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Introduction: Cognitive decline is part of the normal aging process, but
also a major risk factor for dementia. Cognitive training interventions aim
to attenuate cognitive decline, but training gains need to be transferable to
untrained cognitive abilities to influence everyday function. Furthermore, the
neurobiological basis of cognitive training gain transfer remains elusive. A
possible candidate is increased bilateral hemisphere usage enabled by efficient
structural connectivity, especially of prefrontal regions. Therefore, the present
multicentric study used a cognitive training intervention to demonstrate training
transfer and identify neurobiological modulators of successful transfer.

Methods: In total 235 subjects were enrolled in AgeGain; 180 underwent
a broad 4-week cognitive training intervention at three study sites. Pre-
and post-training neuropsychological testing was conducted and successful
transferers were identified according to preregistered definitions. Pre-training,
subjects underwent diffusion and functional MRI to assess interhemispheric
connectivity, measured as microstructural integrity of the corpus callosum
and lateralization of functional activation patterns during a cognitive control
task. Logistic regression models were estimated to predict successful transfer
based on structural connectivity and bilateralization of activation patterns.
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Results: Out of 180 subjects, 74 showed short-term training gain transfer that
was maintained over 3 months in 19 subjects. Neither microstructural integrity of
the corpus callosum, nor bilateralized activation predicted training gain transfer
alone. However, their interaction was associated with long-term transfer over
3 months: subjects with higher mean diffusivity of the corpus callosum and
more bilateral functional activity or conversely with lower diffusivity of the
corpus callosum and more lateral functional activity were more likely successful
long-term transferers.

Discussion: We demonstrated successful training gain transfer in 41.1%
of subjects, among whom 25.7% maintained the transfer over 3 months.
Successful long-term transfer of training gains may depend on divergent
mechanisms of structural and functional connectivity, which may explain
previous heterogeneous results in the literature.

Trial register: German Clinical Trials Register (DRKS), ID: DRKS00013077.
Registered on November 19th 2017.

KEYWORDS

cognitive training, cognitive transfer, healthy aging, functional connectivity,
interhemispheric structural connectivity

1 Introduction

Cognitive decline is a common process in normal aging and
may deteriorate to mild cognitive impairment (MCI) and dementia
(Murman, 2015). Cognitive training has been proposed as a means
to attenuate the cognitive decline during normal aging. One of
the most common forms of application of cognitive training is
computerized training, showing good effectiveness in improving
trained task performance, e.g., Guye et al. (2017). Among other
forms of computerized training, training in the lab is still widely
used because it allows for higher application standardization
and better control of possible training biases (i.e., control over
dosage of training, ruling out factors biasing attention, timing
of training).

Improvements in trained tasks that also lead to improvement
in untrained tasks is generally referred to as cognitive transfer.
Successful transfer is highly desirable as it could indicate that
training gains will have a positive impact on everyday cognitive
functioning of subjects. Additionally, transfer effects should be
maintained over time if they are to support healthy aging. A vast
amount of studies on cognitive training effects have focused on
working-memory training with heterogeneous results considering
transfer effects (Ripp et al., 2022; Karbach and Verhaeghen, 2014).
Another important cognitive domain entails higher-level executive
functions, requiring a complex interplay between several executive
functions, e.g., inhibition or working memory (Diamond and
Wright, 2014). These higher-level executive functions become
increasingly important for everyday functioning in older age
and might therefore benefit specifically from training (Willis
et al, 2006). One of these functions is logical reasoning, for
which we found transfer effects in the past (Wolf et al,
2014).

While transfer effects of cognitive training have repeatedly
been found, the neurobiological basis of cognitive transfer is
not well understood. According to the hemispheric asymmetry
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reduction of older adults model (HAROLD; Cabeza, 2002),
elderly participants might compensate cognitive decline on a
neural level by increasing bilateral activation. We were able to
show this phenomenon under increased task demands in young
participants (Sebastian et al., 2013b) and on lower task demands in
healthy elderly participants performing inhibition tasks of different
quality (Sebastian et al., 2013a). Similarly, the scaffolding theory
of aging and cognition (STAC; Reuter-Lorenz and Park, 2014)
proposes that learning and skill acquisition, as occurs during
cognitive training, results in the compensatory use of additional
brain circuits to enable good task performance. Scaffolding is
assumed to occur mainly in prefrontal brain regions (Reuter-
Lorenz and Park, 2014), which are also the same regions which
support executive functioning (Diamond and Wright, 2014), a
key domain assessed in cognitive training. Consequently, bilateral
brain activation might be a prerequisite for successful cognitive
transfer (Wolf et al., 2018). Good structural integrity of the white
matter pathways connecting the hemispheres appears to be a
prerequisite in order to achieve bilateral activation patterns in
the brain. Indeed we previously demonstrated that long-term
transfer of cognitive training gains in healthy elderly were related
to the structural integrity of the corpus callosum (Wolf et al,
2014).

