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Introduction: Cognitive decline is part of the normal aging process, but

also a major risk factor for dementia. Cognitive training interventions aim

to attenuate cognitive decline, but training gains need to be transferable to

untrained cognitive abilities to influence everyday function. Furthermore, the

neurobiological basis of cognitive training gain transfer remains elusive. A

possible candidate is increased bilateral hemisphere usage enabled by efficient

structural connectivity, especially of prefrontal regions. Therefore, the present

multicentric study used a cognitive training intervention to demonstrate training

transfer and identify neurobiological modulators of successful transfer.

Methods: In total 235 subjects were enrolled in AgeGain; 180 underwent

a broad 4-week cognitive training intervention at three study sites. Pre-

and post-training neuropsychological testing was conducted and successful

transferers were identified according to preregistered definitions. Pre-training,

subjects underwent diffusion and functional MRI to assess interhemispheric

connectivity, measured as microstructural integrity of the corpus callosum

and lateralization of functional activation patterns during a cognitive control

task. Logistic regression models were estimated to predict successful transfer

based on structural connectivity and bilateralization of activation patterns.
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Results: Out of 180 subjects, 74 showed short-term training gain transfer that

wasmaintained over 3months in 19 subjects. Neither microstructural integrity of

the corpus callosum, nor bilateralized activation predicted training gain transfer

alone. However, their interaction was associated with long-term transfer over

3 months: subjects with higher mean diffusivity of the corpus callosum and

more bilateral functional activity or conversely with lower diffusivity of the

corpus callosum and more lateral functional activity were more likely successful

long-term transferers.

Discussion: We demonstrated successful training gain transfer in 41.1%

of subjects, among whom 25.7% maintained the transfer over 3 months.

Successful long-term transfer of training gains may depend on divergent

mechanisms of structural and functional connectivity, which may explain

previous heterogeneous results in the literature.

Trial register: German Clinical Trials Register (DRKS), ID: DRKS00013077.

Registered on November 19th 2017.

KEYWORDS

cognitive training, cognitive transfer, healthy aging, functional connectivity,

interhemispheric structural connectivity

1 Introduction

Cognitive decline is a common process in normal aging and

may deteriorate to mild cognitive impairment (MCI) and dementia

(Murman, 2015). Cognitive training has been proposed as a means

to attenuate the cognitive decline during normal aging. One of

the most common forms of application of cognitive training is

computerized training, showing good effectiveness in improving

trained task performance, e.g., Guye et al. (2017). Among other

forms of computerized training, training in the lab is still widely

used because it allows for higher application standardization

and better control of possible training biases (i.e., control over

dosage of training, ruling out factors biasing attention, timing

of training).

Improvements in trained tasks that also lead to improvement

in untrained tasks is generally referred to as cognitive transfer.

Successful transfer is highly desirable as it could indicate that

training gains will have a positive impact on everyday cognitive

functioning of subjects. Additionally, transfer effects should be

maintained over time if they are to support healthy aging. A vast

amount of studies on cognitive training effects have focused on

working-memory training with heterogeneous results considering

transfer effects (Ripp et al., 2022; Karbach and Verhaeghen, 2014).

Another important cognitive domain entails higher-level executive

functions, requiring a complex interplay between several executive

functions, e.g., inhibition or working memory (Diamond and

Wright, 2014). These higher-level executive functions become

increasingly important for everyday functioning in older age

and might therefore benefit specifically from training (Willis

et al., 2006). One of these functions is logical reasoning, for

which we found transfer effects in the past (Wolf et al.,

2014).

While transfer effects of cognitive training have repeatedly

been found, the neurobiological basis of cognitive transfer is

not well understood. According to the hemispheric asymmetry

reduction of older adults model (HAROLD; Cabeza, 2002),

elderly participants might compensate cognitive decline on a

neural level by increasing bilateral activation. We were able to

show this phenomenon under increased task demands in young

participants (Sebastian et al., 2013b) and on lower task demands in

healthy elderly participants performing inhibition tasks of different

quality (Sebastian et al., 2013a). Similarly, the scaffolding theory

of aging and cognition (STAC; Reuter-Lorenz and Park, 2014)

proposes that learning and skill acquisition, as occurs during

cognitive training, results in the compensatory use of additional

brain circuits to enable good task performance. Scaffolding is

assumed to occur mainly in prefrontal brain regions (Reuter-

Lorenz and Park, 2014), which are also the same regions which

support executive functioning (Diamond and Wright, 2014), a

key domain assessed in cognitive training. Consequently, bilateral

brain activation might be a prerequisite for successful cognitive

transfer (Wolf et al., 2018). Good structural integrity of the white

matter pathways connecting the hemispheres appears to be a

prerequisite in order to achieve bilateral activation patterns in

the brain. Indeed we previously demonstrated that long-term

transfer of cognitive training gains in healthy elderly were related

to the structural integrity of the corpus callosum (Wolf et al.,

2014).

