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Integrating population-based metabolomics with
computational microbiome modelling identifies
methanol as a urinary biomarker for protective
diet–microbiome–host interactions
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Background: Diet–microbiome interactions are core to human health, in particular through bacterial fibre

degradation pathways. However, biomarkers reflective of these interactions are not well described.

Methods: Using the population-based SHIP-START-0 cohort (n = 4017), we combined metabolome-wide

screenings with elastic net machine learning models on 33 food items captured using a food frequency

questionnaire (FFQ) and 43 targeted urine nuclear magnetic resonance (NMR) metabolites, identifying

methanol as a marker of plant-derived food items. We utilised the independent SHIP-START-0 cohort for

the replication of food–metabolite associations. Moreover, constraint-based microbiome community

modelling using the Human Microbiome data (n = 149) was performed to predict and analyse the contri-

bution of the microbiome to the human methanol pools through bacterial fibre degradation. Finally, we

employed prospective survival analysis in the SHIP-START-0 cohort, testing urinary methanol on its pre-

dictive value for mortality. Results: Among 21 metabolites associated with 17 dietary FFQ variables after

correction for multiple testing, urinary methanol emerged as the top hit for a range of plant-derived food

items. In line with this, constraint-based community modelling demonstrated that gut microbiomes can

produce methanol via pectin degradation with the genera Bacteroides (68.9%) and Faecalibacterium

(20.6%) being primarily responsible. Moreover, microbial methanol production capacity was a marker of

high microbiome diversity. Finally, prospective survival analysis in SHIP-START-0 revealed that higher

urinary methanol is associated with lower all-cause mortality in fully adjusted Cox regressions.

Conclusion: Integrating population-based metabolomics and computational microbiome modelling

identified urinary methanol as a promising biomarker for protective diet–microbiome interactions linked

to microbial pectin degradation.

1. Introduction

Dietary fibres derived from plant-based foods, including whole

grains, vegetables, or fruits,1 have been established to be

essential components of a healthy diet.2,3 Their microbial fer-

mentation products include short-chain fatty acids, which

provide energy to colonocytes and have anti-inflammatory and

anti-tumour effects.4 Other degradation products include alkyl-

resorcinols, which display neuroprotective, muscle-protective,

and metabolism-positive effects.5 Reflecting the importance of

fibre degradation products, accumulating evidence suggests

that a fibre-rich diet reduces the risk of non-communicable

diseases, including cardiometabolic diseases and cancer.1,6

However, the complex diet–host–microbiome interplay in

fibre degradation complicates the interpretation of metabolite–†These authors contributed equally.
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diet associations. For example, dietary fibre intake has been

associated with 2,6-dihydroxybenzoic acid (2,6-DHBA), indole-

propionic acid, linolenoyl carnitine, 2-aminophenol, 3,4-DHBA,

and proline betaine,7 but underlying microbial pathways remain

elusive. Recent progress in gut microbiome modelling allows for

the computational and quantitative description of microbial

fibre degradation8–10 via constraint-based reconstruction and

analysis approaches. This approach is based on personalised

microbiome community models that have been shown to be pre-

dictive for host metabolomics traits.8,10,11 So far, however,

COBRA community modelling has not been employed for the

interpretation and contextualisation of metabolome–food

associations derived from large population studies.

Here, we combine metabolome-wide association studies

and COBRA modelling with in silico fibre supplementation

experiments, identifying methanol as a marker of diet–micro-

biome interactions linked to pectin degradation. We utilised the

SHIP-START-0 cohort (n = 4017)12 for discovery metabolome-

wide association studies and the independent SHIP-TREND-0

cohort (n = 992)12 for replication and applied COBRA commu-

nity modelling13 to samples from the Human Microbiome

Project (n = 149). Using data from the SHIP project, we further

investigated the association between urinary methanol and

health-promoting lifestyle habits and determined whether

urinary methanol could be predictive for mortality rates (all

causes, cancer, cardiovascular diseases (CVDs)).

2. Methods
2.1 Study population SHIP-START-0 and SHIP-TREND-0

For our analysis, we used the population-based SHIP-study,

conducted in north-eastern Germany.12 Its primary objective

was to examine the prevalence and incidence of common risk

factors, subclinical disorders, and clinical diseases. The initial

data acquisition (SHIP-START-0, 1997–2001, n = 4307) was

derived from local registries. Subsequently, a second, indepen-

dent baseline cohort was selected from the same geographical

region (SHIP-TREND-0, 2008–2012, n = 4420), with no partici-

pant overlap from the SHIP-START-0 cohort. Further details of

the measurements performed can be found elsewhere.12

Non-fasting targeted urine nuclear magnetic resonance

(NMR) metabolome data were available for n = 4068 individ-

uals of SHIP-START-0. To assess the frequency of food intake

and its association with NMR metabolite data, we excluded (1)

subjects taking antibiotics (n = 35) and (2) pregnant partici-

pants (n = 16). In total, we included n = 4017 SHIP-START-0

individuals.

In the replication study SHIP-TREND-0 (n = 4420), n = 996

individuals with targeted urine NMR measurements were avail-

able. However, this urine NMR measurements were conducted

exclusively on a subset of fasting participants without self-

reported diabetes. As a result, the utilised SHIP-TREND-0 sub-

sample is a predominantly healthy cohort. Excluding (1) preg-

nant individuals (n = 0) and (2) those on antibiotics (n = 4) we

obtained an analysis sample of n = 992 participants (SI1).

2.2 Covariate measurements

In the baseline SHIP examinations, behaviour, socioeconomic

data, medical history, and sociodemographic factors were

obtained from a computer-assisted interview. Furthermore, exten-

sive medical examinations were performed, including measure-

ments of waist circumference (considered as an indicator of

abdominal fat), body height, weight, and blood pressure. The

smoking variable was categorised into current smoking and non-

smoking. Physical activity in leisure time was defined as either no

activity (neither in summer nor in winter) or steady activity (>1 h

per week in both summer and winter). Between the discovery and

replication studies, covariate definitions differed for alcohol con-

sumption (SHIP-START-0: intake during the last 7 days,

SHIP-TREND-0: intake during the last 30 days) and sleeping pro-

blems (SHIP-START-0: 5 categorical options, SHIP-TREND-0: 3 cat-

egorical options).

Participants were asked to bring their medication prescrip-

tions or package receipts for all medications they had taken in

the past seven days. Each medication was recorded and cate-

gorised according to the Anatomical Therapeutic Chemical

Classification (ATC Index, 2007). For biomarker measurements,

blood and urinary samples were collected and either analysed

directly or stored at −80 °C. The details of the procedures have

been described elsewhere.14 The assays for analysing the blood

and metabolic markers were all conducted by skilled technical

personnel following the manufacturer’s recommendations.

