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fransaription This concept, which is often overlooked, may play a role in synucleinopa-
thies such as Parkinson’s disease (PD), and dementia with Lewy bodies
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hydrolase also strongly implicated in PD and DLB, are connected to lipid
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2024, accepted 30 January 2025) mal relationship between these two proteins may shift the balance in the
cell and lead to proteinopathy and/or proteinopenia, while also affecting
doi:10.1111/febs.70011 lipidostasis of cells in the brain. Thus, pathological mechanisms that are a

consequence of (a) loss-of-function, (b) gain-of-toxic function, and (c)
alterations in lipidostasis need to be carefully analyzed and integrated in
our study of the molecular underpinnings of neurodegenerative mecha-
nisms. Here, we highlight implications of the depletion of the soluble form
of aSyn, and of GCase, and discuss how state-of-the-art ‘omics technolo-
gies’ could be deployed to assist in the clinical assessment of
synucleinopathies.

Introduction

Neurodegenerative diseases, such as Parkinson’s dis- of the protein a-synuclein (aSyn) in intraneuronal pro-
ease (PD), and dementia with Lewy bodies (DLB), are tein aggregates known as Lewy bodies (LB) and Lewy
known as synucleinopathies due to the accumulation neurites (LN) [1-3]. However, the precise role of these
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protein aggregates in neurodegeneration is still elusive.
In addition to aSyn, other proteins have emerged as
important players in PD, such as the Leucine-rich
repeat kinase 2 (LRRK2) [4,5], B-glucocerebrosidase
(GCase) [6,7] and, more recently, the transactive
response DNA binding protein of 43 kDa (TDP-43)
[8,9]. One of the consequences of protein aggregation,
which is often overlooked, is the depletion of soluble
(and likely functional) species of the same protein,
leading to proteinopenia [10-12].

Recently, LBs were shown to have a complex com-
position that includes proteins, lipids, fragmented
organelles, and nucleic acids [3,13-16], and although
more evidence is needed regarding the role of these
biomolecules and specificity in PD mechanisms, it is
likely that nucleic acids and lipids are also important
players in the processes that lead to neurodegenera-
tion. Proteins like aSyn and GCase are connected to
lipid biology and to protein quality control function.
Even though a mechanistic link has been established
between them, individual changes in the quantity of
these proteins may shift the balance in the cell and
lead to proteinopathy and/or proteinopenia, while
also affecting lipidostasis of different cells in the
brain.

Protein aggregation can lead to a gain-of-toxic func-
tion (GoF) of the protein aggregates, and protein
depletion due to aggregation can lead to a
loss-of-function (LoF) of the soluble species. Protein
aggregation and changes in proteostasis are hallmarks
of normal aging [17,18]. Interestingly, there are cases
where neurologically ‘normal’ patients show an accu-
mulation of protein aggregates in the brain [19,20].
This opens the possibility to explore other mechanisms
such as proteinopenia rather than only focusing on the
predominant view of GoF and proteinopathy and its
role in pathological mechanisms that may lead to
neurodegeneration.

Thus, for our understanding of the molecular under-
pinnings of neurodegeneration, it is essential to (a)
explore how proteinopenia affects neuronal homeosta-
sis and brain function, (b) address the possibility that,
in the long run, the balance between LoF and GoF
may play a role in neurodegeneration, and (c) deter-
mine the implications of these processes on lipidosta-
sis. In the present review, we highlight the individual
implications of the depletion of the soluble form of the
major component of pathological protein inclusions,
aSyn, and the important genetic risk factor GCase.
Additionally, we discuss how ‘omics’ technologies may
be integrated to characterize the molecular fingerprints
of disease and help in the clinical assessment in
synucleinopathies.

