meta-analysis of European ancestry partici-
pants identified 22 and 1523 genome-wide significant 
SNPs located on chromosome 11 based on results from 
model 1 and model 2 respectively, both pointing to the 
same genomic locus, 11q12, based on GRCh37/hg19 
coordinates (Fig. 1). Overall, the genomic inflation factor 
(λ) in each European cohort was low, ranging from 0.49 
t to 1.01 (Fig. 2). Because the λ-value was relatively low 
(0.49) in the ARIC European ancestry cohort, indicating 
genomic deflation, we also performed a sensitivity analy-
sis in which we corrected the p-values in this group by 
dividing the chi-squared statistic by λ [1], and re-running 
the European-based meta-analysis. This, however, did 
not change the results (Fig. 3). In model 2, the meta-anal-
ysis identified one lead SNP rs11228623, as well as three 
independent significant SNPs (rs12786376, rs34099256, 
and rs369532258), across one genomic risk locus (11q12) 
(Table  2; Fig.  4, and Supplementary Tables 2–5). In the 

multi-ancestry GWAS meta-analysis, the associations of 
the lead SNP (rs11228623) and one of the independent 
SNPs (rs12786376) with olfactory dysfunction remained 
directionally consistent and genome-wide significant 
(Table 2).

The olfactory dysfunction-associated SNPs were 
mapped to genes based on positional, eQTL and chro-
matin interaction mapping. Positional mapping identi-
fied 34 olfactory receptor genes. We discovered 3 genes 
(OR5M11, SLC43A3 and PRG2) based on eQTL map-
ping of which one gene (OR5M11) overlapped with 
those identified through positional mapping (Supple-
mentary Tables 6 & 7). Chromatin interaction mapping, 
based on Hi-C data, showed significant (FDR < 1 × 10−6) 
chromatin interactions between enhancers of candi-
date genes in this region and the promoter regions of 
MPEG1, LRR45, and OR4A16, as well as those of several 
other genes on chromosome 11q12 (Fig. 5 & Supplemen-
tary Table 8). After Bonferroni-correction, gene-based 
analysis using MAGMA identified 21 genome-wide sig-
nificant (p < 2.6 × 10−6) genes, with OR5M11 as the top 
hit (p < 8.4 × 10−9) (Supplementary Table 9). OR5M11 is a 
protein coding gene that belongs to the family of olfac-
tory receptors and is known to be involved in olfactory 
signaling pathways. In the MAGMA gene-set enrich-
ment analysis, the top gene sets were enriched for “reac-
tome hedgehog ligand biosynthesis” and “reactome 
degradation of beta catenin by the destruction complex” 
(Supplementary Table 10), but none survived multiple 
testing correction. Interrogation of MSigDB showed that 
the mapped genes at the 11q12 locus were significantly 
enriched for pathways related to “general odorant bind-
ing proteins, sensory perception of smell”, “molecular 
function, odorant binding” and “Grueneberg Ganglion, 
olfactory transduction” (Fig. 6).

Gene expression analysis
Of the 41 genes identified through positional, eQTL 
and chromatin interaction mapping, expression levels 
were available for MPEG1 (tagged by rs12786376) and 
SLC43A3 (tagged by rs1811871001) in whole blood for 
1985 participants in the Rhineland Study. Olfactory dys-
function was not associated with the expression levels of 
these two genes. However, a borderline significant inter-
action with age was found for SLC43A3. Age-stratified 
analysis showed that higher SLC43A3 expression was 
associated with worse olfactory function at borderline 
significance for participants aged 30–50 years (Supple-
mentary Table 11). However, we found no significant 
association between rs1811871001 and SLC43A3 expres-
sion or rs12786376 and MPEG1 expression.
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Phenome-wide association studies and phenotypic 
associations
The lead SNP (rs11228623), located within 5  kb down-
stream of the OR5M7P gene, was associated with 71 
phenotypes after FDR correction (Supplementary Table 
12). The identified traits included lymphocyte counts, 

eosinophil counts, lymphocyte percentage (%) of white 
cells, eosinophil percentage (%) of white cells, coffee 
intake, pulse rate, hypertension, mean appendicular mass 
and levels of cystatin-C (a marker of kidney function). 
In participants of the Rhineland Study, we could con-
firm that olfactory dysfunction was indeed significantly 