The two aims of the present study are as follows: First, to
reproduce the successful transfer of gains in a trained cognitive task
to an untrained cognitive task as in the precursor study by Wolf
et al. (2014). Second, to investigate the structural and functional
neurobiological mechanisms underlying successful short- and
long-term training transfer in healthy aging in more detail as per
the primary objectives of the AgeGain study protocol (Wolf et al.,
2018). The AgeGain study is a multicenter randomized controlled
cognitive training study in healthy older adults. Assessments
include structural integrity of the corpus callosum by means of
diffusion tensor imaging (DTTI), as well as bilaterality of task-related
cortical activity using the functional MRI-derived lateralization
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index (LI). The LI quantifies brain activation lateralization during
functional imaging tasks. In the current study, a response inhibition
task, combining several inhibitory processes of differing task
demands, has been chosen to elaborate on previous findings
(Sebastian et al., 2013a). To control the practive effect on the
transfer task, a control group was included that did not receive
cognitive training. Based on previous findings from our group and
an ex-ante definition of transfer, we expected to observe short-
and long-term training gain transfer in a higher-level executive
functions task in a subgroup of our participants. We expected long-
term training gain transfer to be related to better structural integrity
of the corpus callosum. Additionally, we expected higher bilateral
processing in successful transferers, as demonstrated by increased
bilateral activation during a response inhibition task measured in
the scanner. Here, increased bilateral brain activation should be
most evident with increasing cognitive task demands.

2 Methods

Design and study sample

The data used in this study was taken from the AgeGain
study sample, a multicentric, multimodal imaging, interventional,
longitudinal, parallel group study using a RCT design for subject
group assignments. The study was preregistered with the German
Clinical Trials Register (DRKS), ID: DRKS00013077, on November
19th 2017. The aim of the AgeGain study was on the one hand
to reproduce successful transfer of training gains in a cognitive
training intervention, and on the other hand to investigate
neurobiological modulators of cognitive training gain transfer. To
this end, 235 cognitively healthy elderly subjects aged over 59
were recruited at the university medical centers in Mainz and
Rostock and the German Sport University Cologne between 2016
and 2019 by means of newspaper announcements and flyers. One
hundred and eighty one subjects underwent a 4-week cognitive
training intervention as well as pre-training MRI and pre-training,
post-training and follow-up neuropsychological examinations (see
below). Fifty four subjects were randomly assigned to the control
group that did not receive cognitive training or MRI. Written
informed consent was obtained by all subjects and the study
protocol was approved by the respective local ethics commission.
Exclusion criteria were psychological, neurological or cognitive
illnesses, cardiovascular disease, disorders restricting physical
capacity, diabetes, medication affecting cognitive performance,
insufficient German language skills, current participation in other
trials and MRI contraindications. The design of the study has been
published previously (see Wolf et al., 2018 for details).

Of the 181 subjects in the intervention group that received
cognitive training, 180 subjects with complete neuropsychological
assessment and cognitive training data were included. Of these,
166 received diffusion-weighted imaging (DWI) scans, while 139
had complete functional MRI (fMRI) scans. For an overview of
respective demographic data, please refer to Table 1. In order to
assess retest effects of transfer tasks, the 54 subjects that did not
receive cognitive training nor MR imaging were included as a
control group.
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Neuropsychological examination

The neuropsychological examination was conducted
immediately prior to the 4-week cognitive training intervention
(pre-training), after the

intervention (post-training) and as a follow-up examination 3

immediately cognitive  training
months after the cognitive training intervention. The examination
included several common cognitive measures from multiple
domains. The cognitive measure used as an endpoint for
the cognitive training gain transfer in this study was the
Leistungspruefsystem (achievement measurement system) subtest
4 (LPS4; Horn, 1983), which refers to fluid intelligence and is
comparable to the Raven Matrices. In order to assess general
intelligence, a short version of the revised Hamburg Wechsler
Intelligence test (HAWIE-R) was applied (Tewes, 1991).