Synucleinopathies: proteins and beyond

Implications of aSyn depletion in
neuronal survival and
neuroinflammation

aSyn is a 140 amino acid protein encoded by the SNCA
gene and is highly abundant in the brain [21-24]. aSyn
comprises an N-terminal domain that adopts a-helical
structure upon interactions with membranes, a hydro-
phobic middle region, and a disordered C-terminal
domain [25-27]. aSyn has been reported to exist in dif-
ferent states, ranging from monomers to tetramers, olig-
omers, protofibrils, and fibrils [28,29]. Monomers are
assumed to be the most common form found in the pre-
synapses and in the nucleus [30,31], while oligomers and
fibrils are thought to be associated with pathological
states of the protein [28,29]. Presumably, the normal
aSyn function is lost from the moment when the protein
changes its conformation and starts to polymerize [11].
Although the levels of aSyn oligomers and aggregates
may increase during normal aging, and in neurodegener-
ative diseases [32,33], these assemblies, in particular the
oligomers, are thought to be dynamic, and in equilib-
rium with aSyn monomers.

Although the physiological function(s) of aSyn con-
tinue under research, it has been mainly characterized
as a key player in neurotransmitter release (vesicle
trafficking and recycling) and, in some cases, regulat-
ing the expression of dopamine-synthesis related genes
maybe through histone binding, or by activating
nuclear receptors [34-37].

Silencing aSyn expression in experimental models
has shown, as expected, that the protein plays a role
neuronal physiology. In a study performed with two
shRNAs that modulated aSyn expression at different
levels in the adult rodent midbrain caused degenera-
tion of the nigral neurons [38]. The degree of neurode-
generation of each shRNA was tightly associated with
their capability to downregulate aSyn. Furthermore,
this neuronal loss could be prevented if endogenous
rat aSyn is supplemented to the neurons [38]. In a sim-
ilar study, shRNAs targeting aSyn were injected in the
substantia nigra of nonhuman primates (St.Kitts green
monkeys). After 3 months, aSyn downregulation
reproduced, in region-specific and titer-related manner,
the degeneration of tyrosine hydroxylase (TH) neurons
seen in the study with rats. Interestingly, the observed
pattern of nigrostriatal degeneration of the nonhuman
primates was similar to the one found in PD patients
[39]. Other studies associated the presence of aSyn as a
modulator of gene expression. Here, CRISPR-Cas9
was used to delete aSyn in the Lund Human Mesence-
phalic (LUHMES) neuronal cell line to evaluate
altered physiological cellular functions that might be
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associated with neuronal activity and ultimately neuro-
degeneration. This knock-out (KO) besides leading to
a decrease in the expression of cell cycle and differenti-
ation genes, it also shows a downregulation of genes
associated with synaptic activity and mitochondria-
mediated apoptosis [40]. This highlights the role of the
presence of aSyn for neuronal function and survival
[38,39]. Overall, these findings suggest that the neuro-
nal toxicity observed may be associated with the dele-
tion of aSyn through different pathways that need
further confirmation and experimentation.

Aging studies demonstrated that the levels of aSyn
remain unchanged but its phosphorylation in serine
129 is increased affecting processes, such as dopamine
uptake [41]. Furthermore, there is a decrease in the
locomotor skills and anxiety-like behavior when ana-
lyzing and comparing the results of an open field test
of 18- and 4-month-old SNCA—/— mice [42]. Addi-
tionally, when comparing the TH+ neurons in the sub-
stantia nigra of these aged mice, there is a tendency of
a diminished content, associated with dopaminergic
loss. Also, there is an inflammatory response, shown
by an increase in GFAP, Ibal, and IL-1PB [42]. This
suggests that molecular mechanisms underlying the
pathology are not completely related to aSyn increased
levels as it has been strongly established.

Intriguingly, overexpression of aSyn in the
SH-SY5Y cell line, even to what might be considered
pathological levels, leads to improved viability and
proliferation [43]. Additionally, several studies revealed
an association of increased levels of aSyn with differ-
ent types of cancer, like hepatomas and melanoma
[44-47], suggesting a role in proliferation. In general,
the findings with KO or overexpression of aSyn sug-
gest that the balance in the levels of soluble aSyn pro-
tein is important in cell survival, although the precise
mechanisms involved are still unclear.

One of the proposed mechanisms that might be
behind these effects is the activation of inflammatory
pathways, as nigrostriatal neuronal KO of aSyn upre-
gulates inflammatory components, such as the histo-
compatibility complex class 1, and induces the
recruitment of activated microglia, finally leading to
cell death [48]. This suggests that aSyn LoF, thus pro-
teinopenia, might be associated with the initial neu-
roinflammatory response seen in synucleinopathies,
preceding the GoF associated with aSyn aggregates in
later stages of disease.

