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ABSTRACT
Rapid eye movement (REM) sleep behaviour disorder (RBD) is a parasomnia characterised by the loss of muscle atonia dur-
ing REM sleep and dream-enacting behaviours. In its isolated form (iRBD) it is widely recognised as an early stage of alpha-
synucleinopathies. Early identification of patients with iRBD allows for timely interventions, risk mitigation and potential 
inclusion in clinical trials aimed at disease modification. Effective screening tools, including questionnaires, automatic analyses 
of video-polysomnography, actigraphy, nearables and biological markers, can facilitate diagnosis and monitoring. Incorporating 
routine screening into clinical practice may enhance early detection and improve long-term patient outcomes. This manuscript 
presents the latest developments in screening tools for the identification of patients with iRBD and discusses their advantages 
and drawbacks, highlighting paths for future research and applications.

1   |   Introduction

Rapid eye movement (REM) sleep behaviour disorder (RBD) 
is a parasomnia characterised by dream enactment and the 
lack of muscle atonia during REM sleep (American Academy 
of Sleep Medicine  2023). When RBD occurs in the absence of 
overt neurological diseases which are known to be associated 
with it, it is classified as isolated RBD (iRBD). This condition is 

widely recognised as an early stage of alpha-synuclein-related 
neurodegenerative diseases, which include Parkinson's disease 
(PD), dementia with Lewy bodies (DLB) and multiple system 
atrophy (MSA) (Galbiati et al. 2019; Högl et al. 2022; Postuma 
et  al.  2019; Stefani, Trenkwalder, et  al.  2023). Consequently, 
patients with iRBD represent an optimal target population for 
initiating neuroprotective and disease-modifying clinical trials 
(Postuma 2022; Videnovic et al. 2020).
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The current gold standard for diagnosing RBD is video-
polysomnography (v-PSG), which is necessary to confirm 
REM sleep without atonia (RWA) (American Academy of Sleep 
Medicine  2023). Figure  1 shows a typical example of RWA in 
a PSG. According to recent guidelines from the International 
RBD Study Group (IRBDGS), a definitive diagnosis of RBD also 
requires the documentation of at least one RBD episode—de-
fined as one or more motor events and/or vocalisations associ-
ated with dream enactment—during v-PSG (Cesari et al. 2022). 
These guidelines have received partial endorsement from the 
World Sleep Society (Schenck et al. 2023).

Currently, the detection of RWA and the identification of 
RBD episodes rely on visual and manual analyses (Cesari 
et al. 2022; Troester et al. 2023). These processes are not only 
time-consuming but also susceptible to inter-rater variability 
(Bliwise et  al.  2018). As a result, incidental cases, that is, pa-
tients undergoing sleep studies for unrelated conditions, may 
go undetected. Additional factors such as the limited number 
and accessibility of specialised sleep labs and low awareness of 
the condition further contribute to the under-diagnosis of RBD 
(Murray et al. 2024; White et al. 2012).

Given the potential availability of future neuroprotective or neu-
romodulatory treatments, effective screening tools for iRBD are 
key. Such tools could enable the identification of the disorder in 
the general population, addressing current resource limitations. 
This manuscript explores recent advancements in RBD screen-
ing methodologies, critically evaluates their limitations and 
highlights their potential for future implementation.

2   |   Questionnaires

As a screening tool, a number of RBD questionnaires, such 
as RBD Screening Questionnaire (RBDSQ) (Stiasny-Kolster 
et  al.  2007), RBD Single Question (RBD1Q) (Postuma 

et  al.  2012), Innsbruck RBD Inventory (RBD-I) (Frauscher, 
Ehrmann, et al. 2012), Mayo Sleep Questionnaire (MSQ) (Boeve 
et al. 2011) and RBD Questionnaire-Hong Kong (RBDQ-HK) (Li 
et al. 2010), have been developed to facilitate the identification of 
possible RBD cases when the gold standard polysomnographic 
assessment is not accessible or suitable, for example, in large 
scale community epidemiological surveys. However, the diag-
nostic value of RBD questionnaires has been mostly assessed 
and validated in clinical settings, with only a few exceptions 
of validation in community-based samples (Boeve et al. 2013). 
These questionnaires have been translated into different lan-
guages (Marelli et  al.  2016; You et  al.  2017), validated across 
different sleep centres (Postuma et  al.  2012) and widely used 
around the world. They could also be used to monitor disease 
progression and treatment responses (Li et al. 2010), but this as-
pect is outside the scope of this paper and will not be addressed.