Cognitive training

Cognitive training was conducted as three 60-min sessions per
week over the course of four weeks (12 in total). Cognitive training
was conducted within two dedicated rooms, where each subject was
seated in front of a personal computer equipped with headphones
and the necessary training software. Subjects were instructed not
to seek advice or contact with other subjects during training and
opaque screens where used to shield subjects from each others’
view. To rule out any biasing effects from differences in training
dose or training administration, the cognitive training was applied
under supervision of an experimenter. Further, to rule out mere
practice effects on the transfer tasks assessed, a control group was
included, that did not receive any training.

The cognitive training intervention consisted of computerized
cognitive training tasks spanning several cognitive domains.
Specifically, executive functions, memory and information
processing speed were trained using the subtests “comparisons,”

» «

“searching,” “logic,” “anagrams,” and “complete a logical block”
within the computer program Cogpack (Marker, 2008). Attention
capacities were trained using the subtests “alertness” and “divided
attention” within the computer program TAP (Zimmermann and
Fimm, 2015). For the training of working memory, the subtests
“complex span” and “tower of fame” within the computer program
TATOOL (Von Bastian et al., 2013) were employed. Subjects could

familiarize themselves with the training tests in one test session.

Cognitive training transfer

The cognitive training gain transfer was defined ex-ante and
previously published along with the study protocol (Wolf et al.,
2018). Cognitive training gain transfer was divided into a short-
term and a long-term component, both defined as dichotomous
variables. For short-term transfer, subjects needed to fulfill the
following conditions: (1) an improvement in the logical reasoning
training task in the last training session compared to the second
training session, (2) an improvement in the untrained fluid
intelligence task (LPS 4) from the pre-training neuropsychological
examination to the post-training neuropsychological examination,
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TABLE 1 Descriptive group statistics of transferers vs. non-transferers.

10.3389/fnagi.2025.1587395

STT no STT p LTT no LTT p

N 74 106 19 161

Female 39 51 11 79

Age 68.8 + 6.0 67.9+52 0.4219 70.8 4+ 7.2 68.0 4+ 5.3 0.1078
Education 158 +29 158 +2.6 0.8236 153+29 159+27 0.4551
HAWIE-R 116.6 + 10.9 11724112 0.9420 116.0 + 8.8 117.14+11.3 0.5387
Training task 4594+ 18.6 462.9 £ 21.70 0.0319* 451.6 £ 24.7 462.6+19.7 0.0143*
Transfer task 237 +42 266 +3.5 <0.0001 231439 25.6 + 4.0 0.0188*

Mean = standard deviation. STT, short-term transfer; LTT, long-term transfer; Education, in years; HAWIE-R, revised Hamburg Wechsler Intelligence Test; Training task, logical reasoning

training task performance at baseline; Transfer task, Leistungspruefsystem subtest 4 executive function cognitive training gain transfer task performance at baseline; P, p-values of Wilcoxon test;

*statistically significant at p < 0.05 level.

(3) the improvement in the untrained intelligence task needed to
be greater than the mean difference between examinations in the
control group that did not undergo cognitive training, in order to
account for retest effects.

For long-term transfer, subjects needed to fulfill the conditions
for short-term transfer as well as two additional conditions: (1)
maintenance of the improvement in the untrained fluid intelligence
task from post-training to follow-up examination, (2) the difference
from post-training to follow-up needed to be greater than the group
mean difference between examinations in the control group, in
order to account for retest effects.

Hybrid response inhibition task

A so-called hybrid response inhibition (HRI) task was applied,
combining characteristics of a Simon, Go/NoGo, and Stop signal
task. It enables the identification of component-specific neural task
activation for response interference inhibition, action withholding,
and action cancellation, respectively. Subjects underwent three runs
of the task, preceded by a brief practice trial outside of the scanner
on a laptop to ensure that all participants understood the task.
The task was programmed in Presentation (version 13.0, http://
www.neurobs.com). Participants responded via a button press with
their left or right index finger, using a LUMItouch Box, which was
placed in the left and right hand. Four different conditions were
presented: a congruent go condition (62.5% of trials), incongruent
go condition (12.5%), NoGo condition (12.5%), and a stop
condition (12.5%). Notably, the stop and NoGo conditions entailed
only congruent target stimuli. The stop signal delay (SSD) in the
stop condition was adaptive to participants performance, using a
staircase procedure, to ensure a rate of about 50% of successful
inhibitions per participant per run. More precisely, following a
correct response, the response window was increased by 50 ms
on the subsequent run, while it was decreased by 50 ms after
unsuccessful stop trials, where a commission error occurred. The
initial SSD of each run was set to 220 ms. Each run consisted of 160
trials in pseudo-randomized order (for more details, see Sebastian
et al., 2013b).