Interaction of aSyn with lipids

Given the amino acid composition of aSyn in the
N-terminal and in the middle hydrophobic regions
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(amphipathic region), aSyn binds glycosphingolipids
that contain sulfate, phosphate, or sialic acid in mem-
branes and in synaptic vesicles (Fig. 1A) [49-52]. Inter-
estingly, most of the PD-associated mutations in the
SNCA gene directly modify the properties of the amphi-
pathic region, thereby affecting aSyn-lipid interactions
[49,53,54]. For example, the A53T and A30P mutants
appear to have altered membrane-binding affinities
when compared to WT aSyn (Fig. 1B) [53,55-58].

Interestingly, glycosphingolipids, and specifically
gangliosides, are reduced by up to 20% in PD [59],
which might further contribute to reducing the interac-
tion of aSyn with membranes, increasing the pool of
soluble species and, possibly, making it easier for aSyn
to aggregate [60]. Particularly, this is relevant in the
context of endosomes and lysosomes where the lipid
content is affected and an acidic environment is nor-
mally found [61,62]. In vitro experiments, such as
single-molecule fluorescence tethered approach for
probing of intermolecular interaction (TAPIN) [63]
and aggregation assays using preformed seed fibrils
(PFFs) [64], demonstrate that the stability of aSyn
dimers is more than 3 times higher in an acidic
(pH = 5-6) environment and that the rate of second-
ary nucleation increases. Thus, if lipid interactions and
composition are altered in the endolysosomal system,
where there is an acidic pH, then an increased aSyn
aggregation rate might be plausible. Therefore, this
mechanism might contribute to the uptake and aggre-
gation of aSyn through an impaired endolysosomal
system [65].

The N-terminal aSyn domain can also interact with
apolipoproteins, such as apolipoprotein E (ApoE).
Strikingly, the A POE4 allele has been identified as one
of the strongest genetic risk factors for PD and DLB
[66-68]. ApoE is involved in lipid exchange between
neurons and glial cells [60-64] playing an important
role in brain lipidostasis [69—73]. Even though, astro-
cytes are the main producers of ApoE in physiological
conditions [71,72], during inflammation and neuronal
damage, microglia and neurons are also able to pro-
duce it [74-76]. In vitro and in vivo experimental
models demonstrate that aSyn has a higher propensity
to aggregate when the APOE4 variant is present, when
compared to the APOE3 and APOE?2 variants (Fig. 1)
[77,78]. Furthermore, the presence of ApoE4 exacer-
bates the aggregation of aSyn, alongside with an
increase in astrogliosis and neuronal loss [78,79]. Inter-
estingly, transcriptomic profiling of a mouse model of
synucleinopathy (based on the overexpression of aSyn
via adeno-associated viral injections into both lateral
ventricles) carrying the ApoE4 variant shows alter-
ations in lipid and energy metabolism pathways [79].

4776 The FEBS Journal 292 (2025) 4774-4788 © 2025 The Author(s). The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

A ‘81 ‘STOT ‘8S9PTPLI

dny wou

dy) SUONIPUOD) PUE SULID], ) 39S “[SZOZ/01/L0] U0 AIRIqrT QUHUQ Ko[1A (ANZAD) *A *2 USSUNYUEDE 10uaFopoINaN Inj WNNUSZ SaYasInac] Aq [ 100L'SGN/1 11 1°01/10p/wod Kajim-

Kapm A:

ASUROIT Suowwo)) aanea1)) ajqeardde ayy £q pawraaos ae saponae tasn Jo sajni 10y KIeiqry aurjuQ) £3[IA\ uo
T D dANEAILD Qe[ 'y Aq P P VO Jo syt ) QU AulUQ AS[IAN UO (suor



M. Flores-Ledén and T. F. Outeiro

(A) Physiological conditions

He
(Y J

\~ .
¢ Vesicles

p

¢ ¢°

°

®
5@
%

T w

Synucleinopathies: proteins and beyond

Ampbhipathic region
.............................. NH; COOH |
(B)
1 9 60 ) 95 140
s PD-associated
¢ point mutations
®
¢
4
¥
e : ]I
] ° O
(]
<) OQOO
LX)
%0 'y
(&)

ooooocooomv“’. \

-.oooooooo-..“.

