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ABSTRACT

Rapid eye movement (REM) sleep behaviour disorder (RBD) is a parasomnia characterised by the loss of muscle atonia dur-

ing REM sleep and dream-enacting behaviours. In its isolated form (iRBD) it is widely recognised as an early stage of alpha-

synucleinopathies. Early identification of patients with iRBD allows for timely interventions, risk mitigation and potential
inclusion in clinical trials aimed at disease modification. Effective screening tools, including questionnaires, automatic analyses
of video-polysomnography, actigraphy, nearables and biological markers, can facilitate diagnosis and monitoring. Incorporating
routine screening into clinical practice may enhance early detection and improve long-term patient outcomes. This manuscript

presents the latest developments in screening tools for the identification of patients with iRBD and discusses their advantages

and drawbacks, highlighting paths for future research and applications.

1 | Introduction

Rapid eye movement (REM) sleep behaviour disorder (RBD)
is a parasomnia characterised by dream enactment and the
lack of muscle atonia during REM sleep (American Academy
of Sleep Medicine 2023). When RBD occurs in the absence of
overt neurological diseases which are known to be associated
with it, it is classified as isolated RBD (iRBD). This condition is

widely recognised as an early stage of alpha-synuclein-related
neurodegenerative diseases, which include Parkinson's disease
(PD), dementia with Lewy bodies (DLB) and multiple system
atrophy (MSA) (Galbiati et al. 2019; Hogl et al. 2022; Postuma
et al. 2019; Stefani, Trenkwalder, et al. 2023). Consequently,
patients with iRBD represent an optimal target population for
initiating neuroprotective and disease-modifying clinical trials
(Postuma 2022; Videnovic et al. 2020).
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The current gold standard for diagnosing RBD is video-
polysomnography (v-PSG), which is necessary to confirm
REM sleep without atonia (RWA) (American Academy of Sleep
Medicine 2023). Figure 1 shows a typical example of RWA in
a PSG. According to recent guidelines from the International
RBD Study Group (IRBDGS), a definitive diagnosis of RBD also
requires the documentation of at least one RBD episode—de-
fined as one or more motor events and/or vocalisations associ-
ated with dream enactment—during v-PSG (Cesari et al. 2022).
These guidelines have received partial endorsement from the
World Sleep Society (Schenck et al. 2023).

Currently, the detection of RWA and the identification of
RBD episodes rely on visual and manual analyses (Cesari
et al. 2022; Troester et al. 2023). These processes are not only
time-consuming but also susceptible to inter-rater variability
(Bliwise et al. 2018). As a result, incidental cases, that is, pa-
tients undergoing sleep studies for unrelated conditions, may
go undetected. Additional factors such as the limited number
and accessibility of specialised sleep labs and low awareness of
the condition further contribute to the under-diagnosis of RBD
(Murray et al. 2024; White et al. 2012).

Given the potential availability of future neuroprotective or neu-
romodulatory treatments, effective screening tools for iRBD are
key. Such tools could enable the identification of the disorder in
the general population, addressing current resource limitations.
This manuscript explores recent advancements in RBD screen-
ing methodologies, critically evaluates their limitations and
highlights their potential for future implementation.

2 | Questionnaires
As a screening tool, a number of RBD questionnaires, such

as RBD Screening Questionnaire (RBDSQ) (Stiasny-Kolster
et al. 2007), RBD Single Question (RBD1Q) (Postuma
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et al. 2012), Innsbruck RBD Inventory (RBD-I) (Frauscher,
Ehrmann, et al. 2012), Mayo Sleep Questionnaire (MSQ) (Boeve
et al. 2011) and RBD Questionnaire-Hong Kong (RBDQ-HK) (Li
et al. 2010), have been developed to facilitate the identification of
possible RBD cases when the gold standard polysomnographic
assessment is not accessible or suitable, for example, in large
scale community epidemiological surveys. However, the diag-
nostic value of RBD questionnaires has been mostly assessed
and validated in clinical settings, with only a few exceptions
of validation in community-based samples (Boeve et al. 2013).
These questionnaires have been translated into different lan-
guages (Marelli et al. 2016; You et al. 2017), validated across
different sleep centres (Postuma et al. 2012) and widely used
around the world. They could also be used to monitor disease
progression and treatment responses (Li et al. 2010), but this as-
pect is outside the scope of this paper and will not be addressed.