Mean reaction times and accuracies were computed from the
Presentation output using Matlab 2012b (The Mathworks Inc,
Natick, Massachusetts, USA). The interference effect was calculated
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through the subtraction of the mean reaction times (RT) of
congruent go trials from that of the incongruent go trials. The stop
signal reaction time (SSRT) was estimated using the integration
method. Here, go RTs of correctly answered go trials (congruent
and incongruent ones combined) are ranked according to response
speed. Of note, omissions (i.e., missing responses on go trials) are
replaced with the respective maximum go RT for congruent and
incongruent trials over all runs, respectively (Verbruggen et al,
2019). Subsequently, the probability of responding given a stop
signal is calculated, including premature responses on unsuccessful
stops and mean SSD (Verbruggen et al., 2019). The stop process
finishes at the n-th RT, which is the amount of RT in the distribution
of go trial RTs times the likelihood of responding given a stop
signal. The mean SSD is then subtracted from the n-th percentile
of the ranked go RTs to obtain the SSRT (Verbruggen and Logan,
2009). Based on the recommendations by Verbruggen et al. (2019),
n = 6 participants with a probability <0.25 of responding given a
stop signal were excluded. Further, participants with too many go
omissions (i.e., no response on go trials) were excluded. For this, the
cutoff was set to >15% go omissions, resulting in # = 3 participants,
that had to be excluded from further analyses.

Structural imaging data and processing

T1 and DWI images were acquired on three different Siemens
3T scanners - a Prisma in Cologne, a Trio in Mainz and a Verio in
Rostock. The same T1 and DWI sequences were implemented on
these scanners. Specifically, for T1 weighted images a Generalized
Autocalibrating Partial Parallel Acquisition sequence was used with
a repetition time of 1,900 ms, an echo time of 2.52 ms, an isotropic
voxel size of Imm 3. For DWI images, an echo planar multiband
sequence was used with a multiband factor of 3, a repetition time
of 5,500ms, an echo time of 104ms and an isotropic voxel size of
2#2%2mm >. 64 diffusion gradient directions were sampled at b =
2,000s/mm 2. Additionally, two b = 0 images were acquired as well
as one b = 0 image with inverted phase encoding direction.

T1 weighted data were tissue segmented and non-linearly
registered to standard MNI space using DARTEL included in
SPM12 (Ashburner et al.,, 2014). Spatial distortions in the diffusion-
weighted images were corrected using Eddy from the software
package FSL 6.0.4 (Andersson and Sotiropoulos, 2016). Diffusion
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tensors were fitted to the diffusion-weighted images using an
iterated weighted least squares approach, and fractional anisotropy
(FA) and mean diffusivity (MD) were calculated from the tensors’
eigensystems using MRTRIX 3.0.2 (Tournier et al, 2019). B0
images were then coregistered to the T1 images in native space
using affine transformations. FA and MD images were then
transformed to T1 native space using the estimated coregistration
parameters and subsequently transformed to MNI space using the
previously estimated non-linear transformations from DARTEL.
Finally, mean FA and MD values for the genu and the corpus
of the corpus callosum were calculated using the corresponding
ROIs from the JHU ICBM white matter label atlas. Processing of
diffusion weighted images failed for one of the 166 subjects that had
received DWT and was thus excluded.

Functional imaging data acquisition,
preprocessing, and statistical analyses

Functional T2*-weighted images were assessed with echo
planar imaging (EPI) multiband sequences (TR = 1,000ms, TE
= 29.0ms, flip angle= 56°, FOV= 210mm, voxel size = 2.5mm
isotropic, multiband acceleration factor = 4; 60 slices per run). The
HRI task consisted of three runs of equal length.

Data were preprocessed and statistically analyzed using SPM
12 (Wellcome Department of Cognitive Neurology) running on
Matlab 2012b (The Mathworks Inc, Natick, Massachusetts, USA).
Images with excessive head motion (>2.5mm) were excluded from
the analyses. This applied to n = 16 participants, resulting in a final
sample of n = 139 participants. The first five functional images of
each run were discarded to account for equilibrium effects. Further,
images were reoriented to the SPM T1-template. To correct for
remaining movement artifacts between scans, functional images
were spatially realigned to the mean image using a 6 parameter rigid
body transformation. Realigned images were then co-registered to
the subject’s individual structural image in native space. Estimated
parameters, using DARTEL, were used to normalize images into the
Montreal Neurological Institute (MNI) standard space. In the last
step, normalized images were smoothed with an 8mm full width at
half maximum Gaussian kernel.

