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Genome-wide association study meta-analysis &=
uncovers novel genetic variants associated
with olfactory dysfunction
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Abstract

Background Olfactory dysfunction is among the earliest signs of many age-related neurodegenerative diseases and
has been associated with increased mortality in older adults; however, its genetic basis remains largely unknown.
Therefore, here we aimed to elucidate its genetic architecture through a genome-wide association study meta-
analysis (GWMA).

Methods This GWMA included the participants of European ancestry (N=22,730) enrolled in four different large
population-based studies followed by a multi-ancestry GWMA including participants of African ancestry (N=1,030).
Olfactory dysfunction was assessed using a 12-item smell identification test.

Results GWMA revealed a novel genome-wide significant locus (tagged by single nucleatide polymorphism
rs11228623 at the 11912 locus) associated with olfactory dysfunction. Gene-based analysis revealed a high
enrichment for olfactory receptor genes in this region. Phenome-wide association studies demonstrated associations
between genetic variants related to olfactory dysfunction and blood cell counts, kidney function, skeletal muscle
mass, cholesterol levels and cardiovascular disease. Using individual-level data, we also confirmed and quantified the
strength of these associations on a phenotypic level. Moreover, employing two-sample Mendelian Randomization
analyses, we found evidence for causal associations between olfactory dysfunction and these phenotypes.

Conclusions Our findings provide novel insights into the genetic architecture of the sense of smell and highlight
its importance for many aspects of human health. Moreover, these findings could facilitate the identification and
monitoring of individuals at increased risk of olfactory dysfunction and associated diseases.
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Background

Olfactory function is paramount to both safety and qual-
ity of life, enabling detection of hazardous or unpleasant
odors and contributing to the enjoyment of scents, food
and drink. Impairment of olfaction is very common,
affecting approximately 1 in 5 adults with an increased
prevalence among older individuals [24]. Indeed, aging
is a major determinant of olfactory dysfunction and is
thought to affect both the central and peripheral olfac-
tory system. Other risk factors associated with smell
loss in adults include sinonasal diseases, smoking, and
alcohol consumption [24]. Moreover, reduced sense of
smell is a well-established consequence of coronavirus
disease 2019 and one of the earliest markers of many
neurodegenerative diseases [25, 27, 36]. Importantly,
olfactory dysfunction itself has been suggested as a risk
factor associated with cognitive decline [22], frailty [40],
cardiovascular diseases [35], kidney function [44], and
increased mortality [26]. However, the causality of these
associations remains to be elucidated. Thus, uncover-
ing the genetic architecture of olfactory dysfunction
could not only provide novel molecular targets for its
treatment, but could also be instrumental to assessing
whether decreased sense of smell is causally related to
adverse health outcomes.

Despite the high prevalence of olfactory dysfunction
and its involvement in a variety of diseases, the genetic
architecture of olfactory dysfunction remains largely
unknown. Odor identification, the most commonly stud-
ied component of olfactory function, has been shown to
have a low to moderate heritability [13, 23]. A previous
genome-wide association study (GWAS) of olfactory
function identified nine genome-wide significant loci
associated with odor identification among African Amer-
icans (N=1,979), but only two among European Ameri-
cans (N=6,582).!%!! Interestingly, many of these regions
were related to neurodegenerative and neuropsychiatric
diseases [10, 11]. More recently, Raj et al. examined the

Table 1 Baseline characteristics of participating cohorts
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association between single nucleotide polymorphisms
(SNPs) located in or near olfactory receptor genes
(32,282 SNPs) and the ability to identify individual odors,
detecting a larger number of SNPs (9,267 SNPs) at a sug-
gestive statistical significance level (p <0.001). However,
none of these SNPs remained significant after adjustment
for multiple testing, failing to replicate the findings from
the previous GWAS [33].

Considering the critical role of olfactory dysfunction
in many aspects of human health, here we aimed to elu-
cidate its genetic architecture by performing the larg-
est GWAS and meta-analysis of sense of smell to date,
among adults of European and African ancestry, using
data from four different large-scale, population-based
studies. Moreover, using a two-sample Mendelian Ran-
domization (MR) approach, we investigated the causal
relationship between olfactory dysfunction and different
health-related outcomes.

Methods

Study population

We included 1,030 individuals of African American
ancestry (AAs) from the Atherosclerosis Risk in Com-
munities (ARIC) Study [47], and 22,730 individuals of
European ancestry (EUR) from the Rhineland Study, the
ARIC Study, the Leipzig Research Centre for Civiliza-
tion Diseases (LIFE) -Adult-Study [12] and the Coop-
erative Health Research in South Tyrol (CHRIS) study
[29], who had complete genetic and olfactory function
data (Table 1). The Rhineland Study is an ongoing pro-
spective cohort study enrolling individuals aged 30 or
above from two geographically defined areas in Bonn,
Germany. The only exclusion criterium is insufficient
command of the German language required for provid-
ing informed consent. The ARIC Study is an ongoing
longitudinal study that was established in 1987-1989 to
investigate risk factors for cardiovascular diseases. The
LIFE-Adult-Study is a population-based cohort study

