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A possible consequence of the process of protein aggregation in neurode-

generative diseases is the depletion of soluble protein species (proteinope-

nia), which may, at least in some cases, reduce protein function/activity.

This concept, which is often overlooked, may play a role in synucleinopa-

thies such as Parkinson’s disease (PD), and dementia with Lewy bodies

(DLB), where the protein a-synuclein (aSyn) is known to accumulate in

insoluble inclusions. aSyn is at the crossroads between cellular proteostasis

and lipidostasis networks and, therefore, we must be aware of the complex-

ity we face when we try to understand the molecular basis of synucleinopa-

thies. Importantly, aSyn and b-glucocerebrosidase (GCase), a sphingolipid

hydrolase also strongly implicated in PD and DLB, are connected to lipid

biology and to protein quality control function. Thus, changes in the nor-

mal relationship between these two proteins may shift the balance in the

cell and lead to proteinopathy and/or proteinopenia, while also affecting

lipidostasis of cells in the brain. Thus, pathological mechanisms that are a

consequence of (a) loss-of-function, (b) gain-of-toxic function, and (c)

alterations in lipidostasis need to be carefully analyzed and integrated in

our study of the molecular underpinnings of neurodegenerative mecha-

nisms. Here, we highlight implications of the depletion of the soluble form

of aSyn, and of GCase, and discuss how state-of-the-art ‘omics technolo-

gies’ could be deployed to assist in the clinical assessment of

synucleinopathies.

Introduction

Neurodegenerative diseases, such as Parkinson’s dis-

ease (PD), and dementia with Lewy bodies (DLB), are

known as synucleinopathies due to the accumulation

of the protein a-synuclein (aSyn) in intraneuronal pro-

tein aggregates known as Lewy bodies (LB) and Lewy

neurites (LN) [1–3]. However, the precise role of these
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protein aggregates in neurodegeneration is still elusive.

In addition to aSyn, other proteins have emerged as

important players in PD, such as the Leucine-rich

repeat kinase 2 (LRRK2) [4,5], b-glucocerebrosidase
(GCase) [6,7] and, more recently, the transactive

response DNA binding protein of 43 kDa (TDP-43)

[8,9]. One of the consequences of protein aggregation,

which is often overlooked, is the depletion of soluble

(and likely functional) species of the same protein,

leading to proteinopenia [10–12].
Recently, LBs were shown to have a complex com-

position that includes proteins, lipids, fragmented

organelles, and nucleic acids [3,13–16], and although

more evidence is needed regarding the role of these

biomolecules and specificity in PD mechanisms, it is

likely that nucleic acids and lipids are also important

players in the processes that lead to neurodegenera-

tion. Proteins like aSyn and GCase are connected to

lipid biology and to protein quality control function.

Even though a mechanistic link has been established

between them, individual changes in the quantity of

these proteins may shift the balance in the cell and

lead to proteinopathy and/or proteinopenia, while

also affecting lipidostasis of different cells in the

brain.

Protein aggregation can lead to a gain-of-toxic func-

tion (GoF) of the protein aggregates, and protein

depletion due to aggregation can lead to a

loss-of-function (LoF) of the soluble species. Protein

aggregation and changes in proteostasis are hallmarks

of normal aging [17,18]. Interestingly, there are cases

where neurologically ‘normal’ patients show an accu-

mulation of protein aggregates in the brain [19,20].

This opens the possibility to explore other mechanisms

such as proteinopenia rather than only focusing on the

predominant view of GoF and proteinopathy and its

role in pathological mechanisms that may lead to

neurodegeneration.

Thus, for our understanding of the molecular under-

pinnings of neurodegeneration, it is essential to (a)

explore how proteinopenia affects neuronal homeosta-

sis and brain function, (b) address the possibility that,

in the long run, the balance between LoF and GoF

may play a role in neurodegeneration, and (c) deter-

mine the implications of these processes on lipidosta-

sis. In the present review, we highlight the individual

implications of the depletion of the soluble form of the

major component of pathological protein inclusions,

aSyn, and the important genetic risk factor GCase.