Pathological conditions

Vesicles

ApoE4

Fig. 1. aSyn and its interactions with lipids. (A) In physiological conditions, aSyn contributes to neuronal lipidostasis through the N-terminal
amphipathic region. This domain interacts with the membranes of vesicles containing neurotransmitters, with organelle membranes rich in
specific lipid species, and even with apolipoproteins, such as ApoE2. (B) In pathological conditions where lipidostasis might be disrupted, or
in the presence of aSyn mutations, the interaction of aSyn with vesicles and apolipoproteins is compromised due to changes in its
structure. This raises the pool of soluble aSyn, increasing the chance that it might interact with other lipids in the membranes, and also
favoring nucleation, aggregation, and eventually the capture of lipid species and membrane fragments in aggregates that may, ultimately

lead to the formation of Lewy bodies.

Conversely, this same synucleinopathy mouse model
had reduced aSyn aggregation when carrying the
ApoE2 variant [80], which might reflect the protective
role of this allele. Furthermore, studies in human post-
mortem samples revealed that the APOE4 variant car-
riers had an increased LB pathology in DLB
cases [81,82], highlighting the importance of the ApoE
variants in disease. This was further confirmed in
another set of human samples were a high quantity of
LBs contained fragments of APOE and the CSF
of PD patients was enriched with APOE along with
aSyn [83,84].

Even though APOE has been established as a risk
factor for synucleinopathies, there are still inconclusive
studies suggesting that the different alleles are more
related to the decrease of cognitive function rather
than motor symptoms [85-88]. Thus, APOE variants

are currently proposed to be a risk factor for the pro-
gression of synucleinopathies with just LB pathology,
like PD, to dementia, such as DLB or Parkinson’s Dis-
ease Dementia (PDD). It is interesting to point out
that APOE variants are also considered as a risk fac-
tor for other neurodegenerative diseases, such as Alz-
heimer’s disease [89-91], and they are also related to
inflammation [92,93], a common process found in neu-
rodegeneration. Given this and how sometimes synu-
cleinopathies and amyloidopathies can coexist in the
brain during neurodegeneration, it might be plausible
to think that APOE variants are related to a more
general neurodegenerative context. Nevertheless, it is
important to continue the efforts in dissecting the
mechanisms that are affected by APOE variants in
the presence and/or absence of aSyn and in other neu-
rodegenerative diseases.
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Interestingly, the interaction of aSyn with lipids and
membranes raises the question of whether this is
related to the presence of lipids and shattered organ-
elle membranes in some LBs [14,16]. aSyn nucleation
appears to start on the surface of membranes, and as
the oligomers grow, some of them adopt a spherical
shape on the edges (Fig. 1B) [94,95], possibly related
to a liquid-liquid phase separation (LLPS) phenome-
non that was recently shown to be promoted by lipids.
This mechanism might explain the complex structure
of LBs, with a lipidic core derived from
organelle-membrane fragments that were captured,
possibly by aSyn, into LBs [14,16,94]; nevertheless, fur-
ther research on the specificity of these interactions
and their contribution to aSyn pathology needs to be
performed.

Lysosomal and ER alterations due to
changes in lipidostasis

Mutations in GBAI, the gene encoding for GCase,
have been identified as risk variants in PD and DLB
patients through genome wide association studies
(GWAS) [96-100]. GCase is a lysosomal enzyme that
regulates sphingolipid metabolism by transforming glu-
cosylceramide into ceramide and glucose [101,102], but
the precise mechanisms by which diseases are triggered
are still under research.

One of the cellular processes affected by mutations
is the folding time of GCase by the resident chaper-
ones in the endoplasmic reticulum (ER). A longer
retention time in the ER signals a stress response
[103-105], and this activates de Unfolded Protein
Response (UPR) that, ultimately, leads to a decrease
in the levels of GCase in neuronal lysosomes (Fig. 2A)
[106-108]. This can be straight forward interpreted as
a LoF mechanism, given that there is not enough
enzyme to fulfill the lysosomal duties regarding sphin-
golipid metabolism [109,110]. Therefore, strategies
have been investigated to overcome the LoF in homo-
zygous carriers, such as the use of pharmacological
chaperones that work along with the endogenous
chaperone system to aid in the folding of the mutant
GCase, and delivery to lysosomes [108]. Nevertheless,
results regarding the accumulation of sphingolipid spe-
cies, the activation of the UPR, and the degree of lyso-
somal dysfunction in heterozygous conditions are still
actively investigated and debated, suggesting other
mechanisms may also contribute to neuronal
dysfunction.