Characteristic RHINELAND ARIC ARIC LIFE-ADULT CHRIS

EA AA
N 6580 3654 1030 4771 6696
Age (years) 559+135 759+52 750+£5.1 574+1297 446165
Women, % 554 56.0 66.0 514 532
Olfactory dysfunction score (mean+SD) 210+1.71 248+2.29 4.01+2.59 206+1.72 1.6£1.55
APOE €4 allele carriers, % 1233 (26%) 922 (25%) 394 (38%) 1148 (24.1%) 2396 (35%)
Global cognition score —-0.57+£0.55 - -
(mean+SD)
MMSE - 279+23 256+33 2898+1.62
(mean+SD)
Cognition (CERAD) 24+6.34

AA African-American, ARIC Atherosclerosis Risk in Community Study, CHRIS The Cooperative Health Research in South Tyrol, EA European-American, EUR European,
LIFE-Adult LIFE-Adult Cohort, MMSE Mini-Mental State Examination, range of possible score 0-30, CERAD Consortium to Establish a Registry for Alzheimer’s disease

Neuropsychological Battery, RHINELAND Rhineland Study, SD Standard deviation
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investigating the prevalence and incidence of common
diseases and subclinical disease phenotypes, the com-
plex interactions between genetic and lifestyle factors
regarding the co-occurrence and development of sub-
clinical phenotypes and diseases, and the role of bio-
markers to predict disease initiation and progression. The
study comprises an age- and sex-stratified random sam-
ple of 10,000 adult individuals (aged 18-79 years) from
Leipzig, Germany. The Cooperative Health Research in
South Tyrol (CHRIS) Study is an ongoing longitudinal
study established in 2003 to investigate genetic and life-
style determinants of health and healthy aging in a single
administrative district of the alpine Bolzano-South Tyrol
province of Italy with a stable population, cooperative
administration, shared single reference hospital, relatively
homogenous customs and environment, and high healthy
life expectancy. 13 393 adults aged > 18 years (median 46,
range 18-94, 54% female) participated in a baseline visit
at the district reference hospital in 2011-2018.

Assessment of olfactory function

In the Rhineland Study, the ARIC Study and the LIFE-
Adult-Study, olfactory function was assessed using the
12-item “Sniffin’ Sticks” odor identification test (SIT-
12), a widely utilized screening instrument for assessing
odor identification ability [21]. This is assessed by using
twelve felt-tip sticks from a test kit (Burghart Messtech-
nik GmbH, Germany), each carrying a distinct odorant.
These sticks were consecutively positioned approximately
2 cm in front of both nostrils for 3 to 4 seconds by trained
technicians in a well-ventilated room. Participants were
then asked to choose only one out of four answer options
for each odorant. The time interval between two consec-
utive odor presentations was at least 20 seconds. In the
CHRIS study, the 16-item “Sniffin’ Sticks” odor identifi-
cation test was employed and for this analysis restricted
to the SIT-12 items, where results from the four pens
(turpentine, garlic, apple, and anise) were excluded to
make the assessment of olfactory dysfunction across all
cohorts comparable. Olfactory dysfunction was defined
as the total number of incorrectly identified odors on the
SIT-12 test (range 0—12).