Additionally, we discuss how ‘omics’ technologies may

be integrated to characterize the molecular fingerprints

of disease and help in the clinical assessment in

synucleinopathies.

Implications of aSyn depletion in
neuronal survival and
neuroinflammation

aSyn is a 140 amino acid protein encoded by the SNCA

gene and is highly abundant in the brain [21–24]. aSyn
comprises an N-terminal domain that adopts a-helical
structure upon interactions with membranes, a hydro-

phobic middle region, and a disordered C-terminal

domain [25–27]. aSyn has been reported to exist in dif-

ferent states, ranging from monomers to tetramers, olig-

omers, protofibrils, and fibrils [28,29]. Monomers are

assumed to be the most common form found in the pre-

synapses and in the nucleus [30,31], while oligomers and

fibrils are thought to be associated with pathological

states of the protein [28,29]. Presumably, the normal

aSyn function is lost from the moment when the protein

changes its conformation and starts to polymerize [11].

Although the levels of aSyn oligomers and aggregates

may increase during normal aging, and in neurodegener-

ative diseases [32,33], these assemblies, in particular the

oligomers, are thought to be dynamic, and in equilib-

rium with aSyn monomers.

Although the physiological function(s) of aSyn con-

tinue under research, it has been mainly characterized

as a key player in neurotransmitter release (vesicle

trafficking and recycling) and, in some cases, regulat-

ing the expression of dopamine-synthesis related genes

maybe through histone binding, or by activating

nuclear receptors [34–37].
Silencing aSyn expression in experimental models

has shown, as expected, that the protein plays a role

neuronal physiology. In a study performed with two

shRNAs that modulated aSyn expression at different

levels in the adult rodent midbrain caused degenera-

tion of the nigral neurons [38]. The degree of neurode-

generation of each shRNA was tightly associated with

their capability to downregulate aSyn. Furthermore,

this neuronal loss could be prevented if endogenous

rat aSyn is supplemented to the neurons [38]. In a sim-

ilar study, shRNAs targeting aSyn were injected in the

substantia nigra of nonhuman primates (St.Kitts green

monkeys). After 3 months, aSyn downregulation

reproduced, in region-specific and titer-related manner,

the degeneration of tyrosine hydroxylase (TH) neurons

seen in the study with rats. Interestingly, the observed

pattern of nigrostriatal degeneration of the nonhuman

primates was similar to the one found in PD patients

[39]. Other studies associated the presence of aSyn as a

modulator of gene expression. Here, CRISPR-Cas9

was used to delete aSyn in the Lund Human Mesence-

phalic (LUHMES) neuronal cell line to evaluate

altered physiological cellular functions that might be
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associated with neuronal activity and ultimately neuro-

degeneration. This knock-out (KO) besides leading to

a decrease in the expression of cell cycle and differenti-

ation genes, it also shows a downregulation of genes

associated with synaptic activity and mitochondria-

mediated apoptosis [40]. This highlights the role of the

presence of aSyn for neuronal function and survival

[38,39]. Overall, these findings suggest that the neuro-

nal toxicity observed may be associated with the dele-

tion of aSyn through different pathways that need

further confirmation and experimentation.

Aging studies demonstrated that the levels of aSyn

remain unchanged but its phosphorylation in serine

129 is increased affecting processes, such as dopamine

uptake [41]. Furthermore, there is a decrease in the

locomotor skills and anxiety-like behavior when ana-

lyzing and comparing the results of an open field test

of 18- and 4-month-old SNCA�/� mice [42]. Addi-

tionally, when comparing the TH+ neurons in the sub-

stantia nigra of these aged mice, there is a tendency of

a diminished content, associated with dopaminergic

loss. Also, there is an inflammatory response, shown

by an increase in GFAP, Iba1, and IL-1b [42]. This

suggests that molecular mechanisms underlying the

pathology are not completely related to aSyn increased

levels as it has been strongly established.

Intriguingly, overexpression of aSyn in the

SH-SY5Y cell line, even to what might be considered

pathological levels, leads to improved viability and

proliferation [43]. Additionally, several studies revealed

an association of increased levels of aSyn with differ-

ent types of cancer, like hepatomas and melanoma

[44–47], suggesting a role in proliferation. In general,

the findings with KO or overexpression of aSyn sug-

gest that the balance in the levels of soluble aSyn pro-

tein is important in cell survival, although the precise

mechanisms involved are still unclear.