In the clinic, RBD questionnaires have shown high sensitivity
(>80%) in predicting clinical v-PSG confirmed RBD (Boeve
et al. 2011; Frauscher, Ehrmann, et al. 2012; Li et al. 2010;
Postuma et al. 2012; Stiasny-Kolster et al. 2007), while the spec-
ificity varied greatly, ranging from 56% to 87%. A recent paper
examined the performance of multiple questionnaires (RBDSQ,
RBDIQ and RBD-I) in a bi-centric study on patients presenting
to a sleep lab for the first time prior to any clinical interview
or assessment and observed that their specificities were con-
sistently low (48.1%—-67.4%) (Stefani, Serradell, et al. 2023). In
addition, even with the strict ‘all questionnaires positive’ crite-
rion, the specificity was still only moderate, at around 77%. In
other words, there is a sizable proportion of false positive cases
as based on questionnaire screening, so called RBD mimics,
such as nocturnal behaviours related to sleep apnea, nightmare,
medications and NREM parasomnia. On the other hand, when
RBD questionnaires were applied in epidemiological surveys,
the calculated prevalence of possible RBD (pooled estimate
equals 5.65%) (Cicero, Giuliano, Luna, et al. 2021; Mahlknecht
et al. 2015; Nomura et al. 2015; Shprecher et al. 2019; Wong
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FIGURE1 | Typical example of 30s of REM sleep in a patient with iRBD. It is possible to appreciate the presence of RWA in the EMG channels
(mentalis, submentalis, bilateral FDS and bilateral tibialis anterior). EMG, electromyography; FDS, flexor digitorum superficialis; iRBD, isolated

REM sleep behaviour disorder; REM, rapid eye movement; RWA, REM sleep without atonia.
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et al. 2016; Yao et al. 2019) was considerably higher than the
prevalence of v-PSG-confirmed RBD (close to 1%) (Chiu
et al. 2000; Cicero, Giuliano, Sgroi, et al. 2021; Cicero, Giuliano,
Luna, et al. 2021; Haba-Rubio et al. 2018; Kang et al. 2013; Lee
et al. 2023; Pujol et al. 2017; Sasai-Sakuma et al. 2020). The rea-
son for this gap between possible and definite RBD, except for
the suboptimal specificity that has been described, is related to
the relatively low prevalence of RBD in the general population,
which has greatly reduced the positive predictive values (PPV)
of these questionnaires.

In conclusion, RBD questionnaires, while showing moderate to
high sensitivity, moderate specificity but rather low PPV values
especially in a community setting, thus indicating that there
is a need to improve this tool for possible screening of patients
with iRBD.

3 | Can Automatic Algorithms Improve V-PSG
Detection of RBD?

Screening for RBD in the sleep lab is also of crucial importance,
as patients with incidental RBD diagnosis might be missed
during a routine PSG performed for other reasons, due to lack
of time for manual RWA quantification and visual analysis of
movements identified by video.

3.1 | Automatic Methods to Score REM Sleep
Without Atonia

RWA is defined as excessive EMG activity during REM sleep
and is an essential feature for diagnosing RBD. Current RWA
quantification methods are rule-based and rely on visual in-
spection and manual scoring of EMG activity in the chin and
limbs (Cesari et al. 2022; Troester et al. 2023). The most used
approaches, including the Montréal, SINBAR and Mayo Clinic
methods (Frauscher, Iranzo, et al. 2012; McCarter et al. 2014;
Montplaisir et al. 2010), categorise muscle activity as tonic, pha-
sic, or ‘any’ based on the amplitude or burst duration, and employ
predefined thresholds for RBD identification. Both the ICSD-
3-TR (American Academy of Sleep Medicine 2023) and IRBDSG
guidelines (Cesari et al. 2022) recommend the SINBAR mon-
tage and cut-offs for RBD diagnosis. An open-source software
for computing the SINBAR metrics is available, featuring high
reliability with manual scoring, though it requires input data to
be in a specific PSG-software format (R6thenbacher et al. 2022).
Several other automated approaches, extracting EMG metrics in
fixed-length epochs (Burns et al. 2007; Frandsen et al. 2015) or
employing machine learning (ML) (Cesari et al. 2019; Kempfner
et al. 2014; Rechichi et al. 2021), were developed to minimise
variability in RWA metrics and offer promising solutions for
standardised RWA quantification (Cesari and Rechichi 2024).
Among these, the REM Atonia Index (RAI) (Ferri et al. 2010,
2008) is the most validated automatic RWA quantification
method and therefore emerges as a reliable screening tool for
RBD identification, though currently there is no available open-
access software for deriving it. In the future, openly sharing the
code of automatic and validated RWA quantification methods
will be essential to ensure the quality of the implementation and
reproducibility across labs.