In first-level analyses, the data was fit using a General linear
model (GLM). Events were modeled as stick functions at stimulus
onset (i.e., appearance of arrow; Aron and Poldrack, 2006) and
convolved with a canonical hemodynamic response function.
The model entailed four regressors of interest (correct reactions
for congruent go, for incongruent go, for NoGo, and for stop
trials) and the instruction, fixation cross, incorrect reactions for
each condition, and six motion regressors as nuisance regressors.
Subsequently, three different main contrasts were computed:
incongruent go > congruent go, NoGo > congruent go, and stop
> congruent go.

Laterality index

The laterality of the brain activation was calculated using
the LI-toolbox, version 1.3.2 (Wilke and Lidzba, 2007) on SPM
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12. The laterality index for each participant was computed per
main contrast from individual statistical t-maps derived from the
first-level analyses. To assure that only activation in task-relevant
regions was taken into account, only those voxels were included in
the LT whose activity was significantly associated with the respective
task (see previous section) after FWE correction at p < 0.05 and
with a minimum cluster size of k = 10. To this end, a binary bilateral
inclusion mask was created for each respective contrast. As with all
visually presented imaging tasks, also the HRI task generates a lot
of activation in visual areas, which, however is irrelevant for the
laterality information in the current work. To reduce the influence
of this visual activation on the calculation of the laterality index, we
additionally used an exclusion mask of the occipital cortex for the
analyses. This exclusion mask also consisted of the midline +/—
5mm, to rule out any artificial activity common in this area (Wilke
and Lidzba, 2007). The laterality index is defined as:

D activationjey — ) activation g

L= D activationjen + ) activation gy

Here, activation refers to the first-level analyses t-maps
reflecting activity during the respective tasks. Furthermore, in
order to reduce the impact of outliers, a bootstrapping method
was applied, iteratively drawing # = 100 resamples for each side
from the masked and thresholded voxels on the right and left
side of the input images. These resamples were tested against
increasing thresholds, calculating an upper limit of 10,000 possible
lateralization indices per threshold. To reduce the influence of
single voxels, a lower boundary of 5 voxels per cluster surviving
the threshold was defined. A trimmed mean was applied to the
obtained laterality indices, only taking the mean 50% of data points
into account, disregarding the upper and lower 25% of data, thereby
reducing the impact of skewed distributions. To put an emphasis
on voxels meaningful for the task, a so-called weighted mean (wm)
was calculated from the trimmed means of all thresholds. For this, a
weighting factor was applied, that is equal to the threshold survived
by a given data point. Hence, laterality indices were weighted more
strongly at higher thresholds (Wilke and Schmithorst, 2006). The
resulting value ranges between 1 (completely left-lateralized) and -
1 (completely right lateralized), with a value around 0 indicating
bilaterality. As we were interested in contrasting bilateral versus
unilateral brain activation, we considered the absolute of the
LI throughout subsequent statistical analyses. See Figure 1 for a
schematic description of the LI.

Statistical analyses

Statistical analyses were devised in accordance with the
previously published study protocol (Wolf et al., 2018). Retest
effects in the training gain transfer task LPS4 were calculated
descriptively from the control group as the mean difference of the
assessments corresponding to the post-training and pre-training
measurements with respect to short-term transfer and as the
mean difference corresponding to follow-up and post-training
with respect to long-term transfer. Subjects of the intervention
group were then classified into short- and long-term transferers
and non-transferers according to the definition given above. We
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FIGURE 1

Laterality index schematic. This schematic intends to demonstrate how lateral activation scenarios are mapped by the laterality index. Very similar
activation in both hemispheres corresponds to values close to zero. Higher activation in one hemisphere than in the contralateral hemisphere
corresponds to values closer to one. Notably, the index is sensitive to differences in relative activation levels only and does not depend on absolute

activation strength.

calculated descriptive statistics and group comparisons for short-
and long-term transferers and non-transferers for the variables age,
years of education, HAWIE-R, baseline logical reasoning training
task performance, and baseline LPS4 training gain transfer task
performance using Wilcoxon tests. To investigate center effects, we
estimated binary logistic regression models, where short-term (ST)
and long-term (LT) transferer/non-transferer were set as dependent
variable and study site coded as dummy variables were set as
independent variables.