In the clinic, RBD questionnaires have shown high sensitivity 
(> 80%) in predicting clinical v-PSG confirmed RBD (Boeve 
et  al.  2011; Frauscher, Ehrmann, et  al.  2012; Li et  al.  2010; 
Postuma et al. 2012; Stiasny-Kolster et al. 2007), while the spec-
ificity varied greatly, ranging from 56% to 87%. A recent paper 
examined the performance of multiple questionnaires (RBDSQ, 
RBD1Q and RBD-I) in a bi-centric study on patients presenting 
to a sleep lab for the first time prior to any clinical interview 
or assessment and observed that their specificities were con-
sistently low (48.1%–67.4%) (Stefani, Serradell, et  al.  2023). In 
addition, even with the strict ‘all questionnaires positive’ crite-
rion, the specificity was still only moderate, at around 77%. In 
other words, there is a sizable proportion of false positive cases 
as based on questionnaire screening, so called RBD mimics, 
such as nocturnal behaviours related to sleep apnea, nightmare, 
medications and NREM parasomnia. On the other hand, when 
RBD questionnaires were applied in epidemiological surveys, 
the calculated prevalence of possible RBD (pooled estimate 
equals 5.65%) (Cicero, Giuliano, Luna, et al. 2021; Mahlknecht 
et  al.  2015; Nomura et  al.  2015; Shprecher et  al.  2019; Wong 

FIGURE 1    |    Typical example of 30 s of REM sleep in a patient with iRBD. It is possible to appreciate the presence of RWA in the EMG channels 
(mentalis, submentalis, bilateral FDS and bilateral tibialis anterior). EMG, electromyography; FDS, flexor digitorum superficialis; iRBD, isolated 
REM sleep behaviour disorder; REM, rapid eye movement; RWA, REM sleep without atonia.
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et  al.  2016; Yao et  al.  2019) was considerably higher than the 
prevalence of v-PSG-confirmed RBD (close to 1%) (Chiu 
et al. 2000; Cicero, Giuliano, Sgroi, et al. 2021; Cicero, Giuliano, 
Luna, et al. 2021; Haba-Rubio et al. 2018; Kang et al. 2013; Lee 
et al. 2023; Pujol et al. 2017; Sasai-Sakuma et al. 2020). The rea-
son for this gap between possible and definite RBD, except for 
the suboptimal specificity that has been described, is related to 
the relatively low prevalence of RBD in the general population, 
which has greatly reduced the positive predictive values (PPV) 
of these questionnaires.

In conclusion, RBD questionnaires, while showing moderate to 
high sensitivity, moderate specificity but rather low PPV values 
especially in a community setting, thus indicating that there 
is a need to improve this tool for possible screening of patients 
with iRBD.

3   |   Can Automatic Algorithms Improve V-PSG 
Detection of RBD?

Screening for RBD in the sleep lab is also of crucial importance, 
as patients with incidental RBD diagnosis might be missed 
during a routine PSG performed for other reasons, due to lack 
of time for manual RWA quantification and visual analysis of 
movements identified by video.

3.1   |   Automatic Methods to Score REM Sleep 
Without Atonia

RWA is defined as excessive EMG activity during REM sleep 
and is an essential feature for diagnosing RBD. Current RWA 
quantification methods are rule-based and rely on visual in-
spection and manual scoring of EMG activity in the chin and 
limbs (Cesari et al. 2022; Troester et al. 2023). The most used 
approaches, including the Montréal, SINBAR and Mayo Clinic 
methods (Frauscher, Iranzo, et  al.  2012; McCarter et  al.  2014; 
Montplaisir et al. 2010), categorise muscle activity as tonic, pha-
sic, or ‘any’ based on the amplitude or burst duration, and employ 
predefined thresholds for RBD identification. Both the ICSD-
3-TR (American Academy of Sleep Medicine 2023) and IRBDSG 
guidelines (Cesari et  al.  2022) recommend the SINBAR mon-
tage and cut-offs for RBD diagnosis. An open-source software 
for computing the SINBAR metrics is available, featuring high 
reliability with manual scoring, though it requires input data to 
be in a specific PSG-software format (Röthenbacher et al. 2022). 
Several other automated approaches, extracting EMG metrics in 
fixed-length epochs (Burns et al. 2007; Frandsen et al. 2015) or 
employing machine learning (ML) (Cesari et al. 2019; Kempfner 
et  al.  2014; Rechichi et  al.  2021), were developed to minimise 
variability in RWA metrics and offer promising solutions for 
standardised RWA quantification (Cesari and Rechichi  2024). 
Among these, the REM Atonia Index (RAI) (Ferri et al. 2010, 
2008) is the most validated automatic RWA quantification 
method and therefore emerges as a reliable screening tool for 
RBD identification, though currently there is no available open-
access software for deriving it. In the future, openly sharing the 
code of automatic and validated RWA quantification methods 
will be essential to ensure the quality of the implementation and 
reproducibility across labs.