The two aims of the present study are as follows: First, to

reproduce the successful transfer of gains in a trained cognitive task

to an untrained cognitive task as in the precursor study by Wolf

et al. (2014). Second, to investigate the structural and functional

neurobiological mechanisms underlying successful short- and

long-term training transfer in healthy aging in more detail as per

the primary objectives of the AgeGain study protocol (Wolf et al.,

2018). The AgeGain study is a multicenter randomized controlled

cognitive training study in healthy older adults. Assessments

include structural integrity of the corpus callosum by means of

diffusion tensor imaging (DTI), as well as bilaterality of task-related

cortical activity using the functional MRI-derived lateralization
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index (LI). The LI quantifies brain activation lateralization during

functional imaging tasks. In the current study, a response inhibition

task, combining several inhibitory processes of differing task

demands, has been chosen to elaborate on previous findings

(Sebastian et al., 2013a). To control the practive effect on the

transfer task, a control group was included that did not receive

cognitive training. Based on previous findings from our group and

an ex-ante definition of transfer, we expected to observe short-

and long-term training gain transfer in a higher-level executive

functions task in a subgroup of our participants. We expected long-

term training gain transfer to be related to better structural integrity

of the corpus callosum. Additionally, we expected higher bilateral

processing in successful transferers, as demonstrated by increased

bilateral activation during a response inhibition task measured in

the scanner. Here, increased bilateral brain activation should be

most evident with increasing cognitive task demands.

2 Methods

Design and study sample

The data used in this study was taken from the AgeGain

study sample, a multicentric, multimodal imaging, interventional,

longitudinal, parallel group study using a RCT design for subject

group assignments. The study was preregistered with the German

Clinical Trials Register (DRKS), ID: DRKS00013077, on November

19th 2017. The aim of the AgeGain study was on the one hand

to reproduce successful transfer of training gains in a cognitive

training intervention, and on the other hand to investigate

neurobiological modulators of cognitive training gain transfer. To

this end, 235 cognitively healthy elderly subjects aged over 59

were recruited at the university medical centers in Mainz and

Rostock and the German Sport University Cologne between 2016

and 2019 by means of newspaper announcements and flyers. One

hundred and eighty one subjects underwent a 4-week cognitive

training intervention as well as pre-training MRI and pre-training,

post-training and follow-up neuropsychological examinations (see

below). Fifty four subjects were randomly assigned to the control

group that did not receive cognitive training or MRI. Written

informed consent was obtained by all subjects and the study

protocol was approved by the respective local ethics commission.

Exclusion criteria were psychological, neurological or cognitive

illnesses, cardiovascular disease, disorders restricting physical

capacity, diabetes, medication affecting cognitive performance,

insufficient German language skills, current participation in other

trials and MRI contraindications. The design of the study has been

published previously (see Wolf et al., 2018 for details).

Of the 181 subjects in the intervention group that received

cognitive training, 180 subjects with complete neuropsychological

assessment and cognitive training data were included. Of these,

166 received diffusion-weighted imaging (DWI) scans, while 139

had complete functional MRI (fMRI) scans. For an overview of

respective demographic data, please refer to Table 1. In order to

assess retest effects of transfer tasks, the 54 subjects that did not

receive cognitive training nor MR imaging were included as a

control group.

Neuropsychological examination

The neuropsychological examination was conducted

immediately prior to the 4-week cognitive training intervention

(pre-training), immediately after the cognitive training

intervention (post-training) and as a follow-up examination 3

months after the cognitive training intervention. The examination

included several common cognitive measures from multiple

domains. The cognitive measure used as an endpoint for

the cognitive training gain transfer in this study was the

Leistungspruefsystem (achievement measurement system) subtest

4 (LPS4; Horn, 1983), which refers to fluid intelligence and is

comparable to the Raven Matrices. In order to assess general

intelligence, a short version of the revised Hamburg Wechsler

Intelligence test (HAWIE-R) was applied (Tewes, 1991).

Cognitive training

Cognitive training was conducted as three 60-min sessions per

week over the course of four weeks (12 in total). Cognitive training

was conducted within two dedicated rooms, where each subject was

seated in front of a personal computer equipped with headphones

and the necessary training software. Subjects were instructed not

to seek advice or contact with other subjects during training and

opaque screens where used to shield subjects from each others’

view. To rule out any biasing effects from differences in training

dose or training administration, the cognitive training was applied

under supervision of an experimenter. Further, to rule out mere

practice effects on the transfer tasks assessed, a control group was

included, that did not receive any training.