Concentrations of glycated haemoglobin (HbA1c) were measured

by high-performance liquid chromatography (Bio-RadDiamat,

Munich, Germany) and triglycerides (tg) were determined photo-

metrically (Hitachi 704, Roche, Mannheim, Germany). Urine

creatinine concentrations were determined using the Jaffé-

method (Hitachi717, Roche Diagnostic, Mannheim, Germany).

Information on the vital status was obtained from popu-

lation registers at annual intervals. Participants were censored

in the event of death or lack of follow-up. The follow-up length

was defined as the number of months between the baseline

examination and censoring. A request for death certificates

(coded by a certified nosologist according to the International

Classification of Diseases, 10th version) was made to the local

health authority of the residence of death.

Dietary intake in the discovery study SHIP-START-0 was cap-

tured by a face-to-face interview using an previously validated

food frequency questionnaire (FFQ)15 including 33 food items.

In contrast, the FFQ in SHIP-TREND-0 measured dietary

behaviour with a reduced number of 16 food categories.

Within both cohorts, food intake was rated on an ordinal scale

with 6 options (1: daily or almost daily, 2: several times a week,

3: about once a week, 4: several times a month, 5: once a

month or less often, and 6: never or almost never).

2.3 Urinary metabolite quantification using targeted NMR

measurements

In SHIP-START-0, spontaneous urine samples were collected

from non-fasting individuals. Conversely, SHIP-TREND-0 par-

ticipants were fasting prior to biosample collection. Details on

the NMR measurements are provided in SI2.
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In SHIP-START-0, 59 metabolites with their concentrations in

millimoles per litre (mM) were identified. In SHIP-TREND-0,

urinary methanol measured by NMR was exclusively examined

as the primary outcome from the discovery study.

2.4 Outlier detection and data normalisation

Metabolites with over 50% missing quantification in the NMR
spectra were excluded from the statistical analysis. As a result,
43 of 59 targeted NMR metabolites were selected for subsequent
analysis in SHIP-START-0. Outliers, defined by the 4 standard
deviation rule were calculated for each metabolite and excluded
from the analysis. For all urinary metabolite concentrations,
log-transformations were performed. To compensate for metab-
olite-specific dilution-concentration relations, we applied a
regression-based approach using probabilistic quotient normali-
sation(PQN) with restricted cubic splines(RCS) using 4 knots.16

2.5 Statistical analysis

Descriptive statistics were presented as means and standard

deviations for metric variables and proportions for categorical

variables. All analyses and graphs were conducted using R

(version 4.2.3). P-Values were calculated two-sided and mul-

tiple testing was corrected using the false discovery rate (FDR)

with a threshold of <0.05.

2.5.1 Metabolic signatures of dietary intake. Fully adjusted
multiple linear regression analyses were conducted to associ-
ate dietary intake (predictor of interest) with the metabolite
profile (response variable). Testing 33 food frequency cat-
egories on 43 urinary metabolites resulted in 43 × 33
regressions, utilising heteroscedastic robust standard errors
(HRSE). Nonlinearities were modelled using RCS with four
knots using the default setting of the R-package “rms”.17

Additionally, three continuous beverage variables (coffee, dec-
affeinated coffee, and tea in cups per day) were analyzed separ-
ately but analogously. The model’s explication ensued:

Metabolite concentration ¼ β0 þ β1 food=beverage itemð Þ

þ β2 rcs PQN; 4ð Þð Þ

þ β3 rcs age; 4ð Þ � sexð Þ

þ β4 rcs waist circumference; 4ð Þð Þ

þ β5 rcs eGFR; 4ð Þð Þ

þ β6 pH‐valueð Þ

þ β7 physical inactivityð Þ

þ β8 smoking statusð Þ

þ β9 alcohol intake� sexð Þ

þ β10 log GGTð Þð Þ

þ β11 hypertensionð Þ

þ β12 education yearsð Þ

þ β13 sleeping problemsð Þ

þ β14 tgð Þ þ β15 white blood cellsð Þ

þ β16 red blood cellsð Þ

þ β17 total‐hdl‐cholesterol ratioð Þ

þ β18 presence of diabetesð Þ

þ β19 time since last‐mealð Þ þ e

ð1Þ

To assess the statistical significance of the categorical vari-

able food item, a global Wald-test was performed.

Furthermore, the direction of the association between food

intake frequency and urinary metabolites was assessed by

repeating the analysis to compare the frequent and rare food-

item categories: 1 (“every day or almost every day”) and 2

(“several times a week”) versus 5 (“about once a month or

fewer”) and 6 (“never or almost never”).

For external validation, the analyses were replicated within

SHIP-TREND-0 focusing on methanol as the top result. The

multiple linear regression models were performed in an analo-

gous way to previous analyses with 16 dietary food categories

available in SHIP-TREND-0. Here, food item frequencies

(ranging from 1: daily to 6: never) selected by fewer than 10

individuals were reclassified (fresh fruit intake with a fre-

quency of 6 were assigned to 5, and fried potatoes, pasta and

rice intake with a frequency of 1 were reclassified to 2).

2.5.2 Predicting urinary methanol via FFQ using machine

learning. We utilised elastic nets to determine the prediction

of urinary methanol concentrations through the dietary intake

frequency. Elastic nets integrate the sparsity-inducing Lasso

penalty and the coefficient-shrinking L2 regularization from

Ridge regression.18 The idea is to improve the reduction of

overfitting in addition to the reduction of dimensionality. The

objective function with elastic net regularisation is as follows:

argmin
β

1

2n

X

n

i¼1

yi � ỹi
� �

þ γ α
X

n

j¼1

βj

�

�

�

�

�

�þ 1� αð Þ
X

n

j¼1

βj
2

� �

 !

ð2Þ

Here, n represents the number of predictors, yi is the

observed target value for the i-th data point, and ỹi is the pre-

dicted target value for the i-th data point, based on the linear

regression model. The α is the mixing parameter that deter-

mines the combination of L1 and L2 regularisation in the

elastic net. In addition, γ is the regularization parameter, con-

trolling the strength of regularisation, and βi represents the

coefficient for the j-th feature. As the outcome variable, the

residuals of the urinary methanol concentrations were used

after regression out the dilution via regression-based normali-

sation.16 Dummy variables were generated for the food items,

with the lowest intake frequency considered as the reference

category. Dietary intake categories with fewer than 5% individ-

uals selecting a specific food frequency were omitted from the

analysis. We used k-Nearest Neighbour imputation19 to deal

with missing data in the FFQ data. For assessing model fit,

10-fold internal cross-validation was utilised. Finally, r-squared

measures, mean absolute errors and root mean squared errors

were used to assess the model’s performance.

2.5.3 Urinary methanol and lifestyle factors. Next, the

potential associations of urinary methanol with basic and be-

havioural covariates, physiological parameters, and clinical

phenotypes were analysed in the SHIP-START-0 and

SHIP-TREND-0 cohort. We performed multiple linear

regressions, incorporating HRSE, RCS and interaction terms

with an identical model setup as in previous regressions

(Table S1). In addition, the explained variance (incremental R2)

was calculated for the different variables to determine the
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explained variance of urinary methanol concentration related

to the investigated factors.