One of the hypotheses is that GCase deficiency in the
lysosomes has an impact in sphingolipid metabolism,
leading to the accumulation of glucosylceramide and

M. Flores-Ledén and T. F. Outeiro

glucosylsphingosine [111-113]. This, in turn, is associ-
ated with reduced lysosomal activity [114-116] and,
therefore, with reduced degradation of proteins such as
aSyn through chaperone-mediated autophagy (CMA)
[116]. Furthermore, GCase mutants are not only
retained in the ER, but also adhere to the outer lyso-
somal membrane (Fig. 2B) [109]. This affects the trans-
location system of proteins to the Ilumen of
the lysosome, further contributing to the aggregation of
proteins in the cytosol and to lysosomal dysfunction.

The ER is a cellular compartment where most lipids
are produced [61,117] and, importantly, proteins
involved in ER stress responses are associated with
lipid homeostasis. For example, Irela plays an impor-
tant role in the assembly of very low-density lipopro-
tein (VLDL) in the ER, and reduced levels of this
protein reduce the export of triglycerides, possibly
leading to an intracellular increase of lipids [118].
XBP, another key player in ER stress responses, is
involved in lipogenesis by regulating the transcription
of several genes associated with lipid metabolism [119].
Furthermore, the overactivation of the PERK pathway
is associated with an increase in the activity of the
transcription factors SREBP and ATF4, upregulating
genes associated with lipogenesis and cholesterol syn-
thesis (Fig. 2D) [120,121]. Together, these data suggest
that when GCase mutants are retained for longer in
the ER, elements of the ER stress responses may also
affect lipid metabolism. This further supports a close
relationship between proteostasis and lipidostasis
(Fig. 2C), given that any fluctuation and impairment
in one of these two processes will also likely impact
the other [122].

Moreover, the exchange of lipids between glia and
neurons is an important mechanism to reduce the
accumulation of toxic lipid species [123,124]. GCase
inhibition in the mouse brain recapitulates the redistri-
bution of neutral lipids between neurons and glia
observed in PD patients [125]. Furthermore, genetic
analyses and clinical evidence show that cognitive
decline is accelerated in patients carrying both GBAI
mutations and the APOE4 variant, when compared to
patients carrying only one of them [126]. Thus, it is
important to consider the role that alterations in two
key proteins in lipid metabolism might have for
neurodegeneration.

Experiments in APOE—/— cerebral organoids
showed reduced levels of GCase alongside a reduction
in ceramide intermediates [78]. Interestingly, the excess
of some sphingolipids, such as glucosylceramide, pro-
motes the formation of aSyn oligomers in acidic envi-
ronments such as the lysosomes (Fig. 2E) [116]. One
hypothesis is that the absence of APOE impacts
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Fig. 2. Relationship between B-glucocerebrosidase (GCase) mutants and lipid and protein accumulation. (A) GCase mutants retained in the
endoplasmic reticulum (ER) are recognized as ‘misfolded’ proteins, triggering ER stress and activating the unfolded protein response (UPR).
(B) GCase mutants are not only retained in the ER, but they can be mislocalized onto the outer lysosomal membrane. This deficiency and
mislocalization in lysosomes result in the accumulation of glucosylceramide (GlcCer), decreasing lysosomal activity. This is associated with
lipid (C) and protein accumulation, such as aSyn (E). (D) Components of the ER stress response pathways, such as XBP and PERK, are also
involved in lipogenesis and cholesterol synthesis by regulating the transcription of several genes. (E) Sphingolipid excess in lysosomes can
promote the formation of aSyn oligomers, contributing to the aggregation process. (F) Lipoproteins containing ApoE can be internalized into
lysosomes, where the lipids are hydrolyzed to free fatty acids and cholesterol. When GCase is not present/functional, cholesterol
accumulates inside lysosomes, contributing to alterations in lipidostasis.