Genotyping, quality control and imputation

Genotyping was performed in all four cohorts using com-
mercially available genetic arrays followed by standard
quality control measures. In brief, for the meta-analysis,
quality control was performed using PLINK (version 1.9),
excluding SNPs based on poor genotyping rate (<99%),
minor allele frequency (MAF)<1%> or Hardy-Weinberg
Disequilibrium (HWE) (p <1 x 107°). Imputation of geno-
types was performed through IMPUTE (version 2) [20],
using as reference panels 1000 Genomes phase 3 version
5 in the Rhineland Study and the LIFE-Adult cohort,
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1000 Genomes version 1 phase 3 in the ARIC Study [3]
and TOPMed in the CHRIS cohort. The genetic variants
were mapped to human genome coordinates based on
GRCh37/hgl9. Variants with imputation quality score
below 0.3 were excluded [42]. In the ARIC study, geno-
typing was performed using the Affymetrix GeneChip
SNP Array 6.0, applying standardized quality-control
filters for call rate (<95%), Hardy Weinberg equilibrium
(HWE) (p<1x107°) for SNPs and for the samples to
exclude individuals with call rate (<95%) before imputa-
tion. In the Rhineland Study, blood samples were geno-
typed using the Illumina Omni-2.5 exome array and
processed with GenomeStudio (version 2.0.5). Quality
control was performed using PLINK (version 1.9). SNPs
were excluded based on poor genotyping rate (<99%) or
HWE (p<1x107°). Additionally, participants with poor
quality DNA samples were excluded because of poor call
rate (<95%) (n=51), abnormal heterozygosity (n=100),
cryptic relatedness (n=472) or sex mismatch (n=43). To
account for variation in the population structure, which
may otherwise cause systematic differences in allele
frequencies [31], EIGENSTRAT (version 16000) was
used. EIGENSTRAT uses principal component analy-
sis to detect and correct for population structure, which
resulted in the exclusion of an additional 164 participants
from non-European descent. Finally, imputation was
performed using IMPUTE (version 2) [20] and the 1000
Genomes version 3 phase 5 as the reference panel [3].
In the LIFE-Adult study, the Affymetrix AXIOM-CEU
1 array was used for assessment of genotypes. Exclusion
was based on low sample call rate (<97%), mismatches
of reported and genotyped sex, duplicated samples or
samples with unresolved relatedness and ethnic outli-
ers. Imputation was performed with IMPUTE2 (Ver-
sion 2.3.2) after pre-phasing with SHAPEIT (v2.r837).
For the imputation the following filter criteria were
used: SNP call rate<97%, HWE <1 x 107°, plate associa-
tion<1x 107/, monomorphic SNPs; SNPs violating cri-
teria of Affymetrix cluster measures FLD, HetSO and
HomRO were removed too. In the CHRIS study, geno-
typing was carried out for consenting participants in
three batches using the Illumina OmniExpressExome
chip (#=5,882), the Illumina Human Omni2.5Exome
chip (=4,887), and the Illumina-based OmniEURHD
chip from Life & Brain GmbH, Bonn (n=2,694). Initial
processing and quality control of returned raw genotyp-
ing data was performed on each genotype batch inde-
pendently at the time of acquisition using the Illumina
GenomeStudio software package with additional quality
control following established protocols similar to those
described above. Subsequently batches were merged
together consecutively, discarding variants not present
on all array chips, and excluding samples with >5% miss-
ingness. The genotype dataset consisted of approximately
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579,000 variants from autosomal chromosomes in 12,834
samples. TOPMed imputation was carried out with the
topmed-freeze5 panel [39] on the Michigan Imputation
Server (1.7.1) [8], using minimac4-1.0.2 [14]. Excluding
markers with imputation R2<0.3, the CHRIS TOPMed-
imputed dataset contains 35,061,390 variants.

Genome-wide association studies

We performed an ancestry-specific GWAS of olfactory
dysfunction in each cohort separately, using General-
ized Linear Mixed Model Association Tests (GMMAT)
[5]. Since olfactory dysfunction was defined as a count
variable and followed a Poisson distribution, we applied
a log-link function to model the association of each
SNP with olfactory dysfunction, using the score test for
computational efficiency [5, 15]. Indeed, using exten-
sive simulations under different genetic models, it has
been demonstrated that for the analyses of count out-
come data Poisson regression models not only had more
statistical power, but also yielded fewer false positives
[15]. For variants that were genome-wide significant
(p<5x107%) based on the score test, we rerun the analy-
ses while applying the Wald test to obtain estimates for
the effect sizes and associated standard errors. In model
1, we adjusted for age, sex and the first 10 genetic princi-
pal components to account for population structure. In
model 2, we additionally adjusted for APOE €4 carrier/
non-carrier status and global cognitive function as these
factors have previously been associated with a poor sense
of smell [10].

Meta-analysis of genome-wide association studies

The score test- and the Wald test-based results from
GMMAT were meta-analyzed using the sample size-
weighted or the fixed effects inverse variance-weighted
method, respectively, as implemented in the meta-anal-
ysis tool for genome-wide association scans (METAL)
[46]. Additionally, we performed a multi-ancestry meta-
analysis by combining GWAS results from both Euro-
pean and African ancestry participants using a random
effects model as implemented in METASOFT [17]. The
genome-wide statistical significance threshold was set at
p<5x1078,

Genomic risk loci

We used the Functional Mapping and Analysis of GWAS
(FUMA) platform to identify genomic risk loci based
on GRCh37/hgl9 human genome coordinates [45].
Genome-wide significant SNPs in relatively high linkage
disequilibrium (LD) (i.e., r*>0.6) with nearby SNPs were
used to define genomic risk loci, merging LD blocks of
independently significant SNPs within 250 kb of each
other into a single genomic locus. Within each genomic
locus, we defined the lead SNPs as those SNPs that are
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independent of one another at r’*<0.1, using the 1000
Genome Phase 3 reference panel.

Variant annotation and gene mapping

Based on the standard 10 kb gap between SNPs and
genes, each lead SNP was individually mapped to the
gene. Variant annotation for each locus was based on lead
SNPs and candidate SNPs, defined as those SNPs in LD
with the lead SNP within a window of 250 kb and nomi-
nally significant at p <0.05. Functionally annotated SNPs
were subsequently mapped to genes based on (i) physical
position on the genome (positional mapping), (ii) expres-
sion quantitative trait loci (eQTL) associations (eQTL
mapping), and (iii) 3D chromatin interactions (Hi-C).