2.5.4 Constraint-based modelling. We obtained relative

abundances of 149 samples from the Human Microbiome

Project,20 previously mapped to genome-scale reconstruc-

tions.21 Initially, we quantified species onto the reference set

of 7302 microbial metabolic reconstructions of AGORA2.8

Subsequently, microbial community modelling was performed

using the Microbiome Modelling Toolbox.22,23 The mode of

operation is explained in more detail in ref. 10, 22 and 23.

Briefly, community models were generated by combining

genome-scale reconstructions from AGORA2 that were present in

the abundance table for each sample. The community biomass

reaction was then parametrized by weighting by the biomass

reactions of microbes present by its corresponding abundance.

In each simulation, we calculated maximum community net

secretion fluxes for each metabolite that is present in the lumen

compartment for each sample, calculating the maximum net

secretion for 791 metabolites in total, including methanol. One

simulation was done by only using the Average European Diet

constraints that does not neither include an uptake rate of pectin

or xylan and is included in the COBRA toolbox.13 Then, we con-

ducted four simulations utilizing the Average European Diet con-

straints of the virtual metabolic human database,24 where we

additionally gradually incremented the diet constraints (i.e. the

maximal uptake rate) of pectin and xylan for each model respect-

ively. This approach was based on the premise, that an average

apples weights approximately 200 g, contains about 1% pectin

and possesses a molecular weight of roughly 100 kilodaltons

(kDa). This translates to a dietary constraint expressed as:

2 g per 100 kDa� 1 per person per day

¼ 0:2mmol per person per day:
ð3Þ

We gradually stacked up the diet constraints of pectin to

the Average European Diet by 0.2 mmol per person per day at

each step, up to 0.8 mmol per person per day.

We conducted a comparative analysis of our findings by

choosing xylan, which served as a control polysaccharide. To

facilitate this comparison, we scaled the uptake rate of xylan to

an initial uptake rate equivalent to 0.2 mmol per person per

day of pectin by the amount of carbon atoms:

# C‐atoms of pectin

# C‐atoms of xylan
� 0:2mmol per personper day

¼
2535

2640
� 0:2mmol per personper day

� 0:192mmol per personper day:

ð4Þ

As done with pectin, we gradually increased the diet con-

straint of xylan from 0.192 mmol per person per day up to

0.768 mmol per person per day.

To calculate the individual maximum secretion potential of

methanol of each microbe in a COBRA community model, we

utilized the predictMicrobeContributions function of the

COBRAtoolbox, where we used the Average European Diet and

added the before applied maximum pectin constraint. With

this function, instead of maximizing the combined net secretion

reaction of the community model, each internal exchange reac-

tion of each microbe present into the lumen compartment gets

maximised. The average direct production effect of a species on

methanol secretion was calculated as the product of the mean

abundance and the regression slope of the species methanol pro-

duction against the species abundance. The total effect of a

species on methanol secretion was defined as the product of the

mean abundance with the regression slope of the community

methanol production against the species abundance. The eco-

logical effect is then defined by the difference between direct and

total effect. For details, see Hertel et al.9 All simulations were per-

formed in MATLAB (Mathworks, Inc.) version R2021a, with IBM

CPLEX(IBM) as the linear programming solver. The simulations

were carried out using the COBRA Toolbox13 and the Microbiome

Modelling Toolbox.22,23 Using a linear regression, we additionally

tested the association between methanol and hippuric acid, a

recently reported urinary marker of microbiome diversity.14

2.5.5 Urinary methanol and mortality rates. Finally, we

examined methanol as a predictive biomarker in prospective

survival analysis. By using the follow-up data of the

SHIP-START-0 cohort, a total of 18 (3 × 3 × 2) Cox proportional

hazard models were calculated, involving for each mortality

rate of all causes, cancer and CVD the calculation of the

p-values for the linear effect, non-linear effect (RCS), and

global effect associated with urinary methanol under different

covariate adjustments. The global effect assessed the collective

significance of the RCS transformation of the methanol con-

centrations, while the nonlinearity test determines if the intro-

duction of the non-linear terms in the RCS significantly

improves the model fit in comparison with linear modelling.

Two different covariate adjustment models were conducted.

The first analysis model involved:

Mortality rate of all causes=cancer=CVD

¼ β0 þ β1 urinarymethanol concentrationð Þ

þ β2 rcs PQN; 4ð Þð Þ þ β3 pH‐valueð Þ

þ β4 rcs eGFR; 4ð Þð Þ þ β4 rcs age; 4ð Þ � sexð Þ

þ β5 waist circumferenceð Þ þ β6 myocardial infarctionð Þ

þ β7 hypertensionð Þ þ β8 tgð Þ þ β9 white blood cellsð Þ

þ β10 total‐hdl‐cholesterol ratioð Þ

þ β11 presence of diabetesð Þ þ e

ð5Þ

In the second Cox regression, additionally health-related

behaviours were included as covariates, to evaluate the remain-

ing predictive effect of methanol on mortality cases:

Mortality rate of all causes=cancer=CVD

¼ first analysismodel½ � þ β11 physical inactivityð Þ

þ β12 education yearsð Þ

þ β13 alcohol intake during last 7 days� sexð Þ

þ β14 smoking statusð Þ þ β15 sleep problemsð Þ þ e

ð6Þ

The results were visualised by computing Kaplan–Meier

curves for tertiles of the regression-normalised urinary metha-
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nol concentration. Schoenfeld residuals were examined to

evaluate the proportional hazard assumption.

Additionally, in a sensitivity analysis, a competing risk

regression was used to evaluate the independent association of

methanol concentrations with the mortality rates of CVD and

cancer, using the analogous setup of the two different covari-

ate adjustments models. Moreover, we performed prospective

survival analysis to determine the predictive impact of the

food categories on the mortality rates of all causes, cancer and

CVD, both with and without accounting for methanol in the

two different covariate adjustments models.

3. Results and discussion
3.1 Characteristics of study sample SHIP-START-0 and

SHIP-TREND-0

The analysis sample of the discovery study SHIP-START-0 com-

prised n = 4017 participants (age-range: 20–81, 50.4% female)

(Table 1 and Table S2, SI1) with FFQ data (33 items, Table S3)

and 43 non-fasting urine NMR metabolites (Table S4). In the

independent replication SHIP-TREND-0 cohort, n = 992 indi-

viduals (age-range: 20–81, 50.9% female), (Table 1 and

Table S5, SI1) with fasting urine NMR metabolome data and

FFQ data (16 items, Table S6) were included. As SHIP-TREND-0

NMR urine metabolome data was exclusively available in a

subset of participants without self-reported diabetes, partici-

pants were substantially healthier in general than those in

SHIP-START-0, reflected in a wide range of variables (Table 1).