The cognitive training intervention consisted of computerized

cognitive training tasks spanning several cognitive domains.

Specifically, executive functions, memory and information

processing speed were trained using the subtests “comparisons,”

“searching,” “logic,” “anagrams,” and “complete a logical block”

within the computer program Cogpack (Marker, 2008). Attention

capacities were trained using the subtests “alertness” and “divided

attention” within the computer program TAP (Zimmermann and

Fimm, 2015). For the training of working memory, the subtests

“complex span” and “tower of fame” within the computer program

TATOOL (Von Bastian et al., 2013) were employed. Subjects could

familiarize themselves with the training tests in one test session.

Cognitive training transfer

The cognitive training gain transfer was defined ex-ante and

previously published along with the study protocol (Wolf et al.,

2018). Cognitive training gain transfer was divided into a short-

term and a long-term component, both defined as dichotomous

variables. For short-term transfer, subjects needed to fulfill the

following conditions: (1) an improvement in the logical reasoning

training task in the last training session compared to the second

training session, (2) an improvement in the untrained fluid

intelligence task (LPS 4) from the pre-training neuropsychological

examination to the post-training neuropsychological examination,
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TABLE 1 Descriptive group statistics of transferers vs. non-transferers.

STT no STT p LTT no LTT p

N 74 106 19 161

Female 39 51 11 79

Age 68.8± 6.0 67.9± 5.2 0.4219 70.8± 7.2 68.0± 5.3 0.1078

Education 15.8± 2.9 15.8± 2.6 0.8236 15.3± 2.9 15.9± 2.7 0.4551

HAWIE-R 116.6± 10.9 117.2± 11.2 0.9420 116.0± 8.8 117.1± 11.3 0.5387

Training task 459.4± 18.6 462.9± 21.70 0.0319* 451.6± 24.7 462.6± 19.7 0.0143∗

Transfer task 23.7± 4.2 26.6± 3.5 <0.0001 23.1± 3.9 25.6± 4.0 0.0188∗

Mean ± standard deviation. STT, short-term transfer; LTT, long-term transfer; Education, in years; HAWIE-R, revised Hamburg Wechsler Intelligence Test; Training task, logical reasoning

training task performance at baseline; Transfer task, Leistungspruefsystem subtest 4 executive function cognitive training gain transfer task performance at baseline; P, p-values of Wilcoxon test;
∗statistically significant at p < 0.05 level.

(3) the improvement in the untrained intelligence task needed to

be greater than the mean difference between examinations in the

control group that did not undergo cognitive training, in order to

account for retest effects.

For long-term transfer, subjects needed to fulfill the conditions

for short-term transfer as well as two additional conditions: (1)

maintenance of the improvement in the untrained fluid intelligence

task from post-training to follow-up examination, (2) the difference

from post-training to follow-up needed to be greater than the group

mean difference between examinations in the control group, in

order to account for retest effects.

Hybrid response inhibition task

A so-called hybrid response inhibition (HRI) task was applied,

combining characteristics of a Simon, Go/NoGo, and Stop signal

task. It enables the identification of component-specific neural task

activation for response interference inhibition, action withholding,

and action cancellation, respectively. Subjects underwent three runs

of the task, preceded by a brief practice trial outside of the scanner

on a laptop to ensure that all participants understood the task.

The task was programmed in Presentation (version 13.0, http://

www.neurobs.com). Participants responded via a button press with

their left or right index finger, using a LUMItouch Box, which was

placed in the left and right hand. Four different conditions were

presented: a congruent go condition (62.5% of trials), incongruent

go condition (12.5%), NoGo condition (12.5%), and a stop

condition (12.5%). Notably, the stop and NoGo conditions entailed

only congruent target stimuli. The stop signal delay (SSD) in the

stop condition was adaptive to participant’s performance, using a

staircase procedure, to ensure a rate of about 50% of successful

inhibitions per participant per run. More precisely, following a

correct response, the response window was increased by 50 ms

on the subsequent run, while it was decreased by 50 ms after

unsuccessful stop trials, where a commission error occurred. The

initial SSD of each run was set to 220 ms. Each run consisted of 160

trials in pseudo-randomized order (for more details, see Sebastian

et al., 2013b).