Subsequently, binary logistic regression analyses were
conducted with transferer/non-transferer set as dependent
variable, FA or MD of the genu or the corpus of the corpus
callosum as independent variable and age as covariate in the
subgroup of 165 subjects with DWI measures (Wolf et al., 2018).
To investigate nonlinear effects, regressions were re-estimated with
an added quadratic term of the independent variable. For the group
of 139 subjects with fMRI data, the same regression models were
estimated with the LI of the Simon, Go/NoGo and Stop tasks as
independent variables. These models were also re-estimated with
an added quadratic term of the respective independent variable
to investigate possible non-linear effects. As subjects with high
training task improvement might not have depended on more
bihemispheric processing for successful training gain transfer, the
models with LI as independent variable were re-estimated with
cognitive training gain as additional independent variable as well
as its interaction with LI. Training gains were calculated as the
difference of the logical reasoning training task score between the
last and the first training session. Finally, interaction effects of
LIs with FA or MD values of the corpus callosum were estimated
to investigate, whether the association of the structural integrity
of the corpus callosum with ST and LT was dependent on more

bihemispheric processing.
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For the models with added quadratic or interaction terms,
the difference of the Akaike Information criterion (delta AIC)
(Akaike, 1998) compared to the corresponding models with
quadratic or interaction terms removed was calculated. Statistical
significance testing was carried out, if delta AIC was greater
than two, indicating an improvement in the model. For
statistically significant results, models were re-estimated using
robust generalized regression models.

Statistical analyses were calculated using R version 4.4.1 (R Core
Team, 2024) and the package ggplot2 version 3.5.1 was used for
figures (Wickham, 2016).

3 Results

The mean difference for LPS4 in the control group between
initial assessment and 4 weeks later (corresponding to pre-training
and post-training in the intervention group) was -0.093, as
well as 1.35 between the second assessment and 3 months later
(corresponding to post-training and follow-up in the intervention
group). Of the 180 subjects included that received the training
intervention, 74 descriptively demonstrated training gains and
an improvement in the LPS4 training gain transfer task at post-
training, which was higher than -0.093 in the control group. They
were thus classified as ST transferers according to the ex-ante
definition (see above). Of these ST transferers, 19 subjects showed
an improvement up until follow-up greater than 1.35 in the control
group and were thus classified as LT transferers.

Group statistics did not demonstrate differences between
ST/LT transferers and non-transferers with regard to age, years
of education or IQ. However, ST transferers had lower baseline
cognitive training task (p = 0.0319) and training gain transfer
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TABLE 2 Results of binary logistic regression analyses.

STT LTT

Predictor Estimate P Estimate P

Genu FA -0.6409 0.7761 2.1302 0.6089
Corpus FA 1.140 0.7834 -0.8979 0.8924
Genu MD 1.534 0.5491 2.3389 0.5385
Corpus MD 0.2273 0.9479 3.9795 0.4512
LI Simon -1.1630 0.2360 -1.0303 0.4905
LI Go/NoGo -0.3204 0.7217 0.4639 0.7289
LI Stop -0.3628 0.6832 -1.5744 0.2350

STT, short-term transfer; LTT, long-term transfer; Predictor, independent variable; Estimate,
corresponding regression estimate; P, corresponding p-value; Genu, genu of the corpus
callosum; Corpus, corpus of the corpus callosum; FA, fractional diffusion anisotropy; MD,
mean diffusivity; LI, lateralization index.

task performances than non-transferers (p < 0.0001). Likewise, LT
transferers had lower baseline cognitive training task (p = 0.0143)
and training gain transfer task (p = 0.0188) performances than
non-transferers (see Table 1 for group statistics). Binary logistic
regression analysis did not indicate significant center effects on the
ST and LT transfer variables. P-values were p = 0.341 and p = 0.803
for the two dummy variables encoding study site.

Binary logistic regression analyses did not demonstrate any
significant prediction of group membership (transferer vs. non-
transferer) for FA or MD of the genu and corpus of the corpus
callosum, neither between ST transferers and ST non-transferers
nor between LT transferers and LT non-transferers. Likewise,
laterality indices, calculated based on the activation patterns during
the Simon, Go/NoGo, and Stop tasks, did not significantly predict
transfer, neither between ST transferers and ST non-transferers,
nor between LT transferers and LT non-transferers (see Table 2
for an overview of estimates and corresponding p-values). Adding
baseline performance as covariate into the analyses did not change
these results.

Models with an added quadratic term did not show an
improvement over the corresponding reduced model, neither for
DTI measures of the corpus callosum nor for LIs, according to delta
AIC, which ranged from -1.98 to 0.99. Likewise, models with an
added interaction term for LI and training gains did not show an
improvement over the corresponding reduced model according to
delta AIC, which ranged from -1.99 to -0.34.