Fig. 1  Genome-wide association meta-analysis of olfactory function. Manhattan (a) and corresponding quantile-quantile plot (b) of the genome-wide 
meta-analysis of sense of smell in people of European ancestry for model 1. Manhattan (c) and corresponding quantile-quantile plot (d) of the genome-
wide meta-analysis of the sense of smell in people of European ancestry for model 2. The horizontal red dashed lines indicate the threshold for genome-
wide significance (i.e., p < 5 × 10−8). e Box and violin plots showing adjusted olfactory function (i.e., score on the Sniffin’ Sticks odor identification test) for 
each genotype (CC, CT, or TT) based on variations in the lead SNP (rs11228623) in the Rhineland Study participants. Olfactory function was adjusted for 
age, sex, global cognitive ability, APOE ε4 carrier status, and the first 10 genetic principal components, by regressing out the effects of these covariates 
using a Poisson regression model. Between group comparisons were made using pairwise Wilcoxon rank-sum tests (the p-values are indicated in the plot 
for reach pairwise comparison). f Forest plot showing the specific effect of the lead SNP at the OR5M7P locus. Forest plots display the p-value of the lead 
SNP in METASOFT meta-analysis (Meta P) and the p-value, log(odds ratio) and its associated 95% confidence intervals (whiskers) of the lead SNP in the 
GWAS of olfactory dysfunction in each European and African cohort
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associated with lymphocyte, neutrophil and basophil cell 
counts, lymphocyte percentage of white blood cells, total 
white blood cell counts, coffee intake, skeletal muscle 
mass, hand grip strength, levels of cystatin-C, heart rate, 
hypertension, and at borderline significance with heart 
failure (p < 0.07) (Fig. 7A and Supplementary Table 13).

Two-sample Mendelian randomization
After LD clumping, we identified one robust genetic 
instrument for olfactory dysfunction (rs11228623) with 
an F-statistic of 45.33, indicating a low probability of 

weak instrument bias. Two-sample MR analyses indi-
cated causal associations between olfactory dysfunction 
and lymphocyte cell counts, as well as lymphocyte, neu-
trophil and eosinophil percentages of white blood cells, 
total white blood cell counts, appendicular lean mass, 
hand grip strength, coffee intake, hypertension, pulse rate 
and cardiovascular disease (Fig.  7B and Supplementary 
Table 14).

Fig. 2  Quantile-quantile plots per cohort. Quantile-quantile plots for the GWAS-summary statistics on olfactory dysfunction in people of European an-
cestry in each cohort (a) Rhineland Study, b ARIC study, c LIFE-Adult study, and d CHRIS study in model 2
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Discussion
We performed the largest genome-wide meta-analysis 
of olfactory dysfunction to date (N = 22,730), discovering 
1524 genome-wide significant variants and 21 genes asso-
ciated with olfactory dysfunction in people of European 
descent. Importantly, the novel lead SNP (rs11228623-
T at 11q12) was genome-wide significant and exhibited 
directionally consistent effects in both ancestry-stratified 
and multi-ancestry analyses. Gene mapping and gene set 
analysis prioritized multiple genes and pathways involved 
in odour reception and signalling. Importantly, combin-
ing PheWAS with individual-level and MR analyses, we 
found evidence for a causal association between olfactory 
dysfunction and several anthropometric, metabolic, car-
diovascular, renal and inflammatory phenotypes.