Mean reaction times and accuracies were computed from the

Presentation output using Matlab 2012b (The Mathworks Inc,

Natick, Massachusetts, USA). The interference effect was calculated

through the subtraction of the mean reaction times (RT) of

congruent go trials from that of the incongruent go trials. The stop

signal reaction time (SSRT) was estimated using the integration

method. Here, go RTs of correctly answered go trials (congruent

and incongruent ones combined) are ranked according to response

speed. Of note, omissions (i.e., missing responses on go trials) are

replaced with the respective maximum go RT for congruent and

incongruent trials over all runs, respectively (Verbruggen et al.,

2019). Subsequently, the probability of responding given a stop

signal is calculated, including premature responses on unsuccessful

stops and mean SSD (Verbruggen et al., 2019). The stop process

finishes at the n-th RT, which is the amount of RT in the distribution

of go trial RTs times the likelihood of responding given a stop

signal. The mean SSD is then subtracted from the n-th percentile

of the ranked go RTs to obtain the SSRT (Verbruggen and Logan,

2009). Based on the recommendations by Verbruggen et al. (2019),

n = 6 participants with a probability <0.25 of responding given a

stop signal were excluded. Further, participants with too many go

omissions (i.e., no response on go trials) were excluded. For this, the

cutoff was set to>15% go omissions, resulting in n= 3 participants,

that had to be excluded from further analyses.

Structural imaging data and processing

T1 and DWI images were acquired on three different Siemens

3T scanners - a Prisma in Cologne, a Trio in Mainz and a Verio in

Rostock. The same T1 and DWI sequences were implemented on

these scanners. Specifically, for T1 weighted images a Generalized

Autocalibrating Partial Parallel Acquisition sequence was used with

a repetition time of 1,900 ms, an echo time of 2.52 ms, an isotropic

voxel size of 1mm 3. For DWI images, an echo planar multiband

sequence was used with a multiband factor of 3, a repetition time

of 5,500ms, an echo time of 104ms and an isotropic voxel size of

2∗2∗2mm 3. 64 diffusion gradient directions were sampled at b =

2,000s/mm 2. Additionally, two b = 0 images were acquired as well

as one b = 0 image with inverted phase encoding direction.

T1 weighted data were tissue segmented and non-linearly

registered to standard MNI space using DARTEL included in

SPM12 (Ashburner et al., 2014). Spatial distortions in the diffusion-

weighted images were corrected using Eddy from the software

package FSL 6.0.4 (Andersson and Sotiropoulos, 2016). Diffusion
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tensors were fitted to the diffusion-weighted images using an

iterated weighted least squares approach, and fractional anisotropy

(FA) and mean diffusivity (MD) were calculated from the tensors’

eigensystems using MRTRIX 3.0.2 (Tournier et al., 2019). B0

images were then coregistered to the T1 images in native space

using affine transformations. FA and MD images were then

transformed to T1 native space using the estimated coregistration

parameters and subsequently transformed to MNI space using the

previously estimated non-linear transformations from DARTEL.

Finally, mean FA and MD values for the genu and the corpus

of the corpus callosum were calculated using the corresponding

ROIs from the JHU ICBM white matter label atlas. Processing of

diffusion weighted images failed for one of the 166 subjects that had

received DWI and was thus excluded.

Functional imaging data acquisition,
preprocessing, and statistical analyses

Functional T2*-weighted images were assessed with echo

planar imaging (EPI) multiband sequences (TR = 1,000ms, TE

= 29.0ms, flip angle= 56◦, FOV= 210mm, voxel size = 2.5mm

isotropic, multiband acceleration factor = 4; 60 slices per run). The

HRI task consisted of three runs of equal length.

Data were preprocessed and statistically analyzed using SPM

12 (Wellcome Department of Cognitive Neurology) running on

Matlab 2012b (The Mathworks Inc, Natick, Massachusetts, USA).

Images with excessive head motion (>2.5mm) were excluded from

the analyses. This applied to n = 16 participants, resulting in a final

sample of n = 139 participants. The first five functional images of

each run were discarded to account for equilibrium effects. Further,

images were reoriented to the SPM T1-template. To correct for

remaining movement artifacts between scans, functional images

were spatially realigned to themean image using a 6 parameter rigid

body transformation. Realigned images were then co-registered to

the subject’s individual structural image in native space. Estimated

parameters, using DARTEL, were used to normalize images into the

Montreal Neurological Institute (MNI) standard space. In the last

step, normalized images were smoothed with an 8mm full width at

half maximum Gaussian kernel.

In first-level analyses, the data was fit using a General linear

model (GLM). Events were modeled as stick functions at stimulus

onset (i.e., appearance of arrow; Aron and Poldrack, 2006) and

convolved with a canonical hemodynamic response function.