3.2   |   Advanced Electroencephalogram (EEG) 
Analyses to Identify Patients With iRBD

Advanced sleep EEG analyses have been shown capable of 
predicting mortality, dementia, and long-term neurologic 
and cognitive outcomes (Djonlagic et  al.  2021; Ganglberger 
et al. 2022; Paixao et al. 2020; Sun et al. 2024; Ye et al. 2020; 
Younes et al. 2021). These techniques also provide insights into 
RBD, uncovering cortical abnormalities that standard polysom-
nographic analysis cannot detect (Fantini et  al.  2003; Iranzo 
et al. 2010). Beyond spectral power assessments, advanced EEG 
approaches—such as microstate segmentation, connectivity and 
coherence analyses, complexity measurements and dynamic 
time-frequency evaluations—identify subtle cortical slowing, 
altered spindle dynamics, and abnormal oscillatory coupling 
in both REM and NREM sleep of RBD patients (Christensen, 
Kempfner, et al. 2014; O'Reilly et al. 2015).

Notably, RBD patients show, in sleep EEG, shifts toward slower 
frequencies and reduced beta/gamma power, potentially signal-
ling early neurodegenerative processes and a heightened risk 
of progressing to PD or dementia (Fantini et  al.  2003; Iranzo 
et  al.  2010; Massicotte-Marquez et  al.  2005). Moreover, recent 
studies have highlighted that micro-sleep instability, charac-
terised by rapid fluctuations of sleep–wake micro-architecture, 
may predict the emergence and progression of RBD (Cesari, 
Christensen, et al. 2021). Additionally, longitudinal analyses of 
EEG features over years can illuminate the subtle temporal pro-
gression of cortical changes as RBD advances toward neurode-
generation (Angerbauer et al. 2024; Schreiner et al. 2019).

Advanced EEG analyses, however, can be applied not only to 
study sleep EEG, but also resting state EEG, which could also be 
potentially seen as a screening tool on its own. Evidence shows 
that patients with iRBD are characterised by loss of delta-band 
functional connectivity (Sunwoo et al. 2017), alterations in mi-
crostate features (Peng et al. 2021), alterations in spectro-spatial 
patterns (Park et  al.  2024) and slowing (Rodrigues Brazète 
et al. 2016, 2013; Ruffini et al. 2019).

In general, research works indicate the potential of advanced 
analyses applied to both sleep and wake EEG to identify patients 
with iRBD.

3.3   |   Machine and Deep Learning Algorithms 
Combining Different Electrophysiological Signals

In addition to RWA, an abundance of electrophysiological mark-
ers derived from PSG has been associated with RBD, including 
EEG, electrooculogram (EOG) (Christensen et  al.  2021) and 
electrocardiogram (ECG) (Sorensen et al. 2012). This supports 
the application of ML and deep learning (DL) to PSG data, aim-
ing at integrating multiple electrophysiological markers to de-
velop a robust and precise automatic analysis system that could 
be employed as a decision support system or to evaluate severity 
and phenoconversion risk.