Gene and gene-set analysis

Gene-based analyses were performed using MAGMA
(Multi-marker Analysis of GenoMic Annotation) v1.6
as implemented in FUMA, using the Bonferroni method
for multiple testing. Mapped genes from SNP2GENE
were further investigated using the GENE2FUNC tool
in FUMA, which through a hypergeometric test assesses
pathway enrichment of mapped genes in the Molecular
Signatures Database (MSigDB) gene sets.

Gene expression sequencing and analysis

In the Rhineland Study, total RNA sequencing was per-
formed using the TruSeq stranded total RNA kit (Illu-
mina) on a NovaSeq6000 instrument (Illumina). Genes
with overall mean expression levels greater than 15 reads
and expressed in at least 95% of the participants were
considered for further analysis.

RNA sequencing and gene expression analysis in the
Rhineland study

Blood samples were collected between 7:00 to 9:45 in the
morning from an antecubital or dorsal hand vein. For
RNA sequencing, samples were stored in PAXgene Blood
RNA tubes (PreAnalytix/Qiagen). PAXgene Blood RNA
Tubes were thawed and incubated at room temperature
to increase RNA yields. Total RNA was isolated accord-
ing to manufactures’ instructions using PAXgene Blood
miRNA Kit and the automated purification protocol (Pre-
Analytix/Qiagen). Differential blood cell counts (erythro-
cytes, neutrophils, eosinophils, basophils, lymphocytes,
monocytes and platelets) were performed at the Central
Laboratory of the University Hospital in Bonn, using
EDTA-whole blood samples on a hematological ana-
lyzer Sysmex XN9000. RNA integrity and quantity were
evaluated using the tapestation RNA assay on a tapes-
tation4200 instrument (both from Agilent). We used
750 ng of total RNA to generate NGS libraries for total
RNA sequencing using the TruSeq stranded total RNA
kit (Illumina) following manufacturer’s instructions with
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Ribo-Zero Globin reduction. We checked library size
distribution via tapestation using D1000 on a Tapesta-
tion4200 instrument (Agilent) and quantified the librar-
ies via Qubit HS dsDNA assay (Invitrogen). We clustered
the libraries at 250 pM final clustering concentration on
a NovaSeq6000 instrument using S2 v1 chemistry (Illu-
mina) in XP mode and sequenced paired-end 2*50 cycles
before demultiplexing using bcl2fastq2 v2.20. Quality
control of the sequencing was evaluated through FastQC
v0.11.9. Following the trimming of low-quality score
reads through Trimmomatic v.0.39 software, sequenc-
ing reads were aligned using STAR v2.7.1 and the human
reference genome GRCh38.p13 provided by Ensembl.
The count matrix was generated with STAR—quantMode
GeneCounts using the human gene annotation version
GRCh38.101. Genes with overall mean expression greater
than 15 reads and expressed in at least 95% of the par-
ticipants were included for further analysis. Raw counts
were normalized and transformed using the varianceSta-
bilizingTransformation function from DESeq2 (v1.30.1).
We extracted the expression levels of mapped genes from
total RNA sequencing data available from a subset of
Rhineland Study participants (#=1985). In brief, multi-
variable linear regression was used to assess the associa-
tion between z-transformed gene expression levels and
olfactory dysfunction while adjusting for age, sex, APOE
€4 carrier status, the first 10 genetic principal compo-
nents, global cognitive function and sequencing batch.
Subsequently, we tested whether this association was
modified by age by including an interaction term between
age and gene expression levels. For genes with a signifi-
cant age interaction, we performed the linear regression
analysis after stratifying in age tertiles (i.e., 30—50, 50—62
and 62-95 years). The age tertiles were defined using a
data-driven approach to achieve an approximately equal
number of participants in each subgroup.

For SNPs identified in the GWAS meta-analysis and
their mapped genes, functional validation of the associa-
tion between SNP and gene expression was performed
using multivariable linear regression. Gene expression
was coded as the dependent variable and the number of
effect alleles (0, 1 or 2) was coded as a numeric indepen-
dent variable, controlling for age, sex, the first 10 genetic
principal components and sequencing batch.

Phenome-wide association studies

We used the Open Target Genetics platform [16] to per-
form phenome-wide association studies (PheWAS) for
the systematic identification of phenotypes associated
with genetic variations related to olfactory dysfunction.
The Benjamini-Hochberg false discovery rate (FDR)
method was used for multiple comparisons adjustment.
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Phenotypic associations using individual-level data