The model entailed four regressors of interest (correct reactions

for congruent go, for incongruent go, for NoGo, and for stop

trials) and the instruction, fixation cross, incorrect reactions for

each condition, and six motion regressors as nuisance regressors.

Subsequently, three different main contrasts were computed:

incongruent go > congruent go, NoGo > congruent go, and stop

> congruent go.

Laterality index

The laterality of the brain activation was calculated using

the LI-toolbox, version 1.3.2 (Wilke and Lidzba, 2007) on SPM

12. The laterality index for each participant was computed per

main contrast from individual statistical t-maps derived from the

first-level analyses. To assure that only activation in task-relevant

regions was taken into account, only those voxels were included in

the LI whose activity was significantly associated with the respective

task (see previous section) after FWE correction at p < 0.05 and

with aminimum cluster size of k = 10. To this end, a binary bilateral

inclusion mask was created for each respective contrast. As with all

visually presented imaging tasks, also the HRI task generates a lot

of activation in visual areas, which, however is irrelevant for the

laterality information in the current work. To reduce the influence

of this visual activation on the calculation of the laterality index, we

additionally used an exclusion mask of the occipital cortex for the

analyses. This exclusion mask also consisted of the midline +/−

5mm, to rule out any artificial activity common in this area (Wilke

and Lidzba, 2007). The laterality index is defined as:

LI =

∑
activationleft −

∑
activationright

∑
activationleft +

∑
activationright

Here, activation refers to the first-level analyses t-maps

reflecting activity during the respective tasks. Furthermore, in

order to reduce the impact of outliers, a bootstrapping method

was applied, iteratively drawing n = 100 resamples for each side

from the masked and thresholded voxels on the right and left

side of the input images. These resamples were tested against

increasing thresholds, calculating an upper limit of 10,000 possible

lateralization indices per threshold. To reduce the influence of

single voxels, a lower boundary of 5 voxels per cluster surviving

the threshold was defined. A trimmed mean was applied to the

obtained laterality indices, only taking the mean 50% of data points

into account, disregarding the upper and lower 25% of data, thereby

reducing the impact of skewed distributions. To put an emphasis

on voxels meaningful for the task, a so-called weighted mean (wm)

was calculated from the trimmedmeans of all thresholds. For this, a

weighting factor was applied, that is equal to the threshold survived

by a given data point. Hence, laterality indices were weighted more

strongly at higher thresholds (Wilke and Schmithorst, 2006). The

resulting value ranges between 1 (completely left-lateralized) and –

1 (completely right lateralized), with a value around 0 indicating

bilaterality. As we were interested in contrasting bilateral versus

unilateral brain activation, we considered the absolute of the

LI throughout subsequent statistical analyses. See Figure 1 for a

schematic description of the LI.

Statistical analyses

Statistical analyses were devised in accordance with the

previously published study protocol (Wolf et al., 2018). Retest

effects in the training gain transfer task LPS4 were calculated

descriptively from the control group as the mean difference of the

assessments corresponding to the post-training and pre-training

measurements with respect to short-term transfer and as the

mean difference corresponding to follow-up and post-training

with respect to long-term transfer. Subjects of the intervention

group were then classified into short- and long-term transferers

and non-transferers according to the definition given above. We
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FIGURE 1

Laterality index schematic. This schematic intends to demonstrate how lateral activation scenarios are mapped by the laterality index. Very similar

activation in both hemispheres corresponds to values close to zero. Higher activation in one hemisphere than in the contralateral hemisphere

corresponds to values closer to one. Notably, the index is sensitive to differences in relative activation levels only and does not depend on absolute

activation strength.

calculated descriptive statistics and group comparisons for short-

and long-term transferers and non-transferers for the variables age,

years of education, HAWIE-R, baseline logical reasoning training

task performance, and baseline LPS4 training gain transfer task

performance using Wilcoxon tests. To investigate center effects, we

estimated binary logistic regression models, where short-term (ST)

and long-term (LT) transferer/non-transferer were set as dependent

variable and study site coded as dummy variables were set as

independent variables.

Subsequently, binary logistic regression analyses were

conducted with transferer/non-transferer set as dependent

variable, FA or MD of the genu or the corpus of the corpus

callosum as independent variable and age as covariate in the

subgroup of 165 subjects with DWI measures (Wolf et al., 2018).