ML algorithms have been utilised not only to improve 
characterisation of RWA, as previously mentioned (Cesari 
et  al.  2019; Kempfner et  al.  2014; Rechichi et  al.  2021), but 
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also to summarise EEG and EOG abnormalities (Cesari, 
Christensen, et al. 2021; Christensen, Zoetmulder, et al. 2014; 
Hansen et al. 2013; Rechichi et al. 2022), and to analyse PSG 
data in a unified framework to detect RBD (Cooray et al. 2021, 
2019; Salsone et  al.  2022). Moreover, DL has also been used 
as a modelling strategy (Brink-Kjaer et  al.  2022; Feuerstein 
et al. 2024; Gunter et al. 2023), which avoids directly having 
to define and extract abnormal activity. One of the more re-
cent DL approaches (Feuerstein et  al.  2024) modelled RBD 
from an extracted hypnodensity—a probabilistic representa-
tion of sleep stages—based on a validated algorithm, which 
highlights the usefulness of reduced but information-rich 
representations of PSG data. The use of foundational models 
for RBD detection is yet to be explored, but may improve de-
tection performance by allowing complex data mapping while 
addressing RBD data limitations.

3.4   |   Automatic Video Analysis

RBD is characterised by dream enactment behaviours during 
REM sleep, and more generally by the loss of motor inhibition 
during this sleep stage. Movements in patients with RBD range 
from simple jerks to complex behaviours. While complex be-
haviours are infrequent, simple, brief movements or jerks occur 
during most REM cycles—every few seconds to minutes—and 
independent of respiratory-related arousals (Bugalho et al. 2017; 
Frauscher et  al.  2007; Manni et  al.  2009; Mariño et  al.  2025). 
This characteristic forms the foundation for video-based algo-
rithms to detect RBD.

The application of computer vision for RBD detection is a devel-
oping field, with three key studies conducted to date, all in sleep 
laboratory settings. Two studies by the Innsbruck group utilised 
a 3D time-of-flight video system (Cesari, Ruzicka, et  al.  2023; 
Waser et  al.  2020), while another study by the Stanford and 
Mount Sinai groups analysed retrospective 2D video data from 
clinical vPSG (Abdelfattah et al. 2025).

The first study by the Innsbruck group examined 40 iRBD 
patients and 64 controls with various sleep disorders, finding 
that brief leg movements (< 2 s) were approximately 5 times 
more frequent in iRBD (Waser et al. 2020). This feature alone 
differentiated iRBD from controls with 90.4% accuracy. Other 
features investigated were 3D extent (body area involved in 
the movement) and 3D intensity (speed). The second study 
(53 cases, 128 sleep clinic controls) used ML to analyse move-
ments across all body regions (Cesari, Ruzicka, et al. 2023). In 
this dataset, a linear regression model using only 2 features—
movement rate (frequency) and movement ratio (proportion 
of REM sleep spent in movements)—yielded an accuracy of 
86.6%, with short movements providing the highest discrimi-
native power.

The study by Stanford-Mount Sinai of 81 iRBD cases and 91 con-
trols adopted a similar ML model but differed in two ways: it 
was retrospective, using 2D clinical video, and incorporated the 
following features: movement magnitude (area), velocity (speed) 
and immobility ratio (Abdelfattah et  al.  2025). Accuracies 
ranged from 84.9% (two features) to 87.2% (five features) when 
analysing movements of all durations. However, consistent 

with the Innsbruck studies, focusing solely on short movements 
achieved the highest accuracy (91.9%).

Although limited in number, existing studies consistently high-
light the diagnostic potential of brief movements during REM 
sleep as a robust digital biomarker. However, current method-
ologies rely on labour-intensive manual annotation of REM 
sleep periods. Future research should focus on developing fully 
automated algorithms that integrate REM sleep detection with 
movement analysis. Beyond screening, video-based models offer 
an exciting opportunity to objectively monitor clinical severity 
over extended periods in the home environment. This capabil-
ity could provide valuable insights into treatment efficacy and 
disease progression, addressing a critical gap in the long-term 
management of RBD and the development of new symptomatic 
therapies.

4   |   Actigraphy

Actigraphs are devices typically worn on the wrist containing 
accelerometers, which detect and record acceleration. Through 
acceleration, the amount and pattern of movements can be cal-
culated, from which periods of activity and rest can be inferred 
by means of ad hoc algorithms. Actigraphy is a relatively inex-
pensive, easy to implement diagnostic test which is suitable for 
rest/activity monitoring over prolonged periods of time, usually 
weeks, as a surrogate marker of the sleep/cycle.