3.2 | Advanced Electroencephalogram (EEG)
Analyses to Identify Patients With iRBD

Advanced sleep EEG analyses have been shown capable of
predicting mortality, dementia, and long-term neurologic
and cognitive outcomes (Djonlagic et al. 2021; Ganglberger
et al. 2022; Paixao et al. 2020; Sun et al. 2024; Ye et al. 2020;
Younes et al. 2021). These techniques also provide insights into
RBD, uncovering cortical abnormalities that standard polysom-
nographic analysis cannot detect (Fantini et al. 2003; Iranzo
et al. 2010). Beyond spectral power assessments, advanced EEG
approaches—such as microstate segmentation, connectivity and
coherence analyses, complexity measurements and dynamic
time-frequency evaluations—identify subtle cortical slowing,
altered spindle dynamics, and abnormal oscillatory coupling
in both REM and NREM sleep of RBD patients (Christensen,
Kempfner, et al. 2014; O'Reilly et al. 2015).

Notably, RBD patients show, in sleep EEG, shifts toward slower
frequencies and reduced beta/gamma power, potentially signal-
ling early neurodegenerative processes and a heightened risk
of progressing to PD or dementia (Fantini et al. 2003; Iranzo
et al. 2010; Massicotte-Marquez et al. 2005). Moreover, recent
studies have highlighted that micro-sleep instability, charac-
terised by rapid fluctuations of sleep-wake micro-architecture,
may predict the emergence and progression of RBD (Cesari,
Christensen, et al. 2021). Additionally, longitudinal analyses of
EEG features over years can illuminate the subtle temporal pro-
gression of cortical changes as RBD advances toward neurode-
generation (Angerbauer et al. 2024; Schreiner et al. 2019).

Advanced EEG analyses, however, can be applied not only to
study sleep EEG, but also resting state EEG, which could also be
potentially seen as a screening tool on its own. Evidence shows
that patients with iRBD are characterised by loss of delta-band
functional connectivity (Sunwoo et al. 2017), alterations in mi-
crostate features (Peng et al. 2021), alterations in spectro-spatial
patterns (Park et al. 2024) and slowing (Rodrigues Brazete
et al. 2016, 2013; Ruffini et al. 2019).

In general, research works indicate the potential of advanced
analyses applied to both sleep and wake EEG to identify patients
with iRBD.

3.3 | Machine and Deep Learning Algorithms
Combining Different Electrophysiological Signals

In addition to RWA, an abundance of electrophysiological mark-
ers derived from PSG has been associated with RBD, including
EEG, electrooculogram (EOG) (Christensen et al. 2021) and
electrocardiogram (ECG) (Sorensen et al. 2012). This supports
the application of ML and deep learning (DL) to PSG data, aim-
ing at integrating multiple electrophysiological markers to de-
velop a robust and precise automatic analysis system that could
be employed as a decision support system or to evaluate severity
and phenoconversion risk.