One of the proposed mechanisms that might be

behind these effects is the activation of inflammatory

pathways, as nigrostriatal neuronal KO of aSyn upre-

gulates inflammatory components, such as the histo-

compatibility complex class 1, and induces the

recruitment of activated microglia, finally leading to

cell death [48]. This suggests that aSyn LoF, thus pro-

teinopenia, might be associated with the initial neu-

roinflammatory response seen in synucleinopathies,

preceding the GoF associated with aSyn aggregates in

later stages of disease.

Interaction of aSyn with lipids

Given the amino acid composition of aSyn in the

N-terminal and in the middle hydrophobic regions

(amphipathic region), aSyn binds glycosphingolipids

that contain sulfate, phosphate, or sialic acid in mem-

branes and in synaptic vesicles (Fig. 1A) [49–52]. Inter-
estingly, most of the PD-associated mutations in the

SNCA gene directly modify the properties of the amphi-

pathic region, thereby affecting aSyn-lipid interactions

[49,53,54]. For example, the A53T and A30P mutants

appear to have altered membrane-binding affinities

when compared to WT aSyn (Fig. 1B) [53,55–58].
Interestingly, glycosphingolipids, and specifically

gangliosides, are reduced by up to 20% in PD [59],

which might further contribute to reducing the interac-

tion of aSyn with membranes, increasing the pool of

soluble species and, possibly, making it easier for aSyn

to aggregate [60]. Particularly, this is relevant in the

context of endosomes and lysosomes where the lipid

content is affected and an acidic environment is nor-

mally found [61,62]. In vitro experiments, such as

single-molecule fluorescence tethered approach for

probing of intermolecular interaction (TAPIN) [63]

and aggregation assays using preformed seed fibrils

(PFFs) [64], demonstrate that the stability of aSyn

dimers is more than 3 times higher in an acidic

(pH = 5–6) environment and that the rate of second-

ary nucleation increases. Thus, if lipid interactions and

composition are altered in the endolysosomal system,

where there is an acidic pH, then an increased aSyn

aggregation rate might be plausible. Therefore, this

mechanism might contribute to the uptake and aggre-

gation of aSyn through an impaired endolysosomal

system [65].

The N-terminal aSyn domain can also interact with

apolipoproteins, such as apolipoprotein E (ApoE).

Strikingly, the APOE4 allele has been identified as one

of the strongest genetic risk factors for PD and DLB

[66–68]. ApoE is involved in lipid exchange between

neurons and glial cells [60–64] playing an important

role in brain lipidostasis [69–73]. Even though, astro-

cytes are the main producers of ApoE in physiological

conditions [71,72], during inflammation and neuronal

damage, microglia and neurons are also able to pro-

duce it [74–76]. In vitro and in vivo experimental

models demonstrate that aSyn has a higher propensity

to aggregate when the APOE4 variant is present, when

compared to the APOE3 and APOE2 variants (Fig. 1)

[77,78]. Furthermore, the presence of ApoE4 exacer-

bates the aggregation of aSyn, alongside with an

increase in astrogliosis and neuronal loss [78,79]. Inter-

estingly, transcriptomic profiling of a mouse model of

synucleinopathy (based on the overexpression of aSyn

via adeno-associated viral injections into both lateral

ventricles) carrying the ApoE4 variant shows alter-

ations in lipid and energy metabolism pathways [79].
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Conversely, this same synucleinopathy mouse model

had reduced aSyn aggregation when carrying the

ApoE2 variant [80], which might reflect the protective

role of this allele. Furthermore, studies in human post-

mortem samples revealed that the APOE4 variant car-

riers had an increased LB pathology in DLB

cases [81,82], highlighting the importance of the ApoE

variants in disease. This was further confirmed in

another set of human samples were a high quantity of

LBs contained fragments of APOE and the CSF

of PD patients was enriched with APOE along with

aSyn [83,84].