In addition, using individual-level data from the Rhine-
land Study, we assessed whether phenotypes associ-
ated with genetic variants of olfactory dysfunction (after
FDR correction) were also associated with a poor sense
of smell on a phenotypic level. Age, sex and smoking
data were based on self-reports using questionnaires.
Smoking was coded as a dichotomous variable (cur-
rent vs. non-current smoker). Participants with miss-
ing data on smoking were classified as current smokers
when their cotinine metabolic levels, measured with the
Metabolon HD4 platform, exceeded the non-smoker
sample-defined 97.5 percentile. Body mass index (BMI)
was measured as weight (kg) divided by height squared
(m [2]). Skeletal muscle mass (kg) was derived from bio-
impedance analysis. Muscular strength was measured
using the hand-held Jamar Plus Digital Dynamometer
(Patterson Medical, USA). The grip force of each hand
was measured three times and the average of the hand
grip strength was calculated. Hypertension was coded as
“yes” in case of antihypertensive drug use or high blood
pressure (mean systolic blood pressure > =140 mmHg or
diastolic blood pressure > =90 mmHg), and as “no” other-
wise. Heart rate was measured as number of heart beats
per minute. Cardiovascular conditions including stroke,
heart failure and coronary artery disease (CAD) were
defined as self-reported physician diagnosis. Differential
blood cell counts (e.g., erythrocytes, leukocytes, baso-
phils, eosinophils, lymphocytes, monocytes, neutrophils)
were measured at the Central Laboratory of the Univer-
sity Hospital in Bonn using EDTA-whole blood samples
on a hematological analyzer Sysmex XN9000. Habitual
dietary intake (ml/day) was assessed by a self-adminis-
tered semi-quantitative food frequency questionnaire
(FFQ). We assessed whether phenotypes associated with
genetic variants of olfactory dysfunction (after FDR cor-
rection) were also associated with a poor sense of smell
on a phenotypic level using multivariable regression
models. Statistical significance was inferred at p<0.05.
We log-transformed white blood cell (WBC), eosinophil,
neutrophil and lymphocyte cell counts, as well as skeletal
muscle mass, to account for their skewed distributions.
All the phenotypes were adjusted for poor sense of smell
and further corrected for age and sex. We additionally
adjusted for potential risk factors such as smoking when
the dependent variable was heart rate, white blood cell
counts for neutrophil, eosinophil and lymphocyte cell
counts and BMI for skeletal muscle mass and cardiovas-
cular diseases (CVD). All the numerical variables were
standardized to a mean of 0 and a standard deviation of
1 to allow for better comparison of the effect sizes across
different traits. To this end, we employed multivariable
regression models with statistical significance inferred at
FDR-adjusted p <0.05.
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Two-sample Mendelian randomization

We employed a two-sample MR approach to test whether
the associations between olfactory dysfunction and the
phenotypes identified in the previous step were causal,
using the TwoSample MR package [19]. For the out-
comes, we obtained GWAS summary statistics using
the IEU GWAS database (Supplementary Table 13) [19].
Specifically, we obtained the GWAS summary statistics
for coffee intake [19], lymphocyte count [6], cystatin C
levels [28], pulse rate [19], hypertension [9], appendicu-
lar lean mass [30], total cholesterol levels [37], cardiovas-
cular disease [9], white blood cell count [43], lymphocyte
percentage of white cells [2], neutrophil percentage of
white cells [2], hand grip strength (right) [19], hand grip
strength (left) [19], basophil count and neutrophil cell
count [19]. As genetic instruments for the exposure we
used genome-wide significant SNPs from the olfactory
dysfunction GWAS meta-analysis. SNPs in LD were
clumped based on r*<0.01 at a 10 Mb window before
the MR analyses. To assess the risk of weak instrument
bias, we calculated the F-statistic for the selected genetic
instruments [38]. The Benjamini-Hochberg false discov-
ery rate (FDR) method was used for multiple compari-
sons adjustment.

Results

Population characteristics

The study and ancestry specific population characteris-
tics are provided in Table 1, Supplementary Table 1. On
average, participants of European ancestry had a lower
degree of olfactory dysfunction and scored higher on
cognitive tests compared to those of African ancestry.
Moreover, APOE &4 allele carrier frequency was lower in
participants of European ancestry.

GWAS meta-analysis

The GWAS meta-analysis of European ancestry partici-
pants identified 22 and 1523 genome-wide significant
SNPs located on chromosome 11 based on results from
model 1 and model 2 respectively, both pointing to the
same genomic locus, 11q12, based on GRCh37/hgl9
coordinates (Fig. 1). Overall, the genomic inflation factor
(M) in each European cohort was low, ranging from 0.49
t to 1.01 (Fig. 2). Because the A-value was relatively low
(0.49) in the ARIC European ancestry cohort, indicating
genomic deflation, we also performed a sensitivity analy-
sis in which we corrected the p-values in this group by
dividing the chi-squared statistic by A [1], and re-running
the European-based meta-analysis. This, however, did
not change the results (Fig. 3). In model 2, the meta-anal-
ysis identified one lead SNP rs11228623, as well as three
independent significant SNPs (rs12786376, rs34099256,
and rs369532258), across one genomic risk locus (11q12)
(Table 2; Fig. 4, and Supplementary Tables 2-5). In the
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multi-ancestry GWAS meta-analysis, the associations of
the lead SNP (rs11228623) and one of the independent
SNPs (rs12786376) with olfactory dysfunction remained
directionally consistent and genome-wide significant
(Table 2).