We identified a genomic risk locus for olfactory dys-
function at 11q12, enriched for olfactory receptor genes 
related to sensory perception of smell and olfactory 
transduction. The lead SNP (rs11228623-T) at this region 
is located downstream of the OR5M7P pseudogene. 
Using eQTL analyses we mapped the independent SNP 
(rs12786376-A) to three other genes (OR5M11, PRG2 
and SLC43A3). OR5M11 is a protein-coding gene belong-
ing to the superfamily of G-protein-coupled olfactory 

receptors, and was previously described as a contribut-
ing factor to the genetic burden underlying olfactory dys-
function [7]. Individual-level blood expression data were 
available for SLC43A3, and indicated an age-dependent 
association between SLC43A3 expression levels and 
olfactory dysfunction. SLC43A3 encodes a membrane 
transporter protein and has been shown to control free 
fatty acid flux in adipocytes [18]. To our knowledge, this 
is the first time this gene and its expression have been 
linked to olfactory dysfunction. Future mechanistic 
studies in model systems are warranted to replicate and 
functionally validate the associations between SLC43A3 
expression and olfactory dysfunction. The majority of the 
other identified genes are mainly expressed in the olfac-
tory epithelium and, therefore, could not be detected in 
the blood transcriptome.

The results of our MR analyses indicate that olfactory 
dysfunction affects anthropometric, metabolic, cardio-
vascular, renal and inflammatory phenotypes, highlight-
ing its detrimental effects across different organs and 
tissues. This included associations of olfactory dysfunc-
tion with skeletal muscle mass and hand grip strength, 
which have been identified before [32, 34]. A potential 
explanation could be that smell loss leads to changes in 

Fig. 3  Sensitivity analysis using adjusted p-values. Quantile-quantile plot for the GWAS-summary statistics from model 2 in ARIC cohort using adjusted 
p-values (a). Manhattan plot (b) and corresponding quantile-quantile plot (c) of the genome-wide meta-analysis in the European ancestry participants 
after inclusion of the adjusted p-value summary statistics from the ARIC cohort. The horizontal red dashed line indicates the threshold for genome-wide 
significance (p < 5 × 10−8)
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dietary habits, resulting in changes of muscle composi-
tion and strength. Conversely, it has been hypothesized 
that lifestyle factors, like exercise or comorbidities might 
concurrently affect muscle strength and the neuronal 
determinants of olfaction [34]. Our MR analyses sup-
port the former rather than the latter hypothesis. This is 
further supported by the causal association of olfactory 
dysfunction with coffee intake, a dietary habit and cho-
lesterol levels, which are dependent on diet. Similarly, 
we found that olfactory dysfunction was causally associ-
ated with hypertension, increased heart rate and a higher 
prevalence of heart failure. This could indicate that olfac-
tion affects cardiovascular risk through dietary patterns 
and obesity, while brain vascular damage or even cardio-
vascular medication may affect olfaction [4, 35]. Olfac-
tory dysfunction was also causally associated with white 
blood cell counts and percentages, particularly those of 
neutrophiles and lymphocytes. As with anthropometric 
and cardiovascular phenotypes, this association could 
be mediated by dietary and/or metabolic changes. Alter-
natively, a neuro-immune interaction may be involved, 
since neurotransmitter release following olfactory stim-
uli might modulate the immune response to enhance 
defence against infections, for example when pathogens 
are detected by the olfactory receptors [41]. Perturba-
tions of this neuro-immune cross-talk due to olfactory 
dysfunction may lead to changes in lymphocyte and neu-
trophil production.