3.2 Metabolic signatures of dietary intake

First, we conducted exploratory metabolome-wide association

analysis using fully adjusted multiple linear regression ana-

lyses with HRSE for 43 quantified urinary metabolites and 33

food items in SHIP-START-0, exploring associations across all

six FFQ categories, plus three continuous beverages (coffee,

decaffeinated coffee, and tea in cups per day) analyzed

separately.

Prior to corrections for multiple testing (nominal p-value

<0.05), associations between 41 NMR urinary metabolites and

32 food items were identified (Table S7.1). After adjusting for

multiple testing (false discovery rate (FDR) < 0.05), 42 associ-

Table 1 Descriptive table of SHIP-START-0 and SHIP-TREND-0

SHIP-START-0 (n = 4017) SHIP-TREND-0 (n = 992) p-Value

Demographics and anthropometrics
Age [years,(SD)a, (range)] 50 (16.3), (20–81) 50 (13.7), (20–81) 0.679
Sex [no., (% female)] 2024 (50.39) 554 (55.85) 0.002
Waist circumference [cm, (SD)]a 89.27 (13.87) 88.06 (12.87) 0.013
Lifestyle factors
Physical inactivity [no., (% yes)] 2309 (57.70) 261 (26.31) <2.2 × 10−16

Smoking status [no., (% yes)] 1209 (30.20) 217 (21.92) 1.64 × 10−7

Alcohol intake [g d−1, (IQR)] 4.97 (0, 17.4)b 3.99 (1.22, 10.46)c 0.239
Education [years, (range)] 11 (10–13) 13 (11–15) <2.2 × 10−16

Time since the last meal [h, (IQR)] 3.53 (2.58, 4.58) — —

Metabolic and blood markers
C-reactive protein (CRP) [mg L−1, (IQR)] 1.38 (0.68, 3.15) 1.18 (0.62, 2.5) 0.000101
Glomerular filtration rate (eGFR) [mL per min per 1.73 m2, (IQR)] 79.3 (69.8, 89.1) 89 (78.5, 102.5) <2.2 × 10−16

Total hdl cholesterol ratio [(IQR)] 4.03 (3.19, 5.11) 3.75 (3.08, 4.57) 7.07 × 10−10

LDL-C [mmol L−1, (IQR)] 3.49 (2.75, 4.25) 3.36 (2.76,4) 0.001
HDL-C [mmol L−1, (IQR)] 1.39 (1.14, 1.7) 1.43(1.21,1.7) 0.001
Triglycerides [mmol L−1, (IQR)] 1.48 (1.01, 2.27) 1.22 (0.87,1.73) <2.2 × 10−16

Red blood cells [%, (IQR)] 4.4 (4.12, 4.7) 4.6 (4.4, 4.9) <2.2 × 10−16

White blood cells [%, (IQR)] 6.4 (5.4, 7.7) 5.46 (4.68, 6.46) <2.2 × 10−16

HbA1c [%, (IQR)] 5.3 (4.9, 5.8) 5.2 (4.8, 5.5) 4.44 × 10−15

Gamma-glutamyltransferase [μmol per sll, (IQR)] 0.34 (0.23, 0.56) 0.48 (0.38, 0.67) <2.2 × 10−16

Health status
Prevalent T2D [no., (%)] 441 (11.01) 29 (2.93) <2.2 × 10−16

Hypertension [no., (%)] 1897 (47.35) 602 (60.81) 3.38 × 10−14

Metabolic syndrome [no., (%)] 1107 (28.06) 212 (21.44) 2.02 × 10−5

Myocardial infarction [no., (%)] 135 (3.37) 34 (3.43) <2.2 × 10−16

Chronic kidney disease [no., (%)]d 350 (8.75) 154 (15.54) 1.43 × 10−9

Mortality
All cause mortality [no., (%; YFU)] 1067 (26.56; 11.5) — —

CVD mortality [no., (%; YFU)] 329 (8.53; 10.3) — —

Cancer mortality [no.; (%; YFU)] 311 (8.06; 10.1) — —

Abbrevations: HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; HbA1c, glycated haemoglobin; T2D, type 2
diabetes; CVD, cardiovascular disease; SD, standard deviation; IQR, interquartile range; YFU, median year of follow up. a Variables summarized
with means ± SD. b Alcohol intake during the last 7 days. c Alcohol intake during the last 30 days. dChronic kidney disease defined as the glomer-
ular filtration rate >60 mL per min per 1.73 m2. Median with the IQR/range for quantitative variables and the number (percentage) for categorical
variables are presented if not stated otherwise. Characteristics were compared between the two groups using t-tests for normal distribution con-
tinuous variables, the Wilcox-test for non-normal distribution continuous variables, Fisher exact tests for binary variable and the Chi2 test for cat-
egorical variables.
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ations remained statistically significant among 21 urinary

metabolites and 17 food items (Fig. 1a). Urinary methanol was

the top hit, being associated particularly with plant-derived

food items, such as fruit and vegetable juices (FDR = 3.44 ×

10−22, Fig. 1a and b), rice (FDR = 6.46 × 10−5), and fresh fruits

(FDR = 1.90 × 10−4). In the continuous-variable analysis,

methanol and coffee intake showed a significant inverse

association (FDR = 5.58 × 10−22; b = −0.06, 95%-CI: (−0.07,

−0.05), Table S7.2), possibly confounded by higher coffee con-

sumption among smokers (SI4).

Other significant associations were observed for plant-

derived food-items including citrate with fruit and vegetable

juices (FDR = 8.79 × 10−3), hippurate with fresh fruits (FDR =

2.45 × 10−2), or betaine with rice (FDR = 3.98 × 10−2).

Significant links were also found for animal-derived products,

such as creatine with meat (without sausages) (FDR = 9.16 ×

10−6), trimethylamine-N-oxide with fish (FDR = 2.62 × 10−4)

and trigonelline associated with coffee intake in the separate

continuous-variable analysis (FDR = 3.97 × 10−68) (Table S7,

Fig. 1a), aligning with findings from previous studies.25–29 For

urinary methanol, being associated with 10 food items, we

found no similar findings reported in the existing literature.