To investigate nonlinear effects, regressions were re-estimated with

an added quadratic term of the independent variable. For the group

of 139 subjects with fMRI data, the same regression models were

estimated with the LI of the Simon, Go/NoGo and Stop tasks as

independent variables. These models were also re-estimated with

an added quadratic term of the respective independent variable

to investigate possible non-linear effects. As subjects with high

training task improvement might not have depended on more

bihemispheric processing for successful training gain transfer, the

models with LI as independent variable were re-estimated with

cognitive training gain as additional independent variable as well

as its interaction with LI. Training gains were calculated as the

difference of the logical reasoning training task score between the

last and the first training session. Finally, interaction effects of

LIs with FA or MD values of the corpus callosum were estimated

to investigate, whether the association of the structural integrity

of the corpus callosum with ST and LT was dependent on more

bihemispheric processing.

For the models with added quadratic or interaction terms,

the difference of the Akaike Information criterion (delta AIC)

(Akaike, 1998) compared to the corresponding models with

quadratic or interaction terms removed was calculated. Statistical

significance testing was carried out, if delta AIC was greater

than two, indicating an improvement in the model. For

statistically significant results, models were re-estimated using

robust generalized regression models.

Statistical analyses were calculated using R version 4.4.1 (RCore

Team, 2024) and the package ggplot2 version 3.5.1 was used for

figures (Wickham, 2016).

3 Results

The mean difference for LPS4 in the control group between

initial assessment and 4 weeks later (corresponding to pre-training

and post-training in the intervention group) was –0.093, as

well as 1.35 between the second assessment and 3 months later

(corresponding to post-training and follow-up in the intervention

group). Of the 180 subjects included that received the training

intervention, 74 descriptively demonstrated training gains and

an improvement in the LPS4 training gain transfer task at post-

training, which was higher than –0.093 in the control group. They

were thus classified as ST transferers according to the ex-ante

definition (see above). Of these ST transferers, 19 subjects showed

an improvement up until follow-up greater than 1.35 in the control

group and were thus classified as LT transferers.

Group statistics did not demonstrate differences between

ST/LT transferers and non-transferers with regard to age, years

of education or IQ. However, ST transferers had lower baseline

cognitive training task (p = 0.0319) and training gain transfer
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TABLE 2 Results of binary logistic regression analyses.

STT LTT

Predictor Estimate p Estimate p

Genu FA –0.6409 0.7761 2.1302 0.6089

Corpus FA 1.140 0.7834 –0.8979 0.8924

GenuMD 1.534 0.5491 2.3389 0.5385

Corpus MD 0.2273 0.9479 3.9795 0.4512

LI Simon –1.1630 0.2360 –1.0303 0.4905

LI Go/NoGo –0.3204 0.7217 0.4639 0.7289

LI Stop –0.3628 0.6832 –1.5744 0.2350

STT, short-term transfer; LTT, long-term transfer; Predictor, independent variable; Estimate,

corresponding regression estimate; P, corresponding p-value; Genu, genu of the corpus

callosum; Corpus, corpus of the corpus callosum; FA, fractional diffusion anisotropy; MD,

mean diffusivity; LI, lateralization index.

task performances than non-transferers (p < 0.0001). Likewise, LT

transferers had lower baseline cognitive training task (p = 0.0143)

and training gain transfer task (p = 0.0188) performances than

non-transferers (see Table 1 for group statistics). Binary logistic

regression analysis did not indicate significant center effects on the

ST and LT transfer variables. P-values were p = 0.341 and p = 0.803

for the two dummy variables encoding study site.

Binary logistic regression analyses did not demonstrate any

significant prediction of group membership (transferer vs. non-

transferer) for FA or MD of the genu and corpus of the corpus

callosum, neither between ST transferers and ST non-transferers

nor between LT transferers and LT non-transferers. Likewise,

laterality indices, calculated based on the activation patterns during

the Simon, Go/NoGo, and Stop tasks, did not significantly predict

transfer, neither between ST transferers and ST non-transferers,

nor between LT transferers and LT non-transferers (see Table 2

for an overview of estimates and corresponding p-values). Adding

baseline performance as covariate into the analyses did not change

these results.

Models with an added quadratic term did not show an

improvement over the corresponding reduced model, neither for

DTImeasures of the corpus callosum nor for LIs, according to delta

AIC, which ranged from –1.98 to 0.99. Likewise, models with an

added interaction term for LI and training gains did not show an

improvement over the corresponding reduced model according to

delta AIC, which ranged from –1.99 to –0.34.

Finally, two models with an interaction term for DTI measures

of the corpus callosum with LIs showed a substantial improvement

over the reduced model without the respective interaction term.