Even though APOE has been established as a risk

factor for synucleinopathies, there are still inconclusive

studies suggesting that the different alleles are more

related to the decrease of cognitive function rather

than motor symptoms [85–88]. Thus, APOE variants

are currently proposed to be a risk factor for the pro-

gression of synucleinopathies with just LB pathology,

like PD, to dementia, such as DLB or Parkinson’s Dis-

ease Dementia (PDD). It is interesting to point out

that APOE variants are also considered as a risk fac-

tor for other neurodegenerative diseases, such as Alz-

heimer’s disease [89–91], and they are also related to

inflammation [92,93], a common process found in neu-

rodegeneration. Given this and how sometimes synu-

cleinopathies and amyloidopathies can coexist in the

brain during neurodegeneration, it might be plausible

to think that APOE variants are related to a more

general neurodegenerative context. Nevertheless, it is

important to continue the efforts in dissecting the

mechanisms that are affected by APOE variants in

the presence and/or absence of aSyn and in other neu-

rodegenerative diseases.

Fig. 1. aSyn and its interactions with lipids. (A) In physiological conditions, aSyn contributes to neuronal lipidostasis through the N-terminal

amphipathic region. This domain interacts with the membranes of vesicles containing neurotransmitters, with organelle membranes rich in

specific lipid species, and even with apolipoproteins, such as ApoE2. (B) In pathological conditions where lipidostasis might be disrupted, or

in the presence of aSyn mutations, the interaction of aSyn with vesicles and apolipoproteins is compromised due to changes in its

structure. This raises the pool of soluble aSyn, increasing the chance that it might interact with other lipids in the membranes, and also

favoring nucleation, aggregation, and eventually the capture of lipid species and membrane fragments in aggregates that may, ultimately

lead to the formation of Lewy bodies.
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Interestingly, the interaction of aSyn with lipids and

membranes raises the question of whether this is

related to the presence of lipids and shattered organ-

elle membranes in some LBs [14,16]. aSyn nucleation

appears to start on the surface of membranes, and as

the oligomers grow, some of them adopt a spherical

shape on the edges (Fig. 1B) [94,95], possibly related

to a liquid–liquid phase separation (LLPS) phenome-

non that was recently shown to be promoted by lipids.

This mechanism might explain the complex structure

of LBs, with a lipidic core derived from

organelle-membrane fragments that were captured,

possibly by aSyn, into LBs [14,16,94]; nevertheless, fur-

ther research on the specificity of these interactions

and their contribution to aSyn pathology needs to be

performed.

Lysosomal and ER alterations due to
changes in lipidostasis

Mutations in GBA1, the gene encoding for GCase,

have been identified as risk variants in PD and DLB

patients through genome wide association studies

(GWAS) [96–100]. GCase is a lysosomal enzyme that

regulates sphingolipid metabolism by transforming glu-

cosylceramide into ceramide and glucose [101,102], but

the precise mechanisms by which diseases are triggered

are still under research.

One of the cellular processes affected by mutations

is the folding time of GCase by the resident chaper-

ones in the endoplasmic reticulum (ER). A longer

retention time in the ER signals a stress response

[103–105], and this activates de Unfolded Protein

Response (UPR) that, ultimately, leads to a decrease

in the levels of GCase in neuronal lysosomes (Fig. 2A)

[106–108]. This can be straight forward interpreted as

a LoF mechanism, given that there is not enough

enzyme to fulfill the lysosomal duties regarding sphin-

golipid metabolism [109,110]. Therefore, strategies

have been investigated to overcome the LoF in homo-

zygous carriers, such as the use of pharmacological

chaperones that work along with the endogenous

chaperone system to aid in the folding of the mutant

GCase, and delivery to lysosomes [108]. Nevertheless,

results regarding the accumulation of sphingolipid spe-

cies, the activation of the UPR, and the degree of lyso-

somal dysfunction in heterozygous conditions are still

actively investigated and debated, suggesting other

mechanisms may also contribute to neuronal

dysfunction.