Next, we conducted analogous regressions to identify the direc-

tions of metabolite associations with frequent (“every day or

almost every day” joined with “several times a week”) versus

rare consumption (“about once a month or fewer” joined with

Fig. 1 (a) Stack plot of the significant associated 21 urinary metabolites with 17 food items. The x-axis shows the significant negative logarithmised

FDR values (−log10(FDR)) of multiple linear regression analysis, whereas the y-axis depicts the urinary metabolites. (b) Association of urinary metha-

nol and the frequency of fruit and vegetable juice intake. The figure depicts the top hit association of urinary methanol with the food item “fruit and

vegetable juices” using the residuals of the methanol concentration after regressing out the same variables as in the main analysis: PQN (rcs:

restricted cubic splines), age (rcs), age–sex interaction term (rcs), sex, waist circumference (rcs), glomerular filtration rate (eGFR) (rcs), pH-value,

physical inactivity, smoking status, alcohol intake during the last 7 days, sex–alcohol intake interaction term, gamma-glutamyl transferase (GGT),

hypertension, years of education, sleeping problems, triglycerides (tg), white blood cells (wbc), red blood cells (rbc), total-hdl-cholesterol ratio, time

since the last meal, and prevalence of diabetes.
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“never or almost never”) of each food item (full results

Table S7). Consistent with the first set of regressions, urinary

methanol was positively associated with fruit and vegetable juices

(b = 0.29, 95%-CI: (0.23, 0.35), FDR = 7.93 × 10−17), rice (b = 0.16,

95%-CI: (0.08, 0.25), FDR = 9.83 × 10−3), flaked oats, muesli, and

cornflakes (b = 0.13, 95%-CI: (0.06, 0.20), FDR = 1.04 × 10−2), and

cooked vegetables (b = 0.28, 95%-CI: (0.11, 0.44), FDR = 3.18 ×

10−2) (Table 2a, S7 and S8, Fig. 2a). Conversely, food items such

as fried potatoes, croquettes, French fries (b = −0.19, 95%-CI:

(−0.28, −0.10), FDR = 6.6 × 10−3) and soft drinks (b = −0.12, 95%-

CI: (−0.18, −0.06), FDR = 4.86 × 10−3) were found to have inverse

associations with urinary methanol levels (Table 2a, S7, S8, and

Fig. 2a). This pattern was also visible in nominally significant

(p-value < 0.05, FDR > 0.05) methanol associations (e.g. positive:

salad and fresh fruits; negative: cake and pizza, Fig. 2b), further

strengthening the conclusion that urinary methanol is linked to

a diet, rich in plant-derived food and potentially a high fibre.

In the SHIP-TREND-0 replication cohort, we focused our

analysis on urinary methanol concentrations to validate the

initial findings from SHIP-START-0. Significant results were

again detected between urinary methanol and plant-derived

food items (salad or raw vegetables, FDR = 1.30 × 10−2; fresh

fruits, FDR = 4.90 × 10−2), as well as food items, including

cake, biscuits, and cookies (FDR = 3.70 × 10−2) (Table 2b and

S9). In conclusion, the analysis in both SHIP-cohorts indicates

that urinary methanol is positively associated with the con-

sumption of plant-derived food items potentially indicative of

a fibre-rich diet.

3.3 Predicting urinary methanol via FFQ using machine

learning

To determine the extent to which urinary methanol concen-

trations could be predicted from the FFQ data, we adopted a

machine learning approach using elastic net regressions with

10-fold cross-validation (Table S10) after imputation of

missing FFQ data via k-nearest neighbours. The model pre-

dicted normalised urinary methanol concentrations based on

FFQ data (Table S11), with the two penalisation parameters

alpha = 0.899 and lambda = 0.005 and an out-of-sample

r-squared value of 0.10 (SI3), meaning that FFQ data could

explain 10% of the variance in urinary methanol levels.

Consistent with the previous results, the largest positive

coefficient was attributed to the frequent consumption of fruit

and vegetable juices (“daily or almost daily”, b = 0.31).

Conversely, the most negative coefficient was related to the

rare intake of flaked oats, muesli and cornflakes (“never or

almost never”, b = −0.14). Potential reasons for the low

amount of explained variance might include the limited accu-

racy of the FFQ and other non-diet-related influence factors on

urinary methanol levels.

3.4 Urinary methanol and lifestyle factors

Consequently, we explored the associations of urinary metha-

nol with basic, behavioural, physiological, and clinical covari-

ates in SHIP-START-0 and SHIP-TREND-0. While we could not

identify associations with clinical covariates, we found strong

associations between urinary methanol and lifestyle indi-

cators. Urinary methanol was positively associated with edu-

cation years, whereas it was negatively associated with physical

inactivity, smoking and alcohol intake (Table 3 and Table S12).

We validated the methanol associations with education,

smoking, and alcohol intake in the replication cohort (Table 3

and Table S13, SI4). However, the explained variance for all

these factors together was low (Table S12 and S13). In con-

clusion, urinary methanol showed associations with health-

related behaviours in the SHIP cohorts, under both fasting

and non-fasting conditions, but the main factors causing

inter-individual variation in methanol levels were not

identified.

3.5 Constraint-based modelling

Since methanol is a metabolic by-product of plants,30 stem-

ming mainly from water-soluble dietary fibre pectin metaboli-

sation, we analysed in a further step, the potential contri-

bution of the microbiome to human methanol pools through

fibre degradation. Investigating the reference set of

7302 microbial metabolic reconstructions of AGORA2,8 we dis-

covered 92 strains belonging to 15 genera (mainly Bacteroides

(39 strains) and Bacillus (24 strains)) that are theoretically able

to produce methanol through fibre breakdown specifically via

the degradation of pectin’s. To explore the contribution of

these species to microbiome methanol production in actual

measured microbiomes, we applied COBRA community model-

ling to 149 individuals with metagenomics data (Table S14)

from the Human Microbiome Project. For each individual, a

personalised microbiome community model was built, and

the maximum secretion potential of methanol was quantified

through flux variability simulations under different diet con-

straints (Table S15).

Gradually incrementing diet constraints (i.e., the maximal

uptake rate) of pectin revealed a continuous rise in methanol

production with increasing pectin intake (Fig. 3a). This was

not observed for incremental increases of xylan diet con-

straints, which served as a control fibre contributing the same

number of additional carbon atoms to the community

(Fig. 3a). Since a wide range of microbes may also produce

methanol as a by-product of biotin synthesis,8 this result indi-

cates that the rise in methanol is not driven by a general

increase in the availability in carbon sources. Instead, the

results point into the direction that microbiome methanol pro-

duction can be specifically attributed to pectin availability.

Thus, the simulations supported the hypothesis that pectin is

a primary source of microbiome methanol production. Indeed,

a previous study demonstrated that fecal bacteria are capable

of releasing methanol through the degradation of pectin.31

The microbiome’s capacity to produce methanol from pectin,

also explains the observed association pattern of food items

with urinary methanol in the SHIP-cohort. Interestingly,

maximal methanol secretion potentials positively correlated

with alpha-diversity, as quantified by Shannon entropy (corre-

lation r = 0.34, p-value = 2.78 × 10−5, Fig. 3d), suggesting that

methanol may serve as a potential biomarker indicative of a

Food & Function Paper

This journal is © The Royal Society of Chemistry 2025 Food Funct., 2025, 16, 7067–7081 | 7073

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 0

5
 A

u
g
u
st

 2
0
2
5
. 
D

o
w

n
lo

ad
ed

 o
n
 1

0
/7

/2
0
2
5
 1

2
:1

8
:0

0
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online



Table 2 Significant urinary methanol associations across food categories

Urinary methanol

Food frequency category ba (95% CI) p-Valueb (all categories) p-Valuec (frequent vs. rare) FDRb (all categories) FDRc (frequent vs. rare)
a. SHIP-START-0: significant associations of urinary methanol across the 33 food categories