Predicting LT transfer, delta AIC was 8.2 for the model with an

interaction term of MD of the genu with the LI of the Go/NoGo

task, and 3.0 for the model with an interaction term of MD of

the corpus with the LI of the Go/NoGo task. The corresponding

p-values were 0.00333 and 0.0335 for the respective interaction

terms. Interactions were such that subjects with higher MD in

the genu or corpus of the corpus callosum and simultaneously

more bihemispheric activation during the Go/NoGo task were

more likely to be LT transferers. Robust model estimates for these

interaction results were somewhat lower, the interaction of the genu

TABLE 3 Results of interaction analyses.

Model term Estimate p Robust
estimate

p

GenuMD 5.3339 0.3678 3.4954 0.5861

LI Go/NoGo 0.2925 0.8607 0.9725 0.6089

Interaction –82.7112 0.0033∗ –69.8578 0.0175∗

Corpus MD 9.2410 0.1414 5.0293 0.4529

LI Go/NoGo 1.1318 0.4635 0.9881 0.5376

Interaction –63.0091 0.0335∗ –54.7633 0.0803

Long term transfer was set as dependent variable, mean diffusivity (MD) of the genu or of the

corpus of the corpus callosum, laterality index (LI) during the Go/NoGo task as well as their

interaction term were set as independent variables. ∗ , statistically significant at p < 0.05 level.

MD with the LI yielding a p-value of 0.0175 and the interaction

of the corpus MD with the LI yielding a p-value of 0.0803, thus

reducing to a trend. For an overview, please refer to Table 3.

4 Discussion

Using a 4-week cognitive training intervention in a multicenter

multimodal imaging study, we were able to demonstrate cognitive

training gain transfer from a logical reasoning task to an untrained

fluid intelligence task according to a training gain transfer measure

defined ex-ante. Specifically, 74 out of 180 subjects (41.1%) showed

successful short-term transfer immediately after the cognitive

training intervention. The cognitive training gain transfer was

stable over a period of 3 months in 19 out of these 74 subjects

(25.7%), indicating long-term transfer. Short- and long-term

improvements in the transfer effects were numerically greater than

performance differences in the control group, indicating a true

transfer effect, rather than a retest effect due to task familiarity

over time. Neither successful short-term nor long-term cognitive

training gain transfer were predicted by bihemispheric functional

activation patterns or interhemispheric structural connectivity of

the genu and corpus of the corpus callosum. However, results

indicated an interaction between MD of the genu and corpus

of the corpus callosum with bihemispheric functional activation

during the Go/NoGo task. This interaction was such that subjects

with higher levels of MD were more likely LT transferers if they

showed more bihemispheric interaction, whereas subjects with

lower levels of MD were more likely LT transferers if they showed

less bihemispheric interaction (see Figure 2).

The proportion of ST transferers at 41.1% is lower than

previously reported at 70.7% in a preceding study by our group

(Wolf et al., 2014). A possible explanation might be the fairly

high cognitive abilities of the sample in the study by Wolf

et al. (2014), which can be inferred from the rather high IQ

and educational level assessed at baseline. However, there were

no differences in educational level or IQ between transferers

and non-transferers in the current study. Notably though, non-

transferers had a higher baseline performance in the transfer task,

as well as on the training task compared to transferers. While

the training task was adaptive to participants’ task performance, it

is conceivable that higher baseline transfer task performance left
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FIGURE 2

Scatter plots of long-term transferers and non-transferers of corpus callosum mean diffusivity and functional lateralization during the Stop task with

superimposed density lines. The plots demonstrate interaction effects of diffusivity and lateralization from logistic regression analyses, where

successful long-term transfer was more likely for subjects with both high lateralization and low diffusivity or low lateralization and high diffusivity.

The dashed lines visually demonstrate a relationship between diffusivity and functional activation that is implied by their interaction effect in binary

logistic regression analysis, but not statistically quantified.

less room for potential improvement due to training gain transfer

and thus led to a lower percentage of participants classified as ST

transferers. However, post-training performance of ST transferers

in the transfer task was higher than in ST non-transferers (p =

0.0018, data not shown)

While ST transfer can give insights into the effectiveness of

the training, the maintenance of these training gains over time is

more interesting with respect to sustained cognitive performance

in aging. The proportion of participants who maintained their

cognitive training gain transfer over a period of three months (i.e.,

LT transferers) is comparable to previous findings from our lab

(Wolf et al., 2014). Comparability with other studies is impeded

by the different definitions given in the literature for transfer

and additionally what is categorized as near and far transfer: in
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the present study, we suggest to identify our short- and long-

term transfer as far transfer, i.e. transfer of training gains to an

untrained task from a related, yet not the same, cognitive domain.