Finally, two models with an interaction term for DTT measures
of the corpus callosum with LIs showed a substantial improvement
over the reduced model without the respective interaction term.
Predicting LT transfer, delta AIC was 8.2 for the model with an
interaction term of MD of the genu with the LI of the Go/NoGo
task, and 3.0 for the model with an interaction term of MD of
the corpus with the LI of the Go/NoGo task. The corresponding
p-values were 0.00333 and 0.0335 for the respective interaction
terms. Interactions were such that subjects with higher MD in
the genu or corpus of the corpus callosum and simultaneously
more bihemispheric activation during the Go/NoGo task were
more likely to be LT transferers. Robust model estimates for these
interaction results were somewhat lower, the interaction of the genu
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TABLE 3 Results of interaction analyses.

Model term  Estimate p Robust
estimate

Genu MD 5.3339 0.3678 3.4954 0.5861
LI Go/NoGo 0.2925 0.8607 0.9725 0.6089
Interaction -82.7112 0.0033* -69.8578 0.0175*
Corpus MD 9.2410 0.1414 5.0293 0.4529
LI Go/NoGo 1.1318 0.4635 0.9881 0.5376
Interaction -63.0091 0.0335* -54.7633 0.0803

Long term transfer was set as dependent variable, mean diffusivity (MD) of the genu or of the
corpus of the corpus callosum, laterality index (LI) during the Go/NoGo task as well as their
interaction term were set as independent variables. *, statistically significant at p < 0.05 level.

MD with the LI yielding a p-value of 0.0175 and the interaction
of the corpus MD with the LI yielding a p-value of 0.0803, thus
reducing to a trend. For an overview, please refer to Table 3.

4 Discussion

Using a 4-week cognitive training intervention in a multicenter
multimodal imaging study, we were able to demonstrate cognitive
training gain transfer from a logical reasoning task to an untrained
fluid intelligence task according to a training gain transfer measure
defined ex-ante. Specifically, 74 out of 180 subjects (41.1%) showed
successful short-term transfer immediately after the cognitive
training intervention. The cognitive training gain transfer was
stable over a period of 3 months in 19 out of these 74 subjects
(25.7%), indicating long-term transfer. Short- and long-term
improvements in the transfer effects were numerically greater than
performance differences in the control group, indicating a true
transfer effect, rather than a retest effect due to task familiarity
over time. Neither successful short-term nor long-term cognitive
training gain transfer were predicted by bihemispheric functional
activation patterns or interhemispheric structural connectivity of
the genu and corpus of the corpus callosum. However, results
indicated an interaction between MD of the genu and corpus
of the corpus callosum with bihemispheric functional activation
during the Go/NoGo task. This interaction was such that subjects
with higher levels of MD were more likely LT transferers if they
showed more bihemispheric interaction, whereas subjects with
lower levels of MD were more likely LT transferers if they showed
less bihemispheric interaction (see Figure 2).

The proportion of ST transferers at 41.1% is lower than
previously reported at 70.7% in a preceding study by our group
(Wolf et al., 2014). A possible explanation might be the fairly
high cognitive abilities of the sample in the study by Wolf
et al. (2014), which can be inferred from the rather high IQ
and educational level assessed at baseline. However, there were
no differences in educational level or IQ between transferers
and non-transferers in the current study. Notably though, non-
transferers had a higher baseline performance in the transfer task,
as well as on the training task compared to transferers. While
the training task was adaptive to participants’ task performance, it
is conceivable that higher baseline transfer task performance left
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Scatter plots of long-term transferers and non-transferers of corpus callosum mean diffusivity and functional lateralization during the Stop task with
superimposed density lines. The plots demonstrate interaction effects of diffusivity and lateralization from logistic regression analyses, where
successful long-term transfer was more likely for subjects with both high lateralization and low diffusivity or low lateralization and high diffusivity.
The dashed lines visually demonstrate a relationship between diffusivity and functional activation that is implied by their interaction effect in binary
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less room for potential improvement due to training gain transfer
and thus led to a lower percentage of participants classified as ST
transferers. However, post-training performance of ST transferers
in the transfer task was higher than in ST non-transferers (p =
0.0018, data not shown)