Fruit and vegetable juices 0.29 (0.23, 0.35) 2.42 × 10−25 5.59 × 10−20 3.44 × 10−22 7.93 × 10−17

Rice 0.16 (0.08, 0.25) 2.28 × 10−7 1.39 × 10−4 6.46 × 10−5 9.83 × 10−3

Fresh fruits 0.24 (0.06, 0.42) 9.38 × 10−7 1.82 × 10−2 1.90 × 10−4 2.75 × 10−1

Fried potatoes, croquettes, and French fries −0.19 (−0.28, −0.1) 8.87 × 10−5 8.40 × 10−5 8.39 × 10−3 6.60 × 10−3

Flaked oats, muesli, and cornflakes 0.13 (0.06, 0.2) 1.18 × 10−4 1.54 × 10−4 8.79 × 10−3 1.04 × 10−2

Olive oil 0.11 (0.05, 0.17) 1.10 × 10−4 8.84 × 10−5 8.79 × 10−3 6.60 × 10−3

Soft drinks −0.12 (−0.18, −0.06) 1.38 × 10−4 5.48 × 10−5 9.35 × 10−3 4.86 × 10−3

Cooked potatoes −0.18 (−0.43, 0.06) 2.01 × 10−4 9.68 × 10−2 1.19 × 10−2 5.49 × 10−1

White grain bread, black bread, and crispbread 0.05 (−0.02, 0.12) 1.54 × 10−3 2.04 × 10−1 5.08 × 10−2 6.88 × 10−1

Low fat dairy products 0.09 (0.04, 0.14) 2.180 × 10−3 8.21 × 10−4 6.18 × 10−2 3.64 × 10−2

Cakes, pastries, and biscuits −0.08 (−0.14, −0.01) 5.43 × 10−3 2.98 × 10−2 1.13 × 10−1 3.55 × 10−1

Fish 0.06 (−0.02, 0.14) 1.20 × 10−2 1.32 × 10−1 1.92 × 10−1 6.98 × 10−1

Salad or raw vegetables 0.11 (0.04, 0.19) 1.64 × 10−2 5.68 × 10−3 2.30 × 10−1 1.37 × 10−1

Fried sausage, hamburger, doner kebab, and pizza −0.18 (−0.3, −0.06) 2.46 × 10−2 2.35 × 10−3 2.86 × 10−1 8.02 × 10−2

Cooked vegetables 0.28 (0.11, 0.44) 2.71 × 10−2 6.50 × 10−4 2.94 × 10−1 3.18 × 10−2

Candies 0.06 (0, 0.11) 3.91 × 10−2 5.64 × 10−2 3.65 × 10−1 4.44 × 10−1

Cheese 0.17 (0.07, 0.28) 6.29 × 10−2 4.68 × 10−3 4.42 × 10−1 1.19 × 10−1

Butter −0.07 (−0.12, −0.02) 7.39 × 10−2 5.43 × 10−3 4.66 × 10−1 1.33 × 10−1

Urinary methanol

Food items ba (95% CI) p-Valueb (all categories) p-Valuec (frequent vs. rare) FDRb (all categories) FDRc (frequent vs. rare)
b. SHIP-TREND-0: significant association of urinary methanol across the 16 food categories

Salad or raw vegetables 0.14 (−0.01, 0.3) 7.70 × 10−4 8.80 × 10−2 1.20 × 10−2 4.70 × 10−1

Cake, biscuits, and cookies −0.02 (−0.16, 0.12) 4.60 × 10−3 7.90 × 10−1 3.70 × 10−2 8.40 × 10−1

Fresh fruits 0 (−0.31, 0.3) 9.10 × 10−3 9.90 × 10−1 4.80 × 10−2 9.90 × 10−1

Sausages and ham −0.1 (−0.29, 0.09) 3.20 × 10−2 3.30 × 10−1 1.30 × 10−1 6.70 × 10−1

a. SHIP-START-0: results of multiple linear regressions adjusted for PQN (rcs: restricted cubic splines), age (rcs), age–sex interaction term (rcs), sex, waist circumference (rcs), glomerular
filtration rate (eGFR) (rcs), pH-value, physical inactivity, smoking status, alcohol intake during the last 7 days, sex–alcohol intake interaction term, gamma-glutamyl transferase (GGT),
hypertension, years of education, sleeping problems, triglycerides (tgs), white blood cells (wbcs), red blood cells (rbcs), total-hdl-cholesterol ratio, time since the last meal, and prevalence of
diabetes. b. SHIP-TREND-0: results of multiple linear regressions adjusted for PQN, (rcs), age (rcs), age–sex interaction term (rcs), sex, waist circumference (rcs), eGFR (rcs), pH-value, physical
inactivity, smoking status, alcohol intake during the last 30 days, sex–alcohol intake interaction term, GGT, hypertension, years of education, sleeping problems, tgs, wbcs, rbcs, total-hdl-
cholesterol ratio, and prevalence of diabetes. a b-Values per SD. bOverall significant value of the association between urinary metabolites and the categorical variable food items, with all
levels considered collectively within the Wald test. c Significant values of the associations between methanol and frequent (“every day or almost every day” and “several times a week”) vs. rare
consumption (“about once a month or fewer” and “never or almost never”) of food items.
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healthy microbiome, which is characterised by high ecological

diversity.32 Furthermore, by testing the association between

methanol and hippuric acid, a urinary marker of microbiome

diversity, a small but significant inverse association was found

(p-value = 0.049, b = −0.03, and 95% CI: (−0.07, −0.00)), with a

negligible incremental R2 of 0.02%, suggesting methanol and

hippurate may independently reflect microbiome diversity.

To shed light on the individual microbes responsible for

methanol production, we computed the maximum secretion

fluxes of each strain present (Table S15). Additionally, using a

variation of the analysis routes developed by Hertel et al.9 we

calculated the ecological, direct and total contributions of

each microbe to the overall community methanol production

(Fig. 3c). At the broader genus level, we found that Bacteroides

(68.9%) and Faecalibacterium (20.6%) were together respon-

sible for nearly 90% of the total methanol community pro-

duction (Fig. 3b). At the species level, Faecalibacterium praus-

nitzii (20.6%) was computed to produce the highest secretion

contribution, followed by the species Bacteroides ovatus

(19.1%) and Bacteroides stercoris (18.6%) (Table S15). These

Fig. 2 Urinary methanol concentration linked to the comparison of frequent and rare food item categories. (a) Violin plots depicting the significant

correlation between urinary methanol concentrations and food items using residuals of methanol concentration, after regressing out the same vari-

ables as in the main analysis: PQN (rcs: restricted cubic splines), age (rcs), age–sex interaction term (rcs), sex, waist circumference (rcs), glomerular

filtration rate (eGFR) (rcs), pH-value, physical inactivity, smoking status, alcohol intake during the last 7 days, sex–alcohol intake interaction term,

gamma-glutamyl transferase (GGT), hypertension, years of education, sleeping problems, triglycerides (tg), white blood cells (wbc), red blood cells