ML algorithms have been utilised not only to improve
characterisation of RWA, as previously mentioned (Cesari
et al. 2019; Kempfner et al. 2014; Rechichi et al. 2021), but
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also to summarise EEG and EOG abnormalities (Cesari,
Christensen, et al. 2021; Christensen, Zoetmulder, et al. 2014;
Hansen et al. 2013; Rechichi et al. 2022), and to analyse PSG
data in a unified framework to detect RBD (Cooray et al. 2021,
2019; Salsone et al. 2022). Moreover, DL has also been used
as a modelling strategy (Brink-Kjaer et al. 2022; Feuerstein
et al. 2024; Gunter et al. 2023), which avoids directly having
to define and extract abnormal activity. One of the more re-
cent DL approaches (Feuerstein et al. 2024) modelled RBD
from an extracted hypnodensity—a probabilistic representa-
tion of sleep stages—based on a validated algorithm, which
highlights the usefulness of reduced but information-rich
representations of PSG data. The use of foundational models
for RBD detection is yet to be explored, but may improve de-
tection performance by allowing complex data mapping while
addressing RBD data limitations.

3.4 | Automatic Video Analysis

RBD is characterised by dream enactment behaviours during
REM sleep, and more generally by the loss of motor inhibition
during this sleep stage. Movements in patients with RBD range
from simple jerks to complex behaviours. While complex be-
haviours are infrequent, simple, brief movements or jerks occur
during most REM cycles—every few seconds to minutes—and
independent of respiratory-related arousals (Bugalho et al. 2017;
Frauscher et al. 2007; Manni et al. 2009; Marifio et al. 2025).
This characteristic forms the foundation for video-based algo-
rithms to detect RBD.

The application of computer vision for RBD detection is a devel-
oping field, with three key studies conducted to date, all in sleep
laboratory settings. Two studies by the Innsbruck group utilised
a 3D time-of-flight video system (Cesari, Ruzicka, et al. 2023;
Waser et al. 2020), while another study by the Stanford and
Mount Sinai groups analysed retrospective 2D video data from
clinical vPSG (Abdelfattah et al. 2025).

The first study by the Innsbruck group examined 40 iRBD
patients and 64 controls with various sleep disorders, finding
that brief leg movements (<2s) were approximately 5 times
more frequent in iRBD (Waser et al. 2020). This feature alone
differentiated iRBD from controls with 90.4% accuracy. Other
features investigated were 3D extent (body area involved in
the movement) and 3D intensity (speed). The second study
(53 cases, 128 sleep clinic controls) used ML to analyse move-
ments across all body regions (Cesari, Ruzicka, et al. 2023). In
this dataset, a linear regression model using only 2 features—
movement rate (frequency) and movement ratio (proportion
of REM sleep spent in movements)—yielded an accuracy of
86.6%, with short movements providing the highest discrimi-
native power.

The study by Stanford-Mount Sinai of 81 iRBD cases and 91 con-
trols adopted a similar ML model but differed in two ways: it
was retrospective, using 2D clinical video, and incorporated the
following features: movement magnitude (area), velocity (speed)
and immobility ratio (Abdelfattah et al. 2025). Accuracies
ranged from 84.9% (two features) to 87.2% (five features) when
analysing movements of all durations. However, consistent

with the Innsbruck studies, focusing solely on short movements
achieved the highest accuracy (91.9%).

Although limited in number, existing studies consistently high-
light the diagnostic potential of brief movements during REM
sleep as a robust digital biomarker. However, current method-
ologies rely on labour-intensive manual annotation of REM
sleep periods. Future research should focus on developing fully
automated algorithms that integrate REM sleep detection with
movement analysis. Beyond screening, video-based models offer
an exciting opportunity to objectively monitor clinical severity
over extended periods in the home environment. This capabil-
ity could provide valuable insights into treatment efficacy and
disease progression, addressing a critical gap in the long-term
management of RBD and the development of new symptomatic
therapies.

4 | Actigraphy

Actigraphs are devices typically worn on the wrist containing
accelerometers, which detect and record acceleration. Through
acceleration, the amount and pattern of movements can be cal-
culated, from which periods of activity and rest can be inferred
by means of ad hoc algorithms. Actigraphy is a relatively inex-
pensive, easy to implement diagnostic test which is suitable for
rest/activity monitoring over prolonged periods of time, usually
weeks, as a surrogate marker of the sleep/cycle.