One of the hypotheses is that GCase deficiency in the

lysosomes has an impact in sphingolipid metabolism,

leading to the accumulation of glucosylceramide and

glucosylsphingosine [111–113]. This, in turn, is associ-

ated with reduced lysosomal activity [114–116] and,

therefore, with reduced degradation of proteins such as

aSyn through chaperone-mediated autophagy (CMA)

[116]. Furthermore, GCase mutants are not only

retained in the ER, but also adhere to the outer lyso-

somal membrane (Fig. 2B) [109]. This affects the trans-

location system of proteins to the lumen of

the lysosome, further contributing to the aggregation of

proteins in the cytosol and to lysosomal dysfunction.

The ER is a cellular compartment where most lipids

are produced [61,117] and, importantly, proteins

involved in ER stress responses are associated with

lipid homeostasis. For example, Ire1a plays an impor-

tant role in the assembly of very low-density lipopro-

tein (VLDL) in the ER, and reduced levels of this

protein reduce the export of triglycerides, possibly

leading to an intracellular increase of lipids [118].

XBP, another key player in ER stress responses, is

involved in lipogenesis by regulating the transcription

of several genes associated with lipid metabolism [119].

Furthermore, the overactivation of the PERK pathway

is associated with an increase in the activity of the

transcription factors SREBP and ATF4, upregulating

genes associated with lipogenesis and cholesterol syn-

thesis (Fig. 2D) [120,121]. Together, these data suggest

that when GCase mutants are retained for longer in

the ER, elements of the ER stress responses may also

affect lipid metabolism. This further supports a close

relationship between proteostasis and lipidostasis

(Fig. 2C), given that any fluctuation and impairment

in one of these two processes will also likely impact

the other [122].

Moreover, the exchange of lipids between glia and

neurons is an important mechanism to reduce the

accumulation of toxic lipid species [123,124]. GCase

inhibition in the mouse brain recapitulates the redistri-

bution of neutral lipids between neurons and glia

observed in PD patients [125]. Furthermore, genetic

analyses and clinical evidence show that cognitive

decline is accelerated in patients carrying both GBA1

mutations and the APOE4 variant, when compared to

patients carrying only one of them [126]. Thus, it is

important to consider the role that alterations in two

key proteins in lipid metabolism might have for

neurodegeneration.

Experiments in APOE�/� cerebral organoids

showed reduced levels of GCase alongside a reduction

in ceramide intermediates [78]. Interestingly, the excess

of some sphingolipids, such as glucosylceramide, pro-

motes the formation of aSyn oligomers in acidic envi-

ronments such as the lysosomes (Fig. 2E) [116]. One

hypothesis is that the absence of APOE impacts
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membrane lipid composition, leading to endolysosomal

dysfunction, lipid droplet accumulation, and GCase

LoF [78]. Accordingly, GCase inhibition in mice using

conduritol-b-epoxide (CBE) elevates the levels of

LAMP1. This can be further exacerbated when reduc-

ing the activity of GCase in ApoE�/� mice [127].

Additionally, ApoE content in the cortex, hippocam-

pus, and substantia nigra is increased when GCase is

inhibited [127]. These data suggest (a) that alterations

in lipid species deregulate other lipid components lead-

ing to their accumulation, and (b) that lysosomal

activity might increase in response to the alterations in

lipidostasis (Fig. 2F), thereby affecting proteostasis.

In summary, lipid metabolism alterations and lipid

accumulation compromise cellular functions and might

alter interactions with lipid-binding proteins, such as

aSyn, promoting their accumulation.

‘Omics’ approaches to decipher the
‘puzzle’ of synucleinopathies

Currently, clinical diagnosis of PD and other synuclei-

nopathies is achieved upon the onset of the typical fea-

tures of the diseases. Diagnosing the diseases earlier

will be essential for future clinical trials and for per-

sonalized medicine, but this requires the use of

Fig. 2. Relationship between b-glucocerebrosidase (GCase) mutants and lipid and protein accumulation. (A) GCase mutants retained in the

endoplasmic reticulum (ER) are recognized as ‘misfolded’ proteins, triggering ER stress and activating the unfolded protein response (UPR).