(rbc), total-hdl-cholesterol ratio, time since the last meal, and prevalence of diabetes. (b) Vulcano plot illustrating the association of urinary methanol

and the categories of food frequency intake with nominal p-values and significant FDR values.
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results align with an earlier study showing that

Faecalibacterium prausnitzii is capable of degrading various

types of pectins.33

Further analyses of ecological effects9 revealed that

Parabacteroides sp. D13 exhibited the highest negative ecological

effect on community methanol production. Thus, while

Parabacteroides sp. D13 itself can produce certain amounts of

methanol, community methanol production was indicated to be

lower in communities with higher Parabacteroides sp. D13 abun-

dance, which could be explained by competitive effects on other

methanol-producing species. In summary, the in silico experi-

ments indicate that the microbiome produces methanol from

pectin. Communities with greater diversity, which is often viewed

as an unspecific protective factor in human health and disease,32

showed higher methanol secretion potentials with the genera

Bacteroides and Faecalibacterium as primary methanol producers.

3.6 Urinary methanol and mortality rates

Given our previous findings, we further investigated urinary

methanol as a predictive biomarker in a prospective survival

analysis using the follow-up data of SHIP-START-0. The cohort

exhibits an overall mortality rate of 26.6% (1067 deaths), with

30.8% (329 deaths) of the deaths attributed to CVD, and 29.1%

(311 deaths) to cancer (Table 1 and Table S16) during a

median follow-up of 11.5 person-years (maximum of 21.5 years

of follow-up).

Regardless of covariate adjustments, we found strong

associations between urinary methanol and cancer, CVD and

all-cause mortality in Cox regressions (Fig. 4a). Kaplan–Meier

curves for tertiles of regression-normalised urinary methanol

concentration (Fig. 4b) revealed higher mortality rates, particu-

larly in the lowest tertile, thereby visually explaining the detec-

tion of nonlinearity (Fig. 4b). To address potential overestima-

tion of hazard ratios in cause-specific Cox regressions, we per-

formed competing risk models, in which neither cancer mor-

tality nor cardio vascular disease mortality remained signifi-

cant (SI5), indicating that the cause-specific findings may

need further corroboration. Note that this caveat does not

apply to the negative association between urinary methanol

levels and all-cause mortality. Noteworthy, methanol stayed

predictive for all-cause mortality in models adjusting for

methanol-associated food items, providing evidence for a

value of urinary methanol as a biomarker beyond FFQ data

(Table S17).

The negative association between urinary methanol and

mortality deserves explanation since methanol is known to be

Table 3 Methanol concentration and correlations with lifestyle factors

SHIP-START-0 (n = 4017) SHIP-TREND-0 (n = 992)

bg (95% CI) p-Value FDR bg (95% CI) p-Value FDR

Basic covariatesa

Sexa — 5.78 × 10−4 2.43 × 10−3 — 0.325 0.568
Agea — 8.03 × 10−4 2.81 × 10−3 — 0.310 0.568
Waist circumferenceb — 1.62 × 10−2 4.25 × 10−2 — 0.020 0.084
eGFRc

— 1.39 × 10−2 4.17 × 10−2 — 0.097 0.292
Behaviour covariatesd

Smoking −0.27 (−0.32, −0.22) 8.13 × 10−25 1.71 × 10−23 −0.17 (−0.28, −0.07) 0.002 0.016
Alcohol intake −0.01(−0.02, −0.01) 4.27 × 10−8 2.99 × 10−7 −0.02 (−0.03, −0.01) 0.000 0.004
Physical inactivity −0.095 (−0.05, −0.14) 7.67 × 10−5 4.03 × 10−4 −0.08 (−0.17, 0.02) 0.126 0.331
Years of education 0.03 (0.02, 0.04) 2.57 × 10−10 2.70 × 10−9 0.03 (0.01, 0.04) 0.002 0.016
Physiological parameterse

tg 0.02 (−0.02, 0.07) 0.257 0.360 −0.04 (−0.13, 0.05) 0.401 0.648
log(crp) −0.00 (−0.02, 0.02) 0.882 0.882 0.01 (−0.03, 0.06) 0.637 0.787
log(ggt) −0.01 (−0.04, 0.03) 0.816 0.856 −0.03 (−0.12, 0.06) 0.493 0.701
wbcs −0.01 (−0.02, 0.00) 0.098 0.171 −0.00 (−0.03, 0.03) 0.951 0.951
rbcs 0.072 (0.01, 0.14) 0.030 0.062 0.09 (−0.03, 0.22) 0.150 0.351
hdl 0.01 (−0.05, 0.07) 0.804 0.856 0.01 (−0.15, 0.13) 0.869 0.912
ldl −0.01 (−0.04, 0.01) 0.237 0.356 −0.014 (−0.06, 0.04) 0.590 0.774
HbA1c −0.04 (−0.07, −0.00) 0.025 0.058 −0.11 (−0.19, −0.02) 0.017 0.084
Clinical phenotypese

Diabetes 0.02 (−0.07, 0.11) 0.645 0.797 −0.03 (−0.24, 0.19) 0.817 0.912
Hypertension 0.05 (−0.01, 0.10) 0.079 0.150 0.01 (−0.09, 0.11) 0.829 0.912
MetS 0.04 (−0.02, 0.09) 0.222 0.356 0.08 (−0.05, 0.20) 0.220 0.461
MI 0.01 (−0.05, 0.07) 0.731 0.853 0.04 (−0.08, 0.16) 0.501 0.701
CKD f 0.035 (−0.05, 0.12) 0.414 0.543 0.18 (−0.03, 0.39) 0.090 0.292

Abbreviations: eGFR, estimated glomerular filtration rate; tg, triglyceride; crp; c-reactive protein; ggt, gamma-glutamyl transferase; wbcs, white
blood cells; rbcs, red blood cells; hdl, high density lipoprotein; ldl, low density lipoprotein; HbA1c, glycated haemoglobin; HDL-C, high density
lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; MetS, metabolic syndrome; MI, myocardial infarction; CKD, chronic kidney
disease; SD, standard deviation; and FDR, false discovery rate. a Adjusted for PQN (rcs), pH, and sex–age interaction (rcs). b Adjusted for waist cir-
cumference (rcs), PQN (rcs), pH, and sex–age interaction (rcs). c Adjusted for eGFR (rcs), PQN (rcs), pH, and sex–age interaction (rcs). d Adjusted
for smoking, alcohol–sex interaction, physical inactivity, education, waist circumference (rcs), eGFR (rcs), sex–age interaction (rcs), PQN (rcs), and
pH-value. e Variables considered individually with adjustment for smoking, alcohol–sex interaction, physical inactivity, education, waist circum-
ference (rcs), eGFR (rcs), sex–age interaction (rcs), PQN (rcs), and pH-value. f Adjustment for CKD, smoking, alcohol–sex interaction, physical inac-
tivity, education, waist circumference (rcs), eGFR (rcs), sex–age interaction (rcs), PQN (rcs), and pH-value. g b-Values = per SD.
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toxic at high concentrations. Blood methanol levels above