The olfactory dysfunction-associated SNPs were
mapped to genes based on positional, eQTL and chro-
matin interaction mapping. Positional mapping identi-
fied 34 olfactory receptor genes. We discovered 3 genes
(OR5M11, SLC43A3 and PRG2) based on eQTL map-
ping of which one gene (OR5M1I11) overlapped with
those identified through positional mapping (Supple-
mentary Tables 6 & 7). Chromatin interaction mapping,
based on Hi-C data, showed significant (FDR<1x107)
chromatin interactions between enhancers of candi-
date genes in this region and the promoter regions of
MPEGI, LRR45, and OR4A 16, as well as those of several
other genes on chromosome 11q12 (Fig. 5 & Supplemen-
tary Table 8). After Bonferroni-correction, gene-based
analysis using MAGMA identified 21 genome-wide sig-
nificant (p<2.6x107°) genes, with OR5M11 as the top
hit (p<8.4x107%) (Supplementary Table 9). ORSMI1 is a
protein coding gene that belongs to the family of olfac-
tory receptors and is known to be involved in olfactory
signaling pathways. In the MAGMA gene-set enrich-
ment analysis, the top gene sets were enriched for “reac-
tome hedgehog ligand biosynthesis” and “reactome
degradation of beta catenin by the destruction complex”
(Supplementary Table 10), but none survived multiple
testing correction. Interrogation of MSigDB showed that
the mapped genes at the 11q12 locus were significantly
enriched for pathways related to “general odorant bind-
ing proteins, sensory perception of smell; “molecular
function, odorant binding” and “Grueneberg Ganglion,
olfactory transduction” (Fig. 6).

Gene expression analysis

Of the 41 genes identified through positional, eQTL
and chromatin interaction mapping, expression levels
were available for MPEG1 (tagged by rs12786376) and
SLC43A3 (tagged by rs1811871001) in whole blood for
1985 participants in the Rhineland Study. Olfactory dys-
function was not associated with the expression levels of
these two genes. However, a borderline significant inter-
action with age was found for SLC43A3. Age-stratified
analysis showed that higher SLC43A3 expression was
associated with worse olfactory function at borderline
significance for participants aged 30-50 years (Supple-
mentary Table 11). However, we found no significant
association between rs1811871001 and SLC43A3 expres-
sion or rs12786376 and MPEGI expression.
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age, sex, global cognitive ability, APOE €4 carrier status, and the first 10 genetic principal components, by regressing out the effects of these covariates
using a Poisson regression model. Between group comparisons were made using pairwise Wilcoxon rank-sum tests (the p-values are indicated in the plot
for reach pairwise comparison). f Forest plot showing the specific effect of the lead SNP at the OR5M7P locus. Forest plots display the p-value of the lead
SNP in METASOFT meta-analysis (Meta P) and the p-value, log(odds ratio) and its associated 95% confidence intervals (whiskers) of the lead SNP in the
GWAS of olfactory dysfunction in each European and African cohort

Phenome-wide association studies and phenotypic eosinophil counts, lymphocyte percentage (%) of white
associations cells, eosinophil percentage (%) of white cells, coffee
The lead SNP (rs11228623), located within 5 kb down- intake, pulse rate, hypertension, mean appendicular mass
stream of the ORSM7P gene, was associated with 71  and levels of cystatin-C (a marker of kidney function).
phenotypes after FDR correction (Supplementary Table In participants of the Rhineland Study, we could con-
12). The identified traits included lymphocyte counts, firm that olfactory dysfunction was indeed significantly
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Fig. 2 Quantile-quantile plots per cohort. Quantile-quantile plots for the GWAS-summary statistics on olfactory dysfunction in people of European an-
cestry in each cohort (a) Rhineland Study, b ARIC study, ¢ LIFE-Adult study, and d CHRIS study in model 2

associated with lymphocyte, neutrophil and basophil cell
counts, lymphocyte percentage of white blood cells, total
white blood cell counts, coffee intake, skeletal muscle
mass, hand grip strength, levels of cystatin-C, heart rate,
hypertension, and at borderline significance with heart
failure (p <0.07) (Fig. 7A and Supplementary Table 13).

Two-sample Mendelian randomization

After LD clumping, we identified one robust genetic
instrument for olfactory dysfunction (rs11228623) with
an F-statistic of 45.33, indicating a low probability of

weak instrument bias. Two-sample MR analyses indi-
cated causal associations between olfactory dysfunction
and lymphocyte cell counts, as well as lymphocyte, neu-
trophil and eosinophil percentages of white blood cells,
total white blood cell counts, appendicular lean mass,
hand grip strength, coffee intake, hypertension, pulse rate
and cardiovascular disease (Fig. 7B and Supplementary
Table 14).
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Chromosome

Fig. 3 Sensitivity analysis using adjusted p-values. Quantile-quantile plot for the GWAS-summary statistics from model 2 in ARIC cohort using adjusted
p-values (a). Manhattan plot (b) and corresponding quantile-quantile plot (c) of the genome-wide meta-analysis in the European ancestry participants
after inclusion of the adjusted p-value summary statistics from the ARIC cohort. The horizontal red dashed line indicates the threshold for genome-wide

significance (p<5x107%)