(B) GCase mutants are not only retained in the ER, but they can be mislocalized onto the outer lysosomal membrane. This deficiency and

mislocalization in lysosomes result in the accumulation of glucosylceramide (GlcCer), decreasing lysosomal activity. This is associated with

lipid (C) and protein accumulation, such as aSyn (E). (D) Components of the ER stress response pathways, such as XBP and PERK, are also

involved in lipogenesis and cholesterol synthesis by regulating the transcription of several genes. (E) Sphingolipid excess in lysosomes can

promote the formation of aSyn oligomers, contributing to the aggregation process. (F) Lipoproteins containing ApoE can be internalized into

lysosomes, where the lipids are hydrolyzed to free fatty acids and cholesterol. When GCase is not present/functional, cholesterol

accumulates inside lysosomes, contributing to alterations in lipidostasis.
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different levels of biological information for enabling

patient stratification [128,129]. Therefore, other novel

strategies should be considered for diagnosing, for

identifying patients, for following disease progression,

and for defining therapeutic strategies. In this context,

basic science approaches using ‘omics’ analyses are

highly suited to provide insight into the molecular

basis of disease and for identifying targets for thera-

peutic intervention [130].

Proteomics is one of the most used approaches, not

only for dissecting disease mechanisms, but also for

measuring molecules of interest in a wide variety of

human samples. In this context, different techniques

can be exploited, such as mass spectrometry, multiplex

immunoassays, or proximity extension assays

[131–135]. Although these experimental strategies are

very specific at a molecular level, they are still not

widely implemented due to limited access to expensive

instrumentation and to technical issues that require

unique expertise [132,134]. Nevertheless, technological

advances in the field of proteomics, such as tremen-

dous increases in sensitivity, make these technologies

powerful instruments for dissecting molecular mecha-

nisms associated with neurodegeneration.

Next generation sequencing technologies have also

been important approaches in the field. Genomics

enabled various GWAS that resulted in the identifica-

tion of genetic variants associated with low, middle, or

high risk of developing the disease. Likewise, transcrip-

tomic studies are bringing tremendous information into

the molecular mechanisms of neurodegeneration, by

providing unparalleled information about coding and

noncoding molecules, including chromatin and RNA

modifications [115,136,137]. In particular, the advent of

single-cell/single-nucleus transcriptomics is providing

mechanistic insight into disease etiology and may also

aid in diagnosis and in delineating treatment strategies.

For this, identifying differentially expressed transcripts

(DETs) due to alternative splicing is also a priority.

Characterization of spliced variants might shed light

into cell-autonomous pathways and into genetic inter-

actions leading to neurodegeneration. In synucleinopa-

thies, such studies are still scarce, but this strategy has

revealed novel transcriptomic signatures in other

dementias such as AD [138,139]. In DLB, RNA

sequencing (RNAseq) and single-cell RNAseq revealed

a clear alteration in transcript ratios across cell types

[136]. These sorts of analyses can lead to

transcriptome-wide association studies (TWAS), which

might help further interpret disease risk arising from

GWAS. Although additional detailed studies are

needed to support this strategy, this clearly suggests

that already identified genetic variants may harbor

additional secrets that reflect the complexity of the neu-

rodegenerative landscape.

Supervised machine learning and AI-assisted models

are starting to prove all their power for predicting and

assessing pathology risk and outcome. Until recently,

the most common computational technique using

genomic information was the polygenic risk score

(PRS) [140]. This score aims to provide a predictive

metric of an individual’s predisposition to develop a

certain pathology based on his/her genetic landscape,

using the cumulative data usually found through

GWAS data [141]. The main goal is to consider as

much variance as possible in order to assess the risk of

pathology. Nevertheless, this approach does not

explain causality, meaning that it does not take into

account other risk factors that may be key players in

pathology. Nevertheless, owing to their sensitivity for

unraveling ‘hidden’ data within a complex dataset [142],

novel supervised machine learning algorithms hold

great promise for integrating information from differ-

ent ‘omic’ technologies in order to improve the accu-

racy of genomic prediction [142,143]. However, a

major problem in most of the datasets is that they

focus on particular populations, primarily, white cau-

casians, that are not representative of the risk that cer-

tain factors might have on other populations. In this

context, it is imperative that we are aware of this bias,

and that we make all efforts to study diverse popula-

tions that represent the human species as a whole, to

ensure that AI and supervised machine learning

approaches are not leaving any population ‘behind’.