The main limitation of our study is the relatively small 
number of participants from non-European ancestry; 
however, to the best of our knowledge, other large-scale 
population-based studies assessing olfactory dysfunction 
are currently lacking, precluding substantial increases of 
sample size in the near future. Moreover, we could repli-
cate the association between the top genetic variant and 
olfactory dysfunction in people of European descent in 
those of African-American ancestry, but generalizabil-
ity to other ethnic populations needs further investiga-
tion. Furthermore, assessing sex-specific differences in 
the genetic architecture of olfactory dysfunction would 
be valuable. Future studies with larger sample sizes are 
needed to detect potential sex-specific effects. Although 
in our MR analyses, we used a single SNP as an instru-
mental variable, the risk of horizontal pleiotropy is likely 
to be relatively low given the location of this variant in 
a region enriched for olfactory receptor genes. This 
was further supported by a high F-statistic for this vari-
ant, indicating a strong association between the genetic 
instrument and olfactory dysfunction, and thus low risk 
of weak instrument bias.
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Conclusions
We performed a multi-ancestry genome-wide meta-
analysis of olfactory dysfunction in 22,730 individuals 
and found one genomic locus (11q12) robustly associ-
ated with olfactory dysfunction. Moreover, our analysis 
uncovered several genes such as OR5M7P and OR5M11 
related to olfactory dysfunction. Future studies employ-
ing perturbations of these genes in (animal) model sys-
tems are warranted for further functional validation and 
characterization of these findings. Importantly, we dem-
onstrate that olfactory dysfunction is causally associated 
with muscle strength and mass, cardiovascular diseases, 
cholesterol levels, kidney function and white blood cell 
counts and composition. Thus, our findings provide 
new insights into the genetic architecture of olfaction 
and implicate olfactory dysfunction as a causal risk fac-
tor for anthropometric, metabolic, cardiovascular, renal 
and inflammatory phenotypes. Given the high preva-
lence of olfactory dysfunction among aging populations, 
the genetic variants and molecular pathways identified 
here could facilitate development of novel preventive and 
therapeutic strategies against a range of different age-
associated diseases.

Fig. 4  Regional plots of the lead and candidate genetic variants. The figure shows positional mapping of the 11q12 locus with the top lead single nucleo-
tide polymorphism (SNP), as well as variants in linkage disequilibrium with this SNP according to the r [2]-color coded key
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Fig. 5  3D-chromatin interaction (Hi-C) mapping. Hi-C revealed significant interactions between genetic variants in OR5M8 and other genes on chromo-
some 11 (FDR < 1 × 10−6), shown in orange
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Fig. 6  Gene-enrichment analysis. Enrichment analysis of mapped genes, according to Gene ontology (GO): biological process (a), GO: molecular func-
tions (b), and Kyoto Encyclopedia of Genes and Genomes (KEGG) (c). Pathways and processes that are overrepresented in the gene set of interest are 
shown. Input genes that are overlapping in the pathway or process, the enrichment p − value and the proportion of the overlapping genes (input genes 
relative to the tested gene set) are shown
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Fig. 7 (See legend on next page.)
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Fig. 7  Comparison of phenotype-level and Mendelian Randomization estimates for associations between olfactory dysfunction and different traits and 
diseases identified through phenome-wide association studies. a Forest plot depicting associations between olfactory dysfunction and other pheno-
types (identified through phenome-wide association studies after false discovery rate correction) using individual-level data from the Rhineland Study. 
The standardized regression estimate indicates the change in standard deviations in the outcome for one standard deviation increase in olfactory dys-
function. b Forest plot showing causal estimates from two-sample Mendelian Randomization analyses of the effect of olfactory dysfunction on other 
phenotypes (Wald ratio test). The regression estimate indicates the change in standard deviations in the outcome for the effect allele of the lead genetic 
variant (for binary outcomes, including hypertension, heart failure, coronary artery diseases, the regression estimate refers to the logarithm of the odds 
ratio)
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data from GTEx version 8 (https://gtexportal.org/home/) for eQTL analysis and 
publicly available GWAS summary statistics (**Supplementary Table 13**) for 
TwoSample MR analysis. Summary statistics of the GWAS are publicly available 
through the GWAS Catalog (accession numbers GCST90668092 (model 1) and 
GCST90668093 (model 2)).
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