Patients with RBD, either isolated forms or associated with 
PD, DLB or MSA, exhibit increased nocturnal muscular acti-
vation during REM sleep (Schenck and Mahowald  2002), and 
in iRBD this tends to increase over time (Iranzo et  al.  2009). 
RBD movements are more brisk and violent compared to move-
ments and behaviours observed upon ‘normal’ arousals (De 
Cock et al. 2007). This heightened activity provides a rationale 
for using accelerometers to differentiate between individuals 
with RBD and healthy controls. Moreover, as a neurodegenera-
tive condition directly involving the circuits of sleep regulation, 
iRBD features a progressive destructuring of sleep itself. This 
alterations not only affect nocturnal sleep but are also evident 
at the level of the rest/activity rhythm (Feng et al. 2020; Filardi 
et al. 2020).

Actigraphic data can be employed as ‘digital biomarker’ for RBD 
(Gnarra, Wulf, et al. 2023; Stefani and Cesari 2023). Recent, pre-
liminary studies have demonstrated that by extracting features 
from whole-night accelerometric recordings with data-driven 
approaches it is possible to predict the presence of RBD using 
ML methods, thus distinguishing patients with iRBD (Brink-
Kjaer, Winer, et  al.  2023; Brink-Kjaer, Gupta, et  al.  2023) or 
RBD associated with PD (Raschellà et al. 2023), from controls. 
Although very promising, these approaches need further imple-
mentation, fine-tuning and optimization, especially for applica-
bility in the general population. As a further step, their accuracy 
in discriminating RBD from other sleep disorders (e.g., sleep-
related breathing disorders, nocturnal seizures or disorders of 
arousal) will need to be assessed.

Implementing actigraphy-based quantitative methodologies 
and validating them in large population-based, prospective 
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studies will enable the use of actigraphy not only as a screening 
and diagnostic biomarker but also for a prognostic profiling of 
iRBD patients, to identify those at higher risk of phenoconver-
sion to an overt synucleinopathy. Also, quantitative actigraphy-
derived metrics might be useful for patients' follow-up and 
response to treatment evaluation, both in clinical practice and 
research, and also to test putative neuroprotective agents or in-
terventions. Improving the reliability and applicability of actig-
raphy will facilitate its integration into personalised medicine, 
long-term monitoring and clinical research on RBD.

5   |   Nearables: A Promising Tool for Screening RBD

The advent of nearable technologies has opened new avenues for 
screening sleep disorders, including RBD. Nearables, defined as 
unobtrusive devices capable of monitoring physiological and en-
vironmental parameters (Rienzo and Mukkamala  2021), offer 
a practical alternative to traditional PSG. Devices such as bed 
sensors, smart mattresses and contactless radar-based systems 
have demonstrated the ability to detect abnormal motor activ-
ity and physiological markers indicative of RBD (Gnarra, Wulf, 
et  al.  2023). Although none of these technologies has yet been 
validated for identifying RBD, many advances have been made 
recently. Radar technologies combined with ML algorithms have 
proven effective at predicting PD from nocturnal breathing sig-
nals (Yang et  al.  2022). Technologies such as sensorised mat-
tresses have been used for the automatic classification of body 
positions (Matar et al. 2020) and complex motor behaviours (Deng 
et al. 2024) during sleep that characterise REM sleep disturbances.

Nearables provide several advantages over standard PSG. Their 
hands-off approach eliminates the need for direct interaction 
with the user, making them particularly suitable for elderly popu-
lations or individuals with limited cognitive or physical abilities. 
By enabling continuous, long-term monitoring in home environ-
ments, nearables facilitate sleep data collection under realistic 
conditions without requiring hospital setups (Breuss et al. 2024). 
Additionally, nearables can generate multi-modal data streams, 
including motion, cardiac and respiratory signals. For instance, 
smart bed systems with piezoelectric sensors can detect micro-
movements, heart rate and respiratory patterns, while radar-based 
systems can monitor gross motor activity (Ravindran et al. 2023) 
and perform reliable automated sleep staging (He et  al.  2025) 
without physical contact. These features make nearables a user-
friendly and scalable solution for large-scale screening.

However, nearables have notable limitations compared to PSG. 
While they simplify data collection and reduce patient discomfort, 
they lack the precision of EEG and EMG-based methods, which 
are critical for accurately detecting RWA/RBD and differentiating 
them from other sleep movement disorders. Additionally, near-
ables currently cannot capture brain activity or subtle physiologi-
cal changes with the resolution required for diagnostic accuracy. 
The reliance on indirect measures introduces potential variability 
in data interpretation, which could lead to false positives or neg-
atives. Furthermore, challenges such as limited standardisation, 
potential signal interference in shared sleeping environments, 
and the need for robust algorithms to minimise false positives re-
main significant (Gnarra, Breuss, et al. 2023).