Discussion

We performed the largest genome-wide meta-analysis
of olfactory dysfunction to date (N=22,730), discovering
1524 genome-wide significant variants and 21 genes asso-
ciated with olfactory dysfunction in people of European
descent. Importantly, the novel lead SNP (rs11228623-
T at 11q12) was genome-wide significant and exhibited
directionally consistent effects in both ancestry-stratified
and multi-ancestry analyses. Gene mapping and gene set
analysis prioritized multiple genes and pathways involved
in odour reception and signalling. Importantly, combin-
ing PheWAS with individual-level and MR analyses, we
found evidence for a causal association between olfactory
dysfunction and several anthropometric, metabolic, car-
diovascular, renal and inflammatory phenotypes.

We identified a genomic risk locus for olfactory dys-
function at 11q12, enriched for olfactory receptor genes
related to sensory perception of smell and olfactory
transduction. The lead SNP (rs11228623-T) at this region
is located downstream of the ORSM7P pseudogene.
Using eQTL analyses we mapped the independent SNP
(rs12786376-A) to three other genes (OR5M1I11, PRG2
and SLC43A3). ORSM11 is a protein-coding gene belong-
ing to the superfamily of G-protein-coupled olfactory

receptors, and was previously described as a contribut-
ing factor to the genetic burden underlying olfactory dys-
function [7]. Individual-level blood expression data were
available for SLC43A3, and indicated an age-dependent
association between SLC43A3 expression levels and
olfactory dysfunction. SLC43A3 encodes a membrane
transporter protein and has been shown to control free
fatty acid flux in adipocytes [18]. To our knowledge, this
is the first time this gene and its expression have been
linked to olfactory dysfunction. Future mechanistic
studies in model systems are warranted to replicate and
functionally validate the associations between SLC43A3
expression and olfactory dysfunction. The majority of the
other identified genes are mainly expressed in the olfac-
tory epithelium and, therefore, could not be detected in
the blood transcriptome.

The results of our MR analyses indicate that olfactory
dysfunction affects anthropometric, metabolic, cardio-
vascular, renal and inflammatory phenotypes, highlight-
ing its detrimental effects across different organs and
tissues. This included associations of olfactory dysfunc-
tion with skeletal muscle mass and hand grip strength,
which have been identified before [32, 34]. A potential
explanation could be that smell loss leads to changes in
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Table 2 Independent genome-wide significant single nucleotide polymorphisms (r* < 0.6 and p < 5 x 1078) associated with olfactory dysfunction in European GWAS meta-analysis,

and comparison with the cross-ancestry meta-analysis. The results displayed are summary statistics derived from the GWAS meta-analysis of Wald test results

Cross-ancestry
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EUR & AFR
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The meta-analyses were based on results from model 2, in which we adjusted for age, sex, APOE genotype, cognitive function and the first 10 genetic principal components

Effect directions are shown in the order: Rhineland study, Atherosclerosis Risk in Community Study (ARIC); LIFE-Adult Cohort; Cooperative Health Research in South Tyrol (CHRIS) cohort
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dietary habits, resulting in changes of muscle composi-
tion and strength. Conversely, it has been hypothesized
that lifestyle factors, like exercise or comorbidities might
concurrently affect muscle strength and the neuronal
determinants of olfaction [34]. Our MR analyses sup-
port the former rather than the latter hypothesis. This is
further supported by the causal association of olfactory
dysfunction with coffee intake, a dietary habit and cho-
lesterol levels, which are dependent on diet. Similarly,
we found that olfactory dysfunction was causally associ-
ated with hypertension, increased heart rate and a higher
prevalence of heart failure. This could indicate that olfac-
tion affects cardiovascular risk through dietary patterns
and obesity, while brain vascular damage or even cardio-
vascular medication may affect olfaction [4, 35]. Olfac-
tory dysfunction was also causally associated with white
blood cell counts and percentages, particularly those of
neutrophiles and lymphocytes. As with anthropometric
and cardiovascular phenotypes, this association could
be mediated by dietary and/or metabolic changes. Alter-
natively, a neuro-immune interaction may be involved,
since neurotransmitter release following olfactory stim-
uli might modulate the immune response to enhance
defence against infections, for example when pathogens
are detected by the olfactory receptors [41]. Perturba-
tions of this neuro-immune cross-talk due to olfactory
dysfunction may lead to changes in lymphocyte and neu-
trophil production.

The main limitation of our study is the relatively small
number of participants from non-European ancestry;
however, to the best of our knowledge, other large-scale
population-based studies assessing olfactory dysfunction
are currently lacking, precluding substantial increases of
sample size in the near future. Moreover, we could repli-
cate the association between the top genetic variant and
olfactory dysfunction in people of European descent in
those of African-American ancestry, but generalizabil-
ity to other ethnic populations needs further investiga-
tion. Furthermore, assessing sex-specific differences in
the genetic architecture of olfactory dysfunction would
be valuable. Future studies with larger sample sizes are
needed to detect potential sex-specific effects. Although
in our MR analyses, we used a single SNP as an instru-
mental variable, the risk of horizontal pleiotropy is likely
to be relatively low given the location of this variant in
a region enriched for olfactory receptor genes. This
was further supported by a high F-statistic for this vari-
ant, indicating a strong association between the genetic
instrument and olfactory dysfunction, and thus low risk
of weak instrument bias.