While ST transfer can give insights into the effectiveness of
the training, the maintenance of these training gains over time is
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more interesting with respect to sustained cognitive performance
in aging. The proportion of participants who maintained their
cognitive training gain transfer over a period of three months (i.e.,
LT transferers) is comparable to previous findings from our lab
(Wolf et al,, 2014). Comparability with other studies is impeded
by the different definitions given in the literature for transfer
and additionally what is categorized as near and far transfer: in
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the present study, we suggest to identify our short- and long-
term transfer as far transfer, i.e. transfer of training gains to an
untrained task from a related, yet not the same, cognitive domain.
Findings of studies using this definition for transfer effects are very
heterogeneous (Oberlin et al., 2022). Most meta-analyses found
rather small training gains for far transfer outcomes (Nguyen
et al, 2019), while a current paper even claims that far transfer
effects do not exist at all (Gobet and Sala, 2023). Other training
studies, using adaptive working memory training, did not find
near or far transfer effects in healthy elderly participants (e.g.,
Guye et al., 2017; Biel et al.,, 2020). In contrast, a meta-analysis
investigating near and far transfer of training of other cognitive
domains did find evidence for far transfer effects in a few of
the investigated studies (Basak et al., 2020). Furthermore, these
studies commonly suggest multi-domain training with adaptive
tasks, as used in the present study, to be more effective in inducing
transfer effects compared to single-domain training (Nguyen et al.,
2019).

Regarding the neurobiological mechanisms underlying the
training gain transfer, bihemispheric integration seems to play
an important role for successful LT training gain transfer in the
higher level executive function task investigated in the present
study. More to the point, the integrity of interhemispheric white
matter connections and the corresponding degree of functional
bihemispheric activation differentiates successful LT transferers
from non-transferers. Subjects, whose elevated MD values in the
genu and corpus of the corpus callosum indicate axonal fiber
deterioration (Madden et al, 2012) in these regions are more
likely to be successful LT transferers if they demonstrate more
bihemispheric and functional activation. As white matter tract
integrity has repeatedly been demonstrated to be impaired in
healthy aging and associated with executive functioning (Sheriff
et al., 2024; Piguet et al., 2009; Gunning-Dixon et al., 2009),
bihemispheric functional activation could be interpreted as a form
of adaption to this process that also facilitates LT transfer. In line
with this view, more unilateral activation that is typical for younger
persons (Cabeza, 2002; Sebastian et al., 2013a) seems to lower the
probability of successful LT transfer for subjects with increased MD
of the genu and corpus. Inversely, subjects with lower MD of the
genu and corpus, and thus arguably less age-affected axonal fibers in
these regions, were more likely to be successful LT transferers if they
showed more unilateral activation as in younger subjects. One can
thus speculate that in the case of more preserved interhemispheric
axonal fiber connections, more bihemispheric functional activation
could represent a loss of contralateral inhibitory control that
impedes successful LT transfer. This dual role of bihemispheric
functional activation is by a surprising analogy also manifest in
monospheric stroke patients, where the degree of residual motor
function determines whether contralesional hemispheric activation
benefits or impedes functional recovery (Bertolucci et al., 2018).

Comparability of these findings to previous studies is limited,
as to our knowledge no other studies investigated the combined
influence of brain structure and function as predictors for training
gain transfer. Most studies focused on brain changes induced
by the training (Strenziok et al, 2014), which however, is
answering a fundamentally different research question from the
one investigated in the current study. However, identifying the
mechanisms and modulators for successful training gain transfer is
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essential for the development of successful interventions to alleviate
cognitive decline in healthy aging (Wolf et al., 2018). As such, the
present study adds important information to the existing literature
on training gain transfer and its influence on cognitive aging.

Several limitations of the current study have to be noted.
First, the inclusion of only a passive control group might not
have been ideal to investigate cognitive training gain transfer.
Improvements from pre- to post-training are most likely due to
the training in the experimental group, as they had to be larger
than in the control group. However, we cannot rule out effects
unassociated to the training, such as the social aspect of a training
group or the structure provided by recurring appointments that
might have supported a performance improvement (Gajewski et al.,
2020). Future studies should exclude this by the inclusion of an
active and passive control group. Moreover, statistically significant
results were not corrected for family-wise error and should be
regarded as tentative. Lastly, outcomes of the cognitive training on
everyday functioning have not been assessed. However, it might
be specifically this transition from cognitive training to everyday
functioning, which is important for healthy aging. Future studies
should take this into account.

5 Conclusion

The present study identified short- and long-term transfer
effects in a group of healthy elderly participants using a 4-week
cognitive training intervention. Transfer effects were maintained
over time in a quarter of these participants. Successful long-
term transferers showed neurobiological differences from non-
transferers: subjects with more preserved interhemispheric axonal
fiber connections were more likely to be successful transferers
if they showed more unilateral functional activation, whereas
subjects with more degraded interhemispheric axonal fiber
connections were more likely to be successful transferers if they
showed more bihemispheric functional activation. The quality of
interhemispheric integration may determine successful cognitive
training gain transfer with the potential to ultimately improve more
general cognitive functioning and sustained cognitive ability in
the elderly.
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