Findings of studies using this definition for transfer effects are very

heterogeneous (Oberlin et al., 2022). Most meta-analyses found

rather small training gains for far transfer outcomes (Nguyen

et al., 2019), while a current paper even claims that far transfer

effects do not exist at all (Gobet and Sala, 2023). Other training

studies, using adaptive working memory training, did not find

near or far transfer effects in healthy elderly participants (e.g.,

Guye et al., 2017; Biel et al., 2020). In contrast, a meta-analysis

investigating near and far transfer of training of other cognitive

domains did find evidence for far transfer effects in a few of

the investigated studies (Basak et al., 2020). Furthermore, these

studies commonly suggest multi-domain training with adaptive

tasks, as used in the present study, to be more effective in inducing

transfer effects compared to single-domain training (Nguyen et al.,

2019).

Regarding the neurobiological mechanisms underlying the

training gain transfer, bihemispheric integration seems to play

an important role for successful LT training gain transfer in the

higher level executive function task investigated in the present

study. More to the point, the integrity of interhemispheric white

matter connections and the corresponding degree of functional

bihemispheric activation differentiates successful LT transferers

from non-transferers. Subjects, whose elevated MD values in the

genu and corpus of the corpus callosum indicate axonal fiber

deterioration (Madden et al., 2012) in these regions are more

likely to be successful LT transferers if they demonstrate more

bihemispheric and functional activation. As white matter tract

integrity has repeatedly been demonstrated to be impaired in

healthy aging and associated with executive functioning (Sheriff

et al., 2024; Piguet et al., 2009; Gunning-Dixon et al., 2009),

bihemispheric functional activation could be interpreted as a form

of adaption to this process that also facilitates LT transfer. In line

with this view, more unilateral activation that is typical for younger

persons (Cabeza, 2002; Sebastian et al., 2013a) seems to lower the

probability of successful LT transfer for subjects with increasedMD

of the genu and corpus. Inversely, subjects with lower MD of the

genu and corpus, and thus arguably less age-affected axonal fibers in

these regions, weremore likely to be successful LT transferers if they

showed more unilateral activation as in younger subjects. One can

thus speculate that in the case of more preserved interhemispheric

axonal fiber connections, more bihemispheric functional activation

could represent a loss of contralateral inhibitory control that

impedes successful LT transfer. This dual role of bihemispheric

functional activation is by a surprising analogy also manifest in

monospheric stroke patients, where the degree of residual motor

function determines whether contralesional hemispheric activation

benefits or impedes functional recovery (Bertolucci et al., 2018).

Comparability of these findings to previous studies is limited,

as to our knowledge no other studies investigated the combined

influence of brain structure and function as predictors for training

gain transfer. Most studies focused on brain changes induced

by the training (Strenziok et al., 2014), which however, is

answering a fundamentally different research question from the

one investigated in the current study. However, identifying the

mechanisms and modulators for successful training gain transfer is

essential for the development of successful interventions to alleviate

cognitive decline in healthy aging (Wolf et al., 2018). As such, the

present study adds important information to the existing literature

on training gain transfer and its influence on cognitive aging.

Several limitations of the current study have to be noted.

First, the inclusion of only a passive control group might not

have been ideal to investigate cognitive training gain transfer.

Improvements from pre- to post-training are most likely due to

the training in the experimental group, as they had to be larger

than in the control group. However, we cannot rule out effects

unassociated to the training, such as the social aspect of a training

group or the structure provided by recurring appointments that

might have supported a performance improvement (Gajewski et al.,

2020). Future studies should exclude this by the inclusion of an

active and passive control group. Moreover, statistically significant

results were not corrected for family-wise error and should be

regarded as tentative. Lastly, outcomes of the cognitive training on

everyday functioning have not been assessed. However, it might

be specifically this transition from cognitive training to everyday

functioning, which is important for healthy aging. Future studies

should take this into account.

5 Conclusion

The present study identified short- and long-term transfer

effects in a group of healthy elderly participants using a 4-week

cognitive training intervention. Transfer effects were maintained

over time in a quarter of these participants. Successful long-

term transferers showed neurobiological differences from non-

transferers: subjects with more preserved interhemispheric axonal

fiber connections were more likely to be successful transferers

if they showed more unilateral functional activation, whereas

subjects with more degraded interhemispheric axonal fiber

connections were more likely to be successful transferers if they

showed more bihemispheric functional activation. The quality of

interhemispheric integration may determine successful cognitive

training gain transfer with the potential to ultimately improvemore

general cognitive functioning and sustained cognitive ability in

the elderly.
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