Imtiaz et al. BMC Genomic Data (2025) 26:64 Page 11 of 17

£6h:SNps 11 1l 11 1 1 1 (] ]
10 r2
1
3 ¢ - B

¥

g 05

© 0.4

: 03

a .0.2

o 0.1

—

g @ Top lead SNP

! @ Lead SNPs

@ Independent significant SNPs

mmm Mapped genes

OR5D14- TRIM51-+OR10AGDR5AQ1POR8H3~ «OR8J20R5T1-OR8K1-+-0OR5R1-0OR5M8 «OR5M100R5AR1-ORIG3P+OR5G5P === Non-mapped protein coding genes
or‘zsu-» «-onswm-olesp 0R5{1p+oasj3 <—iOR5T€O|R8H10R811-) o‘asmp-l-oasmsp |.-0R5M1 Iorzgm-»'—onsci? s HorrBpped Ten-oRlingigEnes
ORS5L2- «—o‘stz -—cl;RsFl 0RSBE1P—-—|OR8K5 0|R5T3—$R8K3948u1—» <—O)R5M9‘—OIR5M1DR.'1M12P—v ‘<—0R9G4<—ORSG3
OIR9M1P~¢—|OR5I1 '—|OR5F2POR|8I2—»OR5‘J7P—D |«—OR8I|1P 0R;L1P—> 4—01?5M3 l«—0R5M1|3P «<RP11-100N3.2AP000479.1-
OR5D15P- «~OR10AF1BR5AS1-OR8H2-OR5)2- «—FAMSAZR)‘RSAL1—><—|0RSM7P «—O‘RSAMIP «~OR9G2P
OR5D18-  «OR10AK1P l 4—0R8|I4P «—0{18V1P ORBlKZP—w ‘ 1—0R5M|2P «—OFLSAPIP l—ORSG4P
0R|5ms—» «~OR5BN2P l RP‘L5P29—> <—|OR5M6P AP002‘517.1—- ‘
RP11-738011.9- «—oé{ssmp OR5AL2P- «~OR5AP2
RP11-738011.12- «~OR8K4P ] CTD-3051L14.13- ~OR2AH1P
<—RP11-738011.13 4—RP11-4‘144K7.8 ch»30l5‘1L14.14~ RP11-59K5.1-

Fig. 4 Regional plots of the lead and candidate genetic variants. The figure shows positional mapping of the 11912 locus with the top lead single nucleo-
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Conclusions

We performed a multi-ancestry genome-wide meta-
analysis of olfactory dysfunction in 22,730 individuals
and found one genomic locus (11q12) robustly associ-
ated with olfactory dysfunction. Moreover, our analysis
uncovered several genes such as ORSM7P and OR5M11
related to olfactory dysfunction. Future studies employ-
ing perturbations of these genes in (animal) model sys-
tems are warranted for further functional validation and
characterization of these findings. Importantly, we dem-
onstrate that olfactory dysfunction is causally associated
with muscle strength and mass, cardiovascular diseases,
cholesterol levels, kidney function and white blood cell
counts and composition. Thus, our findings provide
new insights into the genetic architecture of olfaction
and implicate olfactory dysfunction as a causal risk fac-
tor for anthropometric, metabolic, cardiovascular, renal
and inflammatory phenotypes. Given the high preva-
lence of olfactory dysfunction among aging populations,
the genetic variants and molecular pathways identified
here could facilitate development of novel preventive and
therapeutic strategies against a range of different age-
associated diseases.
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Fig.5 3D-chromatin interaction (Hi-C) mapping. Hi-C revealed significant interactions between genetic variants in OR5M8 and other genes on chromo-
some 11 (FDR< 1x 1079, shown in orange
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Fig. 7 Comparison of phenotype-level and Mendelian Randomization estimates for associations between olfactory dysfunction and different traits and
diseases identified through phenome-wide association studies. a Forest plot depicting associations between olfactory dysfunction and other pheno-
types (identified through phenome-wide association studies after false discovery rate correction) using individual-level data from the Rhineland Study.
The standardized regression estimate indicates the change in standard deviations in the outcome for one standard deviation increase in olfactory dys-
function. b Forest plot showing causal estimates from two-sample Mendelian Randomization analyses of the effect of olfactory dysfunction on other
phenotypes (Wald ratio test). The regression estimate indicates the change in standard deviations in the outcome for the effect allele of the lead genetic
variant (for binary outcomes, including hypertension, heart failure, coronary artery diseases, the regression estimate refers to the logarithm of the odds

ratio)
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