At their current stage of development, nearables are most 
effective for screening purposes rather than for providing 
a definitive diagnosis of RBD. They represent a valuable 
addition to the field of sleep medicine, aligning with the on-
going shift toward home-based monitoring. Their ability to 
combine convenience, scalability and multi-modal data col-
lection positions them as a future tool for early detection and 
tracking of RBD. While they cannot replace PSG in diagnos-
tic settings, nearables hold significant potential to improve 
access to care and facilitate timely interventions for affected 
individuals.

6   |   Biological Markers

Currently, no fluid- or tissue-based biological marker exists for 
screening RBD. However, iRBD itself serves as a highly specific 
clinical marker for early synucleinopathies (Joza et  al.  2023; 
Postuma et al. 2019). In this context, iRBD can facilitate identi-
fying biological markers of early synucleinopathies.

Pathological alpha-synuclein species could be identified in 
individuals with iRBD in multiple peripheral tissues and flu-
ids, including salivary glands (Vilas et  al.  2016), olfactory 
mucosa (Kuzkina, Rößle, et al. 2023; Zheng et al. 2024), gas-
trointestinal mucosa (Sprenger et al. 2015), stool (Schaffrath 
et  al.  2023), skin (Doppler et  al.  2022; Kuzkina, Panzer, 
et  al.  2023; Kuzkina, Rößle, et  al.  2023) and blood (Arnaldo 
et  al.  2023; Kluge et  al.  2024; Okuzumi et  al.  2023; Ying 
et al. 2024; Zheng et al. 2023), as well as biospecimens from 
the central nervous compartment (Poggiolini et  al.  2022; 
Siderowf et  al.  2023), highlighting the strong link to incipi-
ent alpha-synucleinopathies. The detectability of additional 
protein aggregates, such as amyloid or tau, in iRBD may indi-
cate a faster phenoconversion and more pronounced cognitive 
symptoms (Fernandes et al. 2024). Similarly, elevated levels of 
neurofilament light chain (Nfl) indicate a more likely pheno-
conversion to MSA (Park et al. 2023). Fewer individuals with 
RBD unmasked by antidepressant treatment exhibited patho-
logical alpha-synuclein species in skin biopsies compared to 
iRBD not related to antidepressants, enabling insights into 
underlying causes of RBD (Biscarini et al. 2024).

However, changes extend beyond the mere detectability of altered 
alpha-synuclein or additional neuronal proteins, as individuals 
with iRBD already exhibit signs of exacerbated inflammation 
(Farmen et al. 2021; Hällqvist et al. 2024; Laguna et al. 2021) 
and gut microbiome dysbiosis (Huang et al. 2023), accompany-
ing early neurodegenerative processes (Glass et al. 2010). Those 
changes are also reflected in an altered composition of microR-
NAs, which can be detected in peripheral blood (Soto et al. 2022; 
Yu et al. 2024).

Current research focuses on using iRBD as a specific clinical 
entity to identify biological markers of early (alpha-synuclein 
associated) neurodegeneration rather than on screening for bio-
logical markers of iRBD per se. This might change in the future, 
as improved understanding of iRBD pathogenesis in the early 
stages might lead to the identification of biological markers of 
iRBD useful as screening tools.
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7   |   Other Screening Markers

In addition to the possible screening markers reported in the 
previous sections, biomarkers of neurodegeneration have been 
investigated in the iRBD population and are worth mentioning. 
Alterations in voice have been reported in patients with iRBD and 
might be used as screening tools, both with standardised protocols 
(Arora et al. 2021; Jeancolas et al. 2022; Rusz et al. 2021, 2016), as 
well as with free speech recorded during calls (Illner et al. 2024). 
Smartphone motor testing, performed with standardised exer-
cises, has also been shown to be useful to distinguish patients with 
iRBD from controls (Arora et al. 2018). Furthermore, gait changes 
detected with wearable sensors or automatic video analyses have 
been investigated and showed promising discrimination abilities 
(Del Din et al. 2019; Ma et al. 2021; Sarasso et al. 2024). Similarly, 
analysis of timed-up-and-go tests recorded with wearable technol-
ogies allowed for the discrimination of patients with iRBD from 
controls (Zatti et  al.  2024). Moreover, two studies investigated 
EEG headbands to identify biomarkers of iRBD (Levendowski 
et al. 2022; Possti et al. 2024). Of note, these biomarkers aim at 
detecting subtle signs of neurodegeneration, which are present 
in iRBD (being this condition a prodromal synucleinopathy), but 
do not aim at individuating iRBD per se. Thus, a future employ-
ment of these instruments as screening methods would be useful 
in detecting early synuclein-related neurodegeneration, but would 
probably not be specific for iRBD and would not detect RBD asso-
ciated with diseases different from alpha-synucleinopathies.