Patients with RBD, either isolated forms or associated with
PD, DLB or MSA, exhibit increased nocturnal muscular acti-
vation during REM sleep (Schenck and Mahowald 2002), and
in iRBD this tends to increase over time (Iranzo et al. 2009).
RBD movements are more brisk and violent compared to move-
ments and behaviours observed upon ‘normal’ arousals (De
Cock et al. 2007). This heightened activity provides a rationale
for using accelerometers to differentiate between individuals
with RBD and healthy controls. Moreover, as a neurodegenera-
tive condition directly involving the circuits of sleep regulation,
iRBD features a progressive destructuring of sleep itself. This
alterations not only affect nocturnal sleep but are also evident
at the level of the rest/activity rhythm (Feng et al. 2020; Filardi
et al. 2020).

Actigraphic data can be employed as ‘digital biomarker’ for RBD
(Gnarra, Wulf, et al. 2023; Stefani and Cesari 2023). Recent, pre-
liminary studies have demonstrated that by extracting features
from whole-night accelerometric recordings with data-driven
approaches it is possible to predict the presence of RBD using
ML methods, thus distinguishing patients with iRBD (Brink-
Kjaer, Winer, et al. 2023; Brink-Kjaer, Gupta, et al. 2023) or
RBD associated with PD (Raschella et al. 2023), from controls.
Although very promising, these approaches need further imple-
mentation, fine-tuning and optimization, especially for applica-
bility in the general population. As a further step, their accuracy
in discriminating RBD from other sleep disorders (e.g., sleep-
related breathing disorders, nocturnal seizures or disorders of
arousal) will need to be assessed.

Implementing actigraphy-based quantitative methodologies
and validating them in large population-based, prospective
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studies will enable the use of actigraphy not only as a screening
and diagnostic biomarker but also for a prognostic profiling of
iRBD patients, to identify those at higher risk of phenoconver-
sion to an overt synucleinopathy. Also, quantitative actigraphy-
derived metrics might be useful for patients’ follow-up and
response to treatment evaluation, both in clinical practice and
research, and also to test putative neuroprotective agents or in-
terventions. Improving the reliability and applicability of actig-
raphy will facilitate its integration into personalised medicine,
long-term monitoring and clinical research on RBD.

5 | Nearables: A Promising Tool for Screening RBD

The advent of nearable technologies has opened new avenues for
screening sleep disorders, including RBD. Nearables, defined as
unobtrusive devices capable of monitoring physiological and en-
vironmental parameters (Rienzo and Mukkamala 2021), offer
a practical alternative to traditional PSG. Devices such as bed
sensors, smart mattresses and contactless radar-based systems
have demonstrated the ability to detect abnormal motor activ-
ity and physiological markers indicative of RBD (Gnarra, Wulf,
et al. 2023). Although none of these technologies has yet been
validated for identifying RBD, many advances have been made
recently. Radar technologies combined with ML algorithms have
proven effective at predicting PD from nocturnal breathing sig-
nals (Yang et al. 2022). Technologies such as sensorised mat-
tresses have been used for the automatic classification of body
positions (Matar et al. 2020) and complex motor behaviours (Deng
etal. 2024) during sleep that characterise REM sleep disturbances.

Nearables provide several advantages over standard PSG. Their
hands-off approach eliminates the need for direct interaction
with the user, making them particularly suitable for elderly popu-
lations or individuals with limited cognitive or physical abilities.
By enabling continuous, long-term monitoring in home environ-
ments, nearables facilitate sleep data collection under realistic
conditions without requiring hospital setups (Breuss et al. 2024).
Additionally, nearables can generate multi-modal data streams,
including motion, cardiac and respiratory signals. For instance,
smart bed systems with piezoelectric sensors can detect micro-
movements, heart rate and respiratory patterns, while radar-based
systems can monitor gross motor activity (Ravindran et al. 2023)
and perform reliable automated sleep staging (He et al. 2025)
without physical contact. These features make nearables a user-
friendly and scalable solution for large-scale screening.

However, nearables have notable limitations compared to PSG.
While they simplify data collection and reduce patient discomfort,
they lack the precision of EEG and EMG-based methods, which
are critical for accurately detecting RWA/RBD and differentiating
them from other sleep movement disorders. Additionally, near-
ables currently cannot capture brain activity or subtle physiologi-
cal changes with the resolution required for diagnostic accuracy.
The reliance on indirect measures introduces potential variability
in data interpretation, which could lead to false positives or neg-
atives. Furthermore, challenges such as limited standardisation,
potential signal interference in shared sleeping environments,
and the need for robust algorithms to minimise false positives re-
main significant (Gnarra, Breuss, et al. 2023).