membrane lipid composition, leading to endolysosomal
dysfunction, lipid droplet accumulation, and GCase
LoF [78]. Accordingly, GCase inhibition in mice using
conduritol-B-epoxide (CBE) eclevates the levels of
LAMPI. This can be further exacerbated when reduc-
ing the activity of GCase in ApoE—/— mice [127].
Additionally, ApoE content in the cortex, hippocam-
pus, and substantia nigra is increased when GCase is
inhibited [127]. These data suggest (a) that alterations
in lipid species deregulate other lipid components lead-
ing to their accumulation, and (b) that lysosomal
activity might increase in response to the alterations in
lipidostasis (Fig. 2F), thereby affecting proteostasis.

In summary, lipid metabolism alterations and lipid
accumulation compromise cellular functions and might
alter interactions with lipid-binding proteins, such as
aSyn, promoting their accumulation.

‘Omics’ approaches to decipher the
‘puzzle’ of synucleinopathies

Currently, clinical diagnosis of PD and other synuclei-
nopathies is achieved upon the onset of the typical fea-
tures of the diseases. Diagnosing the diseases earlier
will be essential for future clinical trials and for per-
sonalized medicine, but this requires the use of
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different levels of biological information for enabling
patient stratification [128,129]. Therefore, other novel
strategies should be considered for diagnosing, for
identifying patients, for following disease progression,
and for defining therapeutic strategies. In this context,
basic science approaches using ‘omics’ analyses are
highly suited to provide insight into the molecular
basis of disease and for identifying targets for thera-
peutic intervention [130].

Proteomics is one of the most used approaches, not
only for dissecting disease mechanisms, but also for
measuring molecules of interest in a wide variety of
human samples. In this context, different techniques
can be exploited, such as mass spectrometry, multiplex
immunoassays, or proximity extension assays
[131-135]. Although these experimental strategies are
very specific at a molecular level, they are still not
widely implemented due to limited access to expensive
instrumentation and to technical issues that require
unique expertise [132,134]. Nevertheless, technological
advances in the field of proteomics, such as tremen-
dous increases in sensitivity, make these technologies
powerful instruments for dissecting molecular mecha-
nisms associated with neurodegeneration.

Next generation sequencing technologies have also
been important approaches in the field. Genomics
enabled various GWAS that resulted in the identifica-
tion of genetic variants associated with low, middle, or
high risk of developing the disease. Likewise, transcrip-
tomic studies are bringing tremendous information into
the molecular mechanisms of neurodegeneration, by
providing unparalleled information about coding and
noncoding molecules, including chromatin and RNA
modifications [115,136,137]. In particular, the advent of
single-cell/single-nucleus transcriptomics is providing
mechanistic insight into disease etiology and may also
aid in diagnosis and in delineating treatment strategies.
For this, identifying differentially expressed transcripts
(DETs) due to alternative splicing is also a priority.
Characterization of spliced variants might shed light
into cell-autonomous pathways and into genetic inter-
actions leading to neurodegeneration. In synucleinopa-
thies, such studies are still scarce, but this strategy has
revealed novel transcriptomic signatures in other
dementias such as AD [138,139]. In DLB, RNA
sequencing (RNAseq) and single-cell RNAseq revealed
a clear alteration in transcript ratios across cell types
[136]. These sorts of analyses can lead to
transcriptome-wide association studies (TWAS), which
might help further interpret disease risk arising from
GWAS. Although additional detailed studies are
needed to support this strategy, this clearly suggests
that already identified genetic variants may harbor

M. Flores-Ledén and T. F. Outeiro

additional secrets that reflect the complexity of the neu-
rodegenerative landscape.