200 mg L−1 are associated with adverse effects on the central

nervous system, with severe acute toxicity above 500 mg L−1

and fatality at levels exceeding 1500 mg L−1,34 known from

cases of contamination in alcoholic beverages35 or occu-

pational exposure.36 The toxicity of methanol arises from two

primary mechanisms. The first one is related to the direct

depression of the central nervous system, similarly to ethanol

poisoning.37 The second one involves the conversion of metha-

nol to toxic formaldehyde via alcohol dehydrogenase, resulting

in cellular hypoxia and several other metabolic

disturbances.37,38 The metabolisation of methanol predomi-

nantly occurs in the liver (70–97%), while minor amounts are

excreted non-metabolically through urine and lungs.38

Nevertheless, methanol is physiologically present in small

amounts in humans.39 Accordingly, the urinary concentration

observed in this study can be rated as being in the physiologi-

cal range. Interestingly, the toxic methanol catabolite formal-

dehyde has been shown to have positive effects at low doses.

In plants, formaldehyde can influence growth and photosyn-

Fig. 3 (a) Maximum secretion fluxes of methanol under an Average European Diet (AED) and under the AED with gradually increasing diet con-

straints of pectin and xylan. (b) Average maximum individual secretion fluxes of microorganisms summarized at the genus level. (c) Direct, ecological

and total effects of the different strains present in the community models calculated based on the individual secretion fluxes. (d) Scatterplot of

alpha-diversity measured in Shannon entropy and the maximum secretion flux of methanol (correlation r = 0.34, p-value = 2.78 × 10−5).
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thetic pigments, while in animal cells, it can positively impact

cell proliferation and viability.40,41 Given the hermetic

response displayed by the methanol catabolite

formaldehyde40,41 and this study showing a positive link

between methanol and longevity, it can be speculated that low

doses of methanol are act in a hormetic manner.

Besides the bound form of methanol in pectin, free metha-

nol can be found in plant-based foods (e.g. 11–68 mg L−1 in

fresh squeezed fruit juices),42 or as a catabolite of aspartame, a

synthetic non-nutritive sweetener.38 It is also present at low

levels in most alcoholic beverages, without conferring health

risks.43 Importantly, we found a negative association between

urinary methanol concentrations and alcohol intake in the

SHIP cohorts, indicating that low concentrations in non-con-

taminated alcoholic beverages are not a major source of

normal human methanol pools. Our study provides support

for the contribution of free methanol from dietary sources

besides bound methanol from pectin degradation, to human

methanol levels, yet their precise contributions remain

unclear.38,39 Pectin, putatively the primary dietary source of

methanol, has been shown to enhance the diversity and abun-

dance of beneficial microbial communities.44 Its microbial

degradation improves gastrointestinal immune barrier func-

tion through the production of short-chain fatty acids and pro-

motes the adhesion of commensal bacteria while inhibiting

the adhesion of pathogens to epithelial cells.44 This raises the

hypothesis that microbial methanol may help modulate gut

inflammation, though this remains to be shown. Beyond

pectin, methanol as a biomarker for beneficial microbiome–

host–diet interaction may also be a marker for a variety of bio-

active compounds in foods, such as melanoidins, polyun-

saturated fats, inulin, and oligosaccharides, highlighting the

Fig. 4 Association of methanol concentration and mortality rates. Abbreviation: CVD, cardiovascular diseases; SD, standard deviation (a). Methanol

concentration in association with mortality rates in SHIP-START-0. (b). Kaplan–Meier survival probability curves as well as the significant values of a

log-rank test for the mortality of all causes, cardiovascular diseases and cancer using residuals of methanol concentration, adjusted for the probabil-

istic quotient normalisation (PQN).
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need for further study. For instance, fiber intake enhances

SCFA production like butyrate, which may promote methanol

generation via pathways not yet included in AGORA2.

3.7 Strengths and limitations

Regardless of the robust findings across two independent

cohorts and multiple lines of analysis, several limitations have

to be discussed. Utilising NMR allowed us to identify and

quantify methanol, a metabolite previously missed in food-

metabolome analyses. However, the relatively high detection

limit and the targeted nature of the applied NMR methodology

poses a limitation, restricting the scope of metabolome ana-

lysis and thus missing important microbial degradation pro-

ducts such as butyrate. Second, despite the findings related to

a potentially high fibre diet–microbiome–host interaction, the

FFQ utilised in the SHIP cohort is not specifically tailored to

measure fibre intake in a quantitative way. Moreover it does

not differentiate between sources from processed and unpro-

cessed foods, such as fruit juices or soft drinks, which may

contain fibre-like compounds or additives with differing

microbial fermenting and bioactivity, potentially influencing

microbial fibre degradation.45,46 Future studies should explore

the relationship between urinary methanol and dietary fibre in

greater detail. Additionally, the measurement of dietary habits

through the FFQ could be biased by participants’ self-reported

food-intake frequencies, adding unwanted variability and

masking true food–metabolite associations. Given the ordinal

nature of the FFQ, quantitative relations between food frequen-

cies and metabolite could not be established, and as such

further research is necessary to identify the quantitative

relation between fibre intake and urinary methanol. Third, the

validity of our findings may be influenced by unmeasured con-

founding due to the observational design, and the hypothesis

of methanol being a marker for pectin intake requires further

experimental tests. Fourth, normal fluctuations over time in

microbial composition alongside microbial and host meta-

bolic activity causing substantial inter-individual and intra-

individual variability, may modulate methanol excretion and

thereby affect its predictive value.47 Finally, the results may not

generalise to populations with different diet patterns due to

regionally restricted nature of SHIP data, which exclusively

originates from north-eastern Germany and shows very low

ethnic diversity.12 However, the integration of mechanistic

microbiome community modelling provided additional evi-

dence for a microbiome-mediated contribution to human

methanol pools.

4. Conclusion

In conclusion, we have provided consistent evidence that

urinary methanol is a valuable biomarker for protective diet–

microbiome interactions linked to microbial pectin degra-

dation, as demonstrated in two independent population

studies, microbiome modelling of an independent sample

with publicly available metagenomics data, and prospective

survival analysis.
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from 149 healthy adult gut microbiome samples from the

Human Microbiome Project had been mapped to the nomen-

clature of AGORA48 previously.21 The mapped relative abun-

dances are available at https://GitHub.com/SysPsyHertel/

CodeBase. All scripts utilised to generate results for this manu-

script can be found at https://GitHub.com/SysPsyHertel/

CodeBase.

Supplementary information containing detailed tables sup-

porting the analyses presented in this manuscript is available

at DOI: https://doi.org/10.1039/d5fo00761e.
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