At their current stage of development, nearables are most
effective for screening purposes rather than for providing
a definitive diagnosis of RBD. They represent a valuable
addition to the field of sleep medicine, aligning with the on-
going shift toward home-based monitoring. Their ability to
combine convenience, scalability and multi-modal data col-
lection positions them as a future tool for early detection and
tracking of RBD. While they cannot replace PSG in diagnos-
tic settings, nearables hold significant potential to improve
access to care and facilitate timely interventions for affected
individuals.

6 | Biological Markers

Currently, no fluid- or tissue-based biological marker exists for
screening RBD. However, iRBD itself serves as a highly specific
clinical marker for early synucleinopathies (Joza et al. 2023;
Postuma et al. 2019). In this context, iRBD can facilitate identi-
fying biological markers of early synucleinopathies.

Pathological alpha-synuclein species could be identified in
individuals with iRBD in multiple peripheral tissues and flu-
ids, including salivary glands (Vilas et al. 2016), olfactory
mucosa (Kuzkina, Rofile, et al. 2023; Zheng et al. 2024), gas-
trointestinal mucosa (Sprenger et al. 2015), stool (Schaffrath
et al. 2023), skin (Doppler et al. 2022; Kuzkina, Panzer,
et al. 2023; Kuzkina, Rofile, et al. 2023) and blood (Arnaldo
et al. 2023; Kluge et al. 2024; Okuzumi et al. 2023; Ying
et al. 2024; Zheng et al. 2023), as well as biospecimens from
the central nervous compartment (Poggiolini et al. 2022;
Siderowf et al. 2023), highlighting the strong link to incipi-
ent alpha-synucleinopathies. The detectability of additional
protein aggregates, such as amyloid or tau, in iRBD may indi-
cate a faster phenoconversion and more pronounced cognitive
symptoms (Fernandes et al. 2024). Similarly, elevated levels of
neurofilament light chain (Nfl) indicate a more likely pheno-
conversion to MSA (Park et al. 2023). Fewer individuals with
RBD unmasked by antidepressant treatment exhibited patho-
logical alpha-synuclein species in skin biopsies compared to
iRBD not related to antidepressants, enabling insights into
underlying causes of RBD (Biscarini et al. 2024).

However, changes extend beyond the mere detectability of altered
alpha-synuclein or additional neuronal proteins, as individuals
with iRBD already exhibit signs of exacerbated inflammation
(Farmen et al. 2021; Hillgvist et al. 2024; Laguna et al. 2021)
and gut microbiome dysbiosis (Huang et al. 2023), accompany-
ing early neurodegenerative processes (Glass et al. 2010). Those
changes are also reflected in an altered composition of microR-
NAs, which can be detected in peripheral blood (Soto et al. 2022;
Yu et al. 2024).

Current research focuses on using iRBD as a specific clinical
entity to identify biological markers of early (alpha-synuclein
associated) neurodegeneration rather than on screening for bio-
logical markers of iRBD per se. This might change in the future,
as improved understanding of iRBD pathogenesis in the early
stages might lead to the identification of biological markers of
iRBD useful as screening tools.
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7 | Other Screening Markers

In addition to the possible screening markers reported in the
previous sections, biomarkers of neurodegeneration have been
investigated in the iRBD population and are worth mentioning.
Alterations in voice have been reported in patients with iRBD and
might be used as screening tools, both with standardised protocols
(Arora et al. 2021; Jeancolas et al. 2022; Rusz et al. 2021, 2016), as
well as with free speech recorded during calls (Illner et al. 2024).
Smartphone motor testing, performed with standardised exer-
cises, has also been shown to be useful to distinguish patients with
iRBD from controls (Arora et al. 2018). Furthermore, gait changes
detected with wearable sensors or automatic video analyses have
been investigated and showed promising discrimination abilities
(Del Din et al. 2019; Ma et al. 2021; Sarasso et al. 2024). Similarly,
analysis of timed-up-and-go tests recorded with wearable technol-
ogies allowed for the discrimination of patients with iRBD from
controls (Zatti et al. 2024). Moreover, two studies investigated
EEG headbands to identify biomarkers of iRBD (Levendowski
et al. 2022; Possti et al. 2024). Of note, these biomarkers aim at
detecting subtle signs of neurodegeneration, which are present
in iRBD (being this condition a prodromal synucleinopathy), but
do not aim at individuating iRBD per se. Thus, a future employ-
ment of these instruments as screening methods would be useful
in detecting early synuclein-related neurodegeneration, but would
probably not be specific for iIRBD and would not detect RBD asso-
ciated with diseases different from alpha-synucleinopathies.