Supervised machine learning and Al-assisted models
are starting to prove all their power for predicting and
assessing pathology risk and outcome. Until recently,
the most common computational technique using
genomic information was the polygenic risk score
(PRS) [140]. This score aims to provide a predictive
metric of an individual’s predisposition to develop a
certain pathology based on his/her genetic landscape,
using the cumulative data usually found through
GWAS data [141]. The main goal is to consider as
much variance as possible in order to assess the risk of
pathology. Nevertheless, this approach does not
explain causality, meaning that it does not take into
account other risk factors that may be key players in
pathology. Nevertheless, owing to their sensitivity for
unraveling ‘hidden’ data within a complex dataset [142],
novel supervised machine learning algorithms hold
great promise for integrating information from differ-
ent ‘omic’ technologies in order to improve the accu-
racy of genomic prediction [142,143]. However, a
major problem in most of the datasets is that they
focus on particular populations, primarily, white cau-
casians, that are not representative of the risk that cer-
tain factors might have on other populations. In this
context, it is imperative that we are aware of this bias,
and that we make all efforts to study diverse popula-
tions that represent the human species as a whole, to
ensure that Al and supervised machine learning
approaches are not leaving any population ‘behind’.

We should also keep in mind that the brain is
extremely rich in lipids, and that various lipid species
have been implicated in neurodegenerative conditions,
including synucleinopathies [144]. Thus, lipidomics is
also an important field in the study of
disease-associated mechanisms and for the develop-
ment of putative therapeutic strategies. In this context,
methods such as mass spectrometry and ion chroma-
tography are extremely important for assessing lipid
composition in various types of biological samples
(including biopsies and body fluids) [145].

Several lipidomic studies show that various lipid
species are altered in the brains of PD and DLB
patients [146,147]. Particularly, species, such as choles-
terol, and sphingolipids are detected in different levels
in PD patients [148,149]. Additionally, studies per-
formed in the cerebrospinal fluid and plasma of PD
patients identified different lipidomic signatures
(increased monohexosylceramides, ceramides, and
decreased sphingomyelin) compared to healthy con-
trols [150,151]. Although lipidomic profiles of PD and
DLB patients have been reported, it is still challenging
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Proteinopenia

Fig. 3. Proteinopenia, proteinopathy, and
lipidostasis as key players in
synucleinopathies. Different mechanisms
have been implicated in neurodegenerative
diseases such as  synucleinopathies.
Proteinopenia can lead to transcriptional
alterations and lysosomal dysfunction, but at
the same time these proteins can mislocalize
and aggregate in the cytoplasm, or can be
retained in the endoplasmic reticulum (ER),
triggering the ER stress response. In turn, a
reduction in the levels of functional proteins,
due to mislocalization and aggregation, may
lead to altered lipid metabolism, transport,

and accumulation, affecting the overall @

- & 2 :
\ m (’.“’r

neuronal lipidostasis. Most likely, all of these
mechanisms coexist and contribute to
disease. Thus, the interactions between loss-
of-function (LoF), gain-of-toxic function (GoF),
and alterations in lipidostasis need to be
carefully analyzed and integrated in our quest
to diagnose and treat synucleinopathies and
other neurodegenerative disorders.

to compare them due to the variability in the methods
and sampling used in the different studies [152].

In summary, a combination of ‘omics’ approaches,
such as the ones highlighted here, will be essential to
generate molecular fingerprints that can help us
uncover the biological basis of disease and, thereby, to
enable precision medicine even in complex neurodegen-
erative diseases such as synucleinopathies.

Concluding remarks

Synucleinopathies are highly complex, multi-factorial,
and still untreatable neurodegenerative diseases. It is a
fact that, despite tremendous effort and progress in
our understanding of the biology involved in synuclei-
nopathies, successes have been very limited. Scientific
advances come, often, from breaking boundaries and
from challenging dogmas. In this review, we discussed
the need for considering alternative, but not necessar-
ily mutually exclusive perspectives, such as proteinope-
nia and lipidostasis dysfunction, in our list of
synucleinopathy-associated pathological mechanisms
(Fig. 3).

Nowadays, state-of-the-art ‘omics’ approaches, such
as proteomics, genomics, and lipidomics, provide
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molecular fingerprints of cells, organs, or organisms.
The challenge will be to exploit the large datasets gen-
erated by these approaches, using machine learning
and Al tools, in order to understand cell physiology as
a whole. This will enable us not only to formulate and
test more unbiased hypothesis, but also to foster the
development of biomarkers for early diagnosis, and of
personalized medicine strategies for treating complex
neurodegenerative diseases.
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