We should also keep in mind that the brain is

extremely rich in lipids, and that various lipid species

have been implicated in neurodegenerative conditions,

including synucleinopathies [144]. Thus, lipidomics is

also an important field in the study of

disease-associated mechanisms and for the develop-

ment of putative therapeutic strategies. In this context,

methods such as mass spectrometry and ion chroma-

tography are extremely important for assessing lipid

composition in various types of biological samples

(including biopsies and body fluids) [145].

Several lipidomic studies show that various lipid

species are altered in the brains of PD and DLB

patients [146,147]. Particularly, species, such as choles-

terol, and sphingolipids are detected in different levels

in PD patients [148,149]. Additionally, studies per-

formed in the cerebrospinal fluid and plasma of PD

patients identified different lipidomic signatures

(increased monohexosylceramides, ceramides, and

decreased sphingomyelin) compared to healthy con-

trols [150,151]. Although lipidomic profiles of PD and

DLB patients have been reported, it is still challenging
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to compare them due to the variability in the methods

and sampling used in the different studies [152].

In summary, a combination of ‘omics’ approaches,

such as the ones highlighted here, will be essential to

generate molecular fingerprints that can help us

uncover the biological basis of disease and, thereby, to

enable precision medicine even in complex neurodegen-

erative diseases such as synucleinopathies.

Concluding remarks

Synucleinopathies are highly complex, multi-factorial,

and still untreatable neurodegenerative diseases. It is a

fact that, despite tremendous effort and progress in

our understanding of the biology involved in synuclei-

nopathies, successes have been very limited. Scientific

advances come, often, from breaking boundaries and

from challenging dogmas. In this review, we discussed

the need for considering alternative, but not necessar-

ily mutually exclusive perspectives, such as proteinope-

nia and lipidostasis dysfunction, in our list of

synucleinopathy-associated pathological mechanisms

(Fig. 3).

Nowadays, state-of-the-art ‘omics’ approaches, such

as proteomics, genomics, and lipidomics, provide

molecular fingerprints of cells, organs, or organisms.

The challenge will be to exploit the large datasets gen-

erated by these approaches, using machine learning

and AI tools, in order to understand cell physiology as

a whole. This will enable us not only to formulate and

test more unbiased hypothesis, but also to foster the

development of biomarkers for early diagnosis, and of

personalized medicine strategies for treating complex

neurodegenerative diseases.

Acknowledgements

TFO is supported by the Deutsche Forschungsge-

meinschaft (DFG, German Research Foundation)

under Germany’s Excellence Strategy – EXC 2067/1-

390729940. MF-L is supported by the Secretar�ıa de

Educaci�on, Ciencia, Tecnolog�ıa e Innovaci�on de la

Ciudad de M�exico (SECTEI) under the Fellowship

number SECTEI/137/2023. All illustrations were cre-

ated with BioRender.com. Open Access funding

enabled and organized by Projekt DEAL.

Conflict of interest

The authors declare no conflict of interest.

Fig. 3. Proteinopenia, proteinopathy, and

lipidostasis as key players in

synucleinopathies. Different mechanisms

have been implicated in neurodegenerative

diseases such as synucleinopathies.

Proteinopenia can lead to transcriptional

alterations and lysosomal dysfunction, but at

the same time these proteins can mislocalize

and aggregate in the cytoplasm, or can be

retained in the endoplasmic reticulum (ER),

triggering the ER stress response. In turn, a

reduction in the levels of functional proteins,

due to mislocalization and aggregation, may

lead to altered lipid metabolism, transport,

and accumulation, affecting the overall

neuronal lipidostasis. Most likely, all of these

mechanisms coexist and contribute to

disease. Thus, the interactions between loss-

of-function (LoF), gain-of-toxic function (GoF),

and alterations in lipidostasis need to be

carefully analyzed and integrated in our quest

to diagnose and treat synucleinopathies and

other neurodegenerative disorders.
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