8   |   Discussion

In view of upcoming neuroprotective or neuromodulatory treat-
ments, effective screening tools for iRBD are of fundamental im-
portance. We reviewed the most important recent advancements 
in this research area, a timely topic of growing importance. 

Figure 2 shows a graphical overview of the screening tools spe-
cific for iRBD described in this manuscript.

Besides the single screening methodologies presented previously, 
it is worth considering the potential of their combination and 
multistep screening approaches. Questionnaires are the easiest 
and most convenient tool to be used as a first step in a multistep 
screening approach, due to their favourable sensitivity and NPV, 
as proposed previously (Postuma et al. 2016). The combination of 
questionnaires with actigraphs has already shown promising re-
sults, as these modalities led to an increase of the specificity to 100% 
(Brink-Kjaer, Gupta, et al. 2023). Furthermore, previous multistep-
approach studies have been shown to be useful for a precise iden-
tification of patients with iRBD (Pujol et al. 2017; Seger et al. 2023; 
Wang et al. 2022). In brief, inexpensive and non-invasive tests with 
high sensitivity could be used as a first step, for example, question-
naires (±actigraphy), followed by relatively expensive and labour-
intensive tests with high specificity, such as gold-standard v-PSG, 
or biological markers to stratify RBD patients.

Concerning v-PSG analyses, automatic and validated RWA 
quantification algorithms should be implemented as soon as 
possible in clinical PSG-software solutions. So far, only one 
PSG-software includes a validated RWA quantification algo-
rithm (Frauscher et al. 2014), but it still requires manual arte-
fact removal (Cesari, Heidbreder, et al. 2021). However, due to 
the low amount of artefacts affecting these muscles, automatic 
analysis of FDS alone can be used as a screening tool (Cesari, 
Heidbreder, et al. 2023), pending further confirmation in larger 
cohorts.

ML approaches combining different electrophysiological bio-
markers have shown promising results but lack sufficient vali-
dation, which would likely require strong collaboration efforts to 
test generalisability on large multi-centre datasets, comparison 

FIGURE 2    |    Overview of the screening methods for patients with iRBD described in this manuscript. Please note that the figure does not report 
biological markers (Section 6) and other markers (Section 7), because those markers might not be specific for iRBD, as they aim at detecting neuro-
degeneration independently from the presence of RBD.
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to simpler automatic RWA methods, and study of night-to-night 
variability of derived measures.

Integration of automatic video analyses and electrophysiological 
sleep biomarkers has not been investigated so far, and deserves 
attention in the near future. While automatic analyses of in-lab 
v-PSG could be useful in order not to miss incident subclinical 
RBD patients and as a second screening step following question-
naires, current technological developments allow good quality 
sleep recordings in home environments (Green et al. 2022). So 
far, however, there is only limited research on the identification 
of patients with iRBD from home sleep recordings.

Future research for the development of more accurate screening 
tools should also consider sex and ethnicity related aspects. For 
example, previous studies suggest that there are sex differences 
in muscular activity, motor events (Bugalho and Salavisa 2019), 
demographics and dream-related behaviours (Li et  al.  2023). 
These should be considered when developing new screening 
tools, to have high sensitivity and specificity in both sexes. 
Nothing is known about possible ethnic differences in the clini-
cal presentation of iRBD. Future studies should investigate eth-
nic aspects and take them into consideration when developing 
novel screening methods.

In conclusion, future screening methods for RBD will likely use 
multistep approaches combining subjective and objective data, 
the latter integrating information from wearables and nearables 
used in the home environment. Biological markers will proba-
bly improve risk stratification. ML and DL methods to use this 
information thoroughly are expected to drastically improve 
screening of RBD in the general population in the near future.
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