8 | Discussion

In view of upcoming neuroprotective or neuromodulatory treat-
ments, effective screening tools for iRBD are of fundamental im-
portance. We reviewed the most important recent advancements
in this research area, a timely topic of growing importance.

Figure 2 shows a graphical overview of the screening tools spe-
cific for iRBD described in this manuscript.

Besides the single screening methodologies presented previously,
it is worth considering the potential of their combination and
multistep screening approaches. Questionnaires are the easiest
and most convenient tool to be used as a first step in a multistep
screening approach, due to their favourable sensitivity and NPV,
as proposed previously (Postuma et al. 2016). The combination of
questionnaires with actigraphs has already shown promising re-
sults, as these modalities led to an increase of the specificity to 100%
(Brink-Kjaer, Gupta, et al. 2023). Furthermore, previous multistep-
approach studies have been shown to be useful for a precise iden-
tification of patients with iRBD (Pujol et al. 2017; Seger et al. 2023;
Wang et al. 2022). In brief, inexpensive and non-invasive tests with
high sensitivity could be used as a first step, for example, question-
naires (xactigraphy), followed by relatively expensive and labour-
intensive tests with high specificity, such as gold-standard v-PSG,
or biological markers to stratify RBD patients.

Concerning v-PSG analyses, automatic and validated RWA
quantification algorithms should be implemented as soon as
possible in clinical PSG-software solutions. So far, only one
PSG-software includes a validated RWA quantification algo-
rithm (Frauscher et al. 2014), but it still requires manual arte-
fact removal (Cesari, Heidbreder, et al. 2021). However, due to
the low amount of artefacts affecting these muscles, automatic
analysis of FDS alone can be used as a screening tool (Cesari,
Heidbreder, et al. 2023), pending further confirmation in larger
cohorts.

ML approaches combining different electrophysiological bio-
markers have shown promising results but lack sufficient vali-
dation, which would likely require strong collaboration efforts to
test generalisability on large multi-centre datasets, comparison
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FIGURE 2 | Overview of the screening methods for patients with iRBD described in this manuscript. Please note that the figure does not report
biological markers (Section 6) and other markers (Section 7), because those markers might not be specific for iRBD, as they aim at detecting neuro-

degeneration independently from the presence of RBD.
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to simpler automatic RWA methods, and study of night-to-night
variability of derived measures.

Integration of automatic video analyses and electrophysiological
sleep biomarkers has not been investigated so far, and deserves
attention in the near future. While automatic analyses of in-lab
v-PSG could be useful in order not to miss incident subclinical
RBD patients and as a second screening step following question-
naires, current technological developments allow good quality
sleep recordings in home environments (Green et al. 2022). So
far, however, there is only limited research on the identification
of patients with iRBD from home sleep recordings.

Future research for the development of more accurate screening
tools should also consider sex and ethnicity related aspects. For
example, previous studies suggest that there are sex differences
in muscular activity, motor events (Bugalho and Salavisa 2019),
demographics and dream-related behaviours (Li et al. 2023).
These should be considered when developing new screening
tools, to have high sensitivity and specificity in both sexes.
Nothing is known about possible ethnic differences in the clini-
cal presentation of iRBD. Future studies should investigate eth-
nic aspects and take them into consideration when developing
novel screening methods.

In conclusion, future screening methods for RBD will likely use
multistep approaches combining subjective and objective data,
the latter integrating information from wearables and nearables
used in the home environment. Biological markers will proba-
bly improve risk stratification. ML and DL methods to use this
information thoroughly are expected to drastically improve
screening of RBD in the general population in the near future.
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